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Abstract—With the rise of Embodied Foundation Models
(EFMs), most notably Small Language Models (SLMs), adapting
Transformers for edge applications has become a very active field
of research. However, achieving end-to-end deployment of SLMs
on microcontroller (MCU)-class chips without high-bandwidth
off-chip main memory access is still an open challenge. In this paper,
we demonstrate high-efficiency end-to-end SLM deployment on a
multicore RISC-V (RV32) MCU augmented with ML instruction
extensions and a hardware neural processing unit (NPU). To automate
the exploration of the constrained, multi-dimensional memory vs.
computation tradeoffs involved in aggressive SLM deployment on
heterogeneous (multicore+NPU) resources, we introduce Deeploy,
a novel Deep Neural Network (DNN) compiler, which generates
highly-optimized C code requiring minimal runtime support. We
demonstrate that Deeploy generates end-to-end code for executing
SLMs, fully exploiting the RV32 cores’ instruction extensions and the
NPU: We achieve leading-edge energy and throughput of 490 uJ/Token,
at 340 Token/s for an SLM trained on the TinyStories dataset, running
for the first time on an MCU-class device without external memory.

Index Terms—Neural Networks, TinyML, Embodied AlI,
Foundation Models, Accelerators, Compilers

I. INTRODUCTION

The latest evolutions in mainstream Aurtificial Intelligence (AI)
have been driven by Transformers, which have taken over from
Recurrent Neural Networks (RNNs) and Convolutional Neural
Networks (CNNs) as the leading edge models for language
processing and multi-modal applications [1], [2]. The success of
Transformers can be primarily attributed to the emergence of the
Foundation Model (FM) paradigm: large Transformer models
extensively pre-trained on datasets spanning trillions of tokens and
then fine-tuned with a much lower volume of labeled data to solve
domain-specific problems. Following the success of FMs in Natural
Language Processing (NLP) [1], [3], an increasing number of fields
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are starting to formulate and adapt FMs for high dimensional sensor
data that has traditionally been challenging to process, like decoding
neural data [4], [5], or training embodied Al agents [6], [7], which
may incorporate multi-modal sensor inputs.

Operating directly on sensory data and in a cyber-physical loop
may lead to solving many outstanding challenges in fields such as
brain-machine interfaces [5] and miniaturized robotics [7]. However,
to materialize this promise, models of this class need to be embodied
in physical devices as Embodied Foundation Models (EFMs), and
they must cope with the strict constraints in terms of compute
throughput, power consumption, and footprint typical of edge de-
vices. Unlike datacenter-scale systems, which collect and aggregate
sensor data over sharded resources for high-throughput processing,
embodied Al systems must process sensor data with extremely low
latency and memory capacity under tight power constraints. This is
particularly challenging for the smallest class of Al-oriented comput-
ers: so-called “finyML” devices operating at the extreme edge, based
on microcontroller-class devices without complex operating systems
or Memory-Management Units (MMUEs), relying on user-level
software to implement low-level hardware management functional-
ities. Despite many recent successes with previous-generation Deep
Neural Networks (DNNs), the emergence of the tinyML paradigm
for EFMs faces the dual challenge of reducing FMs to a manageable
size and enabling their deployment on tiny devices.

A first concrete step in this direction is the recent introduction of
Small Language Models (SLMs): FMs with tens to a few hundred
million, rather than several billion parameters [8], [9]. While
most currently available FMs are focused on processing natural
language at a proof-of-concept scale, the effort towards embedded
multi-modal sensor inputs with small-scale, application-specific
FMs offers a highly promising path for the development of this
novel class of models. Much like what happened with the initial
emergence of Deep Learning [10], the evolution of advanced
tinyML applications based on EFMs is currently prevented by the
lack of suitable targets for deployment of these models and, even
more, of deployment frameworks that enable utilizing existing
specialized hardware to its full capabilities.

Deploying tiny EFMs requires overcoming several challenges
specific to the tinyML domain. Large-scale Al inference systems
typically employ heterogeneous computer architectures composed
by a conventional host (e.g., an x86 processor) and a very large
throughput-oriented accelerator (e.g., H100 [11], TPU [12]), which
is fully exploited only at large batch sizes. Conversely, tinyML is
used for latency-sensitive applications focusing on real-time infer-
ence without batching. As a consequence, tinyML Al inference typi-
cally employs much more specialized accelerator architectures [13],
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[14], leading to more complex mapping and optimization challenges
for DNN deployment. Furthermore, tinyML’s strict constraints on
energy efficiency and microcontroller-class computer architecture
typically require platform-specific optimization, including memory-
aware tiling, static memory allocation, and latency-hiding Direct
Memory Access (DMA) scheduling, which require advanced
compiler support to scale to complex DNNs like FMs. While
several compilers have limited support for user-defined kernels [15],
[16], configuring and extending them requires expert knowledge,
and their top-down compilation approach often clashes with loosely
coupled accelerators. Moreover, mainstream compilers do not
address the strict memory constraints in extreme-edge devices.

In this paper, we aim to remove the first barrier towards
developing EFM suited for deployment on tinyML platforms: the
lack of deployment frameworks that enable their efficient execution.
We demonstrate, to the best of our knowledge, the first end-to-end
tool flow to deploy EFMs on heterogeneous microcontroller-class
systems. Specifically, we demonstrate the end-to-end deployment
of a TinyStories-class [8] network on Siracusa, an advanced
microcontroller in TSMC 16 nm technology featuring embedded
non-volatile memory (MRAM) and two heterogeneous compute
engines, namely, an octa-core RV32 compute cluster with
instruction extensions for ML and a multi-mode CNN Neural
Processing Unit (NPU), N-Eureka [13]. We present the tooling and
algorithms integrated within our deployment framework, Deeploy.

The contributions of this paper are as follows:

e We describe Deeploy, a customizable, domain-specific
compiler designed for generating bare metal code fitting
the memory constraints of extreme edge devices. Deeploy
supports all the key computational primitives needed for the
execution of Transformer-based EFMs on heterogeneous
extreme edge System-on-chips (SoCs) through its bottom-up
compilation approach, which allows applying advanced code
optimization on expert-optimized kernel templates. We further
introduce a novel algorithm for solving the tiling and static
memory allocation problems for multi-level software-managed
caches and its integration into Deeploy.!.

o We benchmark common Transformer configurations, demon-
strating that code generated by Deeploy maximizes engine uti-
lization in heterogeneous, multi-accelerator SoCs. We achieve
data marshaling overheads of just 9 % for large workloads
with high arithmetic intensity executing on the cluster cores
and NPU collaboratively thanks to efficient data movement
acceleration and low-overhead offloading mechanisms.

e As a concrete large-scale end-to-end use-case of Deeploy
and its adaptability to heterogeneous hardware platforms, we
demonstrate for the first time the deployment of a TinyStories-
class SLM on Siracusa, a state-of-the-art heterogeneous
Microcontroller (MCU). While using on-chip memory only,
we achieve a throughput of 340 Token/s at an energy cost of
490 uJ for autoregressive inference. We show that using the
flexible deployment flow enabled by Deeploy for the same
SLM allows us to implement multi-layer X'V caching using
on-chip memory only, improving token throughput by 26 x
compared to inference without caches.

'We will open-source all code required to reproduce our experiments under
https://github.com/pulp-platform/deeplo;
tps://g pulp-p ploy

The rest of this paper is organized as follows: in Section II, previ-
ous work in quantized neural networks, small language models, and
neural network deployment for extreme edge devices is introduced
and discussed. Section III introduces Deeploy and discusses its
deployment flow for Transformers. Section IV discusses the SLM
architecture used in this work and the approach to mapping it on
Siracusa. In Section V, we present the Siracusa MCU platform.
Section VI presents and discusses the end-to-end deployment
results, comparing them to the state-of-the-art. Finally, Section VII
concludes this paper, summarizing the results and contributions.

II. RELATED WORK

This Section gives an overview of the state-of-the-art on EFMs, fo-
cusing on developments towards improvements in energy efficiency
and model size and tools to deploy DNNs on extreme edge devices.

A. Small Foundation Models

Recently, the development of decoder-only Large Language
Models (LLMs) such as Llama [1], and Mixtral [2], and their
associated Machine Learning (ML) pipelines led to a new model
type: the Foundation Model (FM).

FMs are pre-trained LLLMs, which can be fine-tuned for down-
stream tasks at a fraction of the cost of pre-training, making them
particularly relevant for domain specialization. However, LLMs
often contain several billion parameters, requiring GiB of storage
space, making them incompatible with extreme edge inference.

Addressing this gap, the emerging field of SLMs has gained
significant traction in the last year. The aim of SLMs is to compact
LLMs down to tens to hundreds of MiB [8], [9], mirroring the
evolution of compression of CNNs [17] over the past decade.

This paradigm shift towards compact FMs is particularly
interesting for tinyML applications. Incorporating smaller FMs, like
SLMs, into embedded devices may enable a new wave of intelligent,
responsive, and autonomous devices built on EFMs. Such systems
could bridge the gap between human-understandable inputs such
as text and performing high-level planning and low-level control
tasks [18] and make such advanced capabilities available at the
edge, embodied in robots, appliances, and wearable devices.

In this work, we contribute to the growing field of SLM and
EFM research and aim to lay the foundation for truly embedded
SLMs by providing a foundational deployment flow that supports
a wide range of FMs, from autoregressive decoder-only ones to
encoder-only ones.

B. Quantized Transformer Models

Neural network quantization has been an active field of research
for the past decade, as the promises of reduced parameter storage
and higher compute efficiency on reduced-precision operands
drive the development of increasingly aggressive quantization
methods [17], [19].

Improvements in energy efficiency are significant when switching
from floating-point point computation to integer arithmetic [20],
[21] due to the reduced hardware complexity required to implement
the fundamental operations using integer arithmetic. One commonly
used approach to quantize DNNs is Quantization-Aware Training
(QAT), where the model is trained to overcome quantization effects



that occur when using lower-precision values for weights and
activations [22]. However, QAT often requires computationally
expensive retraining of the model and access to representative
datasets, which are not readily available. Post-Training Quantization
(PTQ) methods can be applied to quantize models without retraining
while conserving full-precision accuracy [23]. Especially in the
domain of FMs, PTQ has been successfully applied [24] to reduce
the computational cost of quantization. In this work, we apply
state-of-the-art PTQ on a publicly available pretrained SLM to
achieve quantized inference without loss of accuracy, a prerequisite
for energy-efficient inference on extreme edge devices.

C. Neural Network Deployment for Extreme Edge Devices

Building on the trends of model quantization and compression,
as well as research into more computationally efficient DNNs [25],
DNN inference on mobile and embedded devices has become
a flourishing field of research [13], [14], [26]. While model
deployment on mobile devices like smartphones follows similar ap-
proaches to server-scale deployment, relying on the ample compute-
and memory resources, hardware-managed caches, and operating
systems to carry out task scheduling available to this class of devices,
deeply embedded devices face much more severe constraints in
deployment. This is especially true for the new generation of
MCU-class devices focusing on Al applications. In contrast to
their predecessors, these MCUs feature multi-core compute clusters,
DNN accelerators, and on-chip memory of up to 10 MiB, split into
multiple software-managed memory hierarchy levels [13], [14], [27].

To optimally leverage the compute capabilities of such complex
systems, network deployment must simultaneously optimize
the execution schedule and tiling of operators and orchestrate
overlapping memory transfers using DMAs to achieve low
data marshaling overheads and high compute utilization. While
modern top-down compilers like MLIR and TVM [15], [16] allow
integration of most common Instruction Set Architectures (ISAs)
and accelerator APIs, their focus is not on meeting the stringent
memory constraints of this class of tinyML devices. Prior work like
Dory [28], CoSa [29], and others have addressed these challenges
for CNNs by focusing on operator tiling to fit the target’s memory
constraints. However, these approaches assume a single-cluster
memory hierarchy, with undivided memory at each level, and a
simple lifetime model for network tensors, which are fundamentally
stateless across inference rounds. These simplifying assumptions
do not hold for complex heterogeneous multi-accelerator hardware
and advanced SLLM networks [30], [31].

Moving beyond these prior works, we propose a novel constraint
programming algorithm that enables co-optimizing tiling and
memory allocation, which overcomes the limitations of previous
approaches by supporting data flows with complex lifetimes (e.g.
KV caching) as required by EFMs.

1II. DEEPLOY

In this section, we provide an overview of the Deeploy
compilation flow. In contrast to most state-of-the-art compilers for
DNNGs, which lower DNN representations top-down into predefined
primitives that need to be implemented by each backend [15], [16],
[32], Deeploy employs a bottom-up compilation approach, where
the compiler implements networks by composing user-provided C

kernels, extending them with code generation passes to implement
tiling and memory allocation. This bottom-up approach to
compilation provides three key advantages: first, it supports reusing
hand-optimized kernel libraries commonly available for most ISAs
and accelerators. Second, it can be easily extended to support
highly customized non-standard compute platforms, including
heterogeneous SoCs featuring multiple accelerators for which a
low-level compiler backend may not exist. Third, it allows easy
integration of novel operators found in emerging Transformer
architectures without invasive modifications to the deployment flow.
Deeploy is organized in three building blocks; the Frontend val-
idates and transforms the graph representation into a representation
that suits the platform and assigns kernel templates to each operator.
The Midend performs all tiling and static memory allocation compu-
tations, guaranteeing that the computed program schedule may exe-
cute without unscheduled runtime memory spills. Finally, the Back-
end uses the optimized graph representation generated in the Fron-
tend, and the generated tiling schedule and memory allocation map
generated in the Midend to create executable code through a series of
code generation passes. All deployment targets share the same execu-
tion flow, and Deeploy uses a configurable platform abstraction, the
Deployment Platform, which allows it to steer operators’ mapping,
optimization, and lowering according to the platform’s configuration.
An overview of the Deeploy execution flow is shown in Figure 1.

A. Data Structures

Deeploy distinguishes between three types of buffers: Variable
Buffers, Transient Buffers, and Constant Buffers. Variable Buffers
represent tensors that contain data that is not constant at compile-
time, i.e., network inputs, outputs, and intermediate activations.
Constant Buffers represent compile-time constant data used in
inference, i.e., network weights and other network parameters.
Lastly, Transient Buffers represent scratchpad memory locations for
kernel execution, e.g., im2col buffers for convolution kernels [33],
[34], or reorder buffers for efficient transposition kernels. Typically,
the amount of space used in Transient Buffers depends on the
operator’s parametrization, distinguishing them from Variable
Buffers. In contrast to simpler DNN topologies, EFMs employ data
structures that require advanced allocation strategies, such as the
KV caches of autoregressive SLMs, as they have more complex
buffer lifetime requirements than intermediate tensors found in
CNNs. Addressing these constraints requires a more sophisticated
management of the buffers’ lifetime and memory allocation than
in other deployment tools targeting extreme edge devices [28], [29].

The distinction between global and local section buffers is
relevant for code generation; global objects are allocated as global
C variables, while local objects are only accessible in the inference
code. As such, global variables are alive throughout an inference
execution, while local variables are allocated and deallocated as
the network’s execution schedule requires.

B. Frontend

Deeploy’s Frontend is designed around ingesting quantized Open
Neural Network Exchange (ONNX) graphs produced by DNN and
Transformer quantization tools like Quantlib [35]. Deeploy imple-
ments a configurable lowering pass system based on pattern match-
ing of ONNX graphs to enable efficient and customizable graph-
lowering strategies. Each lowering pass consists of a user-defined
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C Code exploiting DMA transfers. Each step of the execution flow is highly configurable through the Deployment Platform object.

replacement function and a source pattern, which describes the sub-
graph that should be replaced. Using the replacement function, each
lowering pass uses the matched sub-graph to generate a target pat-
tern, which replaces the source pattern. Using this system, the first
processing step in the Frontend is transforming the input graph into a
custom, platform-specific ONNX dialect using lowering passes pro-
vided by the Deployment Platform. The user further defines operator
mappings between custom operators and the engines available in the
target platform to control the code generation on the level of individ-
ual operators. Common tinyML kernel libraries like CMSIS-NN and
PULP-NN [33], [34] offer kernels for fused linear operators and acti-
vations, which can be lowered into by matching pairs of linear opera-
tors and quantization operators. Besides operator fusion optimization
passes, Deeploy also supports the minimization and insertion of data
marshaling operators like transpositions to match the data layout
requirements of kernel libraries. An example of such an operator
insertion pass is adding transpositions operators to optimize the data
layout of the B matrix for General Matrix Multiplication (GEMM)
kernels of type Y =aAB+3C for better data access locality.

The second step after transforming the input graph into the
platform-specific dialect in the Frontend is parsing, during which
every operator in the network is analyzed to construct an initial
context of buffers used in the network’s execution, and Type
Inference & Kernel Selection where every buffer in the context is
assigned a type. The types used in Deeploy correspond to standard
C types (e.g., int8_t, float32) or custom data types, depending
on the kernels used by the Deployment Platform. To guarantee
a valid type assignment, Deeploy propagates type information
top-to-bottom. The user must only provide the input types for every
graph’s input tensor to achieve this; then, using this information,
Deeploy matches the input types of each operator with one of the
kernel signatures provided by the Deployment Platform.

The final result of the Frontend is an assignment of low-level
kernel templates to every operator in the lowered platform-specific
ONNX, which satisfies the type constraints imposed by the
network’s operators.

C. Midend

The second stage of Deeploy’s execution flow, the Midend,
receives the platform-specific ONNX graph and the kernel
assignment for each operator from the Frontend. The Midend’s
purpose is to perform all optimization operations required to
generate low-level optimized C code for the target platform in
the Backend. The Midend is divided into two optimization steps:
Memory Level Annotation and Tiling & Memory Scheduling.
To model the CP used to compute the tiling and static memory
allocation solution, Deeploy uses Google’s ORTools.

1) Memory Level Annotation: The memory level annotation step
annotates every buffer in the compilation context with a memory hi-
erarchy level. The motivation for defining the storage location of ev-
ery tensor is to model code generation constraints closely to the hard-
ware; most embedded systems designed for tinyML applications use
multiple memory or cache levels [13], [14] to optimize the trade-off
between storage density and memory access latency. While Deeploy
supports the tiling of buffers, directly assigning buffers’ memory
levels to lower cache levels can lead to performance improvements.
When targeting accelerators that would otherwise be limited by
the available bandwidth towards higher-level caches, controlling
memory allocation has a significant performance impact [13].

2) Tiling: The second processing step in the Midend is Tiling
& Memory Scheduling. For every kernel template chosen in the
Frontend, the target platform must specify a Tile Constraint (TC).
The TC models the geometric and platform-specific constraints for
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Fig. 2. Example of the co-optimization of tiling and static memory allocation algorithm for one memory level in Deeploy. First, the lifetime of each tensor in the graph
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from the tile constraint flow shown in the middle. Finally, Deeploy applies a coordinate transform within the CP. On the right-hand side, the 2D bin packing solution
is presented with the naive solution on top, and the solution found by Deeploy is shown below.

tiling an operator. For a tiling solution to be correct, all geometric
constraints must hold. For example, the spatial dimensions of a
softmax activation’s output tile must be the same as its input tile’s
dimensions. As such, geometric constraints do not depend on the
implementation of an operator. While it is possible to tile large tensor
operators down to single instructions when targeting processor
cores, the same does not hold for accelerators. Specifying TCs
and platform-specific constraints on a per-kernel basis is especially
important for handling the tiling problem for loosely-coupled
accelerators since they typically only support specific dimensions
to be tiled, owing to their specialized datapaths [13], [14].
Similarly to the Type Inference & Kernel Selection flow, the Tile
Constraint Flow (TCF) is applied top-to-bottom through the execu-
tion schedule of the network, adding the geometric and platform-
specific tile constraints of every operator to the CP. Furthermore, the
TCF adds one symbolic variable per dimension per tensor in the net-
work to the CP and a symbolic variable for every tensor, representing
its size as the product of all dimension variables. Using this formu-
lation, the solution of the CP represents the size of the largest tile.
3) Memory Scheduling: After the geometrical constraints of
every mapped kernel template in the network are collected and
added to the CP, Deeploy’s memory scheduler calculates the lifetime
of every tensor in the network over the user-provided execution
schedule of the ONNX graph as shown in Figure 2. As previously
mentioned, this is an essential step for autoregressive Transformers
that must accommodate short-lived tensors (e.g., intermediate
activations, residuals) and long-lived buffers (such as KV caches).
Deeploy’s memory scheduler computes a tiling path using
the Deployment Platform’s memory hierarchy model to assign
a sequence of memory transfers through the different memory
levels. Using the calculated lifetimes and the tensor’s size variable
computed before, the memory scheduler models the problem of
computing a static memory allocation schedule as a 2D bin packing
problem [30], [36], where the horizontal axis represents lifetime,
and the vertical axis represents memory address space.
Similar to other state-of-the-art algorithms [30], Deeploy’s
scheduling CP works with Tetris scheduling introduced in

TetriSched [37], where memory buffers are scheduled one after
another, adding to the maximum load of each of their lifetime’s
bins. To solve the tiling and allocation problem in a single shot, the
memory allocation of each buffer is coupled to the tiling solution,
which requires expressing the order in which they are scheduled
within the CP as well.

The first step to modeling the memory allocation problem is
to pick a random schedule of memory buffers and compute the
adjacency matrix A of the tensor graph. We collect the memory
size of each buffer, represented as an integer variable of the CP, in
a cost vector C'. For any permutation matrix P, A’=P x Ax P"
is a valid adjacency matrix with associated cost vector C' =P x C.
A valid N x N permutation matrix can be expressed as:

Pij € [0,1] Vi,j € [O,N— 1]
N-1
Zpi,g:l Vj€[0,N—1]
i=0
N—1
ij,izl Vje[0,N—1]
i=0

Next, the total memory load is computed iteratively using A’&C":
since we use Tetris scheduling, we add each buffer’s memory size
to the size of the last scheduled buffer whose lifetime overlaps. We
use a vector of intermediate variables containing one entry for each
buffer, H, representing the memory load in the lifetime region of
each buffer. The vector H is computed as follows:

H():O
Hj=max;—o. j_1(A'[ji]-Hi)+C

The total worst-case memory load for all execution steps is then
computed as memory load =max;—o.. n(H;).

In contrast to other static memory schedule algorithms, which
focus on calculating an optimal solution for memory blocks of
fixed size, our algorithm combines the constraints on tile sizes and
memory layout calculation into a single CP; this allows Deeploy
to simultaneously optimize static memory allocation as well as



Kernel Signature

V' // Function signature '
void gemv_s8_s8(int8_t* input, int8_t* weight, 1
int32_t* bias, int8_t* output, !
uint16_t M, uintl16_t N, uinti16_t 0); :

Kernel Template

T T TR EEEEE 1
1 // Kernel Template 1

:gemv_SS_s8(${A}, ${B}, NULL, ${C}, 1, ${N}, ${0}); !

Cluster Offloading
Global Definitions

r;ypedef struct {

! int8_t* A;

' int8_t* B;

1 int8_t* C;

I} GEMV_closure_args_t;

GEMV_closure_args_t* args =

(GEMV_closure_args_t*) GEMV_closure_args;
int8_t* _A = args->A; int8_tx*
int8_t*

_B = args->B;

1

1

1

1

1

1

1

1 1
yvoid GEMV_closure(void* GEMV_closure_args){ 1
1

1

1

1

_C = args->C; 1
1

1

1

gemv_s8_s8(_A, _B, NULL, _C, 1, ${N}, ${0}); }

V' // GEMV Closure Call
GEMV_closure_args_t GEMV_closure_args = {
LA = ${A}; .B = ${B}; .C = ${C};

}
// Parallelize Closure over eight cores
pi_cl_team_fork(GEMV_closure, &GEMV_closure_args, 8);

Fig. 3. Bottom-up offloading closure generation for a GEMV kernel. All arguments
that refer to non-global Variable Buffers or Constant Buffers are captured and used
to generate a closure struct typedef and a closure function that unpacks the argument
struct and calls the original kernel. Finally, the kernel template is replaced with a
function pi_cl_team_fork, which takes the newly generated closure as an argument
and offloads its execution to all eight cluster cores.

tile sizing to control memory use during the entire inference
process, which is critical to matching the memory constraints of
extreme-edge SoCs with the complex buffer lifetime requirements
of Transformers. An overview of the co-constrained tiling and static
memory allocation algorithm is shown in Figure 2.

D. Backend

Every kernel template picked in the Frontend is assigned a list
of code generation passes by the Deployment Platform. Each code
generation pass operates on a code segment, starting from the

original kernel template, and may add to or modify its code segment.

Besides enabling integration of custom passes, Deeploy offers
standard code generation passes required for generating correct
code, e.g., memory allocation and deallocation generation, which
inserts calls to heap-based allocators or sets pointers to predefined
memory locations calculated during Tiling & Memory Scheduling.

An essential set of code generation passes is centered around
generating closures for code segments. In the context of Deeploy,
closure generation consists of three parts: the closure function itself,
which encapsulates a code segment; the closure environment, which
contains every free variable used within the code segment and must

be passed to the closure function; and the closure invocation, which
is either an offloading function or a call to the closure function.

Deeploy implements closures as standard C functions by
generating a function call around the target code segment and
passing the closure environment as a struct pointer. Deeploy
captures the relevant free variable expressions by analyzing the
Abstract Syntax Tree (AST) of the underlying code segment using
the Mako templating library [38]; since the function signature of
the kernel template is known to Deeploy, it can extract arguments
used in the kernel template that refer to local buffers, and pass them
to the closure using an argument struct. During code generation,
the closure generation pass hoists the closure function definition
into the global context, inserts code for constructing the argument
struct and returns the function call to the hoisted closure as the new
code segment for subsequent code generation passes.

An important application for Deeploy’s closures is to facilitate
operator offloading, which is required for programming processor-
based accelerators like compute clusters or loosely-coupled,
memory-mapped accelerators like NPUs. An example of closure
generation for operator offloading to the octa-core cluster is shown
in Figure 3.

Tiling code generation is implemented as a pass as well. Deeploy
supports DMA engines and uses them in tiling code generation to
move tiles between different memory hierarchy levels according to
the tiling solution computed in Tiling & Memory Scheduling. To hide
the latency of DMA transfers, Deeploy can configure tiling for oper-
ators to use double-buffering, which constrains the tiling solution to
reserve twice the required space for every input- and output tile. Dur-
ing code generation, Deeploy schedules data fetching and writeback
to occur in parallel with kernel execution to minimize latency.

IV. TINYSTORIES LLAMA MODEL

As a concrete example of our deployment flow for next-
generation EFMs, we quantize and deploy an SLM on a
heterogeneous MCU, Siracusa, introduced in Section V. We chose
a Llama2 model pre-trained on the tinyStories dataset [8] from
HuggingFace?, with a hidden size d,,, =64, h= 16 parallel attention
heads, N = 8 layers and an intermediate size dy; = 256 for the
feed-forward layer. The model architecture is shown in Figure 4.
Note that, however, any SLM fitting the memory constraints of the
target platform can be deployed with the same flow.

Like all other decoder-based language models, the Llama model
we use in this work has two fundamental inference modes, which
we refer to as autoregressive inference mode and parallel inference
mode, and generates its response in two distinct phases, the
prompting phase and generation phase; the prompting phase ingests
the initial sequence of user input tokens, whereas the generation
phase generates the model’s output tokens autoregressively.

A. Prompting Phase

Inferences follow a two-pass regime: First, the text input is
translated into a sequence of tokens, typically referred to as the
prompt. The prompt can have an arbitrary sequence length S, up
to the size of the context window of the model.

In the first pass of the model, the prompt is processed to produce
the first output token. Since all tokens of the prompt are available

Zhttps://huggingface.co/Maykeye/TinyLLama-v0
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Fig. 4. Overview of the Llama model deployed in this work. The eight decoder layers of the model are shown on the left and consist of an RMSNorm - Self-Attention
- RMSNorm - Feed-Forward layer stack. Input (D in the self-attention inset corresponds to the token input. Input ) corresponds to the rotational embedding used in Llama
models. Input ) are the KV cache inputs used during autoregressive inference. Notably, during autoregressive inference, the new row of the K and V' matrices computed

on the input token are appended to the K'V' cache.

ab initio, the decoder can process them in a parallel single-shot
fashion by applying causal-masking of the attention matrix [39].
This first pass generates the first token output and the K and V'
matrices, which may be reused in the subsequent generation phase.
This process parallels the function of encoder layers used in the
first Transformer models [39].

B. Generation Phase

In the generation phase of the inference process, output tokens
are generated one at a time using the previous token outputs as the
model’s input. While every step of the generation phase may use
the same parallel inference mode described in the previous Section,
doing so would require recomputing all previous tokens’ K and V'
submatrices. Therefore, the K and V' matrices of previous inference
steps are typically cached in memory to avoid the quadratic cost
of recomputing them [39].

As the parallel inference mode and autoregressive inference mode
require different trade-offs in memory allocation for K'V' caching
and storage of intermediate results we deploy them using separate
ONNX models which reflect these trade-offs: For the parallel infer-
ence mode we export an ONNX model with a single input and out-
put for the token sequence and outputs for the computed XK'V subma-
trices which are stored for the next generation phase. For the autore-
gressive inference mode, we use an ONNX model that additionally
requires cached KV submatrices. While computing outputs using
KV caches is significantly more efficient regarding the absolute
number of operations, loading and storing the KV caches induces
significant data movement, and the smaller operator dimensions
make the generation phase much more challenging to accelerate.

C. Quantization Setup

To quantize the SLM for deployment on extreme edge devices
with integer-focused Single Instruction Multiple Data (SIMD)
processors and DNN accelerators, we used QuantLib [35] with the
Trained Quantization Thresholds (TQT) algorithm for PTQ [22].
QuantLib inserts requantization layers after operators which
results in higher bitwidth outputs. Furthermore, it harmonizes
scaling factors for operators like addition and concatenation and
replaces various operators with their quantization-aware equivalents.

Following this, we use a single token to execute PTQ over three
inference epochs. Initially, we collect statistics to initialize the
clipping bound for all activations and weights. At the end of the
second epoch, we quantize all linear operations, and in the final
epoch, we quantize non-linear operations, including Softmax and
RMSNorm. Subsequently, the model is projected to the integer
domain and exported as an ONNX graph. To leverage the advanced
hardware support for SIMD operations in the PULP Cluster and
Siracusa’s NPU, N-Eureka, we chose to quantize all activations and
weights used in matrix multiplication to 8 bit integer precision. We
use I-BERT’s approximation for Softmax [21] and the Hardswish
approximation for Swish activations [25]. Moreover, we perform
all divisions in RMSNorm [40] layers with 32 bit numerators and
denominators to preserve accuracy.

V. DEPLOYMENT PLATFORM

This Section introduces the hardware platform used in this
work as a deployment target to deploy the SLM introduced in
Section IV and goes over the NPU-specific Deployment Platform
implementation in Deeploy.

A. Siracusa

Siracusa [13], is a low-power, heterogeneous RISC-V MCU
implemented in TSMC 16nm technology, which is the multi-
accelerator SoC targetted in this work. Siracusa is designed for
efficient Al inference, which can leverage its dedicated NPU,
N-Eureka, and generalistic Digital Signal Processing (DSP) tasks,
which can exploit both dedicated XpulpNN ISA extensions [33]
enabling SIMD processing of low-precision integers, as well as
an accelerator cluster of eight RISC-V cores which enable Single
Program Multiple Data (SPMD) processing.

To enable single-latency access from cluster cores to the L1
Tightly-coupled Data Memory (TCDM), all cores and the 16
L1 memory banks are connected through a TCDM interconnect
using one 32-bit port each, granting a total memory bandwidth of
256 bit/cycle to the compute cluster. The cluster’s TCDM memory
banks are also accessible from the N-Eureka accelerator using
9-bank wide, 288 bit accesses. To manage contention on accesses to
the single-ported memory banks, Siracusa integrates a lightweight,



programmable access arbiter, which allows the set the maximum
number of stall cycles for the accelerator; if accesses from the
core-side interconnect cause accelerator access to stall for the
programmed number of cycles, the arbiter will stall core accesses
and grant it to N-Eureka.

The N-Eureka accelerator uses a mixed-weight-precision
bit-serial datapath, which is optimized for executing dense 33,
depthwise 3x3, and dense 1x 1 convolution operations with 8 bit
activations and 2 bit to 8 bit convolution weights [13]. To support
the bit-serial nature of the datapath, N-Eureka requires its weights
to be stored in a non-standard bit-interleaved data format, which
requires offline transposition, padding, and bit shuffling of CNN
weight tensors. N-Eureka is designed as an output-stationary
accelerator, opting to cache small input tiles and streaming weights.
To execute operations larger than its internal buffers, it integrates
a hardware tiler with a programmable number of tiles and strides
between dimensions and fixed tile sizes that match the buffer
sizes. To increase the available memory bandwidth for N-Eureka’s
weights and minimize off-chip access to fetch weights, the cluster
integrates a Neural Memory Subsystem (NMS), which contains
two dedicated 4 MiB memory subsystems, implemented in Static
Random Access Memory (SRAM) and Magnetoresistive Random
Access Memory (MRAM) technology respectively, which are
designed to hold weights for the N-Eureka accelerator and are
attached through a dedicated 256 bit/cycle weight data port.

The compute cluster and N-Eureka are located in a shared clock
domain, the heterogeneous cluster, which communicates with
the rest of the SoC, mainly consisting of a controller core, 2 MiB
L2 memory, and peripherals, through a 64 bit wide Advanced
eXtensible Interface Bus (AXI) bus, which can be used by a DMA
integrated within the cluster, to transfer data between the L1 and
L2 memories autonomously.

While Siracusa is equipped with significant computing
capabilities through two dedicated accelerators and sizeable on-chip
memory, deploying an advanced neural network on this device is
a challenging problem. While weight storage for layers that can
be executed on N-Eureka is plentiful, all other layers’ activation,
weight, and output tensors must be tiled to fit within 256 KiB of
L1 memory. Furthermore, memory transfers between L2 and L1
should be orchestrated using the DMA to minimize stalling.

B. Deeploy Integration

We address the deployment challenges posed by Siracusa’s
heterogeneity through an augmented Deployment Platform model.
This subsection gives an overview of the additions implemented to
use Deeploy for deploying SLMs on Siracusa and, more generally,
of the modifications needed to support a generic new platform in
our deployment tool.

As Deeploy’s core primitives are optimized kernels, we chose
the PULP-NN [33] kernel library, which integrates parallel kernels
as well as single-core implementations, as our target for utilizing
the octa-core cluster. The PULP-NN kernels focus on efficient
implementations of fused linear and quantization layers. We support
fused layers through lowering passes that match the supported
operator combinations and merge them in the Frontend of Deeploy.
We further added fused linear operator TCs, which add kernel-
specific constraints besides providing general geometric constraints.

SRAM § MRAM
4 MiB | 4 MiB

Accelerator-Router Branch

288 bit

32 Bit L2 Interconnect
64 Bit AXI Interconnect

L1 Access Arbiter

Fig. 5. Overview of the Siracusa SoC featuring its DSP-enhanced octa-core RISC-V
cluster and host controller (red), NPU (orange), complex memory hierarchy with
two levels of scratchpad memory and a Neural Memory Subsystem (blue), two
arbitrated interconnects towards the L1 memory and an AXI interconnect (green),
and peripherals such as the cluster DMA and chip-level I/O (purple).

We implement function offloading to both the NPU and the
octa-core compute cluster in Siracusa using the closure system, as
detailed in Section III-D.

The N-Eureka accelerator provides greater compute capabilities
than the octa-core cluster for CNN operators, achieving a peak
throughput in the range of hundreds of GOp/s for pointwise and
3% 3 convolutions. Even though SLMs do not employ these types of
operations, we add a custom linear layer to pointwise convolution
lowering pass that converts GEMM operators with compile-time
constant weight matrices into pointwise convolutions. This method
allows us to deploy all linear layers in Transformer models, as
shown in Figure 4, on the NPU.

For this lowering pass, we consider GEMM operation of type Y =
aAB+BC, where () are appropriately integer-quantized numbers:

AGQMXN BGQNXO CEQMXO YGQMXO

Similarly, we define the pointwise convolution operator as ¥ =
A® B+C, with the same dimension definition used in PyTorch:

AEQHXWXCML
CGQHXWXCUM

BEQCoutxlxGCm
YGQHXWXC[,ut

We map the dimensions of the pointwise convolution to those
of a GEMM operation by setting H := 1, W := M, C;,, :== N,
and Cl,,; :=O. For this mapping to succeed, the C' operand in the
GEMM operation must be reducible to a dimension of [1x O], i.e.,
all rows in the matrix are identical.

Lastly, we annotate all pointwise convolution weights previously
transformed from the GEMM operators to be allocated in the
NMS, allowing the accelerator to leverage its significantly larger
bandwidth.

C. Deployment Setup

As explained in Section IV, the dual inference modes of
decoder-only models require different deployment strategies, as



TABLE I
COMPILER PERFORMANCE METRICS FOR THE 128 TH AUTOREGRESSIVE INFERENCE STEP USING THE NPU with NMS Deployment SCENARIO WITH VARYING
NUMBERS OF DECODER LAYERS

Number of decoder layers 1 2 3 4 5 6 7 8
Number of operators 32 64 96 128 160 192 224 256
Deeploy compilation time [s] 1| 265 | 517 792 | 11.72 16.9 | 2225 28
Text section size [kB] 424 | 61.8 | 84.4 | 1057 | 128.1 150.1 171.5 194.8
Data section size [kB] (input and output buffers) 104 | 186 | 268 35.0 432 514 59.5 67.7
Data section size [kB] (requantization parameters) 70 | 153 | 236 31.9 40.2 48.5 57.8 66.1
Weight memory section size [kB] (pointwise convolution parameters) 64 128 192 256 320 384 448 512

the autoregressive inference mode requires significant memory for
KV caching. We deploy two model prototypes to accommodate
this difference, one for autoregressive inference mode and one for
parallel inference mode.

The autoregressive inference mode model uses additional
network inputs corresponding to the previous sequences’ KV
caches. Other than that, the deployment setup between both models
is equal. We allocate all graph inputs and outputs as global Variable
Buffers in Siracusa’s L2 memory, and annotate all local Variable
Buffers modeling intermediate tensors in L2 as well. In deployment
scenarios that use Siracusa’s NMS, we allocate all linear layer
weights in the NMS but use L2 for all activations.

Unless stated differently, all network operators are executed on
the cluster and use Deeploy’s TCF to generate tiled inference code,
which orchestrates transfers of input, weight, and output tensors
between the L2 memory and the L1 memory. For operators executed
on the NPU, weights are stored in the NMS in their entirety and
ingested by the accelerator without moving them into L1 first,
leveraging the increased available bandwidth from the NMS.

VI. RESULTS

This section discusses the measurement results of deploying
the TinyStories SLM on Siracusa and benchmarking results of
general Transformer layers. First, we discuss the setup used to
measure performance results on Siracusa. Finally, we present our
benchmarking and end-to-end silicon measurements, as well as
profiling experiments of our compiler.

A. Deployment Evaluation Setup

To evaluate the model’s performance in autoregressive mode
and for causally masked parallel inference, we measure each
inference step individually with code generated by Deeploy. We
start from empty KV caches for causally masked parallel inference
and process N input tokens simultaneously. We start from the
KV caches of the previous inference step for all experiments
in autoregressive mode. To calculate the average throughput and
energy per token, we take the average over all 256 inference steps.

We report all power numbers measured on a Siracusa prototype
board using a Keysight N6715C DC, supplying all operating
voltages and measuring current. We perform all experiments
under nominal conditions, i.e., 0.8 V supply voltage and 360 MHz
operating frequency of the cluster domain. We measure power
consumption for every inference by averaging the power
consumption of the model run in a continuous loop.

We measure four distinct deployment scenarios: In the first
scenario, Single Core Deployment, we only generate code using a
single RISC-V core. In the second scenario, Octa-Core Deployment,

we generate code using all eight RISC-V cores of the cluster
without using the NPU. In the third scenario, NPU without NMS
Deployment, we generate code using all eight RISC-V cores and V-
Eureka without offloading weights to the NMS. In the last scenario,
NPU with NMS Deployment, we generate code using all eight
RISC-V cores and N-Eureka with the NMS. We use the Siracusa
Deployment Platform in Deeploy to generate code for all scenarios.

B. Microbenchmarking Results

To validate our approach of offloading GEMM operators on
N-Eureka, we first measure the performance of N-Eureka and the
RISC-V cluster on GEMM kernels. Specifically, we study the
performance of the Q, K, and V projections in the attention layer
and linear layer performance in feed-forward layers for different
sequence lengths S in parallel inference mode. For the Llama
model we study in this paper, these projections use dimensions
256 — 64 and 64 — 256. Our measurements are shown in Figure 6.

Transitioning from single-core to octa-core cluster execution,
we measure a performance improvement of 6.2 X, thanks to the
low-overhead parallelization on the cluster cores. Transforming
the linear layer operators into pointwise convolutions, as explained
in Section V-B, enables execution on the NPU, which reduces
latency by 25 x compared to the octa-core implementation due
to the NPU’s significant compute resources for convolution
operations. Furthermore, we reduce data movement by allocating
the convolution weights to the NPU’s NMS, increasing the effective
memory bandwidth available to N-Eureka. These optimizations
improve performance, especially on memory-bound tasks, like
linear layers in attention blocks with low sequence length, by 2.1 x
compared to NPU execution without the NMS.

We further profile the execution performance of a representative
encoder layer as commonly found in non-regressive Transformer
models. For our benchmarking, we chose a configuration with
hidden size d,,, = 64 and h = 16 parallel attention heads and
an intermediate size dsy = 256, paralleling the decoder layer in
Figure 4. We measure an increase in throughput of 17.8 X when
leveraging the NPU to compute linear layers, improving end-to-end
performance for encoder layers by 61 %. We further quantify the
overheads due to tiling and data marshaling overheads, measuring
an end-to-end overhead of only 9 %.

C. Compiler Evaluation

To study the scalability of our code generation approach, we break
down the SLM network, measuring compiler metrics for varying
network depth. For each configuration, we profile code size, constant
data size, and input- and output buffer size for a single inference step
in NPU with NMS Deployment, namely the 128th autoregressive
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Fig. 6. Performance results for linear layer operators offloaded on N-Eureka
using Deeploy code generation. The highlighted inset shows that the NMS’
added storage and bandwidth leads to performance gains of up to 2.1 X in
memory-bound operator configurations. In large linear layer configurations,
the speedup achieved by the NPU is 25 X compared to the octa-core
implementation, and another 1.6 X when using the NMS for weights.

TABLE I
CUMULATIVE LATENCY AND ENERGY FOR A 256-STEP INFERENCE OF THE
SLM ON SIRACUSA USING THE NPU WITH NMS

Parallel Autoregressive Speedup &.
Energy Reduction
Inference Inference -
Ratio
Cumulative Latency [s] 17.6 0.75 23 x faster
Cumulative Energy [mJ] 3193 125 26 x more efficient

inference step. We generate all code with Deeploy and compile the
resulting C Code using clang-15. Our results are shown in Table L.

We notice that while code size grows proportionally to the
number of operators in the workload, the total size of the binary is
dominated by weight storage in the NMS. We further see that while
compilation time grows supetrlinearly with the number of operators
in the network, the maximum compilation time of 28 s does not
pose a bottleneck for practical purposes.

D. End-to-end Deployment Results

We thoroughly evaluate the SLM deployed on Siracusa by
benchmarking the two operating phases required to execute SLM,
namely the prompting phase and the generation phase.

Table II displays the cumulative runtime and energy for executing
a 256-step inference in parallel mode and in autoregressive
mode, where KV caching is used. The autoregressive mode
outperforms the parallel mode, achieving a 23 x speedup and a 26 x
improvement in energy efficiency. These improvements directly
result from avoiding the costly recomputation of KV matrices.
Averaging the autoregressive inference mode’s cumulative latency
and energy over 256 steps, we achieve an average throughput of
340 token/s at an average energy cost of 490 uJ/token.

Since the autoregressive mode maximizes the data reuse across
the whole inference process, this mode can be considered both
during the prompting and generation phases detailed in Section IV.
However, this strategy leads to sub-optimal results as running in
parallel mode for the prompting phase enables better utilization
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Fig. 7. Cycle breakdown of parallel inference in the studied SLM. Due to the
larger contribution of operations from matrix multiplications using the NMS
performance of offloaded GEMM operators increases by 17.8 X, and end-end-
performance improves by 61 % for sequence length 32 while maintaining low
overheads of only 9 %, even when fully leveraging both the cluster and NPU.

of the NPU without excessive recomputation of KV matrices, as
tokens are not fed back in this phase.

The parallel inference mode’s performance for the SLMs studied
in this work follows the trend of the benchmark shown in Figure 7.
While we benchmark the end-to-end performance of decoder-
only models in this work, the results in Figure 7 also apply to
encoder-based transformer models, as the parallel inference mode
is equivalent to encoder layer execution in such networks. In
autoregressive mode the speedup achieved by employing the NPU
is only 19 %, which can be attributed to the mode’s smaller operator
sizing, leading to stalling of the accelerator due to reconfiguration
overheads. Additionally, the average proportion of time spent for
data marshaling is 40 % for the autoregressive versus just 14 %
for the parallel modes, underlining the memory access intensity
inherent to K'V' caching, which drastically reduces the number of
computations leading to reduced arithmetic intensity. A detailed
analysis of runtime and breakdown of operator intensity for end-to-
end autoregressive inference is shown in Figure 8 plots (D and Q).

E. Deployment Overheads

An important metric for the quality of generated code is the
utilization of the system’s compute engines. To profile the quality of
our code, we measured the overheads incurred by Deeploy for each
autoregressive inference step in NPU without NMS Deployment and
NPU with NMS Deployment, shown in Figure 8, plot 3). The main
difference between the two scenarios is whether Siracusa’s NMS is
used for compile-time constant GEMM weights. While the reduction
in overheads decreases from 33 % to 7 % with increasing sequence
lengths and arithmetic intensity, the weight memory drastically
reduces the relative time spent on data movement in the first steps
of inference. This reduction of overheads is a crucial advantage
of the bottom-up compilation approach employed by Deeploy;
while other compilers might not consider low-level architectural
features like memory hierarchy or only expose a simplified model,
Deeploy allows complete control over memory allocation and code
generation to leverage knowledge of the target architecture fully.



Autoregressive Inference

16 (1)

=== Qcta-Core
1.4{ = NPU w/o NMS
=== NPU w/ NMS

mm Activations

1.2

1.0

0.8 8

o ; /f
0.75

0.4 o«
0.70{ | %

0.2
0.65

0.0

Cycles [Millions]

mm Data Marshaling mss Cluster GEMM mss NPU GEMM e
Softmax & RMSNorm

48% me= NPU w/0 NMS

mes NPU W/ NMS
Overhead Reduction

46%
44%
2%
40%
38%
36%
34%

Data Marshaling [%]

0%!

0 32 64 9 1A28t 160 192 _224St256 Ny w %,;o,{)\'g,&,,‘f ~v v%&;}vg,\%‘f NVRR bwv,\( 0 32 64 9% 1ng 160 192 224S 256
utoregressive Ste utoregressive Ste
9 P Octa-Core NPU w/o NMS NPU w/ NMS 9 P

Fig. 8. Performance results of end-to-end autoregressive inference. Plot (D shows the runtime of each autoregressive inference step in three scenarios corresponding to
Octa-Core Deployment, NPU without NMS Deployment, and NPU with NMS Deployment. The plot shows that autoregressive inference on Siracusa is highly memory-bound
in all scenarios, which is due to the transfer of KV caches between L2 and L1; NPU with NMS Deployment reduces the runtime of every step by approximately 70 kcycles
since weights are stored untiled in the NMS, reducing the required L2 - L1 data transfers. The second plot ) shows a breakdown of the runtime in the different operators
of the network and data marshaling overheads. Evidently, the higher compute throughput of N-Eureka is unused due to the overall memory-boundedness. Finally, plot
(@ shows that the data movement overhead reduction afforded by the NMS decreases with increasing sequence lengths as the overhead of transferring KV caches increases.

E. Comparison with tinyML Compilers

While we designed Deeploy to deploy state-of-the-art and
emerging SLMs, we also report results on more classical CNN
and Artifical Neural Network (ANN) workloads, as defined in
the MLPerf tiny benchmark [41]. We compare Deeploy with
the state-of-the-art open-source Dory tool [28] using the same
open-source CNN kernels for PULP MCUs [33] we used in this
work. To ensure a fair, compiler-focused comparison, we do not
use the NMS or the NPUs of Siracusa. In this mode, both compilers
only deploy cluster kernels with equivalent memory constraints.
As a third data point, we add measurements of Deeploy-generated
code on Siracusa when using the NMS and NPU. Our results are
shown in Table III. We find that Deeploy generates code with an
equivalent latency of Dory up to 1 % of variation, underlining that
even though Deeploy chooses a more general compilation approach
than Dory, it does not incur any performance penalties.

G. Comparison with the State-of-the-art

Currently, most efforts on EFM deployment target models
with more than a billion parameters on high-end Microprocessors
(MPUs) and embedded processors such as the LMX95 or NVIDIA
Orin or mobile phone chips, featuring multi-GiB external memories
and multi-W power envelopes [42], [43]. Even though our
performance and efficiency are extremely competitive, quantitative
comparisons against these deployments would be unfair in our
favor as we target much smaller SLMs.

Considering SLMs in the 100s million parameters range, we
compare our implementation on Siracusa with another small-scale
Llama model for edge devices, MobileLLM, by Liu et al. [44]. Liu
et al. deploy a 125 MParameter SLM on an iPhone 13 featuring an
Al15 Bionic chip in 5nm technology using the highly optimized
Metal Performance Shaders (MPS) backend for Apple devices,
achieving a throughput of 64 Token/s. While their paper does
not profile the exact energy consumption of their models during
inference, Liu et al. optimistically estimate the energy consumption
of their setup with 12.5 mJ per token. Compared to this estimate on

TABLE III
LATENCY RESULTS OF DORY AND DEEPLOY ON THE MLPERF TINY
BENCHMARK, RUNNING ON SIRACUSA AT A CLOCK FREQUENCY OF 360 MHz.

Siracusa w/o NPU | Siracusa w/o NPU | Siracusa w/ NPU
Benchmark
Dory Deeploy Deeploy
DS-CNN 1.4ms 1.4 ms 0.39 ms
MobileNetv1 5.6ms 5.6ms 0.69 ms
ResNet 3.7ms 3.7ms 0.60 ms
ToyAdmos 0.24 ms 0.24 ms 0.11 ms

the iPhone 13’s A15 processor, the implementation of our SLM on
the Siracusa microcontroller uses 26 X less energy per token while
achieving 5 x more throughput, for a total 130 x higher energy
efficiency. When normalizing throughput with the number of
operations per token of their network, we find that they achieve an
equivalent of 4800 TinyStories Llama tokens per second. Under this
estimate, our end-to-end energy efficiency on Siracusa implemented
in an older 16 nm TSMC technology node is 1.7 higher.

A comparison with a similar-scale (10s million parameters)
model as ours is possible against the llama?2.c [45] implementation
of the TinyStories-15M model on a Samsung Galaxy Watch 4,
demonstrated to achieve 22.1 Token/s [46] using an Exynos W920
dual-core ARM Cortex-AS5S5 processor [47]. Neglecting the power
consumption of Dynamic Random Access Memory (DRAM)
accesses, only considering a power consumption of 300 mW per
core in Samsung 5nm technology [48], we estimate the power
consumption during inference as 600 mW. Under this assumption,
the Galaxy Watch 4 achieves an energy efficiency of 27 mJ per token,
55 x lower than ours. Normalizing for operations per token, our
energy efficiency is 13.4 x greater, even though the Exynos W920
is implemented in an advanced Samsung 5 nm technology node.

VII. CONCLUSION

In this work, we presented Deeploy, a novel compiler for DNNs
allowing broad customizability of deployment flows. We presented
the integration of Siracusa, a heterogeneous RISC-V SoC featuring
an octa-core compute cluster and an NPU. We demonstrate the
deployment of a SLM trained on the TinyStories dataset on Siracusa,



achieving a state-of-the-art throughput of 340 Token/s at an average
energy cost of 490 uJ per token in autoregressive inference mode
by efficiently leveraging on-chip K'V' caching.

We further analyzed the efficiency of our generated code via
microbenchmarks, achieving data marshaling overheads of only
9 % on Transformer encoder layers, even when fully utilizing both
cluster cores and NPU collaboratively.

Lastly, we demonstrated that while data marshaling overheads
are significant in the autoregressive inference mode, the energy
savings compared to executing the generation phase of SLM in
parallel mode outweigh this drawback, reducing the energy cost
per token by 26 x while increasing throughput by 23 x.

In future work, we plan to leverage Deeploy’s flexibility to
support emerging computer architecture innovations, such as multi-
accelerator SoCs integrating Compute-In Memory (CIM) macros.

REFERENCES

—

[1] H. Touvron et al., “Llama 2: Open Foundation and Fine-Tuned Chat Models,”
arXiv, no. arXiv:2307.09288, Jul. 2023.

[2] A.Q.Jiang et al., “Mixtral of Experts,” arXiv, no. arXiv:2401.04088, Jan. 2024.

[3] G. Team et al., “Gemini: A Family of Highly Capable Multimodal Models,”
arXiv, no. arXiv:2312.11805, Dec. 2023.

[4] Y. Chen et al., “EEGFormer: Towards Transferable and Interpretable
Large-Scale EEG Foundation Model,” arXiv, no. arXiv:2401.10278, Jan. 2024.

[5] C. Wang et al., “BrainBERT: Self-supervised representation learning for
intracranial recordings,” in The Eleventh International Conference on Learning
Representations, Sep. 2022.

[6] M. Ahn et al., “Do As I Can, Not As I Say: Grounding Language in Robotic
Affordances,” in Conference on Robot Learning, Apr. 2022.

[7] D. Driess et al., “PaLM-E: An Embodied Multimodal Language Model,” in

Proceedings of the 40th International Conference on Machine Learning, ser.

ICML’23, vol. 202. JMLR .org, Jul. 2023, pp. 8469-8488.

R. Eldan et al., “TinyStories: How Small Can Language Models Be and Still

Speak Coherent English?” arXiv, no. arXiv:2305.07759, May 2023.

P. Zhang et al., “TinyLlama: An Open-Source Small Language Model,” arXiv,

no. arXiv:2401.02385, Jan. 2024.

[10] Y. LeCun, “Deep Learning Hardware: Past, Present, and Future,” in 2019 IEEE
International Solid-State Circuits Conference - (ISSCC), Feb. 2019, pp. 12-19.

[11] J. Choquette, “NVIDIA Hopper H100 GPU: Scaling Performance,” I[EEE
Micro, vol. 43, no. 3, pp. 9-17, May 2023.

[12] N. Jouppi et al., “TPU v4: An Optically Reconfigurable Supercomputer for
Machine Learning with Hardware Support for Embeddings,” in Proceedings
of the 50th Annual International Symposium on Computer Architecture, ser.
ISCA "23.  New York, NY, USA: Association for Computing Machinery,
Jun. 2023, pp. 1-14.

[13] A. S. Prasad et al., “Siracusa: A 16 nm Heterogenous RISC-V SoC
for Extended Reality with At-MRAM Neural Engine,” arXiv, no.
arXiv:2312.14750, Dec. 2023.

[14] K. Ueyoshi et al., “DIANA: An End-to-End Energy-Efficient Digital and
ANAlog Hybrid Neural Network SoC,” in 2022 IEEE International Solid-State
Circuits Conference (ISSCC), vol. 65, Feb. 2022, pp. 1-3.

[15] C. Lattner et al., “MLIR: Scaling Compiler Infrastructure for Domain
Specific Computation,” in 2021 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO), Feb. 2021, pp. 2-14.

[16] T. Chen et al., “TVM: An Automated End-to-End Optimizing Compiler
for Deep Learning,” in Proceedings of the 13th USENIX Conference on
Operating Systems Design and Implementation, ser. OSDI’18. USA:
USENIX Association, Oct. 2018, pp. 579-5%94.

[17] S.Han et al., “Deep Compression: Compressing Deep Neural Network with
Pruning, Trained Quantization and Huffman Coding,” in 4th International
Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico,
May 2-4, 2016, Conference Track Proceedings, Y. Bengio et al., Eds., 2016.

[18] R. Firoozi et al., “Foundation Models in Robotics: Applications, Challenges,
and the Future,” arXiv, no. arXiv:2312.07843, Dec. 2023.

[19] N. Tekin et al., “A Review of On-device Machine Learning for IoT: An Energy
Perspective,” Ad Hoc Networks, vol. 153, p. 103348, Feb. 2024.

[20] A. Gholami e al., “A Survey of Quantization Methods for Efficient Neural
Network Inference,” in Low-Power Computer Vision. Chapman and
Hall/CRC, 2022.

[8

—

9

—

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

—
(98]
(V8]

=

[34]

[35

[36]

[37]

[38]
[39]

[40]

[41
[42]

[43]

[44

=

[45]
[46

[47]

[48]

S. Kim et al., “I-BERT: Integer-only BERT Quantization,” in Proceedings of
the 38th International Conference on Machine Learning. PMLR, Jul. 2021,
pp. 5506-5518.

S. R. Jain et al., “Trained Quantization Thresholds for Accurate and Efficient
Fixed-Point Inference of Deep Neural Networks,” in Proceedings of Machine
Learning and Systems 2020, MLSys 2020, Austin, TX, USA, March 2-4, 2020,
I. S. Dhillon et al., Eds. mlsys.org, 2020.

Y. Li et al., “BRECQ: Pushing the Limit of Post-Training Quantization
by Block Reconstruction,” in International Conference on Learning
Representations, Oct. 2020.

G. Xiao et al., “SmoothQuant: Accurate and Efficient Post-Training Quan-
tization for Large Language Models,” in Proceedings of the 40th International
Conference on Machine Learning. PMLR, Jul. 2023, pp. 38 087-38 099.

A. Howard et al., “Searching for MobileNetV3,” in 2019 IEEE/CVF
International Conference on Computer Vision (ICCV).  IEEE Computer
Society, Oct. 2019, pp. 1314-1324.

J. Lin et al., “Memory-efficient Patch-based Inference for Tiny Deep Learning,”
in Advances in Neural Information Processing Systems, vol. 34.  Curran
Associates, Inc., 2021, pp. 2346-2358.

E. Flamand et al., “GAP-8: A RISC-V SoC for Al at the Edge of the IoT,”
in 2018 IEEE 29th International Conference on Application-specific Systems,
Architectures and Processors (ASAP), Jul. 2018, pp. 1-4.

A. Burrello et al., “DORY: Automatic End-to-End Deployment of Real-World
DNNs on Low-Cost IoT MCUs,” IEEE Transactions on Computers, vol. 70,
no. 8, pp. 1253-1268, Aug. 2021.

Q. Huang et al., “CoSA: Scheduling by Constrained Optimization forSpatial
Accelerators,” in Proceedings of the 48th Annual International Symposium
on Computer Architecture, ser. ISCA 21.  Virtual Event, Spain: IEEE Press,
Nov. 2021, pp. 554-566.

M. Maas et al., “TelaMalloc: Efficient On-Chip Memory Allocation for
Production Machine Learning Accelerators,” in Proceedings of the 28th
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 1, ser. ASPLOS 2023. New York,
NY, USA: Association for Computing Machinery, Dec. 2022, pp. 123-137.
M. D. Moffitt, “MiniMalloc: A Lightweight Memory Allocator for Hardware-
Accelerated Machine Learning,” in Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 4, ser. ASPLOS °23. New York, NY, USA:
Association for Computing Machinery, Feb. 2024, pp. 238-252.

R. David et al., “TensorFlow Lite Micro: Embedded Machine Learning for
TinyML Systems,” Proceedings of Machine Learning and Systems, vol. 3, pp.
800-811, Mar. 2021.

A. Garofalo et al., “XpulpNN: Accelerating Quantized Neural Networks on
RISC-V Processors Through ISA Extensions,” in 2020 Design, Automation
& Test in Europe Conference & Exhibition (DATE), Mar. 2020, pp. 186-191.
L. Lai et al., “CMSIS-NN: Efficient Neural Network Kernels for Arm
Cortex-M CPUs,” arXiv, no. arXiv:1801.06601, Jan. 2018.

M. Spallanzani et al., “QuantLab: A Modular Framework for Training and
Deploying Mixed-Precision NNs,” TinyML Summit, 2022.

FE Angiolini ef al., “An Efficient Profile-based Algorithm for Scratchpad
Memory Partitioning,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 24, no. 11, pp. 1660-1676, Nov. 2005.
A. Tumanov et al., “TetriSched: Global rescheduling with adaptive plan-ahead
in dynamic heterogeneous clusters,” in Proceedings of the Eleventh European
Conference on Computer Systems, ser. EuroSys *16.  New York, NY, USA:
Association for Computing Machinery, Apr. 2016, pp. 1-16.

“Mako Templates for Python,” https://github.com/sqlalchemy/mako/releases.
A. Vaswani et al., “Attention is All you Need,” in Advances in Neural
Information Processing Systems, vol. 30.  Curran Associates, Inc., 2017.

B. Zhang et al., “Root Mean Square Layer Normalization,” in Advances in
Neural Information Processing Systems, vol. 32.  Curran Associates, Inc., 2019.
C. Banbury et al., “MLPerf Tiny Benchmark,” Aug. 2021.

E. Ruedas, “LLM Pipelines: Seamless Integration on Embedded Devices,”
Virtual Event, Mar. 2024.

X. Chu et al., “MobileVLM : A Fast, Strong and Open Vision Language
Assistant for Mobile Devices,” arXiv, no. arXiv:2312.16886, Dec. 2023.

Z. Liu et al., “MobileLLM: Optimizing Sub-billion Parameter Language
Models for On-Device Use Cases,” arXiv, no. arXiv:2402.14905, Feb. 2024.
A. Karpathy, “Llama2.c,” Mar. 2024.

Joey (e/A) [@shxf0072], “@karpathy llama2.c running on galaxy watch 4
https://t.co/lsMPCZM3WEA,” Dec. 2023.

iFixit, “Samsung Galaxy Watch4 and Watch4 Classic Teardown,”
https://url.zip/4befal4, Sep. 2021.

A. Frumusanu, “The Snapdragon 888 vs The Exynos 2100: Cortex-X1 & Snm
- Who Does It Better?” https://www.anandtech.com/show/16463/snapdragon-
888-vs-exynos-2100-galaxy-s21-ultra, Feb. 2021.



	Introduction
	Related Work
	Small Foundation Models
	Quantized Transformer Models
	Neural Network Deployment for Extreme Edge Devices

	Deeploy
	Data Structures
	Frontend
	Midend
	Memory Level Annotation
	Tiling
	Memory Scheduling

	Backend

	TinyStories Llama Model
	Prompting Phase
	Generation Phase
	Quantization Setup

	Deployment Platform
	Siracusa
	Deeploy Integration
	Deployment Setup

	Results
	Deployment Evaluation Setup
	Microbenchmarking Results
	Compiler Evaluation
	End-to-end Deployment Results
	Deployment Overheads
	Comparison with tinyML Compilers
	Comparison with the State-of-the-art

	Conclusion
	References

