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The cohomology rings of the unordered configuration spaces
of elliptic curves

ROBERTO PAGARIA

We study the cohomology ring of the configuration space of unordered points in
the two dimensional torus. In particular, we compute the mixed Hodge structure
on the cohomology, the action of the mapping class group, the structure of the
cohomology ring and we prove the formality over the rationals.

55R80

Introduction

We fully describe the cohomology with rational coefficients of the configuration spaces
of unordered points in an elliptic curve (frequently called torus).

Configuration spaces of points are related to physics (state spaces of non-colliding
particles on a manifold), robotics (motion planning), knot theory, and topology. Config-
uration spaces give invariants of the homeomorphism type of the base space. In the
algebraic setting, configuration spaces are open in the moduli spaces of points.

Since the literature is very extensive, we compare our work only with the main results
on the (co-)homology of configuration spaces. The first computation of the cohomology
algebra of configuration spaces is due to Arnol’d [1, 2] in the case of R2 . This result
has been generalized by Cohen, Lada, and May [9] to the configuration space of Rn and
later by Goresky and MacPherson [17]. Partially additive results have been obtained: by
Bödigheimer and Cohen [6] for once-punctured oriented surfaces, by the same authors
and Taylor [7] for odd dimensional manifolds, and by Drummond-Cole and Knudsen
[11] for surfaces in general. However there is no description of the ring structure; we
provide it in the case of elliptic curves. The Betti numbers Cn(X) are described in the
following cases: for X = P2(R) by Wang [30], for X a sphere by Salvatore [26], for
X = P2(C) by Felix and Tanré [14] and for elliptic curves by Maguire and Schiessl
[23, 27].

In this paper we improve the previous results on configuration spaces in an elliptic curve
in three ways. We describe:

• the mixed Hodge structure on the cohomology (Theorem 3.3),
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• the action of the mapping class group (Theorem 3.3),

• the ring structure (Theorem 4.1).

The formality result over the rationals is proven in Theorem 4.3.

We prove these results using the Križ model [22, 28, 5, 12] and the representation theory
on it [3, 4].

In Section 1 we recall the Križ model, then in Section 2 we improve the result on the
decomposition of the Križ model into irreducible representations, see Theorem 2.9.
Descriptions of the mixed Hodge structure and of the action of the mapping class group
are obtained in Section 3 by computing the cohomology of the model. Finally, the ring
structure is presented in the last section.

1 The Križ model

Let E be an elliptic curve and consider the configuration space of n ordered distinct
points

Fn(E) def
= {p ∈ En | pi 6= pj}.

The symmetric group Sn acts on Fn(E) by permuting the coordinates and the quotient
is the configuration space of n unordered points

Cn(E) def
= Fn(E)/Sn.

We also consider the space Mn(E), defined by

Mn(E) def
= {p ∈ Fn(E) |

∑
pi = 0}.

Notice that there exists a non canonical isomorphism Fn(E) ∼= E ×Mn(E).

In this section we recall a rational model for the cohomology algebra of Fn(E). The
model is a commutative differential bi-graded algebra (dga) that can be obtain in two
different ways: as a specialization of the Križ model for the configuration spaces or
as the second page of the Leray spectral sequence (also known as the Totaro spectral
sequence) for elliptic arrangements. Our main references for the first approach are
[22, 3, 4] and for the second one are [28, 12, 5]. In the following we define the models
for the cohomology of Fn(E) and of Mn(E).

Let Λ be the exterior algebra over Q with generators

{xi, yi, ωi,j}1≤i<j≤n.

Algebraic & Geometric Topology XX (20XX)



The cohomology rings of the unordered configuration spaces of elliptic curves 1003

We set the degree of each xi and yi equal to (1, 0) and the degree of ωi,j equal to
(0, 1). Define the differential d: Λ→ Λ of bi-degree (2,−1) on generators as follows:
dxi = 0 and dyi = 0 for i = 1, . . . , n and

dωi,j
def
= (xi − xj)(yi − yj).

For the sake of notation we set ωi,j := ωj,i for i > j.

We define the dga A•,• as the quotient of Λ by the following relations:

(xi − xj)ωi,j = 0 and (yi − yj)ωi,j = 0,

ωi,jωj,k − ωi,jωk,i + ωj,kωk,i = 0.

Notice that the ideal is preserved by the differential map, thus the differential d: A•,• →
A•,• is well defined.

Remark 1.1 The model A•,• coincides with the Križ model E•

•
introduced in [22] up

to shifting the degrees, ie
Ap,q ∼= Ep+q

q .

The dga E•

•
is a rational model for X , as shown in [22, Theorem 1.1].

In order to study the cohomology of A•,• we need to introduce the elements ui,j = xi−xj ,
vi,j = yi − yj and γ =

∑n
i=1 xi , γ =

∑n
i=1 yi ∈ A1,0 .

We define the dga B•,• as the subalgebra of A•,• generated by ui,j, vi,j and ωi,j for
1 ≤ i < j ≤ n. Let D•,0 be the subalgebra of A•,• generated by γ and γ endowed with
the zero differential map. Notice that

(1) A•,• ∼= B•,• ⊗Q D•,0

as differential algebras and that D•,0 is the cohomology ring of the elliptic curve E .

The mixed Hodge structure on the cohomology of algebraic varieties defines a bigrading
compatible with the algebra structure (see [10, p.81] or [29, Theorem 8.35]). In our
case the bigrading given by the mixed Hodge structure coincides with the one given by
the Leray spectral sequence as shown by Totaro [28, Theorem 3] and by Gorinov [18].
Explicitly, the subspace Ap,q has weight p + 2q and degree p + q.

The following result is a particular case of [5, Theorem 3.3] and of [12, Theorem 1.2].

Theorem 1.2 The cohomology algebra of Fn(E) (or of Mn(E)) with rational coeffi-
cients is isomorphic to the cohomology of the dga A•,• (respectively of B•,• ). Moreover,
the n2 -sheeted covering

E ×Mn(E)→ Fn(E)

(q, p) 7→ (pi + q)i=1,...,n

induces the isomorphism of eq. (1).

Algebraic & Geometric Topology XX (20XX)



1004 R. Pagaria

2 Representation theory on the Križ model

Now we study the action of the symmetric group Sn and of SL2(Q) on the algebras
A•,• and B•,• . Those actions are given by a geometric action on Fn(E). For general
reference about the representation theory of the Lie group and of the Lie algebra we
refer to [19] and to [15], respectively. The cases of SL2(C) and of sl2(C) can be found
in [16].

2.1 Definition of the actions

Consider the action of Sn on Fn(E) defined by

σ−1 · (p1, . . . , pn) = (pσ(1), . . . , pσ(n))

for all σ ∈ Sn . This induces an action on A•,• and on B•,• defined by

σ−1(xi) = xσ(i),

σ−1(yi) = yσ(i),

σ−1(ωi,j) = ωσ(i),σ(j)

for all 1 ≤ i < j ≤ n and all σ ∈ Sn .

The mapping class group MCG(E) acts naturally on Fn(E) and on Cn(E).

Theorem 2.1 (Theorem 2.5 [13]) The mapping class group MCG(E) of the torus is
isomorphic to SL2(Z) and the isomorphism is given by the natural action of MCG(E)
on H1(E;Z).

Let f be an automorphism of E , the map induces the following vertical morphisms

Fn(E) En

Fn(E) En

f n
|Fn(E) f n

and by functoriality of the Leray spectral sequence it induces the action of SL2(Z)
on A•,• . We explicitly describe this action on the generators ωi,j , xi , and yi : since
f n : En → En fixes the divisor {pi = pj}, then f · ωi,j = ωi,j . The other generators
belongs to A1,0 = H1(En) ∼= H1(E)⊗n . Therefore the action of MCG(E) ∼= SL2(Z) on
A1,0 is given by(

a b
c d

)
· xi = axi + cyi

(
a b
c d

)
· yi = bxi + dyi.

This action extends to SL2(Q) and since the actions of Sn and of SL2(Q) commute,
then A•,• , B•,• and D•,0 become Sn × SL2(Q)-modules.

Algebraic & Geometric Topology XX (20XX)
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2.2 Decomposition into Sn -representations

We recall a result of [3, Theorem 3.15] on the decomposition of A•,• into Sn -modules.
The notations used here follow the ones in [3].

Let L∗ = (λ1, . . . , λt) be a partition of the number n, ie λi ∈ N+ and
∑t

i=1 λi = n.
We mark all blocks with labels in {1, x, y, xy}, an ordered basis of H •(E). The order is
1 ≺ x ≺ y ≺ xy.

Definition 2.2 A marked partition (L∗,H∗) is a partition L∗ ` n together with marks
H∗ = (h1, . . . , ht), hi ∈ {1, x, y, xy} such that: if λi = λi+1 then hi � hi+1 .

Let Ck be the cyclic group of order k . For any partition L∗ ` n define CL∗ as the
product of the cyclic groups Cλi for i = 1, . . . , t . It acts on {1, . . . , n} in the natural
way. Consider a marked partition (L∗,H∗) and define NL∗,H∗ as the group that permutes
the blocks of L∗ with the same labels. The group NL∗,H∗ is a product of symmetric
groups. Call ZL∗,H∗ the semidirect product CL∗ o NL∗,H∗ .

Example 2.3 Let (L∗,H∗) be the marked partition L∗ = (5, 5, 5, 5, 1, 1, 1) ` 23
and H∗ = (xy, xy, xy, 1, x, x, x). The group CL∗

∼= (Z/5Z)4 < S23 is generated by
(1, 2, 3, 4, 5), (6, 7, 8, 9, 10), (11, 12, 13, 14, 15), and (16, 17, 18, 19, 20). The subgroup
NL∗,H∗

∼= S3 × S3 is generated by the permutations (1, 6)(2, 7)(3, 8)(4, 9)(5, 10),
(1, 11)(2, 12)(3, 13)(4, 14)(5, 15), (21, 22), and (21, 23). Finally, ZL∗,H∗ is a group
isomorphic to (Z/5Z oS3)× Z/5Z×S3 .

Given two representations V,W of two groups G and H respectively, define the
tensor representation V � W of G × H by the vector space V ⊗W with the action
(g, h)(v⊗ w) = g(v)⊗ h(w).

We define the following one-dimensional representations. Let ϕn be a faithful character
of the cyclic group and ϕL∗ the character of CL∗

∼= Z/λ1Z× · · · × Z/λtZ given by

ϕL∗
def
= sgnn |CL∗ · (ϕλ1 � · · ·� ϕλr ).

Recall that the degree deg of 1, x, y, xy are respectively 0, 1, 1, 2. Let αL∗,H∗ be the
one dimensional representation of NL∗,H∗

∼= Sµ1 × · · · ×Sµl defined on generators by

αL∗,H∗(σ) def
= (−1)λ+deg(h)+1,

where σ is the permutation that exchange two blocks of size λ and label h. Set ξL∗,H∗

to be the one dimensional representation of ZL∗,H∗ such that ResZL∗,H∗
CL∗

ξL∗,H∗ = ϕL∗

and ResZL∗,H∗
NL∗,H∗

αL∗,H∗ .

Algebraic & Geometric Topology XX (20XX)
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We define |L∗| = n− t for a partition L∗ = (λ1, . . . , λt) of n and for a mark H∗ the
numbers |H∗| =

∑t
i=1 deg(hi) and ‖H∗‖ = |{i | hi = x}| − |{i | hi = y}|.

Definition 2.4 Let (L∗,H∗) be a marked partition and set p = |L∗| and q = |H∗|.
Define AL∗,H∗ ⊆ Ap,q as the Sn -subrepresentation generated by the following element:

mL∗,H∗
def
=

t∏
i=1

(hi)li+1

λi−1∏
j=1

ωli+j,li+j+1,

where li =
∑

k<i λk .

Theorem 2.5 ([3, Theorem 3.15]) The Sn -representation Ap,q decomposes as

Ap,q =
⊕
|L∗|=q
|H∗|=p

AL∗,H∗ .

Moreover:
AL∗,H∗ ⊗Q C ∼= IndSn

ZL∗,H∗
ξL∗,H∗ .

Remark 2.6 Observe that:

• The n-Lie operad over the complex numbers is described as the Sn -representation
induced from Cn by a faithful character.

• The direct sum over the natural numbers of all homological Križ models is
isomorphic to the Chevalley-Eilenberg complex CE(gE[1]), where the Lie
algebra gE is H •(E;C)⊗ Lien .

These two facts gives a conceptual explanation to Theorem 2.5. For references see
[8, 21, 20].

Example 2.7 Consider the marked partition (L∗,H∗) of Theorem 2.3. We have
|L∗| = 16, |H∗| = 9 and ‖H∗‖ = 3. The element generating AL∗,H∗ is the following:

mL∗,H∗ = x1y1x6y6x11y11x21x22x23ω1,2ω2,3ω3,4ω4,5ω6,7ω7,8ω8,9ω9,10·
·ω11,12ω12,13ω13,14ω14,15ω16,17ω17,18ω18,19ω19,20

The characters associated with (L∗,H∗) are shown in the following table.

(1, 2, 3, 4, 5) (16, 17, 18, 19, 20) (1, 6)(2, 7)(3, 8)(4, 9)(5, 10) (21, 22)
ϕ ζ5 ζ5

α 1 −1
ξ ζ5 ζ5 1 −1

Algebraic & Geometric Topology XX (20XX)
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2.3 Decomposition into Sn × SL2(Q)-representations

Let T = {Ht} ∼= Q∗ be the maximal torus in SL2(Q) generated by the diagonal matrices
Ht =

( t 0
0 t−1

)
. Let V1 be the irreducible representation Q2 with the standard action

of matrix-vector multiplication and let Vk = SkV1 be the irreducible representation
given by the symmetric power of V1 . The representation Vk has dimension k + 1
and can be view as Q[x, y]k , ie the vector space of homogeneous polynomials in two
variables. The action of T on the monomials is given by Ht · xayk−a = t2a−kxayk−a ,
thus Vk decomposes, as representations of T

(2) Vk =
k⊕

a=0

V(2a− k),

where V(2a− k) is the subspace where Ht acts with character t2a−k , ie the subspace
generated by xayk−a . The algebraic group SL2(Q) is reductive, so by [24, Theorem
22.42] each representation of SL2(Q) is semisimple. The Fundamental Theorem [24,
Theorem 22.2] says that each irreducible representation of SL2(Q) is isomorphic to the
representation Vk described above, for an unique k ∈ N.

As a consequence we can decompose a representation V of SL2(Q) using its de-
composition V = ⊕a∈ZV(a)⊕na as representation of T : indeed V ∼= ⊕k∈NV⊕mk

k as
representation of SL2(Q), where mk = nk − nk+2 . By setting V = Vm ⊗Vn , we obtain
the following formula for n ≤ m:

Vm ⊗ Vn ∼= Vm+n ⊕ Vm+n−2 ⊕ · · · ⊕ Vm−n.

As observed in Section 2.1, the group SL2(Q) acts trivially on ωi,j for all 1 ≤ i < j ≤ n
and the two dimensional subspace generated by xi and yi is isomorphic to V1 as
representation of SL2(Q).

We will use the decomposition of Theorem 2.5 to obtain a decomposition of A•,• into
Sn × SL2(Q)-modules. Define Ap,q

a as the following direct sum:

Ap,q
a

def
=

⊕
|L∗|=q

|H∗|=p, ‖H∗‖=a

AL∗,H∗ .

Let E =
(

1 1
0 1

)
∈ SL2(Q) and consider the map ι : Ap,q → Ap,q defined by v 7→ v−E ·v.

Notice that ι(xi) = 0, ι(yi) = xi and ι(ωi,j) = 0, for all i 6= j, hence it induces a
restricted map ιa : Ap,q

a → Ap,q
a+2 .

Lemma 2.8 For all a ≥ 0, the map ιa is surjective.

Algebraic & Geometric Topology XX (20XX)
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Proof Let W be a irreducible SL2(Q)-representation in Ap,q and notice that ι(W) ⊆ W .
By the arbitrariness of W , it is enough to prove that W ∩ Ap,q

a+2 is contained in Im ιa .

Since W ∼= Vk for some k , we can reduce to work in Vk . If k < a+2 or k 6≡ a mod 2,
then the torus T acts with weight a + 2 on Ap,q

a+2 . The weight a + 2 does not appear in
W , therefore W ∩Ap,q

a+2 = 0. Otherwise, k = a + 2 + 2b for some b ∈ N and W ∩Ap,q
a+2

is the one dimensional vector space generated by the image of xa+2+byb ∈ Vk . The
identity

(Id−E) · xa+1+byb+1

b + 1
= xa+2+byb,

completes the proof.

Theorem 2.9 The algebra A•,• decomposes as Sn × SL2(Q)-representation in the
following way:

Ap,q ∼=
p⊕

a=0

ker ιa � Va.

Moreover, dim ker ιa is the difference between dim Ap,q
a and dim Ap,q

a+2 .

Proof The assertion on the dimension of ker ιa follows from Theorem 2.8. Let Wa be
the Sn× SL2(Q)-subrepresentation generated by ker ιa . It is isomorphic to ker ιa �Va

because all elements in ker ιa are of highest weight a. Thus Ap,q ⊇
∑p

a=0 Wa and the
sum is direct since the SL2(Q)-representations Va are pairwise non-isomorphic. We
have proven that Ap,q ⊇ ⊕p

a=0Wa and Wa ∼= ker ιa � Va . We complete the proof by a
dimensional reasoning:

dim Ap,q =

p∑
a=−p

dim Ap,q
a = − dim Ap,q

0 + 2
p∑

a=0

dim Ap,q
a

=

p∑
a=0

(dim Ap,q
a − dim Ap,q

a+2)(a + 1) =

p∑
a=0

dim ker ιa · dimVa

= dim
p⊕

a=0

Wa.

Since Ap,q and ⊕p
a=0Wa have the same dimension, they are equal.

Define the Sn -invariant subalgebra of A•,• by UA•,• and of B•,• by UB•,• . Obviously
we have UA•,• = UB•,• ⊗Q D• . We use the previous calculation to compute UA•,•

Corollary 2.10 For q > p + 1 we have UAp,q = 0.

Algebraic & Geometric Topology XX (20XX)
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Proof Let 1n be the trivial representation of Sn . We use Theorem 2.5 to show that

〈1n,Ap,q〉Sn = 0

for q > p + 1. Indeed, it is enough to prove that

〈1n, IndSn
ZL∗,H∗

ξL∗,H∗〉Sn = 0

for all (L∗,H∗) with |L∗| = q and |H∗| = p. By Frobenius reciprocity we have

〈1n, IndSn
ZL∗,H∗

ξL∗,H∗〉Sn = 〈ResSn
ZL∗,H∗

1n, ξL∗,H∗〉ZL∗,H∗

Since the representations in the right hand side are one-dimensional the value of
〈1n, IndSn

ZL∗,H∗
ξL∗,H∗〉Sn is non zero if and only if ξL∗,H∗ = 1.

By definition ξL∗,H∗ = 1 is equivalent to ϕL∗ = 1 and αL∗,H∗ = 1. From the fact that
ϕk = sgnk only for k = 1, 2, ψL∗ = 1 if and only if λi = 1, 2 for all i = 1, . . . , t .
The condition αL∗,H∗ = 1 implies that the only marked blocks of (L∗,H∗) that appear
more than once are the ones with λi = 2 and deg(hi) = 1 or the ones with λi = 1 and
deg(hi) 6= 1.

Consequently, 〈1n, IndSn
ZL∗,H∗

ξL∗,H∗〉Sn 6= 0 only if L∗ = (2q, 1n−2q) and the degree of
hi is 1 for i < q, this implies p ≥ q− 1 contrary to our hypothesis.

Corollary 2.11 For q > p + 1 we have UBp,q = 0.

3 The additive structure of the cohomology

We compute the cohomology with rational coefficients of the unordered configuration
spaces of n points, taking care of the mixed Hodge structure and of the action of SL2(Q).
The integral cohomology groups are known only for small n in [25, Table 2], where a
cellular decomposition of ordered configuration spaces is given. In this section, we use
the calculation of the Betti numbers of Cn(E) to determine the Hodge polynomial in the
Grothendieck ring of SL2(Q).

Observe that H •(Cn(E)) = H •(Fn(E))Sn by the Transfer Theorem. Define the series

T(u, v) =
1 + u3v4

(1− u2v3)2 = 1 + 2u2v3 + u3v4 + 3u4v6 + 2u5v7 + . . .

and let Tn(u, v) be its truncation at degree n in the variable u.

The computation of the Betti numbers of unordered configuration space of n points in
an elliptic curve was done simultaneously by [11], [23], and [27] in different generality.
We point to the last reference because [27, Theorem] fits exactly our generality.

Algebraic & Geometric Topology XX (20XX)
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Theorem 3.1 The Poincaré polynomial of Cn(E) is (1 + t)2Tn−1(t, 1).

We use the notation Vukvh to denote a vector space V in degree k with a Hodge structure
of weight h. The Grothendieck ring of SL2(Q) is the free Z-module with basis given
by [V] for all finite-dimensional irreducible representations V of SL2(Q) and product
defined by the tensor product of representations.

Definition 3.2 The Hodge polynomial of Cn(E) with coefficients in the Grothendieck
ring of SL2(Q) is

2n∑
i=0

2i∑
k=i

[
WkHi(Cn(E);Q)�Wk−1Hi(Cn(E);Q)

]
uivk,

where WkHi(Cn(E);Q) is the weight filtration on Hi(Cn(E);Q). The ordinary Hodge
polynomial is

2n∑
i=0

2i∑
k=i

dimQ

(
WkHi(Cn(E);Q)�Wk−1Hi(Cn(E);Q)

)
uivk.

We prove a stronger version of Theorem 3.1.

Theorem 3.3 The Hodge polynomial of Cn(E) with coefficients in the Grothendieck
ring of SL2(Q) is

(3) ([V0] + [V1]uv + [V0]u2v2)

b n−1
2 c∑

i=0

[Vi]u2iv3i +

b n
2 c−1∑
i=1

[Vi−1]u2i+1v3i+1


and the ordinary Hodge polynomial is (1 + uv)2Tn−1(u, v).

Figure 1 represents the module H •,•(UB) that corresponds to the right factor of eq. (3).

3.1 Some elements in cohomology

Definition 3.4 Let α, α ∈ A1,1, β ∈ A1,2 be the elements

α
def
=
∑
i,k<h

(xi − xk)ωk,h

α
def
=
∑
i,k<h

(yi − yk)ωk,h

β
def
=
∑

i,j,k<h

(3xi − xj − 2xk)(yj − yk)ωk,h

where the sum is taken over pairwise distinct indices i, j, k, h with k < h.

Algebraic & Geometric Topology XX (20XX)
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q Vq

q− 1 Vq−1 Vq−2

... . .
.
. .
.

2 V2 V1

1 V1 V0

0 V0

0 1 2 3 · · · q

(a) Case n = 2q + 1 odd.

q Vq Vq−1

... . .
.
. .
.

3 V3 V2

2 V2 V1

1 V1 V0

0 V0

0 1 2 3 · · · q q + 1

(b) Case n = 2q + 2 even.

Figure 1: The algebra H •,• (UB) as representation of SL2(Q).

Notice that the elements α and α are defined only for n > 2 and β for n > 3.
Remember that γ, γ ∈ D1 were already defined as

∑
i xi and

∑
i yi .

Lemma 3.5 The element α belongs to UB1,1 , is non-zero, and dα = 0.

Proof First observe that α =
∑

i,k<h ui,kωk,h ∈ B1,1 . For all σ ∈ Sn we have

σα =
∑
i,k<h

uσ(i),σ(k)ωσ(k),σ(h) = α,

since uσ(i),σ(k)ωσ(k),σ(h) = uσ(i),σ(h)ωσ(k),σ(h) in A. The elements xiωk,h and xkωk,h are
linearly independent, so it is enough to observe that the coefficient of x3ω1,2 is 1. This
proves that α 6= 0. Finally, we compute dα:

dα =
∑
i,k<h

xi dωk,h − xk dωk,h

=
∑
i,k<h

xi(xk − xh)(yk − yh) + xkxh(yk − yh)

=
∑
i,k,h

xixkyk − xixhyk + xkxhyk

= −
∑
i,k,h

xixhyk = 0,

where all sums are taken over pairwise distinct indices and the first two with the
additional condition k < h.
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Lemma 3.6 The element β belongs to UB1,2 , is non-zero, and dβ = 0.

Proof Observe that

β =
∑

i,j,k<h

(ui,j + 2ui,k)vj,kωk,h ∈ B1,2

and that σβ = β for all σ ∈ Sn by the relations uj,kωk,h = uj,hωk,h and vj,kωk,h =

vj,hωk,h . Consider the map ϕ : A → Q defined on generators by ϕ(ω1,2) = 1,
ϕ(x3) = 1 and ϕ(y4) = 1 and zero on the other generators. The map ϕ is well defined
and ϕ(β) = 3, thus β 6= 0. Using the computation in the proof of Theorem 3.5, we can
observe that d

(∑
i,j,h<k 3xi(yj − yk)ωk,h

)
= 0. The claim dβ = 0 follows from:

d(β) = d
(∑

j,k,h

(xj + 2xk)(yj − yk)ωk,h

)
=
∑
j,k<h

xjyj dωk,h + xjyk(xk − xh)yh − 2xkyjxh(yk − yh)− 2xkykxhyh

=
∑
j,k,h

xjyjxkyk − xiyjxhyk + xjykxkyh − 2xkyjxhyk − xkykxhyh

= 0,

where the indexes of the sums are pairwise distinct.

Lemma 3.7 For n > 2q the element αq is non-zero.

Proof We show that the coefficient of the monomial m = x1ω1,2x3ω3,4 . . . x2q−1ω2q−1,2q

(defined for n ≥ 2q) in αq is non-zero for n > 2q. Initially, we will prove that the
coefficient is

(4) aq = q!
∑
σ∈Sq

sgn(σ)(2− n)| Fixσ|2q−| Fixσ|,

then that aq 6= 0 for n > 2q.

We start with the following identity:

αq =
(∑

j<k

∑
i 6=j,k

(xi − xj)ωj,k

)q
=
∑
J,K

q∏
l=1

(∑
i6=jl,kl

(xi − xjl)
)
ωjl,kl ,

where the sum is taken over all multi-indexes J = {j1, . . . , jq} and K = {k1, . . . , kq}
with jl < kl for all l = 1, . . . , q. Since, for all l = 1, . . . , q, the pair of indexes
(2l− 1, 2l) appear in the monomial m, the monomial m arise only in the terms with the
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following property P : there exist σ ∈ Sq such that jl = 2σ(l)− 1 and kl = 2σ(l) for
all l = 1, . . . , q. We further manipulate it:∑
(J,K)∈P

q∏
l=1

(∑
i 6=jl,kl

(xi − xjl)
)
ωjl,kl =

∑
σ∈Sq

q∏
l=1

( ∑
i 6=2σ(l)−1,2σ(l)

(xi − x2σ(l)−1)
)
ω2σ(l)−1,2σ(l)

= q!
q∏

l=1

( ∑
i 6=2l−1,2l

(xi − x2l−1)
)
ω2l−1,2l

= q!
q∏

l=1

(
2
∑

i=1,...,q
i 6=l

x2i−1 +
∑
i>2q

xi − (n− 2)x2l−1

)
ω2l−1,2l,

where the last equality is obtained using xjωj,k = xkωj,k . Since the variable xi with i > 2q
does not appear in m, the coefficient aq is equal to the coefficient of x1x3, . . . , x2q−1 in
q!
∏q

l=1

(
2
∑

i 6=l x2i−1 − (n− 2)x2l−1
)

. We have:

q∏
l=1

(
2
∑
i 6=l

x2i−1 − (n− 2)x2l−1
)

=
∑
σ∈Sq

q∏
l=1

cσ(l),lx2σ(l)−1

=
∑
σ∈Sq

sgnσ
q∏

l=1

cσ(l),lx2l−1

=
∑
σ∈Sq

sgnσ(2− n)| Fixσ|2q−| Fixσ|
q∏

l=1

x2l−1,

where ck,l = 2 − n if k = l and ck,l = 2 otherwise. Putting all together we obtain
Equation 4.

We claim that

(5)
∑
σ∈Sq

sgn(σ)x| Fixσ| = (x− 1)q−1(x + q− 1),

since both sides are the determinant of the matrix
x 1 · · · 1
1 x · · · 1
...

...
. . .

...

1 1 · · · x

 .

The left hand side of eq (5) is obtained by using the Laplace formula for the determinant
and the right hand side by relating the that determinant to the characteristic polynomial
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(−t)q−1(q− t) of the matrix
(

1 ··· 1
...
. . .

...
1 ··· 1

)
. We use eq (5) with x = 2−n

2 to obtain:

aq = q!2q
∑
σ∈Sq

sgn(σ)
(2− n

2

)| Fixσ|
= q!2q

(−n
2

)q−1(2q− n
2

)
Thus aq = (−1)qq!nq−1(n− 2q) that is non-zero for n > 2q.

Lemma 3.8 For n > 2q + 1 the element αq−1β is non-zero.

Proof Let us rewrite β as

β =
∑

i,j,k<h

xiyjωk,h − 2(n− 3)
∑
i,k<h

(xiyk + xkyi)ωk,h − (n− 3)
∑
i,k<h

xiyiωk,h+

+ 2(n− 2)(n− 3)
∑
k<h

xkykωk,h.

Let bq be the coefficient in αq−1β of the monomial

x1ω1,2x3ω3,4 . . . x2q−1ω2q−1,2qy2q+1.

This monomial is defined for n ≥ 2q + 1 and we will show that bq 6= 0 for n > 2q + 1.
The number bq coincides with the coefficient of the same monomial in the product

αq−1
( ∑

i,j,k<h

xiyjωk,h − 2(n− 3)
∑
i,k<h

xkyiωk,h

)
.

With further manipulation, we obtain that bq is the coefficient of the above monomial
in the expression

3αqy2q+1 + nαq−1
∑
k<h

xkωk,hy2q+1.

Using the computation in the proof of Theorem 3.7 we obtain

bq = 3(−1)qq!nq−1(n− 2q) + nq(−1)q−1(q− 1)!nq−2(n− 2q + 2)

= 2(−1)qq!nq−1(n− 2q− 1).

The number bq is non zero for n > 2q + 1.

Proof of Theorem 3.3 It is enough to prove that the Hodge polynomial of UB in the
Grothendieck ring of SL2(Q) is

b n−1
2 c∑

i=0

[Vi]u2iv3i +

b n
2 c−1∑
i=1

[Vi−1]u2i+1v3i+1
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Observe that Im dq,p = 0 for q > p + 1 by Theorem 2.11. From Theorem 3.5 and
Theorem 3.7 we have that the elements αk for 2k < n generate as SL2(Q)-module a
subspace of dimension at least k + 1 in Hk,k(UB, d). Analogously, from Theorem 3.6
and Theorem 3.8 the elements αk−1β for 2k + 1 < n generate as SL2(Q)-module a
subspace of dimension at least k in Hk,k+1(UB, d). Since the Betti numbers of UB•,•

(Theorem 3.1) coincides with the above dimensions, we have that H2k(UB) ∼= Vku2kv3k

and H2k+1(UB) ∼= Vk−1u2k+1v3k+1 .

4 The cohomology ring

In this section we determine the cup product structure in the cohomology of Cn(E) and
we prove the formality result.

In the following we consider graded algebras with an action of SL2(Q). We will write
(xi | i ∈ I)SL2(Q) for the ideal generated by the elements Mxi for all M ∈ SL2(Q) and all
i ∈ I .

Theorem 4.1 The cohomology ring of Cn(E) is isomorphic to

Λ•V1 ⊗ S•V1[b]�(ab
n+1

2 c, ab
n
2 cb, b2)SL2(Q)

,

where a is a non-zero degree-one element in V(1) ⊂ V1 and b an SL2(Q)-invariant
indeterminate of degree 3.

Proof It is enough to prove that H •(UB) ∼= S•V1[b]/(ab
n+1

2 c, ab
n
2 cb, b2)SL2(Q) . Define

the morphism ϕ : S•V1[b]/(ab
n+1

2 c, ab
n
2 cb, b2)SL2(Q) → H •(UB) that sends a, b to α, β

respectively. It is well defined because Hk(UB) = 0 for k ≥ n and β2 = 0 since it
has odd degree. The map ϕ is surjective since H •(UB) is generated by αi and αiβ as
SL2(Q)-module by Theorem 3.3. A dimensional reasoning shows the injectivity of the
map ϕ.

Corollary 4.2 The cohomology H •(Cn(E)) is generated as an algebra in degrees one,
two and three.

Proof A minimal set of generators is given by α, α, β, γ, γ .

Corollary 4.3 The space Cn(E) is formal over the rationals.
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Proof We prove that UB is formal. Consider the subalgebra K •,• of UB•,• generated
by α, α, β endowed with the zero differential. It is concentrated in degrees (i, i) and
(i, i + 1) because β2 = 0. Since K ∩ Im d = 0 (Theorem 2.11), K ↪→ UB is a
quasi-isomorphism. The fact that K ∼= H(UB) implies that the algebra UB is formal.
As a consequence UA is formal. The space Cn(E) is formal since our model UA is
equivalent to the Sullivan model.
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