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Abstract
We propose a bootstrap test for unconditional and conditional Granger-causality spec-
tra in the frequency domain. Our test aims to detect if the causality at a particular
frequency is systematically different from zero. In particular, we consider a stochastic
process derived applying independently the stationary bootstrap to the original series.
At each frequency, we test the sample causality against the distribution of the median
causality across frequencies estimated for that process. Via our procedure, we infer
about the relationship between money stock and GDP in the Euro Area during the
period 1999–2017. We point out that the money stock aggregate M1 had a signifi-
cant impact on economic output at all frequencies, while the opposite relationship is
significant only at low frequencies.

Keywords Bootstrap tests · Granger-causality spectra · Money stock and GDP · Euro
Area

1 Introduction

As a statistical concept, causality has a central role both from a theoretical and a
practical point of view (see Berzuini et al. 2012). In time series analysis, it was first
introduced by Wiener in the context of prediction theory (Wiener 1956) and then
formalized by Granger in the context of linear regression modelling of stochastic
processes (Granger 1969). Since then it is denoted as Granger-causality (GC). Specif-
ically, Yt is said to Granger-cause Xt if the past values of Yt , i.e. Yt−1, Yt−2, . . . , help
predicting the current value of Xt .
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The concept of causality was then extended from the time to the frequency domain.
Pierce (1979) explicitly measured the effect of the lagged values of Yt onto Xt through
an R2 indicator, defined frequency-wise to evaluate the intensity of the linear causal
dependence at each frequency.

Geweke (1982) proposed to estimate a VAR model on [Xt , Yt ]′ by defining the
causality from Yt to Xt at each frequency as the proportional effect of the lagged values
of Yt onto the spectral density of Xt . This approach can be implemented even consid-
ering the conditional causality with respect to the lagged values of a third variable Wt

(Geweke 1984). The described measures are respectively defined as unconditional and
conditional Granger-causality spectra (Geweke 1982, 1984), and also discussed by
Hosoya (1991) and Hosoya (2001). The conditional Granger-causality has then been
reformulated by Chen et al. (2006).

While the use of GC in the time-domain dates back to the sixties, GC in the fre-
quency domain has been employed in more recent years. In Lemmens et al. (2008)
the causality structure of European production expectation surveys is analyzed by
the methods of Pierce (1979) and Geweke (1982) comparatively, which require to
study appropriate frequency-wise coefficients of coherence. The same approach is
used in Tiwari (2014) for exploring the relationship between energy consumption and
income in the United States. In this paper, we aim to study the mutual relationship
between gross domestic product and money stock in the Euro Area by making infer-
ence on Granger-causality spectra. The problem has been widely addressed for the
U.S. economy, which is a key player from an international macroeconomic perspec-
tive. In Belongia and Ireland (2016), for instance, the methodology of Friedman and
Schwartz (1975), based on structural VARmodels, is revisited and applied to U.S. data
across the period 1967–2013. The same consideration applies to the Indian economy
(see Nadig and Viswanathan 2019). On the contrary, since the European Central Bank
was born in 1998, evidences and analyses regarding the Euro Area are less established
and more controversial.

The advantage of frequency-domain GC lies in the disentanglement of the causal-
ity structure across a range of frequencies, while traditional time-domain GC only
provides an overall indication of the presence of a causality relationship. In particu-
lar, GC measures at each frequency the intensity of the causal relationship between
the components of the series at that particular frequency. For this reason, we aim to
provide an inferential procedure to highlight at which specific frequency there exists
causality among the data generating processes of the observed time series.

In Breitung and Candelon (2006), a parametric test (henceforth, BC test) for
Granger-causality in the frequency domain is proposed. Its convergence rate is
O(T −1/2) (where T is the time series length) and its power is decreasing as the
distance of the frequency of interest from π

2 increases (even if Yamada and Yanfeng
2014 show that the same test is still useful at extreme frequencies). The test is based
upon a set of linear restrictions on the parameters of the (possibly cointegrated) VAR
model best representing the series (we refer to Lütkepohl 2005 for VAR selection
and estimation). Breitung and Schreiber (2018) generalize the BC procedure to test
causality and delay within a frequency band.

BC test is widely used in the economic literature. In Croux and Reusens (2013), it
is applied to test the predictive power of domestic stock prices for the economic activ-

123



A Bootstrap Test of Granger-Causality in the Frequency Domain 937

ity of G-7 countries. Bozoklu and Yilanci (2013) consider the relationship between
energy consumption and economic growth in theOECDarea. The relationship between
real and financial business cycles is analyzed in Gomez-Gonzalez et al. (2015). Wei
(2015) deals with the link between commodity prices and monetary policies. Keho
et al. (2015) test Wagner’s law for some African economies. Two relevant applications
for Turkish economy are described in Gül et al. (2018) and Tastan and Sahin (2020).
Fromentin andTadjeddine (2020) analyze the relationship between cross-borderwork-
ers and financial instability in Luxembourg.

Some alternative testing approaches were also proposed. Hidalgo (2000) estimates
VAR filters via generalized least squares and then accordingly derives a test statistics
for GC in the presence of long-range dependence. Hidalgo (2005) extends the frame-
work ofHidalgo (2000) to themultivariate case computing relevant quantiles under the
null via resampling bootstrap. A consistent nonparametric test for nonlinear causality
is proposed by Nishiyama et al. (2011). A nonparametric approach to test for Granger-
causality in tail events is proposed byHong et al. (2009) and extended byCandelon and
Tokpavi (2016). The Philipps spectral estimator (Phillips 1988) is instead exploited to
estimate causality both at frequency0 and at the rest of frequencies in a cointegrated set-
ting by Assenmacher-Wesche andGerlach (2008). Such amethod is used inBerger and
Osterholm (2011) to test the relationship between money growth and inflation in the
Euro Area. A comprehensive computational and inferential strategy for time-domain
and frequency-domain GC spectra has been proposed in Barnett and Seth (2014).

The present work proposes a different approach to the classical testing framework
of the no-causality hypothesis. Our null hypothesis of zero-causality, in fact, is tested
frequency-wise comparing each causality to the 100×(1−α)−th percentile of the dis-
tribution of themedian causality across frequencies under the stronger case of stochas-
tic independence, where α is the significance level. The null distribution is approxi-
mated via the stationary bootstrap of Politis andRomano (1994). As empirically shown
in Sect. 2.4, the median is chosen because under the null the individual causalities and
the median causality are indistinguishable from a stochastic point of view. We thus
derive the desired bootstrap quantile of themedian causality across frequencies andwe

compare each observed causality to it. Our test is consistent provided that T
1
3 → ∞.

The paper is organized as follows. In the next Section the concept of Granger-
causality in the frequency domain is recalled, our bootstrap inference approach is
explained in detail and a simulation study which clarifies the features of our test is
presented. In Sect. 3 we show the potentialities of our method in outlining the causal
relationships betweenmoney and output in theEuroArea during the period 1999-2017.
Finally, we conclude the paper with a discussion.

2 Granger-Causality Spectra: A Bootstrap Testing Approach

2.1 Definition

We now briefly recall the bases of Granger-causality spectral theory. We follow the
approach in Ding et al. (2006), which we refer to for the details. Suppose that the
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stochastic processes Xt and Yt , jointly covariance-stationary, follow a non-singular
V AR(p) model. Defining the bivariate stochastic process Zt = [Xt , Yt ]′, we have

Zt = A1Zt−1 + . . . + Ap Zt−p + εt , (1)

where εt is a zero-mean bivariate stochastic process with covariance matrix Σ2 and
A1, . . . , Ap are 2 × 2 coefficient matrices. We stress that εt has no auto-covariance
structure at any lag different from 0.

Moving to the frequency domain, for each frequency ω we define the transfer
function P(ω) of Zt in (1) as

P(ω) =
⎛
⎝I2 −

p∑
j=1

A j e
−i jω

⎞
⎠

−1

, −π ≤ ω ≤ π, (2)

which is invertible if and only if the roots of the equation det(I2 −∑p
j=1 A j L j ) = 0

(where L is the lag operator) lie within the unit circle. Setting P(ω) =[
PX X (ω) PXY (ω)

PY X (ω) PY Y (ω)

]
, the definition (2) allows to define in a compact way the model-

based spectrum h(ω) as follows:

h(ω) = P(ω)Σ2P(ω)∗, −π ≤ ω ≤ π,

where ∗ denotes the complex conjugate transpose.

Setting Σ2 =
[

σ2 υ2
υ2 γ2

]
, we need for computational reasons to define the transform

matrix S =
[

1 0
−υ2

σ2
1

]
, fromwhichwe derive the transformed transfer functionmatrix

P̃(ω) = P(ω) × S−1. The process Zt = [Xt , Yt ]′ is normalized accordingly as
Z̃t = P̃(L)[Xt , Yt ]′ and becomes Z̃t = [X̃t , Ỹt ]′.

The unconditional Granger-causality spectrum of Xt (effect-variable) respect to Yt

(cause-variable) is then defined as (Geweke 1982)

hY→X (ω) = ln

(
h X X (ω)

σ2|P̃X X (ω)|2
)

. (3)

In the empirical analysis, the theoretical values of coefficient and covariance matrices
will be replaced by the corresponding SURE estimates (Zellner 1962).

Moreover, we can define the conditional Granger-causality spectrum of Xt respect
toYt given an exogenous variableWt (conditioning variable). Suppose thatwe estimate

a VAR on [Xt , Wt ]′ with covariance matrix of the noise terms Σ2′ =
[

σ2′ υ2′
υ2′ γ2′

]
and

transfer function G(ω) [defined as in (2)]. The corresponding normalized process of
[Xt , Wt ]′ (according to the procedure described above) is denoted by [X̃t , W̃t ]′.
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We then estimate a VAR on [Xt , Yt , Wt ]′ with covariance matrix of the noise terms

Σ3 =
⎡
⎣

σX X σXY σX W

σY X σY Y σY W

σW X σW Y σW W

⎤
⎦

and transfer function P ′(ω). Building the matrix

C(ω) =
⎡
⎣

G X X (ω) 0 G X W (ω)

0 1 0
GW X (ω) 0 GW W (ω)

⎤
⎦ ,

wecan define Q(ω) = C−1(ω)P ′(ω), which is a sort of “conditional” transfer function
matrix. The theoretical spectrum of X̃t can thus be written as

h X̃ X̃ (ω) = Q X X (ω)σX X Q X X (ω)∗

+Q XY (ω)σY Y Q XY (ω)∗ + Q X W (ω)σW W Q X W (ω)∗.

The conditional spectrum of Xt (effect-variable) respect to Yt (cause-variable) given
Wt (conditioning variable) is (Geweke 1984)

hY→X |W (ω) = ln

(
h X̃ X̃ (ω)

σX X |Q X X (ω)|2
)

. (4)

BothhY→X (ω) andhY→X |W (ω) range from0 to∞,with−π ≤ ω ≤ π . hY→X (ω)

expresses the power of the relationship from Y to X at frequency ω, hY→X |W (ω)

expresses the strength of the relationship from Y to X at frequency ω given W . There-
fore, the unconditional spectrum accounts for the whole effect of the past values of
Yt onto Xt , while the conditional spectrum accounts for the direct effect of the past
values of Yt onto Xt excluding the effect mediated by the past values of Wt .

Granger-causality spectra hY→X (ω) and hY→X |W (ω) can be interpreted as follows.
If hY→X (ω) > 0, it means that past values of Yt help predicting Xt , and 1

ω
is a relevant

cycle. If hY→X |W (ω) > 0, it means that past values of Yt in addition to those of Wt

help predicting Xt , and 1
ω
is a relevant cycle. Significant frequencies give us some

hints on the relevant delay structure of the cause variable with respect to the effect
variable.

2.2 Testing Framework

The inference on Granger-causality spectra in the frequency domain is still an open
problem. In fact, differently from the corresponding time-domain quantities, the lim-
iting distribution for unconditional and conditional spectra under the null hypothesis
of no-causality is unknown (see Barnett and Seth 2014, Sect. 2.5). In spite of that,
Breitung and Candelon (2006) test the nullity of unconditional and conditional GC at
each frequency ω, imposing a necessary and sufficient set of linear restrictions to the
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(possibly cointegrated) VAR model best fitting the series. The resulting test statistics
is distributed under their null as a Fisher distribution with 2 and T − 2p degrees of
freedom (except for ω = {0, π} at which the distribution is F(1,T −p)), where p is the
VAR delay and T is the time series length.

On the contrary, as explained in the Introduction, our benchmark is GC spectrum
under the null hypothesis of stochastic independence. At each frequency ω, we test in
Fisher’s sense the null hypothesis H0 : r(ω) = 0 where the functional r(ω) may be
the unconditional GC hY→X (ω), assuming that Xt is stochastically independent from
Yt , or the conditional GC hY→X |W (ω), assuming that Xt is stochastically independent
from Yt conditionally on Wt . This equals to assume that under the null the bivariate
stochastic process [Xt , Yt ] is an independent process, unconditionally or conditionally
on Wt .

In order to test the null hypothesis, we refer the estimated causality at each fre-
quency to the distribution of r̂med , the estimated median of r(ω) across frequencies,
approximated by the stationary bootstrap of Politis and Romano (1994). The median
is chosen because under the null all causalities are indistinguishable with respect to
the median causality from a stochastic point of view (see Sect. 2.4). We stress that
unconditional and conditional spectra must be assessed separately, because their dis-
tributions are different under the null.

Our idea derives fromPolitis and Romano (1994), according towhich eachFréchet-
differentiable functionalmaybe successfully approximatedby the stationarybootstrap,
and the resulting bias depends on the sum of the Fréchet-differential gF evaluated at
each Xt . The bootstrap series obtained via the stationary bootstrap of Politis and
Romano (1994) are stationary Markov chains conditionally on the data. This means
that each bootstrap series X∗

1, . . . , X∗
T is aMarkov chain conditionally on X1, . . . , XT .

Suppose that we apply the stationary bootstrap procedure independently to Xt and
Yt , obtaining the stationary bootstrap series X∗

t and Y ∗
t . Computing unconditional

Granger-causality spectra on those series equals to assess unconditional causalities
under the assumption of stochastic independence, because X∗

t and Y ∗
t result to be

independent Markov chains. Therefore, testing each Granger-causality computed on
the original series Xt , Yt against the median causality computed across frequencies
on X∗

t and Y ∗
t is effective as a test for causality strength under the null.

For the conditional case, we proceed as follows. First, we estimate a VARmodel on
the observed series Xt and Wt jointly considered. Then, we apply the residual boot-
strap (see Tibshirani and Efron 1993) to VAR residuals, thus obtaining the consistent
residual bootstrap series X∗

t and W ∗
t . This step is needed in order to avoid any bias

which may arise ignoring the dependence structure between Xt and Wt . Finally, we
apply independently the stationary bootstrap to the observed series Yt to obtain the
series Y ∗

t . Computing conditional Granger-causality spectra on X∗
t , Y ∗

t and W ∗
t then

equals to assess conditional causalities under the assumption that Xt is stochastically
independent from Yt given Wt . For this reason, we use the resulting distribution of
the conditional median causality across frequencies computed on those series as our
benchmark under the null hypothesis.

Let us consider r̂(ω) = ĥY→X (ω), which is defined as (3) where the coefficient
matrices A j , j = 1, . . . , p, and the error covariance matrix Σ2 are replaced by the
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corresponding SURE estimates (Zellner 1962). We know that SURE estimates Â j ,

j = 1, . . . , p, are rational functions of Xt , thus being Fréchet-differentiable. ˆ̃P(ω)

and Σ̂2 are functions of the Â j , thus being rational in turn; the same holds as a con-
sequence for ĥ(ω). Therefore, ĥY→X (ω), the natural logarithm of a rational function
of the data, is Fréchet-differentiable. At this point, even if the median is not Fréchet-
differentiable, bootstrapping r̂med = med(ĥY→X (ω)) under the null is still valid,
because the distribution of r̂med is indistinguishable from the causality distribution at
any frequency under the null as T is enough large (see Sect. 2.4). As a consequence,
according to Politis and Romano (1994), paragraph 4.3, we can estimate consistently
any quantile of the distribution of the median of ĥY→X (ω) across frequencies under
the null hypothesis via the stationary bootstrap. Considering r̂(ω) = ĥY→X |W (ω),
which is defined as (4) where the coefficient matrices and the error covariance matrix
are replaced by the corresponding SURE estimates, a similar reasoning can be carried
out.

We stress that our aim is not to represent the common multivariate distribution
function F of the process [Xt , Yt ] or [Xt , Yt , Wt ]. That problem is an estimation one,
which would be effectively solved by parametric or residual bootstrap. Our aim is
to exploit the random process [X∗

t , Y ∗
t , W ∗

t ] to derive the bootstrap quantile q∗
r ,1−α ,

which satisfies

P
(
r∗

med ≤ q∗
r ,1−α

) = 1 − α,

where α is the significance level and r∗
med is the bootstrap median across frequencies

of unconditional or conditional GC under the assumption of stochastic independence.
Since the stationary bootstrap procedure is valid for r̂med under the null, P(r∗

med ≤
q∗

r ,1−α) approximates consistently P(r̂med ≤ qr ,1−α|H0) as T
1
3 → ∞.

In more detail, suppose that r is a Fréchet-differentiable functional, that is, there
exists some influence function gF , giving the influence of single observations on the
functional r with respect to some distribution function F , such that

r(G) = r(F) +
∫

gFd(G − F) + o(||G − F ||)

with
∫

gFdF = 0 (||.|| is the supremum norm). We define the mixing coefficient
(which controls for the overall amount of time dependence) as

αX (k) = sup
A,B

|P(A, B) − P(A)P(B)|

where A and B vary over events in the σ -fields generated by {Xt , t ≤ 0}, {Xt , t ≥ k}.
The following Theorem, expanded by Politis and Romano (1994), holds.

Theorem 1 Suppose that X†
t and Y †

t are strictly stationary stochastic processes with
distribution functions FX† , FY † . Assume that, for some d ≥ 0, E(gFX† (X†

1)
2+d) < ∞,

∑∞
k=1 αX†(k)

d
2+d < ∞ and

∑∞
k=1 k2αX†(k)1/2−τ < ∞, 0 < τ < 1

2 . Further assume
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that these assumptions also hold for Y †
t . Then, under H0, i.e. if the distribution function

of the stochastic process Z†
t = [X†

t , Y †
t ] can be factorized as FX† FY † , it holds

sup
c∈R

∣∣∣P
{√

T (r(F∗
Z†) − r(F̂Z†)) ≤ c

}
− P

{√
T (r(F̂Z†) − r(FZ†)) ≤ c

} ∣∣∣ prob−→ 0

for any Fréchet-differentiable functional r under the assumption T
1
3 → ∞.

The key to prove Theorem 1 is to bootstrap the cause and the effect series inde-
pendently, and then show that any inference on a Fréchet-differentiable functional is
weakly consistent.

For what concerns the conditional case, the following Theorem holds.

Theorem 2 Suppose that Z
′′
t = [X†

t |W †
t , W †

t |X†
t ] and Y †

t are strictly stationary
stochastic processes with distribution functions FZ ′′ , FY † . Assume that, for some d ≥ 0,

E(gFY† (Y
†
1 )2+d) < ∞,

∑∞
k=1 αY †(k)

d
2+d < ∞ and

∑∞
k=1 k2αY †(k)1/2−τ ′

< ∞,

0 < τ ′ < 1
2 . Further assume that 0 < E(gF

Z
′′ (Z

′′
1)

2) < ∞ and
∫

D
Z
′′ {FZ ′′ (z′′)(1 −

FZ ′′ (z′′))}τ ′′/2dz′′, τ ′′ > 0. Finally, assume that W †
t |X†

t is stochastically independent

from Y †
t |X†

t . Then, under H0, i.e. if X†
t |W †

t is stochastically independent from Y †
t |W †

t ,
for the stochastic process Z

′
t = [X†

t |W †
t , Y †

t , W †
t |X†

t ] it holds

sup
c∈R

∣∣∣P
{√

T (r(F∗
Z ′ ) − r(F̂Z ′ )) ≤ c

}
− P

{√
T (r(F̂Z ′ ) − r(FZ ′ )) ≤ c

} ∣∣∣ prob−→ 0

for any Fréchet-differentiable functional r under the assumption T
1
3 → ∞.

By assuming that the functional r is gτ ′− Fréchet-differentiable with respect to FY †

and gτ ′′− Fréchet-differentiable with respect to FZ ′′ we can ensure bootstrap consis-
tency in weak sense for any conditional GC. Note that the assumption of stochastic
independence betweenW †

t |X†
t andY †

t |X†
t under the null is needed to avoid any circular

causality effect under the null, such that the stationary bootstrap may be meaningfully
applied. We refer to “Appendix B” for the proofs.

2.3 Testing Procedure

We now report in detail the testing procedures relative to the two functionals. For the
functional hY→X (ω), our bootstrap procedure is

– Simulate N independent stationary bootstrap series (X∗
t , Y ∗

t ) given the observed
series (Xt , Yt ).

– On each simulated series (X∗
t , Y ∗

t ):

1. estimate a VAR model on (X∗
t , Y ∗

t ) via SURE using BIC for model selection.
2. at Fourier frequencies fi = i

T , i = 1, . . . , [ T
2 ], compute ĥY ∗→X∗(2π fi ).

3. compute med{ fi ,i=1,...,T /2}ĥY ∗→X∗(2π fi ).
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– Then, compute quncond,1−α , the 100 × (1 − α)-th percentile of the bootstrap dis-
tribution at Step 3 across the N bootstrap series, where α is the significance level.

– Finally, at each fi , flag ĥY→X (2π fi ) as significant if larger than quncond,α .

For the functional hY→X |W (ω), the procedure becomes

– Estimate a VAR on (Xt , Wt ) via SURE using BIC for model selection.
– Simulate N residual bootstrap series (X∗

t , W ∗
t ) from VAR estimates (Tibshirani

and Efron 1993).
– Simulate N stationary bootstrap series Y ∗

t independently of (X∗
t , W ∗

t ) given the
observed series Yt .

– On each simulated series (X∗
t , Y ∗

t , W ∗
t ):

1. estimate a VAR model on (X∗
t , W ∗

t ) and (X∗
t , Y ∗

t , W ∗
t ) via SURE using BIC

for model selection.
2. at Fourier frequencies fi = i

T , i = 1, . . . , [ T
2 ], compute ĥY ∗→X∗|W ∗(2π fi ).

3. compute med{ fi ,i=1,...,T /2}ĥY ∗→X∗|W ∗(2π fi ).

– Then, compute qcond,1−α , the 100× (1− α)−th percentile of the bootstrap distri-
bution at Step 3 across the N bootstrap series.

– Finally, at each fi , flag ĥY→X |W (2π fi ) as significant if larger than qcond,α .

We provide an R package, called “grangers”, performing these routines (see Declara-
tions).

In addition, we extend our framework to test the nullity of r(2π fi ), i = 1, . . . , [ T
2 ],

across the entire frequency range. In order to do that, we apply the conservative
Bonferroni correction, that is, we apply the testing procedure to each frequency with
significance level 2α

T . In this way, we ensure that the overall level across frequencies
is not larger than α under the null.

2.4 Test Features and Simulation Results

We now describe the performance of our test (with a significance level of 5%) in a
number of situations, in comparison to BC test by Breitung and Candelon (2006). We
do not use more competitors like Hidalgo (2000) and Nishiyama et al. (2011) for the
following reasons. First of all, both approaches are intended to test the unconditional
causality. Second, the assumption settings of both procedures are quite different and
somehow more demanding: the former requires an explicit control of the spectral
matrix, while the second requires particular conditions on the process distribution.
Third, BC test has become the standard test for GC in the frequency domain for
economic applications, as shown in the Introduction.

First of all, suppose that we simulate N = 300 replicates from a VAR process of
length T = 100, 300 in the form (1) with p = 1, Σ2 = diag(1, 1) and no causality
coefficients. The VAR delay is selected for each bootstrap setting by BIC criterion.
Our first tested coefficient matrix A1 is A1,( j j) = 0, 0.5, 1, j = 1, 2. We observe that
for T = 300 the estimated level is approximately 5% at all Fourier frequencies as
long as A1,( j j) = 0 (Case 1), both for the unconditional and the conditional GC. If

Σ2 =
[
1 ρ

ρ 1

]
, the estimated level is still close to 5% when ρ = 0.5.
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As A1,( j j) increases (Case 2), our test presents an increasing rejection rate partic-
ularly at low frequencies. This happens because our test signals any violation of the
null hypothesis of stochastic independence. As A1,( j j) approaches 1, the power tends
to 1 at the lowest frequency, as showed for the unconditional GC in Fig. 1. On the
contrary, BC test has a level close to 5% over all frequencies as A1,( j j) = 0, 0.5, and
approaches 0.4 as A1,( j j) = 1. A similar pattern is observed also for the conditional
GC in Fig. 2.

In order to show that under the null hypothesis the distributions of the individual
causalities are indistinguishable from the one of the median causality, we have calcu-
lated the Kullback-Leibler (KL) divergence (Kullback and Leibler 1951) between the
density functions of each causality and the median causality, estimated via a Gaussian
kernel with bandwidth equal to 0.25. The results for Case 1 (with A1,( j j) = 0) are
reported in Fig. 3. We note that the observed divergence is extremely small, consid-
ered that the KL-divergence between two simulated uniform distributions located in
[0, 1] is around 0.2. The pattern of KL over frequencies may vary, but its magnitude
is always very small, even if we set T = 100. Similar results are observed for the
conditional case, or allowing for ρ = 0.5 and A1,( j j) = 0.5.

Another relevant case we deal with is for p = 1 and A1,( j2) = 0.2, 0.5, 1, j = 1, 2.
This process has a causality which decreases as the frequency increases (Case 3).
If A1,( j2) is at least 0.5, T = 100 is enough to reject the null hypothesis at all
frequencies with probability 1. If A1,( j2) = 0.2, T = 300 is required to reject the
null at all frequencies, as for T = 100 the power is far from 1 and stands around
60% at the lowest frequency. At the same time, we observe in Figs. 4 and 5 that BC
presents remarkable power losses at all frequencies even for T = 300, both for the
unconditional and the conditional case.

Moreover,we consider theVARmodels described inBreitung andCandelon (2006),
Sect. 4. Those models have p = 3, Ak,( j2) = 1, k = 1, 3, j = 1 and Ak,( j2) =
−2 cos(ω∗), k = 2, j = 1. Such coefficient structure results in a null causality
at frequency ω∗. In addition, we test the sensitivity of the results to the condition
number of the covariance matrix, setting Σ2 = diag(1, 1), Σ2 = diag(1, 0.2),
Σ2 = diag(1, 5).

If ω∗ = π
2 and Σ2 = diag(1, 1) (Fig. 6), we observe that the power of our test is

close to the BC one. This happens becauseΣ2 has condition number 1, i.e. the process
shows no collinearity. IfΣ2 = diag(1, 0.2) (Fig. 7), BC test has a level approximately
equal to 5% at ω∗, while ours is larger, because the two series are both dependent in
distribution and collinear. On the contrary, if Σ2 = diag(1, 5) (Fig. 8), even BC test
loses power at ω∗ because both the magnitude and the variance of the estimated GC
increase considerably. Setting a different ω∗, like 3

4π , the exposed patterns remain the
same (Fig. 9).

Setting instead Ak,(22), k = 1, 3, to 0.25 and 0.5 equals to increase themagnitude of
the VAR roots until the limit value of 1 (non-stationary case). In that case, consistently
with our null hypothesis, we observe that the rejection rate of our test increases as
Ak,(22) increases (Figs. 10, 11).

To sum up, the rejection rate of our test depends on three factors:
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Fig. 1 Zero unconditional GC with A1,( j j) = 1, j = 1, 2 (Case 2), T = 300. In solid line, GC shape is
reported at left, rejection rates for our NEW test and BC test are reported at center and at right. One standard
deviation bands are reported in dotdash line. The values α = 0.05 and 1 are reported in dashed line

– the magnitude of VAR roots: the rejection rate is perturbed at low frequencies as
the process is closer to non-stationarity;

– the true underlying spectral variability, which in turn depends on the relationship
between the magnitude of causality and non-causality coefficients;

– the condition number of the autocovariance matrices R j , j ≥ 0, which impacts
on the degree of stochastic dependence.

We also compute the rejection rates of the conservative test on all causalities
jointly considered obtained by Bonferroni correction. The results for our test are
reported in Table 1, the results for BC test are reported in Table 2. We note that
our test is more powerful as soon as the underlying setting goes towards stochastic
dependence.

Table 3 reports the mean computational time (with the relative standard deviation)
of our inferential procedures (both for unconditional and conditional GC) for different
values of the time series length T and the number of bootstrap samples N under the
null hypothesis. We can see that the computational cost increases with the number of
Fourier frequencies (equal to T /2). Considering that N = 300 is enough to obtain
a sufficient approximation of critical values, our approach appears to be perfectly
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Fig. 2 Zero conditional GC with A1,( j j) = 1, j = 1, 2 (Case 2), T = 300. In solid line, GC shape is
reported at left, rejection rates for our NEW test and BC test are reported at center and at right. One standard
deviation bands are reported in dotdash line. The values α = 0.05 and 1 are reported in dashed line
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Fig. 3 An example of Kullback–Leibler divergence between the density of each individual causality and the
median causality estimated via a Gaussian kernel with bandwidth equal to 0.25 for Case 1 with A1,( j j) = 0,
j = 1, 2, T = 300 and N = 300

feasible. For sets of very large series, provided that they are covariance stationary, we
note that an appropriate subsample of Fourier frequencies can be easily drawn to keep
computational times low.
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Fig. 4 Decreasing unconditional GC with A1,( j2) = 0.2, j = 1, 2 (Case 3), T = 300. In solid line, GC
shape is reported at left, rejection rates for our NEW test and BC test are reported at center and at right. One
standard deviation bands are reported in dotdash line. The values α = 0.05 and 1 are reported in dashed
line

Table 1 Rejection rates of our test on all causalities jointly considered obtained by Bonferroni correction

Case Unconditional GC Conditional GC

Case 1 with Σ2 = diag(1, 1) 0 0.01

Case 1 with ρ = 0.5 0.01 0.01

Case 2 with A1,( j j) = 0.5 0.15 0.16

Case 2 with A1,( j j) = 1 0.72 0.67

Case 3 with A1,( j2) = 0.2 and T = 100 0.35 0.37

Case 3 with A1,( j2) = 0.2 and T = 300 0.82 0.83

3 A Granger-Causality Analysis of Euro Area GDP, M3 andM1 in the
Frequency Domain

In this section we study the co-movements of gross domestic product (GDP) and
money stock (M3 and M1 aggregate) in the Euro Area. Differently from the Federal
Reserve, the European Central Bank still considers the M3 growth rate as a policy
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Fig. 5 Decreasing conditional GC with A1,( j2) = 0.2, j = 1, 2 (Case 3), T = 300. In solid line, GC shape
is reported at left, rejection rates for our NEW test and BC test are reported at center and at right. One
standard deviation bands are reported in dotdash line. The values α = 0.05 and 1 are reported in dashed
line

Table 2 Rejection rates of BC test on all causalities jointly considered obtained by Bonferroni correction

Case Unconditional GC Conditional GC

Case 1 with Σ2 = diag(1, 1) 0.02 0.01

Case 1 with ρ = 0.5 0.05 0.04

Case 2 with A1,( j j) = 0.5 0.01 0.01

Case 2 with A1,( j j) = 1 0.32 0.29

Case 3 with A1,( j2) = 0.2 and T = 100 0.22 0.21

Case 3 with A1,( j2) = 0.2 and T = 300 0.68 0.63

target (see Jung and Villanova 2020). We have thus considered M3 instead of M2,
also because they are quite close in the Euro Area (see Darvas 2015). We test in
the frequency domain both the direct link from one variable to the other one and
the indirect link with respect to further explanatory variables like the inflation rate
(HICP), the unemployment rate (UN), or the long-term interest rate (LTN). Published
works on this research topic make use of time-domain methods: some of them use
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Fig. 6 Case with p = 3, Ak,( j2) = 1, k = 1, 3, j = 1, A2,(12) = 0, Σ2 = diag(1, 1), and T = 300. In
solid line, GC shape is reported at left, rejection rates for our NEW test and BC test are reported at center
and at right. One standard deviation bands are reported in dotdash line. The values α = 0.05 and 1 are
reported in dashed line

Table 3 Mean computational
times in seconds of our NEW
bootstrap testing approaches
with the relative standard
deviations under the null
hypothesis for different values of
the time series length T and the
number of bootstrap samples N
across 10 trials. Calculations are
performed by a 64-bit Intel Core
i7-8665U processor with 1.90
GHz base frequency and 16GB
RAM

T N Unconditional GC Conditional GC

Mean STD Mean STD

100 100 1.98 0.13 4.95 0.92

100 300 6.06 0.30 13.23 0.42

100 500 10.05 0.36 19.14 0.29

300 100 3.27 0.27 4.81 0.30

300 300 8.66 0.08 13.57 0.10

300 500 15.29 1.48 23.38 1.32

500 100 3.89 0.23 6.01 0.21

500 300 11.86 0.49 17.33 0.14

500 500 12.00 0.37 28.43 0.10

factor modelling (Cendejas et al. 2014), some others use likelihood methods (Andrés
et al. 2006, Canova and Menz 2011), or large-dimensional VAR models (Giannone
et al. 2013), or dynamic factor models (Breitung and Eickmeier 2006) or VARmodels
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Fig. 7 Case with p = 3, Ak,( j2) = 1, k = 1, 3, j = 1 and ω∗ = π
2 , A2,(12) = 0, Σ2 = diag(1, 5), and

T = 300. In solid line, GC shape is reported at left, rejection rates for our NEW test and BC test are reported
at center and at right. One standard deviation bands are reported in dotdash line. The values α = 0.05 and
1 are reported in dashed line

with time-varying parameters (Psaradakis et al. 2005). On the contrary, we apply the
inferential framework for GC in the frequency domain developed in Sect. 2. In this
way, we provide explicit inference on unconditional and conditional GC. HICP, UN
and LTN are used as conditioning variables, with the aim to discount for the mediating
power of each of the three variables with respect to the relationship between output
and money supply.
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Fig. 8 Case with ω∗ = π
2 , A2,(12) = 0, Σ2 = diag(1, 0.2), and T = 300. In solid line, GC shape is

reported at left, rejection rates for our NEW test and BC test are reported at center and at right. One standard
deviation bands are reported in dotdash line. The values α = 0.05 and 1 are reported in dashed line

3.1 Data Preparation

We have considered the time series of GDP at market price in the Euro Area (chain
linked volumes in Euro) and the monetary aggregate M3 andM1 (outstanding amount
of loans to the whole economy excluded the monetary and financial sector, all curren-
cies combined). M3 is also called “broad money”, M1 “narrow money”.

Since our goal is to focus on the effect of monetary policy on output, we restrict
our analysis to the period 1999–2017, when the ECB has taken actual decisions on
the Euro Area. We can thus denote our series by G D Pt , M3t , M1t , H I C Pt , U N t ,
LT N t , where t = 1, . . . , 76 (there are 76 quarters from Winter 1999 to Autumn
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Fig. 9 Case with ω∗ = 3
4π , A2,(12) = 0, Σ2 = diag(1, 1), and T = 300. In solid line, GC shape

is reported at left, rejection rates for our NEW test and BC test are reported at center and at right. One
standard deviation bands are reported in dotdash line. The values α = 0.05 and 1 are reported in dashed
line

2017). The data are drawn from the ECB Real Time Research database where national
figures are aggregated according to a changing composition of the Euro Area across
time (see Giannone et al. 2012). We consider quarterly series as the GDP is regularly
published on a quarterly base. The other series (all but GDP) are therefore made
quarterly by averaging.We refer to “https://www.ecb.europa.eu/stats” andECB (2012)
for technical and computational details.

According to the Dickey-Fuller test, the logarithmic transforms of G D Pt , M3t ,
M1t are non-stationary, as well as the three conditioning variables H I C Pt , U N t

and LT N t . Therefore, following Friedman and Schwartz (1975), we pass all series
by Hodrick-Prescott filter (Hodrick and Prescott 1997), with the canonical value of
λ = 1600, in order to remove any trend and to extract cyclical components. We do not
use Baxter-King filter (Baxter and King 1999), as suggested in Belongia and Ireland
(2016), because we have not enough end of sample data. Cycle extraction is performed
via the R package “mFilter”.

Figures 12 and 13 contain the plots of G D Pt , M3t , M1t , H I C Pt , U N t , LT N t

respectively. Left figures contain the original series and the estimated trend, while right
figures contain the estimated cycles. The patterns of the estimated ACF and CCF are
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Fig. 10 Case with ω∗ = π
2 , A p,(22) = 0.25, p = 1, 3, and T = 300. In solid line, GC shape is reported at

left, rejection rates for our NEW test and BC test are reported at center and at right. One standard deviation
bands are reported in dotdash line. The values α = 0.05 and 1 are reported in dashed line

reported and commented in “Appendix A”. Since our ultimate goal is to infer about
the cause-effect relationship of money stock and economic output, we test at each
frequency Granger-causality spectra via our approach. Due to the use of Fast Fourier
Transform, the frequencies used are the following: fi = i

80 , i = 1, . . . , 40, because
T = 76. The frequency range is re-scaled to [0, 2] for the quarterly frequency of our
series.

Relevant VAR models, estimated including an intercept by the R package “vars”
(Pfaff et al. 2008), are selected by the Bayesian Information Criterion (BIC), imposing
a maximum of four lags. BIC is used because we know that BIC is correctly estimat-
ing the unknown number of delays, while AIC may overestimate it, thus increasing
the probability to estimate non-stationary VAR models. In any case, the roots of all
estimated characteristic polynomials are strictly smaller than one. The number of
bootstrap samples is 1000.

Note that for computational reasonsBC test cannot be computed for p = 1.Besides,
its p-value is constant across frequencies (except for ω = {0, π}) for p = 2. BC test
requires a large number of delays, while ours works for all values, given that the
resulting VAR is stationary and non-singular. Therefore, we can not compare directly
our test to BC test on real data, because BC is not useful for all cases with p ≤ 2.
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Fig. 11 Case with ω∗ = π
2 , A p,(22) = 0.5, p = 1, 3. In solid line, the rejection rates for our NEW test and

BC test are reported at left and at right respectively. One standard deviation bands are reported in dotdash
line. The values α = 0.05 and 1 are reported in dashed line. Here we omit the GC shape because the process
is non-stationary

3.2 Causality Results

Westart describingVARestimates on the coupleGDP-M3.Our lag selection procedure
chooses 2 lags. In the G D Pt equation, G D Pt−1 and G D Pt−2 are heavily significant,
while M3t−1 and M3t−2 slightly are (at 5% and 10% respectively). This results in
a GC spectral shape which is approximately constant and slightly significant across
frequencies. In the M3t equation, M3t−1 is heavily significant, while G D Pt−2 is at
10%. The correspondingGC shape is significant in the first half of the frequency range.

Concerning the couple GDP-M1, our VAR lag selection procedure chooses 2 lags.
In the G D Pt equation, G D Pt−1, G D Pt−2 and M1t−2 are heavily significant. The
related unconditional GC shape is significant across the entire frequency range. In
the M1t equation, only M1t−1 is heavily significant, while G D Pt−1 has a p-value
of 12%. The resulting GC spectral shape is thus significant in the first third of the
frequency range.

In Figs. 14 and 15, unconditional and conditional GC spectra from M3 to GDP
and viceversa are reported. The same spectra from M1 to GDP and viceversa are in
Figs. 16 and 17 respectively. In dashed, our bootstrap threshold at 5% is outlined. In
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Fig. 12 Left figures contain quarterly Euro Area GDP, M3 and M1 in logs across the period 1999–2017. In
dashed the estimated trend by Hodrick-Prescott filter (λ = 1600). Right figures contain the estimated cycle
by the same method

dotdash, the same threshold for the overall test obtained by Bonferroni correction is
depicted.

We first comment conditional GC spectra for the couple GDP-M3. Conditioning on
HICP, the level of significance of M3t−1 and M3t−2 increases in the G D Pt equation.
This results in a GC decreasing across frequencies and significant across the entire
frequency range. In the M3t equation, the level of significance of G D Pt−2 increases
to 5%. As a result, GC is significant until the period of 1 year. Conditioning on
UN, in the G D Pt equation the level of significance of M3t−1 is 5% while M3t−2
is no longer significant. This results in a GC which is no longer significant. In the
M3t equation, G D Pt−2 is no longer significant, resulting in a non-significant GC
everywhere. Conditioning on LTN, the level of significance is 5% for M3t−1 and 10%
for M3t−2 in the G D Pt equation. The corresponding GC is significant across the
entire frequency range. In the M3t equation, G D Pt−2 is significant at 5%, causing
again GC to be significant almost everywhere.

We now comment conditional GC spectra for the couple GDP-M1. Conditioning
on HICP, in the G D Pt equation M1t−2 is still heavily significant. The GC spectral
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Fig. 13 Left figures contain quarterly Euro Area HICP, UN, LTN rates across the period 1999–2017. In
dashed the estimated trend by Hodrick-Prescott filter (λ = 1600). Right figures contain the estimated cycle
by the same method

shape is almost the same as the unconditional one. In the M1t equation, the level
of significance is quite smaller, so that causalities are significant only in the first
quarter of the frequency range. Conditioning on UN, M1t−2 is still heavily significant
in the G D Pt equation. The conditional GC magnitude is slightly weaker than the
corresponding unconditional one. In the M1t equation, G D Pt−1 has a p-value of
20% and the related GC shape is significant in the first half of the frequency range.
Conditioning on LTN, M1t−2 is still significant at 1% in the G D Pt equation, causing
GC shape to be significant over all frequencies. In the M1t equation, G D Pt−1 has a
p-value of 26%. As a consequence, we observe significance at low frequencies only.

Concerning the overall test on all causalities, we observe the absence of any sig-
nificance in four cases out of sixteen: the unconditional GC from M3 to GDP, the
conditional GC from M3 to GDP both on UN and LTN, and the conditional GC from
GDP to M3 on UN. We remark that this test is conservative in nature: however, it
allows to adequately contextualize the significance of individual tests. In particular,
we can claim that, for those four cases, the GC spectrum is indistinguishable at all
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Fig. 14 GC spectra from M3 to GDP: unconditional, conditional on HICP, UN and LTN respectively. In
dashed, our bootstrap threshold at 5% is outlined. In dotdash, the same threshold for the overall test obtained
by Bonferroni correction is depicted
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Fig. 15 GC spectra GDP to M3: unconditional, conditional on HICP, UN and LTN respectively. In dashed,
our bootstrap threshold at 5% is outlined. In dotdash, the same threshold for the overall test obtained by
Bonferroni correction is depicted
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Fig. 16 GC spectra M1 to GDP: unconditional, conditional on HICP, UN and LTN respectively. In dashed,
our bootstrap threshold at 5% is outlined. In dotdash, the same threshold for the overall test obtained by
Bonferroni correction is depicted
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Fig. 17 GC spectra GDP to M1: unconditional, conditional on HICP, UN and LTN respectively. In dashed,
our bootstrap threshold at 5% is outlined. In dotdash, the same threshold for the overall test obtained by
Bonferroni correction is depicted
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frequencies with a significance level of at most 5% from the one we would observe in
case of stochastic independence between output and money stock.

4 Conclusions

In this paper, we have developed a bootstrap testing procedure for Granger-causality
(GC) in the frequency domain. In particular, our test is based on the null hypothesis of
stochastic independence, which embeds the traditional one of no Granger-causality.
Via our test, we highlight those frequencies which present a Granger-causality system-
atically larger than the median causality across frequencies observed under the null
hypothesis. Such a goal is reached by appropriately exploiting the stationary bootstrap
procedure of Politis and Romano (1994). We both deal with unconditional GC and
conditional GC with respect to third variables. A simulation study has shown that our
procedure is complementary with respect to the test of Breitung and Candelon (2006).

Our test has a general validity, as it only requires the stationary bootstrap of Politis
and Romano (1994) to be consistent on the data generating process of interest, which

requires T
1
3 → ∞, where T is the time series length. Therefore, our procedure may

find application in several fields like macroeconomics, neuroscience, meteorology,
seismology and finance. Among those, monetary economics is a very suitable appli-
cation field, as the time series of interest often present a rich causality structure, and
the need rises to disambiguate among relevant frequencies the significant ones for
causality.

For this reason, we have applied our methodology to Euro Area money stock and
GDP. From an empirical point of view, we have been able to say that the relationship
between money supply and output is present in the Euro Area across the period 1999–
2017. We have provided evidence that M3 (M1) in some cases reacts to economic
shocks, in some others it acts as a policy shock with respect to economic output. We
have observed that the link between GDP and M1 is much stronger in both directions
than the link between GDP and M3. In particular, the causal relationship from M1 to
GDP appears to be significant at all frequencies, while the opposite one is significant
at low frequencies only. This allows us to conclude that the intensity of the causal
link from money to output appears to be stronger than the reverse one in the Euro
Area, reinforcing the idea, outlined among others in Musso et al. (2019), that M1 has
a strong predictive power for GDP in the Euro Area.
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A Auto and Cross Covariance Functions

Figures 18 and 19 show the ACF of the estimated cycles by Hodrick-Prescott filter
(λ = 1600) for the series of Euro Area GDP, M3, M1, HICP, UN and LTN across the
period 1999–2017. The patterns are very similar across series: positive for the first 4-5
quarters, negative for all quarters around 2 years and non-significant elsewhere. UN
shows a rebound for the quarters around 5 years. LTN is no longer significant after
2 quarters. Figure 20 shows the CCF for the couples GDP-M3 and GDP-M1. Their
pattern is similar: we have positive correlation around 0 and negative correlation at
sides around the lag of 2 years.
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Fig. 18 Quarterly ACF patterns of the extracted cycles by Hodrick–Prescott filter (λ = 1600) of Euro Area
GDP, M3 and M1 in logs across the period 1999–2017

B Proofs

B.1 Proof of Theorem 1

Let us define the stochastic process Z†
t = [X†

t , Y †
t ]. We assume that X†

t , Y †
t are

stochastically independent, which causes the null hypothesis H0 to hold. This is like
assuming that the distribution function FZ† can be factorized as FX† FY † . In addition,
we assume that X†

t and Y †
t are strictly stationary.

By Politis and Romano (1994) (paragraph 4.3) we know that

√
T (r(F̂X†) − r(FX†)) = 1√

T

T∑
i=1

gF (Xi ) + o(
√

T ||F̂X† − FX† ||), (5)

where F̂X† is the empirical density function of X†
t and FX† is the corresponding true

distribution function. The same equation holds for Y †.

If, for some d ≥ 0, E(gFX† (X†
1))

2+d < ∞, and if it holds
∑∞

k=1 αX†(k)
d

2+d < ∞,

then 1√
T

∑T
i=1 gFX† (X†

i ) is asymptotically normal with mean 0 and variance
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Fig. 19 Quarterly ACF patterns of the extracted cycles by Hodrick-Prescott filter (λ = 1600) of Euro Area
HICP, UN and LTN rates across the period 1999–2017

E(gFX† (X†
i )2) + 2

∞∑
k=1

cov(gFX† (X†
1), gFX† (X†

1+k)). (6)

The same equation holds for Y † if E(gFY† (Y
†
1 ))2+d < ∞ and αY †(k)

d
2+d < ∞

respectively.
At the same time, if

∑∞
k=1 k2αX†(k)1/2−τ < ∞,

∑∞
k=1 k2αY †(k)1/2−τ < ∞ for

some 0 < τ < 1/2, the stochastic processes F̂X† − FX† , F̂Y † − FY † converge in
supremumnorm to aGaussian process having continuous paths andmean 0. Therefore,√

T (r(F̂X†) − r(FX†)) is asymptotically normal with mean 0 and variance (6). The
same results hold for r(F̂Y †).

Moreover, the distribution of
√

T (r(F̂X†)− r(FX†)) is approximated via the distri-
bution of

√
T (r(F∗

X†)−r(F̂X†)), where F∗
X† is the empirical density function obtained

via stationary bootstrap. This holds because the two distributions converge to the
same Gaussian process under previous weak dependence assumptions, provided that

T
1
3 → ∞. The same result holds considering r(F̂Y †).
At this point, since we assumed the stochastic independence of X†

t and Y †
t , the

weak dependence assumptions on E(gF ), αX and
∑∞

k=1 α(k)
d

2+d are transmitted to
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Fig. 20 Quarterly CCF patterns of the extracted cycles by Hodrick–Prescott filter (λ = 1600) of the couples
GDP-M3 and GDP-M1 in logs measured over the Euro Area across the period 1999–2017

the whole process Z†
t . Therefore, for any Fréchet-differentiable functional r we can

write

sup
c∈R

∣∣∣P
{√

T (r(F∗
Z†) − r(F̂Z†)) ≤ c

}
− P

{√
T (r(F̂Z†) − r(FZ†)) ≤ c

} ∣∣∣ prob−→ 0

under the assumption T
1
3 → ∞.

B.2 Proof of Theorem 2

Under the assumptions of Theorem 2, the stochastic processes Z
′′
and Y † are inde-

pendent in distribution. Therefore, the distribution function of any statistics r(Z
′′
, Y †)

is the product of the distribution function of r(Z
′′
) and the one of r(Y †). Under the

two assumptions on Z
′′
, we can apply Theorem 3.6 in Shao and Tu (1995), which pre-

scribes that any re-sampling bootstrap approximation of r(Z
′′
), like the one we adopt

based on residual bootstrap, is consistent in weak sense as T → ∞. Since in our case
the median of the functional r across frequencies is stochastically indistinguishable
from the functional r at any frequency, we can apply the Theorem in paragraph 4.3 of
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Politis and Romano (1994) to claim that the bootstrap approximation of FY † is also

consistent in weak sense as T
1
3 diverges. From these arguments, the thesis follows. In

fact, defined Z
′ = [Z

′′
, Y †], for any Fréchet-differentiable functional r we can write

sup
c∈R

∣∣∣P
{√

T (r(F∗
Z ′ ) − r(F̂Z ′ )) ≤ c

}
− P

{√
T (r(F̂Z ′ ) − r(FZ ′ )) ≤ c

} ∣∣∣ prob−→ 0

under the assumption T
1
3 → ∞.
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