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2 PICARD GROUP OF HYPERSURFACES IN TORIC 3-FOLDS

1. INTRODUCTION

In this paper we study the Noether-Lefschetz problem for hypersurfaces in com-
plete simplicial toric threefolds, namely, we prove that under a certain condition,
a very general hypersurface in an ample linear system in such a toric threefold Py
has the same Picard number as Py. In particular, this holds for a very general K3
hypersurface in the anticanonical system of a simplicial toric Fano threefold. (A
property is very general if it holds in the complement of countably many proper
closed subvarieties [16].)

This result can be regarded on one hand as a first step towards the study of
Noether-Lefschetz loci of the moduli space of K3 hypersurfaces in a toric Fano
threefolds; see also the recent works of [14, 17, I5]. On the other hand, this
completes the picture for computing the Picard number for certain hypersurfaces
in the anticanonical system of a toric Fano variety, by handling the unknown case
in dimension 3.

Recall that the Picard number, p(Y') of a variety Y is the rank of the Néron-
Severi group, that is of the image of the Picard group in the second cohomology
group with integer coefficients. The Picard group and the Picard number of a
toric variety Py can be easily computed from the combinatorial data of . Let
X be a nondegenerate hypersurface in the anticanonical system of a simplicial
toric Fano variety Py, with dim Py > 4 (note that a general hypersurface is also
nondegenerate). In the 80s and 90s it was shown [8 2, [10, [I], that the Picard
number of any such X can be explicitly computed from combinatorial data. This
result was a pivotal ingredient in describing the toric version of mirror symmetry
(see for example [§]). The argument in the above papers is essentially topological
and computes the dimension of the second cohomology group of X, which happens
to be equal to p(X) if dim(X') > 3, but not necessarily if dim(X) = 2. In addition,
even the statement in the above papers does not hold when dim Py, = 3, as we see
from the case of Fermat’s quartic in P?, which is nondegenerate.

This type of result was generalized by Roan to the case of toric varieties (not
necessarily Fano) also for the case when the ambient variety has dimension d >
4 [19], and by Ravindra and Srinivas to general normal varieties, still with the
restriction d > 4 [I§].

This paper then fills the gap for dimPy = 3. It was already known that
p(X) = p(Pyx) for particular cases of toric Fano threefolds, namely certain weighted
projective spaces [0, [24] [T1], as in the higher dimensional case. The techniques used
in the case of weighted projective spaces are very much tailored to that specific case
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12, 241 [I1]. On the other hand, the classical infinitesimal techniques introduced in
the 70s by Griffiths, Steenbrink and collaborators to solve the Noether-Lefschetz
problem in the smooth case (see for example [4]) cannot be used due to the presence
of singularities. Our argument is partly inspired by Cox’s paper [5]: it generalizes
the classical infinitesimal techniques and combines them with more recent results
about toric varieties, their Cox ring and their cohomology [3]. In fact, X and Py
are projective orbifolds, and a pure Hodge structure can be defined for them; this
will be a key tool in the proof.

In Section 2 we mostly recall some relevant results from [3], and adapt them to
the set up of [4]. We start with basic properties of simplicial toric varieties and
general hypersurfaces defined by ample divisors. Moreover we note that the exact
sequence defining the primitive cohomology in middle dimension of such a hyper-
surface splits orthogonally with respect to the intersection pairing. The middle
cohomology is the sum of the primitive cohomology and the “fixed” cohomology,
i.e., the cohomology inherited from the ambient toric variety; the splitting is con-
sistent with the Hodge decomposition. We then state some results of [3] which
express the primitive cohomology in middle degree in terms of the Jacobian ring
of the hypersurface; here we assume that ambient space has odd dimension.

Section [ contains the bulk of the argument: we proceed along the lines of the
infinitesimal arguments of Griffiths for smooth varieties and adapt it to the toric
case. We start from the moduli space of quasi-smooth hypersurfaces constructed in
[3], consider a natural Gauss-Manin connection, proceed to prove an infinitesimal
Noether-Lefschetz theorem and then the needed global Noether-Lefschetz theorem.
Finally, we focus on the case of K3 hypersurfaces in the anticanonical system of a
simplicial toric Fano threefold.

The suggestion that a very general hypersurface in a toric Fano threefold Py,

has the same Picard number as the ambient variety can be found, in a different
language, in an unpublished paper by Rohsiepe [20] (see the formula and Remark
in the middle of page 3), based on some dimension counting arguments and trying
to generalize to the case dim Py, = 3 a formula that Batyrev proved for dim Py, = 4
[2].
Acknowledgements. We thank Eduardo Cattani, Alberto Collino, David Cox,
Igor Dolgachev, Luca Migliorini, Vittorio Perduca, Domingo Toledo and the referee
for useful discussions and suggestions. We are grateful for the hospitality and
support offered by the University of Pennsylvania and SISSA. The first author
would also like to thank the staff and the scientists at Penn’s Department of
Mathematics for providing an enjoyable and productive atmosphere.
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2. HYPERSURFACES IN SIMPLICIAL COMPLETE TORIC VARIETIES

In this section we recall some basic facts about hypersurfaces in toric varieties
and their cohomology. We mainly follow the notation in [3]. All schemes are
schemes over the complex numbers.

2.1. Preliminaries and notation. Let M be a free abelian group of rank d, let
N = Hom(M,Z), and Ng = N @z R.

Definition 2.1. [3| Def. 1.1 and 1.3]

(i) A convex subset o C Ny is a rational k-dimensional simplicial cone if there
exist k linearly independent primitive elements eq,...,e, € N such that
o ={mer+- -+ puper}, with u; nonnegative real numbers. The generators
e; are said to be integral if for every 1 and any nonnegative rational number
i, the product jue; s in N only if i s an integer.

(ii) Given two rational simplicial cones o, o', one says that o’ is a face of o
(we then write o' < o) if the set of integral generators of o’ is a subset of
the set of integral generators of o.

(iii) A finite set ¥ = {oy,..., 0} of rational simplicial cones is called a rational
simplicial complete d-dimensional fan if
(a) all faces of cones in ¥ are in X;
(b) if o,0' € 3, then o No' <o and o No’ < o'
(¢) Np =01 U---Uogs.

A rational simplicial complete d-dimensional fan ¥ defines a toric variety Py of
dimension d having only Abelian quotient singularities. Moreover, Py is simply
connected, and is an orbifold. We shall use the term “orbifold” in the following
sense (see, e.g., [§], Def. A.2.1): an n-dimensional variety Y is an orbifold if every
point y € Y has a neighborhood which is isomorphic to U/G as an analytic space,
where G is a subgroup of GI,(C) with no nontrivial complex reflections, and U
is a G-invariant neighborhood of the origin of C". (A complex reflection is an
element in GI,,(C) with n— 1 eigenvalues equal to 1.) A sub-orbifold of an orbifold
Y is a subvariety Y’ C Y with the property that for every y € Y’ there is a local
chart (U/G,0) of Y at y such that the inverse image of Y’ in U is smooth at 0.
Intuitively, a sub-orbifold is a subvariety whose only singularities come from the
ambient variety. These notions of orbifold and sub-orbifold are synonymous to
those of V-manifold and sub-V-manifold, which is indeed the terminology used in
[3]. The notion of V-manifold is originally due to Satake [22].



PICARD GROUP OF HYPERSURFACES IN TORIC 3-FOLDS 5

Definition/Proposition 2.2. Let Cl(X) be the group of Weil divisors in Py, mod-
ulo rational equivalence, and let Pic(X) be the group of line bundles on Py modulo
isomorphism. As the notation suggests, both are intrinsic to the fan . Both
are finitely generated Abelian groups, and Pic(X) is actually free. Moveover, un-
der our assumptions the toric variety Py, is Q-factorial, i.e., the natural inclusion
Pic(X) < CI(X) becomes an isomorphism if one tensors by Q. The rank of the two
groups, denoted by p(X), is also the Picard number, the rank of the Néron-Severi
group of Py,.

Recall that the Néron-Severi group of a variety Y is the image of the Picard
group in the second cohomology group with integer coefficients. One can define its

rank as p(Y) < dimg NS(Y) ®z Q = dimg HX(Y, Q) N HYL(Y, C).

The group D(X) = Spec C[C1(X)] is an affine algebraic group whose character
group is isomorphic to CI(X). Since there is a surjection Z" — CI(X), we have an
embedding D(X) — (C*)", and a natural action of D(X) on the affine space A™.
The quotient T(X) = (C*)"/D(X) is an algebraic torus. Below we shall show that
this group acts naturally on Py,.

Definition 2.3. ([6]) Given a fan ¥, consider a variable z; for each 1-dimensional
cone g; in X, and let S(X) be the polynomial ring Clz, ..., z,]. For every o € ¥,
let 2o = 1.4, #i, and let B(X) the ideal in S(X) generated by the z,’s.

S(X) is called the Cox ring.

S(X) is a graded ring, with grading provided by the class group, S(X) =
Gpecin)Sp. We identify the affine space A" with Spec S(X), and denote by Z(X)
the affine variety in A™ given by the ideal B(X). If we set U(X) = A" — Z(%),
the group D(X) acts on U(X), and the toric variety Py, may be represented as
U(X)/D(X). This yields an action of T(X) on Py. For every face 7 in X we shall
denote by T, C Py, the orbit of 7 in Py, under this action.

2.2. Quasi-smooth hypersurfaces. From now on we assume that Py is projec-
tive. Let L be an ample line bundle on Py, and denote by § € Cl(X) its degree; a
section of L is a polynomial in Sp.

Definition 2.4. [3, Def. 3.1] Let f be a section of L, and let V(f) be the zero
locus of f in Spec S(X). We say that the hypersurface X cut in Py, by the equation
f =0 is quasi-smooth if V(f) is smooth outside Z(3).
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Definition 2.5. [3, Def. 4.13] If L is an ample line bundle on Py, a hypersurface
X s said to be nondegenerate if X N'T, is a smooth 1-codimensional subvariety
of T, for all 7 in 3.

Proposition 2.6. [3, Prop. 3.5, 4.15] If f is the general section of an ample invert-
ible sheaf, then X is nondegenerate. Moreover, every nondegenerate hypersurface
X C Py is quasi-smooth. Thus, if f is a general section of L, its zero locus is a
quasi-smooth hypersurface X in Pyx, hence it is an orbifold.

An important fact is that the complex cohomology of an orbifold has a pure
Hodge structure in each dimension [23] 25].

We also note that in view of the homotopy hyperplane Lefschetz theorem, which

holds for the embedding X < Py, [13, Thm. 1.2 Part II], X is simply connected if

2.3. Primitive cohomology of a hypersurface. Let L be an ample line bun-
dle on Py, and let X be a hypersurface in Py cut by a section f of L (note
that by [3], Proposition 10.8, f lies in B(X)). Denote by i: X — Py the inclu-
sion, and by i*: H*(Px,C) — H*(X,C) the associated morphism in cohomology;
i*: H7Y(Pg, C) — H* (X, C) is injective by Proposition 10.8 in [3].

Definition 2.7. [3, Def. 10.9] The primitive cohomology group PHIY(X) is the
quotient H¥=Y(X,C)/ i*(H*1(Pg, C)).

Lemma 2.8. The exact sequence
0 — *(H™(Py,C)) — HY(X,C) - PH" (X) =0

splits orthogonally with respect to the intersection pairing in H*(X,C). The same
1s true with coefficients in Q.

Proof. The hard Lefschetz theorem holds also for projective orbifolds (this follows
from the results in [21]; a simple proof is given in [26]).

Then cupping by ¢;(L) we get an isomorphism ¢: H*(Py, C) — H™(Py, C).
Let i,: H1(X,C) — H(Py, C) be the Gysin map. We claim that the following
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commutative diagram

provides a straightforward splitting s of the above exact sequence. Let (,) be the
intersection pairing in cohomology both in H*(X,C) and H*(Pyx,C), and recall
that ¢* and 7, are adjoint with respect to the intersection pairing. The upper-right
square commutes since by Poincaré duality

(isio, B) = (", i"B) = (e1(L) U, B) = ({(ax), B) -
If « € H7Y(Pg,C) and 8 € PH* (X)), we have

(1"(@), s(B)) = (e, ix(s(B))) = 0.
If the statement is true with coefficients in C it also true with coefficients in Q
since H*(X,C) ~ H*(X,Q) ®¢ C. O

Remark 2.9. The kernel of i, in H¥'(X,C) is sometimes called the “variable
cohomology” H4-1(X,C); in degree d — 1 the variable and primitive cohomologies

of X are then isomorphic. A

Both H¥ Py, C) and H? (X, C) have pure Hodge structures, and the mor-
phism ¢* is compatible with them, so that PH?!(X) inherits a pure Hodge struc-
ture. We shall write

d—1
PH"(X) = P PHP'7(X).
p=0

The following Proposition 2.I0 implicitly uses a generalization of Bott’s van-
ishing theorem, called the Bott-Steenbrink-Danilov theorem, which indeed holds
under our assumptions. The exact statement is that H'(Py, Qf (L)) = 0 for all
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1> 0and p > 0if L is an ample line bundle on Px. This was stated without proof
by Danilov [9] and proved in [3] (Theorem 7.1).

Proposition 2.10. There is a natural isomorphism

pd—p=1(¥" ~ H(Py, Qf_((d—p+1)X)
PH (X) =~ HO(Py, Q%Z((d —p)X) 4 dHO(Pg, Q{é;l((d “p)X)

Proof. This follows from comparing Corollaries 10.2 and 10.12 in [3]. 0J

The resulting projection map, multiplied by the factor (—=1)?=/(d —p+1)!, will
be denoted by

ryt HO(Py, O ((d — p+ 1)X) - PHPM1(X) (1)
and is called the p-th residue map in analogy with the classical case.

Definition 2.11. Let X be any hypersurface in Py cut by a section f of L and
let J(f) be the ideal of the Cox ring generated by the derivatives of f. The ring
R(f)=S(X)/J(f) is the Jacobian ring of S(X).

The Jacobian ring encodes all the information about the primitive cohomology
of X:

Proposition 2.12. If p # d/2 — 1, PHP* P X)) ~ R(f)(d—p)s—p,, where By =
—deg Kp,,, B = deg L.

Proof. [3] Theorem 10.13. O

3. THE PICARD GROUP OF THE GENERAL TORIC THREEFOLD

3.1. The Gauss-Manin connection. Let Z be the open subscheme of |L| pa-
rametrizing the quasi-smooth hypersurfaces in |L|, and let 7: . % — Z be the
tautological family on Z; we denote by X, the fiber of .Z at z € Z. Let %! be
the local system on Z whose fiber at z is the cohomology H4"1(X.), i.e., %t =
R4, C. It defines a flat connection V in the vector bundle &4 = S ®@¢ O,
the Gauss-Manin connection of &4~'. Since the hypersurfaces X, are quasi-smooth,
the Hodge structure of the fibres H?71(X,) of &4°! varies analytically with z
[23]. The corresponding filtration defines holomorphic subbundles FP&4~1 and the
graded object of the filtration defines holomophic bundles Gr%.(£971). The bundles
&P4r=1 given by the Hodge decomposition are not holomorphic subbundles of
&4 but are diffeomorphic to Gr?.(€971), and as such they have a holomorphic
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structure. The quotient bundles Z2&P4P~1 of £P4-r=1 correspond to the primitive
cohomologies of the hypersurfaces X,. Let m, : £971 — P2 &P “4=P+1 he the natural
projection.

We denote by 4, the cup product
Fpi HO(Py, Opy (X)) @ H(Ps, O ((d = p) X)) = H'(Py, % ((d — p +1)X)).

If 2y is the point in Z corresponding to X, the space H°(Py, Op,(X))/C(f), where
C(f) is the 1-dimensional subspace of HY(Ps, Op,. (X)) generated by f, can be
identified with 7},;Z. The morphism 7, induces in cohomology the Gauss-Manin
connection:

Lemma 3.1. Let oy be a primitive class in PHP*P~Y(X), let v € T,,Z, and let o
be a section of & 7P~1 along a curve in Z whose tangent vector at zy is v, such
that o(z) = 0y.
Then

Tyt (Va(0)) = 1ps (38 © 5) 2)
where ry,, r,—1 are the residue morphisms defined in equation ([Il), & is an element
in HO(Pg, Qf_((d—p+1)X)) such that ry(6) = 0y, and 0 is a pre-image of v in
H°(Ps, 0p, (X)).

In particular the following diagram commutes:

HO(Ps, O, (X)) © H(Py, U, ((d — p)X)) —= H(Ps, 9%, (d — p+1)X))

- |

T.,2 ® PHP417(X) r PHP—14-p(X)

(3)
where vy, s the morphism that maps v ® o to Vya and ¢ is the projection ¢:
HO(]P)E, O]P’E(X)) — TZOZ

Proof. This is a standard computation, see [4], Proposition 5.4.3. Let f; be local
representatives, with respect to a suitable cover {U;} of Px, of the section f. Via
the isomorphism of Proposition 2210, we locally represent oy by the meromorphic
differential forms w;/f* "' A tangent vector v € T, Z represents a deformation
fi = fi + tg; where t is a complex parameter, and g¢; are holomorphic functions.
Then V, (o) is represented by

d Ww;
dt (f; +tgi) ]

Gi Wi
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But the right-hand side of this equation is, up to a suitable factor, the argument
of the map r,_; in the right-hand side of equation (). O

Lemma 3.2. If o and n are sections of &P4P~1 and &47PP~1 respectively, then

for every tangent vector v € T,,Z,

VeaUn=—-aUV,n. (4)

Proof. The Gauss-Manin connection is compatible with the cup product by defi-
nition, i.e.,
Ve(aUn) =V,aUn+aUV,n.

But o Un = 0 because it is an element in &%972. 0

3.2. The moduli space of hypersurfaces in Py.. Let Autg(Py) be the subgroup
of Aut(Py) which preserves the grading . The coarse moduli space Mg for the
general quasi-smooth hypersurfaces in Py, with divisor class § may be constructed
as a quotient

U/Auts(Px) - (5)
13, 1], where U is an open subset of H°(Ps, Op, (X)), and Auts(Pyx) is the unique
nontrivial extension
1 — D() = Autg(Ps) — Autg(Py) — 1.
By differentiating, we have a surjective map
kg HO(Py, Opy (X)) = Tx Mg,
which is the analogue of the Kodaira-Spencer map.

The local system .79~ and its various sub-systems do not descend to the moduli
space Mg, because the group Autg(Py) is not connected. Nevertheless, this group
has a connected subgroup AutOB(IPg) of finite order, and, perhaps after suitably

s“%lréz:rﬂlking U, the quotient M} 'y / Autg(Py) is a finite étale covering of Mg

Proposition 3.3. There is a morphism
Yp: TxMg @ PHP1P(X) — PHP™H7P(X) (6)
such that the diagram
HO(Ps, Op,, (X)) @ HO(Py, O ((d — p)X)) — H(Ps, O ((d — p +1)X))

Hﬁ@TPl Tp—1 l

TxMs ® PHP4-17P(X) r PHP—14-p(X)
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commutes.

Proof. Tt suffices to prove the Proposition with Mg replaced by MY%; in fact the
tangent spaces at points M% are canonically isomorphic to the tangent spaces at
the image points in Mjg.

Ifp:2— M% is the induced map (where Z has been suitably restricted), the
local system 2%~ descend to a local system p,. %" on MY, and p*p, A" ~
A1 (the natural morphism 791 — p*p,. 471 is an isomorphism on the stalks
due to topological base change; note that p is proper). Thus we obtain on M%
holomorphic bundles that are equipped with a Gauss-Manin connection, which is
trivial in the direction of the fibers of p. If we define again 7, by 7,(v®«a) = V,(«a)
(where V is now the Gauss-Manin connection on M3), the commutavity of the
diagram in the statement follows from the commutativity of the diagram ([3). O

The tangent space TxMpz at a point representing a hypersurface X is naturally
isomorphic to the degree 5 summand of the Jacobian ring of f, that is, TxMpg ~
R(f)s 13]. Moreover, by Proposition ZI2, PHP* P~ X) ~ R(f)(d—p)s—p0-

Proposition 3.4. Under these isomorphisms, the morphism -, in equation ()
coincides with the multiplication in the ring R(f),

R(f)s @ R(f)@-pys—p0 = B()(a—pt1)8-s0 -
Proof. Theorem 9.7 in [3] implies
H(Pg, O, ((d — p)X)/H*(Ps, O, ((d — p = 1)X) = Stap)s—po »

and, moreover, H°(Pyx, Op,. (X)) =~ Sj; the cup product corresponds to the product
in the ring S. This implies that the “top square” of the 3-dimensional diagram

HY Py, Op,, (X))® g . .
HO(Py, Q4_((d — p)X)) HOPs, O, ((d —p+1)X))

K S ® S(d—p)s-po S(d—p+1)8—Bo

TxMs @ PHPA17P(X) PHP14r(X)

T T

R(f)s @ R(f)(d-p)s—so R(f)(a—p+1)5=p0
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commutes. We need to show that the “bottom square” commutes as well, which
will follow from the commutativity of the “side squares”, and the surjectivity of
the morphism kg ®7,. The commutativity of the diagram on the right is contained
in the proof of Theorem 10.6 in [3]. The commutativity of the diagram on the left
follows from the commutativity of the previous diagram, with d — p + 1 replaced
by d — p, and the commutativity of

~

HO(Pﬁvon(X)) Sﬁ

| |

TxMsg ——— R(f)s

which is shown in the proof of Proposition 13.7 in [3]. U

3.3. Picard group. Our aim is now to prove the following result. Let us recall
that a property is said to be very general if it holds in the complement of a countable
union of subschemes of positive codimension [16]. Also recall that the Picard
number p(X) is the rank of the Néron-Severi group, i.e., p(X) = dimg(H" (X, C)N
*(X,Q)).

Theorem 3.5. Let Ps be a 3-dimensional complete simplicial toric variety, L
an ample line bundle on Px, and X a very general quasi-smooth hypersurface in

the linear system |L|. If the morphism ~yo: TxMg ® PH*°(X) — PH"“(X) is
surjective, then X and Ps, have the same Picard number.

Theorem will follow from two Lemmas. In the first Lemma no restriction on
the dimension d of Py, needs to be made, in the second we shall assume that d is
odd.

The first Lemma is an “infinitesimal Noether-Lefschetz theorem”, such as The-
orem 7.5.1 in [4].

Denote by H& ' (X) ¢ H*'(X) the subspace of the cohomology classes that
are annihilated by the action of the Gauss-Manin connection. Coefficients may be
taken in C or Q. Note that H4 *(X) has a Hodge structure.

Lemma 3.6. For a given p with 1 < p < d — 1, assume that the morphism
Yp: TxMg @ PH*PP~1(X) — PHYP~1P(X)

is surjective. Then HP*'"P(X) = i*(HPI17P(Py)).
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Proof. Replace Mz by M%, and consider the local systems &%' and 2&7 77! on
M. Take

o€ H2'P(X) N PHP P (X)),

We regard classes in PHP*1"?(X) as elements in the fiber of P& P71 at
the point [X] € MJ. By hypothesis 3 € PH*? '7(X) can be written as § =
St @ m;) with n; € PHYPP=1(X). Then by equations () and ()

(@, ) = Y an(ts@n)) =D {a, Vem) = =Y (Via,n) =0.

So « is orthogonal to PH?1=P?(X). By Lemma 28 this means that « is orthog-

onal to the whole group H'"PP(X), hence it is zero. Therefore H?*'P(X) =
i*(HPA=17P(Py)). O

For any variety Y we define H™™(Y,Q) = H™™(Y,C) N H*"(Y, Q).

Lemma 3.7. Let d =2m+ 1 > 3, and assume that the hypotheses of the previous
Lemma hold for p = m. Then for z away from a countable union of subschemes
of Z of positive codimension one has

H™™(X,,Q) =im[i*: H™™(Ps,Q) — H*™(X..Q)].

Proof. Let Z be the universal cover of Z. On it the (pullback of the) local system
A1 is trivial. Given a class a € H™™(X) we can extend it to a global section of
%" by parallel transport using the Gauss-Manin connection. Define the subset
Z of Z as the common zero locus of the sections 7,(a) of &74~17P for p # m (i.e.,
the locus where « is of type (m,m)).

If Z,, = Z we are done because a is in H$'(X) hence is in the image of i* by
the previous Lemma. If Z, # Z, we note that Z, is a subscheme of Z.

We subtract from Z the union of the projections of the subschemes Z, where
Zo # Z. The set of these varieties is countable because we are considering rational
classes. U

Proof of Theorem [Z4 Lemma 37, for d = 3, implies that H»(X,.,Q) and
HYY(Py;, Q) have the same dimension for a very general z. These two numbers
are the Picard numbers of X, and Py, respectively (see Definition/Proposition
2.2). O

We assume now that Py, is Fano, and that L = —Kp,,, so that the hypersurfaces
in the linear system | L| are K3 surfaces. We have PH?? ~ R(f)y ~ C, PH"!(X) ~
R(f)s, and TxMg ~ R(f)s, where = —deg Kp,.. By Propositions and 3.4
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the morphism 7, corresponds to the multiplication R(f)s ® R(f)o — R(f)s, and
since R(f)o ~ C, this is an isomorphism. From Theorem we have:

Theorem 3.8. Let Px, be a 3-dimensional Fano complete simplicial toric variety,
and X a very general hypersurface in the linear system | — Kpy.|. Then X has the
same Picard number as Py,.
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