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Generalized Dynamic Factor Models and Volatilities:

Consistency, Rates, and Prediction Intervals

MATTEO BARIGOZZ1T MARC HALLIN?

Abstract

Volatilities, in high-dimensional panels of economic time series with a dynamic factor structure on the lev-
els or returns, typically also admit a dynamic factor decomposition. We consider a two-stage dynamic factor
model method recovering the common and idiosyncratic components of both levels and log-volatilities. Specif-
ically, in a first estimation step, we extract the common and idiosyncratic shocks for the levels, from which a
log-volatility proxy is computed. In a second step, we estimate a dynamic factor model, which is equivalent to
a multiplicative factor structure for volatilities, for the log-volatility panel. By exploiting this two-stage factor
approach, we build one-step-ahead conditional prediction intervals for large n x 1" panels of returns. Those
intervals are based on empirical quantiles, not on conditional variances; they can be either equal- or unequal-
tailed. We provide uniform consistency and consistency rates results for the proposed estimators as both n
and T tend to infinity. We study the finite-sample properties of our estimators by means of Monte Carlo simu-
lations. Finally, we apply our methodology to a panel of asset returns belonging to the S&P100 index in order
to compute one-step-ahead conditional prediction intervals for the period 2006-2013. A comparison with the
componentwise GARCH benchmark (which does not take advantage of cross-sectional information) demon-
strates the superiority of our approach, which is genuinely multivariate (and high-dimensional), nonparametric,
and model-free.

JEL Classification: C32, C38, C58.
Keywords: Volatility, Dynamic Factor Models, Prediction intervals, GARCH.

1 Introduction

Data in high dimension unquestionably constitute one of the main challenges of contemporary statistics/econo-
metrics, and have become pervasive in most domains related with data sciences. Time series have not escaped that
evolution, and the analysis of high-dimensional time series—equivalently, large cross-sections of univariate time
series or panels—today ranks among the most active topics in theoretical and applied econometrics.

The most successful methods so far in the analysis and prediction of high-dimensional time series are based
on the so-called factor model approach. That approach, under its various forms, is based on a (non-observed)
decomposition of the observation (a large cross-section of time series with complex interrelations) into the sum of
two mutually orthogonal (all leads, all lags) components: the common component, driven by a small number of
factors or common shocks, and an idiosyncratic component, with some variations in the definitions of “common”
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and “idiosyncratic,” and the assumptions made. Regardless of the definition adopted, the common and idiosyn-
cratic components typically are disentangled by means of adequate cross-sectional and/or temporal aggregation of
the observed time series.

Those aggregation and factor model approaches are strongly rooted in the multivariate time-series methods
developed in the eighties and nineties, of which George Tiao and his collaborators have been most influential and
unremittable pioneers: see, for instance, Tiao (1972), Tiao and Hillmer (1978), Tiao and Guttman (1980), Tiao
and Box (1981), Tsay and Tiao (1985), Pefia and Box (1987), and Tiao and Tsay (1989).

The type of factor model we are considering here is the General or Generalized Dynamic Factor Model
(GDFM) introduced by Forni et al. (2000), which, by taking into account all leading and lagging linear dependen-
cies among the data, encompasses most other models, as e.g. the static factor approaches by Bai and Ng (2002),
Stock and Watson (2002), and Fan et al. (2013). Moreover, as emphasised in Forni and Lippi (2001) and Hallin
and Lippi (2013), beyond the usual assumptions of second-order stationarity and existence of spectral densities,
the GDFM decomposition into a common and an idiosyncratic component basically does not place any structural
constraints on the data-generating process. In this sense, contrary to static factor approaches, it is canonical, non-
parametric and model-free. In this paper, we consider the one-sided GDFM estimation method recently described
in Forni et al. (2015, 2017).

Prediction, in classical univariate and moderately multivariate time series analysis, is an obvious and natural
objective; it is certainly no less crucial in high dimension. Efficient prediction, however, should exploit the amount
of information available, due to the complex cross-dependencies among the many cross-sectional components, in
the present and lagged values of the whole cross-section; the larger the cross-section (i.e., the higher the dimen-
sion), the more crucial the role of that information, and the more delicate its recovering. Factor models naturally
have been used in the construction of point-predictors, and quite successfully so: see, e.g., Stock and Watson
(2002), Bai and Ng (2008), Forni et al. (2018), to quote only a very few. Those authors, however, are dealing,
mostly, with macroeconomic data, while less attention has been given to factor model methods in the analysis and
prediction of financial returns: see, e.g. Chamberlain and Rothschild (1983), Connor and Korajczyk (1993), or
Ait-Sahalia and Xiu (2017). In particular, when dealing with returns, due to the presence of conditional distribu-
tion heterogeneity (of which conditional heteroskedasticity is only a very particular case), conditional volatility
phenomenons are essential, and definitely should be taken into account when building conditional prediction limits
or conditional prediction intervals.

Most multivariate methods available in the literature for the analysis of conditional heterogeneity are restricted
to the study of conditional heteroskedasticity, and rely on parametrisations of the ARCH-GARCH or Stochastic
Volatility type: see, for instance, the reviews by Bauwens et al. (2006) and Asai et al. (2006). Because of the curse
of dimensionality, however, only the very simplest models can be considered in high-dimensional panels, possibly
inducing a nonnegligible loss of efficiency. Among those, the factor GARCH approach is the most popular, see
e.g. Diebold and Nerlove (1989), Ng et al. (1992), Harvey et al. (1992), and Sentana et al. (2008). Static factor
models directly based on volatilities have also been considered, but these fail to exploit the information contained
in the idiosyncratic components of returns, see e.g. Connor et al. (2006) and Fan et al. (2015). For these reasons,
Barigozzi and Hallin (2016) introduce a two-step GDFM approach by which the nonparametric and model-free
virtues of factor models are used in a joint analysis of returns and volatilities. In Barigozzi and Hallin (2017a), that
two-step GDFM is combined with a GARCH strategy in order to produce point-forecasts for volatilities (see also
Trucios et al., 2019 for a recent example), while Barigozzi and Hallin (2017b) and Barigozzi et al. (2019) apply
the same methodology in a study of the dynamic interdependencies of US and international financial markets. A
two-stage factor approach similar to ours but in a static factor model setting is proposed in Chicheportiche and
Bouchaud (2015).

The objective of this paper is to combine the same two-step GDFM approach with a quantile-based con-
struction of conditional confidence limits producing conditional interval predictions rather than point-forecasts for
returns. That objective requires nontrivial consistency results on the two-step GDFM estimation method, which
are not provided in Barigozzi and Hallin (2016, 2017a,b). The first part of this paper, therefore, is devoted to a
careful asymptotic analysis of the two-step GDFM. We then describe the quantile-based construction of condi-
tional confidence limits, which we apply to a dataset of S&P100 daily returns.

The paper is organised as follows. In Section 2, we present the GDFM model for the stochastic processes of



returns (levels) and log-volatilities, and give sufficient conditions for its existence and identification. Section 3.1
describes the estimation of the model, and Section 3.2 establishes the consistency properties (with rates) of the
proposed estimators. In Section 4, we define the one-step-ahead conditional prediction confidence limits and
intervals. In Section 5, we study the finite-sample properties of our estimators via simulations. Section 6 applies
our methodology to a panel of daily returns of stocks listed in the S&P100 index and investigates the resulting
coverage performance. In Section 7, we conclude. Proofs are postponed to an online Appendix.

Notation

The sub-exponential norm of a scalar random variable X is defined as || X ||y, := sup,>; p~'E[|X [P]M/P (see
e.g. Definition 5.13 in Vershynin, 2012). The transposed complex conjugate of a complex vector p is denoted
as p' and |p|| = p'p. For an hermitian complex n x n matrix A with generic (i, j) entry a;; and largest (in
modulus) eigenvalue pf, let [|Al|; := max;j—1_ >~ |a;;| and [|A]| := pf. As usual, L stands for the lag
operator, such that, given a stochastic vector process { Y|t € Z}, L*Y; := Y,_, for any integer k and any ¢ € Z.
Last, we denote by I(.A) the indicator function of an event A.

2 A General Dynamic Factor Model for levels and volatilities

We throughout assume that all stochastic variables in this paper belong to the Hilbert space Lo(2, F,P),
where (2, F,P) is some common probability space. We study double-indexed stochastic processes of the
form Y := {Yi|i € N, ¢ € Z}, with n-dimensional sub-processes Y,,:= {Yis|i = 1,...,n, t € Z},n € N. In
practice, we deal with the finite observed n x T realisation

Yii, Yo, ..., Yir
YnT:: . . .

)

Yoi, Yano, ..., Yor

of Y. In the empirical application of Section 6, the Y;;’s are observed values of daily stock returns, and we
therefore call Y the “levels” process. The assumptions in Section 2.1 are mainly taken from Forni et al. (2017),
with some modifications, mostly concerning the idiosyncratic components. On the other hand, the assumptions
in Section 2.2 are new and are related to the log-volatility proxies originally introduced in Barigozzi and Hallin
(2016, 2017a).

2.1 Model and assumptions for levels

The Generalized Dynamic Factor Model (GDFM) for the levels process Y is a decomposition of Y; into

Y — E[Y;t] =Xpu+ 2y, 1€N, teZ 2.1
with
q o0 o)
ZZ iktie—k = bj(L)w, and  Zy =Y digvi—y = di(L)va, 2.2)
j=1 k=0 k=0
where E[Yj] stands for the expected value of Yj; and the processes u := {ujp|lj = 1,...,¢q, t € Z}
and v, := {vyli = 1,...,n, t € Z} are mutually orthogonal (at all leads and lags) ¢- and n-dimensional white

noises, respectively. Call u the process of common factors or common shocks and v, the process of idiosyncratic
shocks; X and Z;; are Y;;’s common and idiosyncratic components, respectively.
Letting X,, := {Xyli = 1,...,n, t € Z} and Z,, := {Zy|i = 1,...,n, t € Z}, equations (2.2) in vector
notation takes the form
Xt = Bp(L)uy, Z,, =D,(L)vpy, mneN, telZ. 2.3)

with B,,(L) := (by(L)...b,(L)), and D, (L) := diag(dy (L) . ..d,(L)).
More precisely, we assume that (2.1)-(2.2) hold and satisfy the following assumptions:



ASSUMPTION (L1).
(i) the dimension q of u; does not depend on n; the process u := {w|t € Z} is second-order white noise, with
mean 04 and diagonal positive definite covariance I'";
(ii) writing by, == (bj1x, . . . bigr)' for the q x 1 coefficient of L* in b;(L), there exists a constant My > 0 such
that Y2 ||bix|| |k| < My foralli € N;
(iii) the process v := {vy|t € Z} is second-order white noise, with mean 0,, and positive definite covariance I'}, ;
moreover, E[vi|vis] = 0 foralli € Nandt,s € 7 such that t > s;
(iv) there exists a constant Cy > 0 such that ||I') |1 < Cy foralln € N;
(v) there exists a constant My > 0 such that "7~ |dii| |k| < My for all i € N;
(vi) Cov(uj¢,vis) =0foralli €N, j=1,...,q andt,s € Z;
(vii) there exists a constant M3 > 0 such that Zkl,kg,kgez ‘E[ujltujmt_klujs,t_@uj47t_k3]‘ < Mj3 for all
J.J2,Js,da =1, @
(viii) there exists a constant My > 0 such that Zk‘hkz,k‘ggez ‘E[viltvh,t_klvi3,t_k20i4,t_k3]| < My for all
1,19,%3,14 € N.

These assumptions are standard in the literature with the exception of part (iv) which imposes a mild form
of sparsity on the covariance matrix of the idiosyncratic innovations. A similar condition can be found in Fan
et al. (2013) and is empirically verified by Boivin and Ng (2006) and Bai and Ng (2008) for US macroeconomic
data, and by Barigozzi and Hallin (2017b) for stock returns. As a consequence of parts (iv) and (v), the idiosyn-
cratic components are allowed to be serially autocorrelated and mildly cross-correlated (see also Lemma 1 below).
Moreover, it is easy to check that such assumption is nesting other typical conditions on the cross-sectional depen-
dence of idiosyncratic components (see e.g. Bai and Ng, 2002, and Stock and Watson, 2002, in the static factor
model case). Parts (ii) and (v) imply absolute summability of the autocovariances and therefore the existence of
a purely continuous spectral density. Moreover these assumptions and existence of fourth-order moments in parts
(vii) and (viii) are classical requirements for consistent estimation of the autocovariances and the spectral density
(see e.g. Chapter IV, Theorem 6, in Hannan, 1970, for the autocovariances, and the results in Section 6.2 in Priest-
ley, 2001, and Theorem 5A in Parzen, 1957, for the spectral density). Last, in part (iii) we also make the typical
assumption of martingale difference innovations used in the GARCH literature (see e.g. Definition 2.1 in Francq
and Zakoian, 2011).

It should be insisted, however, that the GDFM is not a statistical model in the usual sense, inasmuch as,
beyond the requirement of second-order stationarity, the existence of a finite (but unspecified) ¢, and the existence
of a spectrum, it does not really impose any restrictions on the data-generating process: as argued by Forni and
Lippi (2001) and Hallin and Lippi (2013), (2.1)-(2.2) indeed constitute a representation result rather than a model
equation.

On the filters b;(L) and d;(L) we furthermore impose the following assumptions:

ASSUMPTION (L2).

(i) bi(L) has rational entries, i.e. bj;(L) = Qij(L)¢;jl(L), where ¢;j(z) and 0;j(z), for all i € N and

J =1,...,q are finite-order polynomials;
(ii) there exists a constant ¢ > 1 such that ¢;;(z) # 0 foralli € N, all j = 1,...,q, and all z € C such that
2| < ¢;

(iii) the coefficients 0y, of 0;;(L) are such that |0;,] < BX for some positive constant B,
allk e NU{0} allieNoandj=1,...,q

(iv) d;(L) is of the form c; ' (L) where ¢;(2), for all i € N, is a finite-order polynomial, c;(0) = 1 and ¢;(z) # 0
forall z € C such that |z| < 1.

This latter assumption is not strictly needed and could be easily relaxed to allow for infinite order autoregres-
sive dynamics—at the expense, however, of heavier notation and longer proofs; see also Section 3.2 for a short
discussion. This assumption implies that both the common and idiosyncratic components have a rational spectral
density. Rational filters for the common component are also assumed in Forni et al. (2017), while here we also
assume that the idiosyncratic component admits a finite autoregressive representation. In particular, using part (iv),
we can rewrite the second equation in (2.2) as

C; (L)th = V4t- (24)

4



Let Y (0), £X(0) and £7(0), § € [—m,n], be the n x n spectral density matrices of the observed panel,
the common, and the idiosyncratic components, respectively; the existence of those spectral densities is guar-
anteed by Assumption (L1). Denote by )\};j (9), )\ffj (0), and /\fj(Q) their respective j-th largest eigenvalues—
the panel, common, and idiosyncratic dynamic eigenvalues, on which we assume the following. Hereafter, “for
all @ € [—m,7|” or “0 — a.e.” is to be understood as “for all # but over a subset of values included in a set with
Lebesgue measure zero.” Similarly, supge|_r - in the sequel is an essential sup, etc.

ASSUMPTION (L3). There exist a positive integer n. and continuous functions o and [ from [—m, 7] to R,
7 =1,...,q, independent of n, and such that

0 < Bj-1(0) < (0) < )\i(G)/n < Bj(0) <oo G-ae in|[-m,m,allj=1,...,q andalln > n.

Under this assumption, the first ¢ common dynamic eigenvalues, irrespective of the frequency 6 (except pos-
sibly over a set of measure zero), are diverging linearly as n — oo. The following results then hold for the
idiosyncratic dynamic eigenvalues and those of the panel.

LEMMA 1. Under Assumptions (L1) and (L3),

(i) there exists a constant C% > 0 such that SUPge|—r ] M\2,(0) < CZ foralln € N;

(ii) there exist a positive integer n and continuous functions a}/ and ﬁ}:l from [—m,7w] to R,
| = 1,...,q, independent of n and such that 0 < ,8‘3/_1(0) < a}/(Q) < )\71;](9)/71 < ﬁjY(H) < 00, B-a.e. in
[—m,7w),allj=1,...,q, and all n > n;

(iii) there exists a constant C¥ > 0 such that SUPge[—m ] /\qu(G) < CY foralln € N.

As a consequence of Lemma 1, identification of the model, i.e., consistently disentangling the unobserved
common and idiosyncratic components, is possible, under the assumptions made in the limit, as n — oo, thanks
to the behaviour of the dynamic eigenvalues.

Based on results by Anderson and Deistler (2008) for singular vector processes with a rational spectrum,
Forni and Lippi (2011) and Forni et al. (2015) prove that, for generic values of the coefficients of the filters b;(L)
as defined in Assumption (L2), the space spanned by u;;_ for j = 1,...,q and k& > 0 is the same as the
space spanned by any (¢ + 1)-dimensional subvector of X, and its lags; moreover, those subvectors admit an
autoregressive representation driven by the common shocks u,.

More precisely, any (¢ + 1)-dimensional subvector Xf of X,,; admits an autoregressive representation of the
form

AN L)X} = Hiu, 2.5)

where A¥(L) is a finite-order VAR operator such that A¥(0) = I, 1, u, is the vector of common shocks in (2.3),
and H* an appropriate (¢ + 1) x ¢ matrix. On that representation, we make the following assumptions.

ASSUMPTION (L4). Let Xf be an arbitrary (q + 1)-dimensional subvector of X,;: the autoregressive represen-
tation (2.5) is such that
(i) AY(L) is uniquely defined;
(ii) the degree S* of A*(%) is uniformly bounded, that is, S* < S for some integer S > 0 independent of n and
the choice of the subvector Xi;
(iii) det[A*(2)] # 0 forall z € C such that |z| < 1;
(iv) Htis (¢ + 1) x q, with full rank q;
(v) denoting by I‘hX]t the lag-h autocovariances of Xt := {Xi\t € Z} and defining

Xt Xt Xt
FO ; I‘1 ; e I‘Sgl
X X X
Ci L I‘—1 FO U FSfZ
L 9
X1 xi Xx#*
FfSJrl I‘fS+2 e 1—‘0

det(Ci) > d > 0, where d is independent of the choice of the subvector Xf .



This assumption allows us to derive an alternative representation of the GDFM (2.2) which is particularly
useful for estimation and for the construction, in Section 2.2 below, of a further GDFM for log-volatilities. Without
loss of generality, let n factorise into n = m(g+ 1) for some positive integer m, so that we can partition X,, into m
subprocesses, each of dimension (¢ + 1), of the form ng) = (X—1)(g+ 1)t - - Xi(gr)—14)s b = 1,...,m,
with superscript (k) substituted for ¥. Each X*) satisfies (2.5) and Assumption (L4). Defining the n X ¢ ma-
trix H,, :== (H®)" ... H(™)"Y we thus have the VAR representation

An(L)Xnt = Hnut, (26)

where A, (L) is n x n block-diagonal with diagonal blocks A (L), ..., A(™)(L). Moreover, in view of (2.3),
we have [A,,(L)] " H,, = B, (L) (see Proposition 3 in Forni et al., 2017). Then, the following alternative and
equivalent representation of the GDFM holds:

An(L){Yp —E[Yn]} = Hyuy + Ay (L)Z,. 2.7)

The advantage of this representation is that it is “static” in the sense that the common shocks u now are loaded
only contemporaneously and not via filters as in (2.3).
To conclude with, note that the Yule-Walker equations

(Ab-a%) = (0 ) fe] e

characterising the S matrix coefficients of At (L) in (2.14) are well defined in view of part (v) of Assumption (L4);
the same conclusion holds, blockwise, for the n -dimensional VAR (2.6).
For ease of notation, define the filtered processes

Y* = Ap(L) {Y, — E[Y.]}, X::=A,(L)X,, and Z:=A,(L)Z,

with traditional (static) covariance eigenvalues MXJ, uan*, and ,uf; , respectively. Since (2.7) is a static factor
model, it is natural to make the following assumption on the eigenvalues of the covariance of X (see Assump-
tion 4 in Forni et al., 2009 or Assumption 6 in Forni et al., 2017). Unless ¢ = 1, indeed, it does not even follow
from Assumption (L3) that E(X} X*') has rank q.

ASSUMPTION (L5). There exist a positive integer 1 and constants a; > bj_1, j = 1, ..., q, independent of n such
that 0 < a; < ufj*/n <bj<ooforallj=1,...,qandalln > n.

The following results then hold for the eigenvalues ug; and ,u}z/; of the covariance matrices of Z; and Y,
respectively.

LEMMA 2. Under Assumptions (L1), (L3), (L4), and (L5),
(i) there exists a constant C% " > 0 such that ugl < 0% foralln € N;
(ii) there exist a positive integer i and constants a}/* > b}f_*l, j = 1,...,q, independent of n such that
0< a}/* < ,uzl/;/n < b}/* <ooforallj=1,...,qand alln > n;
(iii) there exists a constant CY~ > 0 such that u}f’tﬁ_l < CY" foralln € N.

2.2 Model and assumptions for volatilities
We define the vector of common innovations (at time t) as the n-dimensional vector

€nt 1= (€1t7 .- -’ent), = Huuy;
for n > ¢, the processes e, := {ey|t € Z}, n € N clearly are singular. Then, letting s;; := e;; + v, our
log-volatility proxy is

hit = log s?t = log(e; + Uit)Q, 2.9)
yielding the double-indexed stochastic process h := {hy|i € N, t € Z}, with n-dimensional sub-process-
eshy :={hyli=1,...,n, t € Z}. We call h the “log-volatilities” process. Similar definitions are used in Engle

and Marcucci (2006) and our previous work (Barigozzi and Hallin, 2016, 2017a,b, and Barigozzi et al., 2019). In
order for such processes to be well defined we make the following assumption.



ASSUMPTION (VO0). Foralli € Nandt € Z,

sit| > 0 almost surely.

This assumption makes sure that no cancellation can happen between common and idiosyncratic innovations;
it is required, since e; and v;, although mutually orthogonal by Assumption (L1.vi), need not be mutually inde-
pendent (assuming, for instance, that e; and v; are absolutely continuous is not sufficient).

Assuming a GDFM with @) factors for the log-volatilities, we obtain

hit = Elhit) = xat + &t 1 €N, t € Z (2.10)
o o0

with xit = Y Y figneje—n = f(L)ee and & =) ginviek = gi(L)vit, 2.11)
Jj=1k=0 k=0

where E[h;] is hi’s expected value, x;; and &;; are h;;’s common and idiosyncratic components, and the process-
ese:={epulj=1,...,Q, t € Z} and v, := {vuli = 1,...,n, t € Z}, n € N are mutually orthogonal (at all
leads and lags) - and n-dimensional white noise, respectively. Note that a GDEM for log-volatilities implies a
multiplicative GDFM representation

sy = exp(hit) = exp(xit) exp(&it) exp(E[hir)).

for the volatilities themselves. Letting
Xn i ={xili=1,...,n, t €Z} and &, :={&li=1,...,n, t€Z},
equations (2.11) in vector notation take the form

Xnt = Fn(L)eta gnt = Gn(L)Vnt (2-12)

with F, (L) := (fi(L) ... £,(L)) and G, (L) := diag(g1(L) ... gn(L)).
The following assumptions then are the analogues, for log-volatilities and (2.10)-(2.11) , of Assumption (L1).

ASSUMPTION (V1).
(i) The dimension Q of &, does not depend on n; the process € := {e,|t € Z} is second-order white noise, with
mean O¢ and diagonal positive definite covariance I'*;
(ii) writing £, := (fi1k - - - figr) for the Q x 1 coefficient of L¥ in £;(L), there exists a constant Mz > 0 such
that Y2 o || Eir || |k| < Ms forall i € N;
(iii) the process {vnt|t € Z} is second-order white noise, with mean 0,, and positive definite covariance TV ;
moreover, E[vi|vis] = 0 foralli € Nand and t,s € 7 such that t > s;
(iv) there exists a constant C,, > 0 such that ||T'V ||y < C, foralln € N;
(v) there exists a constant Mg > 0 such that ZZOZO lgik| |k| < Mg forall i € N;
(vi) Cov(ejt,vis) =0foralli €N, j=1,...,q andt,s € ZL;
(vii) there exists a constant My > 0 such that Ekl,kg,kgez |E[€1t—k1 € jot—ko€jst—ksEiat)]| < My for all
J1,J2,J3,Ja = 1,...,Q;
(viii) there exists a constant Mg > 0 such that Ekl,l@,kgez |E Vi t—ky Vigt—ky Vigt—ks Viat) |
11,19,13,14 € N.

IN

Mg for all

The same comments made for Assumption (L.1) apply here. Moreover, note that all moments of log-transforms
of heavy-tailed variables exist and are finite, even for stable distributions (see e.g. Theorem 5.8.1 in Uchaikin and
Zolotarev, 2011). Pursuing with assumptions, the following one is the log-volatility counterpart of (L2).

ASSUMPTION (V2).
(i) f;(L) has rational entries f;;(L) = é,](L)QNS,L_]l(L) where ¢;j(2) and 0;;(2), foralli € Nandj = 1,...,Q,
are finite-order polynomials;
(ii) there exists a constant ¢ > 1 such that ggij(z) % O0foralli e Nyall j =1,...,0Q, and all z € C such
that |z| < ¢;



(iii) the coefficients éijk of éij(L) are such that |§Z]k] < BX for some constant BX > 0 and all i € N,
j=1,...,Q and k € NU{0};

(iv) gi(L) is of the form p; *(L) where p;(), for all i € N, is a finite-order polynomial, p;(0) = 1 and p;(2) # 0
forall z € C such that |z| < 1.

Assumptions (V2.iv) implies that we can rewrite (2.11) also as
pi(L)Ziy = vig. (2.13)

As in the case of levels, this assumption could be relaxed to allow for an infinite autoregressive order.

Let =" (0), =%(6), and 2%(9), 0 € [—m, 7] denote the n x n spectral density matrices of h,,, its common and
its idiosyncratic components, with j-th largest eigenvalues )\Zj(e), /\gj(é?) and Aij(e), respectively. As in (L3),
we assume the following.

ASSUMPTION (V3). There exist a positive integer . and continuous functions &;(0) and Bj_1(0) from [, 7]
toR, j = 1,...,Q, such that 0 < f;—1(0) < a;(0) < X5(0)/n < B;(0) < oo, O-ae in [-m ],
allj=1,...,Q, and all n > n.

Finally, the analogue (V4) of (L4) again is based on the representation results in Forni et al. (2015):
any (Q + 1)- dimensional subvector Xff of xn+ admits an autoregressive representation of the form

M*(L)x} = Rley, (2.14)

where M*(L) is a finite-order VAR operator such that M*(0) = I 1, &; is the vector of common shocks in (2.12),
and R* an appropriate (Q + 1) x @ matrix. On that representation, we make the following assumptions:

ASSUMPTION (V4).
(i) M*(L) is uniquely defined;
(ii) the degree St of Mi(z) is uniformly bounded, that is, St < 8§ for some integer S>0 independent of n and
the choice of the subvector X% ;
(iii) det[M*(2)] # 0 for all z € C such that |z| < 1.
(iv) the (Q + 1) x Q matrix R* has full rank Q;
(v) denoting by I",ﬁi the lag-h autocovariances of X+ := {x% ,t € Z} and defining V¥ analogously to C* in (L4),
det(VH) > d > 0, where d is independent of the choice of the subvector x:f .

Now, Assumption (V4) implies [M,,(L)] 'R, = F,(L), so that, assuming without loss of generality
that n = m(Q + 1) (with m # m if Q # ¢) and defining a block-diagonal autoregressive operator M, (L)
the way we defined A,,(L) in the previous section, we can rewrite the GDFM for log-volatilities under the static
form

After defining, with obvious notation, the filtered processes h’ := M, (L) [h, — E[h,]], x = M, (L)Xn,
and & := M, (L)&,, with (static) spectral eigenvalues ,uf;;, uz;, and ,uf;;, we conclude with the analogues

of (L5) and Lemmas 1 and 2 for the log-volatility panels.

ASSUMPTION (V5). There exist a positive integer n and constants a; > Bj_l >0, 7=1,...,Q, independent
of n such that 0 < a; < ,uﬁ;/n <bj<ooforallj=1,...,Q andalln > n.

We then have the following.

LEMMA 3. Under Assumptions (V0), (V1), (V3), (V4), and (V5),
(i) there exists a constant C¢ > 0 such that SUPge|—r 1] )‘le(e) < C& foralln € N;
(ii) there exist a positive integer 1 and continuous functions a?(@) and BJ’TL_I(H) from [—m, 7] to R,
j =1,...,Q, independent of n and such that 0 < ,8?_1(9) < a?(@) < /\Zj(ﬁ)/n < 5]}?(9) < 00, B-a.e.
in|—m7l,allj=1,...,Q, and alln > n;



(iii) there exists a constant C" > 0 such that SUPge|— 7 ] AZ,QH(G) < O foralln € N;

(iv) there exists a constant C& > 0 such that Mfﬂ <t foralln € N;
(v) there exist a positive integer . and constants a?* > b?:l, j = 1,...,Q, independent of n such
that 0 < a?* < u%/n < b?* < oo forallj=1,...,Qandalln > n;

(vi) there exists a constant C"" > 0 such that ,LLZ*Q+1 < C" foralln € N.

3 [Estimation, consistency, and rates

9

Hereafter, the terminology “estimation”, “estimator”, etc. is used, in an orthodox way, for data-driven quantities at-
tempting at evaluating parameters (covariances, spectra, loadings, ...) but also, with a slight abuse, for data-driven
quantities attempting at reconstructing unobserved variables (such as common factors, common and idiosyncratic
components, ... ). All those “estimators”, which are Y, r-measurable random variables (hence depend both on n
and T) are carrying “hats”.

3.1 Summary of estimation

Estimation proceeds in two parts. The first part deals with the observed n x T panel Y,, 1 of levels, and follows
along similar lines as in Forni et al. (2017), yielding estimated log-volatility proxies; the second part consists in
repeating the same estimation steps, now based on those estimated log-volatility quantities. Global consistency of
the procedure is discussed in the next section, along with further necessary conditions.

To start with, we assume that ¢ and () are known—an assumption we are relaxing later on. For simplicity of
notation, we also assume Y, and h,, to be centred, i.e., to have zero mean; in practice, sample means are to be
subtracted in order to obtain centred variables—which has no impact on consistency nor consistency rates.

Here is a detailed list of the steps required for estimation. Further comments on the choice of the quantities
needed for estimation and a schematic description of the procedure are given at the end of this section (see also
Algorithms 1 and 2).

(L.i) To start with, compute the lag-window estimator
T—1
A 1 k 0, h
SN0 =5 > Ko ) e Th, 0h=—-, || <Br,
2 T Br

of the spectral density matrix of returns, where f‘}lfk =71 ZZ; k|41 Y. Y, t— [k is the usual lag-k sample
autocovariance matrix of levels and K is a suitable kernel with bandwidth Bp. We here adopt the common

choice of a Bartlett kernel
f 1—z| if|z| <1
K(z) = { 0 otherwise,

but other classical kernels are also possible.

(L.ii) Collect the ¢ normalised column eigenvectors associated with f]% (0r)’s q largest eigenvalues into the n x ¢
matrix PY (6},), and collect the corresponding eigenvalues into the ¢ x ¢ diagonal matrix AY (6;,). Take

S (0n) = Py (0n) A ()P (01),
as an estimate of the spectral density matrix of the level-common component process X,,.

(L.iii) By inverse Fourier transform of 2%( (0r), estimate the autocovariance matrices of X,,:

Br
rY = Bi S dMEX(0,), kel
Ly —



(L.iv) Assuming, for simplicity, ! that n = m(q+1), consider the m diagonal (g+1) x (g+1) blocks of the f‘fk’s
For each block, estimate, via Yule-Walker methods, the coefficients of a (¢ + 1)-dimensional VAR model
(order determined via AIC or BIC). In other words, compute the sample analogue of (2.8). This yields,
for the ¢-th diagonal block, an estimator K(ﬁ)( L) of the autoregressive filter A(©) (L) appearing in Assump-
tion (L4), hence an estimator A, (L) of the VAR filter A (L) The resulting estimated filtered process and

its estimated covariance matrix are Y An(L)Ynt and I‘Y =T Zt 1 ntYnt, respectively.

nt *—

(L.v) Collect the ¢ normalised (column) eigenvectors corresponding to f}{* ’s q largest eigenvalues into the n X ¢
matrix QX* Projecting ?;‘;t onto the space spanned by the columns of QZ* provides an estimate €,, of the
innovation process e,. Taking into account the set of identifying restrictions described in Assumption (I)
below, we obtain the estimators

A~ /\i}* v
Hn = \/ﬁQn ) H, nt7 and ent - H ut Q” Qn nt

Our estimator of the dynamic loadings then is B n(L) == A (Q)Hn, where we truncate the filter K; L)
at some finite lag k1. From this we obtain an estimator X,,; := B n(L)uy of the common component.

(L.vi) The resulting estimator of the idiosyncratic component is ng =Y — )/im. Fitting a univariate AR model
(order determined via AIC or BIC), either by least squares or via Yule-Walker methods, to each of the n
components of int yields estimators v,, of the residuals and an(L) of the diagonal matrix of coefficients
from which we also obtain D,,(L):=C (L) with C;;*(L) truncated at some finite lag ks.

(R) Foralli =1,...,nandt =1,...,T, let 5;; := €;; + vy and define the estimated log-volatility proxies as
capped values of log(s;2):

Bt = 10g(32) 1([8ial > r) + log(53) L([5ul < 1),

where k7 > 0 is a sequence of constants to be chosen in order to make our proxy robust to the log-
transform. Note that consistency of our estimation procedure requires an adaptive choice of x7, depending
on the sample size as explained in Assumption (R) below. In particular, k7 must be strictly positive for
consistency to hold.

o~

(V.i) Denote by ﬂm = (ﬁlt .. hm)l, t =1,...,T the n-dimensional vector of log-volatility proxies and com-
pute the lag-window estimator

~7 1 = k il
S0 (00) = or > K <M> Mt gy = e = Mr,
k=—T+1 r r

of its spectral density matrix, where f‘Z‘lk =171 ZtT:| k|41 ﬂntﬁ% 1|k is the lag-k sample autocovariance
matrix of estimated log-volatilities. Here again we adopt the Bartlett kernel, with bandwidth M7, which
could be different from By in step (L.i).

(V.ii)-(V.vi) Repeat steps (L.ii)-(L.vi) for ﬂn In particular, steps (V.ii)-(V.v) yield the estimators ﬁn(L) and f{n,
from which we compute

~ 1~ ~ —~

h*, =M, (L)h,, &:=-R,h*, and F,(L):=M, (L)R,,
n

n-nt?

~

while from (V.vi) we obtain z,, and P,.(L), hence G, (L) := P;/1(L). As before, M;!(L) and P;1(L) are
truncated at finite lags k7 and k3.

'In practice, the last n — |n/(q + 1) | (g 4 1) cross-sectional items can be added to the last block in the analysis which will then have
size larger than (g + 1). Since the arguments in Forni et al. (2017) used in the next section apply to any partition of blocks of size (q + 1)
or larger, nothing changes in what follows.
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Algorithm 1: Estimation of dynamic factor model for levels

2

12

13

14

15

16

17

18

19

20

21
22

23

24

25

Input: data in levels Y of dimension n x 7', number of factors ¢, bandwidth for estimating spectral density Br, number of lags
for impulse responses kl and ko, number of permutations for estimating the common component nrep
Output: common component X, idiosyncratic component Z common shocks U and €, common impulse responses B(L)
idiosyncratic shocks Vv, idiosyncratic impulse responses D(L)

Compute autocovariance matrices of data T} for |k| < Br
Compute the lag-window estimator of the spectral density matrix of data 5" (6},) for 6, = 7wh/Br and |h| < Br, using T') and
the Bartlett kernel

for h < —Br to Br do
Compute the g largest eigenvalues A} (05), ..., A} (0,) of £¥ (6),) and collect the corresponding eigenvectors into the
columns of f’Y(Gh). Let fJX(Hh) = f’y(eh)diag(xy(ﬂh), . ,X}]/(Qh))f’”(@h)

Compute the autocovariance matrices of the common component Iy, for |k| < By by inverse Fourier transform of £ (6},)

for P < 1 to nrep do
Choose a random partition P(1),...,P(m(q + 1)) of the n series into m = |n/(q + 1) |(g + 1) blocks such that the first g
series are always included and let Yp = (Yp(1), - -, YP(m(g+1)))’

if m(g + 1) < n then Add the last n — m series to the last block
-

for / < 1 tom do
L Obtain the coefficients .Kgf) (L) fitting a VAR(p(la) on Y 1= (Yp(u—1)(qt1) - - - YP(e(qr1)—1y)’ via Yule Walker
equations using fi( fork=0,...,¢ with pg ) < Br and determined via BIC
Let Ap(L) = diag(AR (L),..., AL (L)) and let Y p = Ap(L)Yypfort =1,...,T
Compute ﬁp as y/n times the g leading eigenvectors of the sample covariance matrix of S?f,;
Compute Bp(L) = A;l (L)Hp truncating at lag k1

Compute Bp (L) = Bp(L)Rp with Rp is ¢ x q orthogonal and such that the ¢ x ¢ block of B (0) obtained by isolating
the rows corresponding to the first g series in Y is lower triangular

Compute Uz, p = n’l’R%I?I;;?;p fort=1,...,T

Compute the common shocks as Uy = (nrep) ™' Y 5V p fort =1,...,T

Compute €; = (nrep)~ Z"“’p HpRput P
Compute the impulse response functions B(L) = (nrep)~ Z"Tap (L)
Compute the common component as X = ]§(L)ﬁt fort=1,...,T

Compute the idiosyncratic component as Z =Y — Xsuchthat Z = (21 . En)’
for : < 1ton do
L Obtain the coefficients ¢; (L) fitting a VAR(s1;) on Z; via least squares, with s1; determined via BIC

Let Oy = (L) Z fort =1,...,T

Compute the impulse response functions as ﬁ(L) = diag(¢; Y (L), ...,¢; '(L)) truncating at lag ko
Let the idiosyncratic shocks be V¢ = (D1t ... 0p¢) fort =1,...,T
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Algorithm 2: Estimation of dynamic factor model for log-volatilities

11
12

13

14
15

16

17

18

19

20

21

22

23

24

25

26
27

28

29

30

Input: from Algorithm 1: common and idiosyncratic shocks € and v both of dimension n x T'

number of factors @), capping constant x7, bandwidth for estimating spectral density M7, number of lags for impulse

responses &} and k3, number of permutations for estimating the common component nrep

Output: common component X, idiosyncratic component €, common shocks & and 77, common impulse responses F(L)
idiosyncratic shocks 7, idiosyncratic impulse responses G(L)

for i < 1ton do
fort < 1toT do
Compute log-volatility proxy hi:

if |€51 + Dis| > ki then hiy = log(€ir + Dir)?
-

else hjy = Kk
=

Compute autocovariance matrices of log-volatility f‘Z for |k| < Mrp

Compute the lag-window estimator of the spectral density matrix of log-volatility 3" (8},) for 8, = wh /M7 and |h| < My, using
f‘% and the Bartlett kernel
for h < — M7 to Mt do

Compute the () largest eigenvalues Xﬁ(ah) (
L columns of P" (61). Let ZX(60,) = Ph(Oh)dlag(

) of (Qh) and collect the corresponding eigenvectors into the

On
HOn), - (0P (81)
Compute the autocovariance matrices of the common component ffk for |k| < Mr by inverse Fourier transform of fPA‘(Hh)

for P <— 1 to nrep do
Choose a random partition P(1), ..., P(m (Q + 1)) of the n series intom = [n/(Q + 1) ] (Q + 1) blocks such that the first

Q series are always included and let h73 = (hva<1 ,Efp(m(Q+1>>)l
if m(Q + 1) < n then Add the last n — m series to the last block
-
for / < 1 tom do
Obtain the coefficients M;? (L) fitting a VAR(p“)) onh® := (hp((e=1)(@+1)) - - - hPe(@+1)—1)) Via Yule Walker
equations using f% fork =0,...,4, with p(z) < M7 and determined via BIC

Let Mp(L) = diag(M$ (L), ..., MW" (L)) and let h} p = Mp(L)hyp fort = 1,...,T

Compute Rp as /n times the g leading eigenvectors of the sample covariance matrix of IAl;S

Compute Fp (L) = ﬁ;l (L)R.p truncating at lag k}

Compute Fp (L) = Fp(L)Rp with Rp is Q x Q orthogonal and such that the Q x @ block of Mp (0) obtained by

isolating the rows corresponding to the first ) series in h is lower triangular
Compute & p = nilR{pﬁ{pfl:'p fort=1,...,T

Compute the common shocks as & = (nrep) ™' > P& pfort =1,...,T
Compute 7y = (nrep) ™" > 5F RpRpé:p

Compute the impulse response functions F(L) = (nrep)~ Z"mp »(L)
Compute the common component as x; = f‘(L)?t fort=1,...,T

Compute the idiosyncratic component as €=h— xsuchthat £ = ({Al .. En)'
for i < 1ton do
L Obtain the coefficients p; (L) fitting a VAR(s2;) on &; via least squares, with s2; determined via BIC

Let Dy = py(L)& fort =1,...,T

Compute the impulse response functions as G (L) = diag(p; *(L), . .., pn " (L)) truncating at lag k3
Let the idiosyncratic shocks be Uy = (D14 ... Un¢) fort =1,...,T
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An important remark needs to be made here. The cross-sectional ordering of the panel has an impact on the se-
lection of the diagonal blocks in steps (L.iv) and (V.iv). Each cross-sectional permutation of the panel, thus, would
lead to distinct estimators—all sharing the same asymptotic properties. A Rao-Blackwell argument (see Forni
et al., 2017 for details) suggests aggregating these estimators into a unique one by simple averaging (after obvious
reordering of the cross-section) of the resulting estimated shocks. Although averaging over all n! permutations is
clearly unfeasible, as stressed by Forni et al. (2017) and verified empirically also in Forni et al. (2018), a few of
them are enough, in practice, to deliver stable averages (which therefore are matching the infeasible average over
all n! permutations).

Implementation of the above estimation steps is described in Algorithms 1 and 2. Those algorithms require
setting bandwidths B and M7 for the estimation of the spectral densities, a capping constant x7, and the number
of factors g and (). Concerning the bandwidths and the capping constant, we refer to Section 3.2 for the required
asymptotic properties (see Assumptions (K) and (R), respectively), while a numerical assessment of the impact
of these quantities is provided in Section 5 on simulated data (see also the results in the online Appendix D) and
in Section 6 on real data. Overall, our numerical analysis shows that low levels of capping or even no capping at
all are preferable, as they avoid inducing too much bias in the log-volatility distributions. As for the bandwidths,
large values of 1" are required to construct reliable estimates, since they allow setting M large enough to capture
the high persistence of log-volatility series. Our results are quite insensitive to the choice of Br, due to the fact
that financial returns typically are only weakly autocorrelated.

Finally, we can determine the numbers ¢ and ) of common shocks by means of the information criteria
proposed by Hallin and Liska (2007) and applied on the panels Y,, and ﬂn, respectively. The resulting data-driven
estimators ¢ and CAQ converge in probability to ¢ and @), respectively. Since g and () are integers, this means that,
for any € > 0, there exist n(e) and T'(¢) such that, for all n > n(e) and T' > T'(e), ¢ = ¢ and Q = Q with
probability larger than 1 — €. Hence, in Section 3.2 below, we safely can assume that ¢ and () are known.

3.2 Consistency and rates

Consistency of the estimators of the GDFM model for levels is proved in Forni et al. (2017). Some differences
exist, though, between their approach and ours. First, Forni et al. (2017) make slightly weaker assumptions
on idiosyncratic serial dependence and, by exploiting results in Wu and Zaffaroni (2018) on spectral density
estimation, they derive their consistency results under the constraint that By log By/T — 0 as T — co. A more
classical approach is adopted here, based on Assumptions (L.1) and (V1), which as a consequence requires mildly
stronger constraints on the range of admissible values for the bandwidths B and M7. Specifically, we require
the following.

ASSUMPTION (K). As T — oo, By = o(\/T) and Mt = o(\/T).

Note that for 7" ~ 1000 as in our empirical study, the range of admissible bandwidths is still such that most of
the serial dependence in the data is captured when estimating the spectral density (see Section 6 for more details
on the choice of the bandwidths).

Second, the results in Forni et al. (2017) hold pointwise in ¢, which is not sufficient for our needs when
it comes to prove consistency in the second part of the estimation procedure. Indeed, we need uniform (over
allt € {1,...,T}) consistency of the estimators of the common and idiosyncratic components. For this reason,
we make additional assumptions on the distribution of common and idiosyncratic components.

ASSUMPTION (T). There exist constants K, > 0, K. > 0, Kz > 0, and K¢ > 0, such that, foranyt =1,...,T,
(i) maxj=1__q l|ujelly, < Ku;

(ii) maxj=1,_.qllgjtlly, < Ke

(lll) Squn:IIwnllzl ||w§LZntH¢1 < KZ, for alln € N,‘

(iv) SUDyp, [, |=1 1Wn&ntlly, < K, foralln € N,

This assumption is equivalent to an assumption of sub-exponential tails of the common factors and the normed
linear combinations of idiosyncratic components. Specifically, it can be shown that (Ti) is equivalent to requiring
forany j =1,...,q, that P(|uj| > €) < K exp (—e/K*) for any € > 0 and some finite K7}, K** > 0 (see also
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Vershynin, 2012, and Appendix A.3 for details). The same holds also for (Tii), (Tiii), and (Tiv). See Remark 1 at
the end of this section for a discussion of the implications and possible relaxations of this assumption.

Two remarks on (Tiii) and (Tiv) are in order here (see Sections 5.2.4 and 5.2.5 in Vershynin, 2012 for details).
First, note that by letting w,, = (0...w;...0)’, with w; = 1 for a given i, those assumptions imply that each
idiosyncratic component has marginal sub-exponential distribution. Second, an implication of Lemmas 2 and 3 is
that vectors of the form w,Z,, and w},&,, have finite variance for all n, a necessary condition for pointwise con-
sistency. However, (Tiii) and (Tiv) are stricter on idiosyncratic cross-sectional dependence, since they control all
moments of normed linear combinations of idiosyncratic components. Indeed, since the common components X,
and x,, are recovered by aggregation across the n elements of Y,, and ﬂn respectively, uniform consistency
requires limiting the contribution of the tails of the distribution of cross-sectional averages of idiosyncratic com-
ponents.

Finally, since factors and factor loadings are not separately identified, we can, without loss of generality,
impose the following assumptions, which are just identification constraints (see Forni et al., 2009 for similar
conditions).

ASSUMPTION (I). (i) Denoting by P;’f " the n x q matrix of normalized column eigenvectors corresponding to
the q largest eigenvalues of the covariance matrix of X, put Hy, := /nPX" and u; := PX"'X* /\/n;
(ii) denoting by P%* the n x Q matrix of normalized eigenvectors corresponding to the () largest eigenvalues of
the covariance matrix of X, put R,, := \/ﬁP%* and €; := P%*/X;/\/ﬁ.

In other words, Assumption (I) requires the common factors u; (&;) to be the (non-normalised) principal
components of X} (x). Note that, under Assumption (I), both the factors and their loadings depend on n;
their product, however, does not, which is particularly convenient and simplifies the proofs. Other identification
constraints are commonly used in principal component analysis (see e.g. Fan et al., 2013); they do not affect the
results below, but lead to much heavier notation.

The consistency properties of the estimated GDFM for the levels as described in steps (L.i)-(L.vi) are as
follows.

PROPOSITION 1. Let p,7 := max (BT/\/T, 1/Br, 1/\/ﬁ) Then, under Assumptions (L1)-(L5), (K), (T), and
(1), there exists a g X q diagonal matrix J with entries +1 such that

(a) maxi—i .y ||bi. — bl J|| = Op(pnr), forall k < ki;

(b) max;—1,.. 1 ||P—t —Jw|| = Op(pnrlogT);

(c) max;—1, n|dix — di| = Op(purlog® T), for all k < ks;

(d) max;—1, _,max;—1,__7 [0 — vit| = Op(pprlog® T).

The proof of parts (a) and (b) of Proposition 1 follows directly from Forni et al. (2017) together with As-
sumptions (Ti) and (Tiii). However, parts (¢) and (d) concerning the idiosyncratic components are new results
and provide uniform consistency over both time and the cross-section (see also Remark 1 below). In particular,
notice that parts (c) and (d) of Proposition 1 are proved under Assumption (L2iv) of a finite-order autoregressive
representation for the idiosyncratic component. Relaxing that assumption into possibly infinite-order autoregres-
sive repressentations would require addressing, in the proofs of parts (c¢) and (d), the issue of truncation errors
related to finite-order AR fitting. Consistency still could be proved, but with rates depending on the rate of decay
of the autocovariances of idiosyncratic components, as shown, for example, in den Haan and Levin (1997). For
simplicity, we do not consider this here.

As for the global consistency properties (after the second estimation step), we need a final condition on the
choice of the capping sequence x<7 in step (R).

ASSUMPTION (R). The sequence kr > 0 is such that the sets Tinr = {t e {1,...,T} ‘ [si] < HT} sat-
isfy maxi—1,..n |Timr| = op(V/T) uniformly in n as T — co. Moreover, there exist a positive integer T and
constants > 1 and 0 < ¢ < ¢, independent of n, such that ¢ < kplog?T <¢forallT > T.

The intuition behind this assumption is as follows. As shown in Appendix A.4, an immediate consequence of
Proposition 1 is that the volatility proxies are consistently estimated, namely,

max - max |5: — sit] = Op(purlog®T), asn, T — oo.
i=1,...,nt=1,...,
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Now, setting k7 = 0 in step (R), then, due to the log-transform, uniform consistency of ﬁit becomes problematic
when 5;; gets “close to zero”. For this reason, we need k7 > 0. The set 7;.,,7 is that of all time points {1,...,T"}
at which s;; is close to zero, and uniform consistency of ﬁit fort € ’Ech straightforwardly follows from uniform
consistency of 5;;. On the other hand, the sets 7;.,,7 should not contain too many time points, and have cardinality
going to zero at appropriate rate—whence Assumption (R). In particular, we suggest to choose 7 of the order
of log™% T for all 7. Although we do not have theoretical results justifying this choice of xp in practice, simulation-
based results (see Appendix B) indicate that, the condition on the cardinality of the sets 7;,,7 is indeed satisfied
for k7 decreasing logarithmically in 7T'.

Consistency of the estimated GDFM for log-volatilities as described in steps (R) and (V.i)-(V.vi) then follows.

PROPOSITION 2. Let 7,7 := max (BTMT/\/T, MT/\/ﬁ) and assume that By > ¢T''V/* for some finite ¢ > 0.
Then, under Assumptions (L1)-(L5), (VI)-(V5), (K), (T), (I), and (R), there exists a Q) x Q diagonal matrix S with
entries +1 such that

(a) max;—1, n HAZ’k — £, S|| = Op (1 log® # T) for all k < k3;

(b) max—1,..1||€ — Sey|| = Op(rur log*t# T);

(c) maxi—1,.n |Gik — gi| = Op (Tt log® ™ T') for all k < k3,

(d) max;—1, _p,max;—1__ 7 |Vi — Vit] = Op(Tur log® @ T).

This result, which is new, provides the theoretical foundation for the consistency of the estimators used in
Barigozzi and Hallin (2016, 2017a,b) and in this paper. Note that parts (c¢) and (d), just as parts (c¢) and (d) of
Proposition 1, are proved under Assumption (V2iv) of a finite-order autoregressive representation for the idiosyn-
cratic components; the same comments as for Proposition 1 apply.

Our results show that, up to logarithmic factors and the bandwidth-related ones, the rates of consistency of
our estimators are of order min(v/7", \/n) as in classical one-step factor models. The following three technical
remarks discuss how our assumptions, in particular Assumptions (T) and (K), affect the consistency rates, and
how the effect of those logarithmic and bandwidth-related factors could be controlled further if we were willing
to make additional assumptions.

REMARK 1 (Serial dependence of idiosyncratic components). Inspection of the proof of part (¢) of Proposition
1 shows that the extra (with respect to part (b)) logT factor there is due to terms of the type 71 Zle Zit.
Now, while the cross-sectional dependence of idiosyncratic components is controlled via Assumption (Tiii), we
do not impose (beyond weak stationarity) any specific assumption on their serial dependence. However, it is worth
noting that, if we made some mild additional mixing assumption controlling that serial dependence, then those
terms could be bounded by a Bernstein-type inequality, as for example in Theorem 1 by Merlevede et al. (2011).
Similar comments apply to Proposition 2 and bounds on the idiosyncratic sums 7'~* Zle &i. If such additional
assumptions were made, the rates in Proposition 1 parts (¢) and (d) would change to Op(p,rlogT'), those in
Proposition 2 part (a) to Op (7,7 log'™# T), those in part (b) to Op (7,7 log?t# T'), and those in parts (c) and (d)
to Op (TnT 10g2+90 T).

REMARK 2 (Tail behavior). In Section 6, we analyze a panel of stock returns, and it is therefore worth discussing
how our assumptions relate to the distributional properties of financial data. First, let us stress that it is common,
in the financial econometrics literature, to assume Gaussianity of log-volatility proxies (see e.g. Alizadeh et al.,
2002). This is in agreement with the tail Assumptions (Tii) and (Tiv) since sub-Gaussians tails are lighter than
sub-exponentials. In the Gaussian case, the rates in Proposition 2 part (a) would change to Op (7,1 log5/ e T),
those in part (b) to Op (7,7 log®> % T), and those in parts (c), and (d) to Op (7,7 log"/ 2% T').

Second, Assumption (T7) straightforwardly generalizes to more general classes of distributions such that, for
some finite constants K > 0, K* > 0, and 9 > 0, P(Juj| > €) < K} exp (—€”/K}*) for any ¢ > 0
and j = 1,...,q; (Tiii) can be generalized similarly for level idiosyncratic components. These distributions are
studied in the literature under the name of sub-Weibull distributions (Kuchibhotla and Chakrabortty, 2018, and
Vladimirova and Arbel, 2019) or semi-exponential (Borovkov, 2000).2 By letting ¥ < 1, we could allow for

?Note that the assumption of a sub-Weibull tail decay is equivalent to the moment condition (E[|u;¢|*])!/* < Ck'/? forall k > 1 and
some finite C' > 0 (see Vladimirova and Arbel, 2019, Theorem 2.1); fourth-order moments in that case always exist.
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FIGURE 1: Comparison of the tails of log-normal (black), power-law (red) and sub-Weibull (blue) probability density
functions f(x) (log-scales on both axis).
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tails, which, although still exponentially decaying, could be heavier than assumed in Assumption (T), thus ac-
counting for moderately extreme events. Following the same steps as in Appendix A.3, it is easily seen that in
this case the rates in Proposition 1 part (b) would change to Op(p,r logl/ v T') and those in parts (c) and (d))
to Op(pnr logQ/ v T). As for Proposition 2, would we assume a sub-Weibull distribution also in (Tii) and (Tiv)
(with the same value of 9J), then rates would change to Op (7,7 10g3/ Ut ) in part (a), to Op (71 log4/ vty T)
in part (b), and to Op (7,1 log5/ vte ) in parts (c) and (d). To conclude, assuming sub-Gaussian tails in (Ti7)
and (Tiv) modifies the rates in part (a) of Proposition 2 into Op (7,1 log2/ 9+1/2+¢ T), those in part (b) in-
to Op (Tur log2/’9+1+“" T'), and those in parts (¢) and (d) into Op (7,1 10g2/ﬂ+3/2+‘p T).

Finally, in principle, we also could assume power-law decay—that is, the existence of finite constants K, > 0
and 8 > 0 such that P(|uj;| > €) < Kie P forany j = 1,...,q and € > 0; we similarly could generalize (Tiii)
for level idiosyncratic components. We do not explore this possibility in detail, but we notice that , in order to
have consistency under this setting, we would need at least 5 > 2; moreover, the smaller 3, the smaller the range
of admissible choices for the bandwidths By and M7. Notice however that, in practice, determining the actual
values of ¢ and 3 is very tricky, and that small values of ¥} can generate a tail behavior which is comparable to the
power-law behavior (see Figure 1).

REMARK 3 (Bandwidths and estimation of spectral densities). The results in Propositions 1 and 2 require uniform
consistency of the estimated spectral density over all frequencies. For this reason, we have stronger than usual
asymptotic constraints on the bandwidths. These could be relaxed if we made stronger assumptions on the shocks.
First, notice that in our setting the level shocks are just uncorrelated (see Assumptions (L17) and (L1ii7)), and
are by no means independent. However, if we are willing to assume the existence, for level shocks, of moments
of all orders, then we could apply Theorem 7.7.4 in Brillinger (2001), which would allow us to replace Br
with BS+/By for any € > 0 in the definition of p,r in Proposition 1. Second, we could, in principle, allow
for independent shocks on log-volatilities (e.g. assuming Gaussianity, see Remark 1) and therefore make use of
Theorem 4 and Section 4.2 in Wu and Zaffaroni (2018), which would allow us to replace My with /M7 log Mt
in the definition of 7,7 in Proposition 2.
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4 Conditional prediction intervals

Before describing our prediction intervals, let us summarise here the main notation developed in the previous
sections. Given an observed dataset of size n x T', we have, for the levels,

Yie = Xit + Zix + E[Yi], 4.1

oo oo
/ /
Xit = blguy + > by g = e+ Xypy—1,  Zie = diovie + Y dirvie—k 1= it + Zigjp—1,
k=1 k=1
Sit i=ep+vg, t=1,...,n,t=1,...,T

where d;o = 1 because of (2.4) and, for the log-volatilities,
hi = log s3, = Xt + &it + Elhit], (4.2)

[e.e] (o)
/ /
Xit = floge + > Epeip =it + Xatje—1> it = GioVit + Y GikVit—k = Vit + Eitfe—1,
k=1 k=1
Wit =Nt + v, t=1,....n,t=1,...,T

where g;o = 1 because of (2.13).
The optimal one-step-ahead linear predictors of level Y;; and log-volatility h;; are thus

Yitj—1 = Xigje—1 + Zigje—1 + E[Yir] and g1 := Xigje—1 + Sitje—1 + Elhatl, (4.3)
with innovations s;; and wj;, respectively. As a consequence, the level innovations are
sit = exp (ha/2)sign(si) = exp (hije—1/2) exp (wir/2)sign(sq).
We therefore define a one-step-ahead predictor of the volatilities as
Sit|t—1 = €XP (hit\t—l/Q)a
with associated “multiplicative innovations”
Wyt 1= exp (wit/2) sign(s;t).

Note, however, that, due to the nonlinear nature of the exponential transformation from h; to s;, this multiplica-
tive decomposition of volatilities into a predictor and an “innovation” does not enjoy (in the space of volatilities)
the traditional L? optimality properties, which only hold for their logarithms (in the space of log-volatilities).
This, however, will not be a concern in the quantile-based construction we now describe, due to the fact that the
coverage probabilities of a interquantile interval are invariant under continuous monotone transformations: the
quantile of w;; .

Denoting by ¢(«;w;) the (unconditional) a-quantile of w; := {wy|t = 1,...,T},i = 1,...,n (which, by
stationarity, does not depend on ¢), theoretical lower and upper prediction bounds with confidence level (1 — «)
and o € (0,1) are

Ligj—1() = Yigp—1 + Sigjp—1 ¢(as wi) and U1 () 2= Yigp—1 + Sire—1 ¢(1 — o wy), 4.4)

respectively. Note that Yj,,_; lies above Ly;—i(a) for a < Plwy < 0] and lies below U (c)
for @ < 1 — P[w;; < 0]. Prediction intervals with coverage probability (1 — «) can be constructed as

Ligjp—1() == [ Ligpe—1 (@), Upgp—1 () | 4.5)
with a® < 1/2and o~ + ot = a, covering Yite—1 (see (4.8)) provided that

a” <Plwy <0] and ot <1-—Plwy <0). (4.6)
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Clearly, the lower bound L;;; 1 () provides a measure of the Value-at-Risk of level « at time ¢, which we denote
as VaRy () := —Ly¢—1 () (see Section 12.3.1 in Francq and Zakoian, 2011 for a review).’

The advantage of quantile-based prediction intervals of the form (4.5) over their conditional heteroskedasticity-
based competitors stems from the fact that, irrespective of the way w; has been obtained, the conditional «-
quantiles of Y;; (conditional on Y;; 1,Y;; o,...) are of the form (4.4). This quantile-based approach moreover
allows for unequal tails (o~ # ot in (4.6)—hence, distinct attitudes towards losses and gains) and automatically
takes into account the typical skewness of financial data distributions.

In practice, the model is estimated from a n x T observed panel; the empirical counterparts of Y; 7,17
and h; pyqp fori =1,...,nare

T k1 ke T
- - - 1 ~ . 1
Yirsur = Xireyr + Zirryr + 5 D Y=Y bilir g+ Y dikbir ki1 + T > Y
t=1 k=1 k=1 t=1
and ) T kx k3 1 T
~ N ~ ~ & L ~
hireyr = Xir+yr +Srar + 5 D hie =Y ThEr ki + Y Giklir ki + T > ha,
t=1 k=1 k=1 t=1
and we accordingly define 5; 7417 := exp (Bz‘,TH\T / 2); based on the estimates S;; and &;; of s;; and wy,
let W := exp (@it/Q) sign(S;).
For any i, denote by wj(1), . . ., W;(7) the order statistic of @1, . .., W;r; the empirical quantile w;([r4)) then

can be used as an estimator of ¢(«; w;). Empirical versions of the prediction limits and intervals (4.4) and (4.5)
are

o~ ~ ~ ~

L rir(@) ==Y ppr + 8 riar Wigral)ys  Usreyr(@) == Y rir + Sirp1r Wi(fr(-ao))

and
Ly (@) == [Lippyr(a), Uy (a™)] 4.7)

with a* < 1/2and o~ + a® = a € (0,1). A schematic description of this procedure is given in Algorithm 3.

If the w;’s were i.i.d. instead of weak white noise, the convergence (for given o~ and o™, without rates)
of (4.7) to (4.5) would follow from the fact that, as a consequence of the consistent estimation of the GDFMs for
levels and volatilities, for any ng and Tj, maxj<j<n, maxi<;<7, |Wit — w;¢| converges to zero as n and 7" tend to
infinity.

Then, the difference between the empirical quantile of order o computed from {@wi¢, . . . , Wiz, } and the empiri-
cal quantile of order o computed from the unobservable {w;1, ..., w;z, } is op(1) for given1 < i <mngasnand T
tend to infinity. Now, for given ¢, were the w;;’s i.i.d., the empirical a-quantile computed from {w;1, . .., w;z, } is,
for Tp large enough, arbitrarily close to its theoretical counterpart ¢(«; w;) with probability arbitrarily close to one.
The same conclusion extends to the present case where the w;;’s are stationary and uncorrelated provided that they
satisfy some additional mild ergodicity or mixing assumption. The literature on Glivenko-Cantelli and quantile
consistency under ergodicity and mixing is abundant, and we will not proceed with imposing any specific mixing
conditions here which anyway hardly can be checked from the data. The reader may like to refer to Theorem 3.1
in Francq and Zakoian (2019) for details.

Once prediction regions have been constructed, it is important to evaluate their actual coverage performance.
For this, it is useful to define the conditional coverage indicators—namely, for prediction intervals fl-7T+1|T(a),

Hirirr(e) = 1(Yirm € Zriar(e)). (4.8)
For a given ¢, we say that Z-’TJFHT(Q) provides the correct coverage if

P(Yirs1 € i.i,T+1|T(a)‘Y;‘7T7 oY) = E[ﬁi,T+l|T(Q)‘Y;‘7T7 LYl =01 - ),

3Usually, a Value-at-Risk is reported as a positive quantity. That will be the case with VaR,¢(a) for o small enough. Positive
values of L;;¢—1 () are possible, though: in such cases, VaR; () is defined to be zero by convention (see Francq and Zakoian, 2011,
Definition 12.1).

18



Algorithm 3: Estimation of conditional prediction intervals

Input: datainlevels Y, o~ € [0,1/2] and ot € [0,1/2] such that the confidence level is & = o™ +a~ € (0,1)

from Algorithm 1: common level shocks U of size ¢ x T and € of size n x T, idiosyncratic level shocks V of size n x T', common
level impulse responses ]§(L) of size n x ¢ x ki, idiosyncratic level impulse responses f)(L) of size n X n X ka

from Algorithm 2: log-volatility proxy h of size n x T', common log-volatility shocks € of size Q x T and 7 of size n x T,
idiosyncratic log-volatility shocks o of size n x T', common level impulse responses f‘(L) of size n x @ x k}, idiosyncratic level
impulse responses G(L) of size n x n x kj

Output: lower bounds of conditional prediction interval EALTH‘T(OF), v Lnrrr(aT)
upper bounds of conditional prediction interval Uy 741 7 (™), ..., Uy 117 (aT)

1 Compute Y the sample mean of levels Y
2 Compute the one-step-ahead prediction of common and idiosyncratic components of levels XTH‘T = Zil:l B KUT— k41
3 Compute the one-step-ahead prediction of idiosyncratic component of levels iTH‘T = Ziil D EVT— k41
4 Compute the one-step-ahead prediction of levels \A(TH‘T = )A(TH\T + 2T+1|T +Y such that
?T+1|T = (571,T+1\T ce )/}n,T+1|T)/
5 Compute ﬁ the sample mean of log-volatilities h
6 Compute the one-step-ahead prediction of common component of log-volatilities X717 = Ziil Feer_ kt1
7 Compute the one-step-ahead prediction of idiosyncratic component of log-volatilities §T+1\T = Ziil (A}k Ur_k+1
8 Compute the one-step-ahead prediction of log-volatilities ﬁT_H‘T = Xr+1 1 + §T+1\T + };1

9 Compute the one-step-ahead prediction of volatilities S741;7 = exp(ﬁT+1|T/2) such that Sy = (51,7417 - - .§n,T+1‘T)’

10 Compute the log-volatility innovations @; = 1, + v fort =1,...,T
11 Compute the volatility proxy S; = exp(h;/2) or equivalently Sy =€; + v, fort =1,...,T
12 Compute the volatility innovations W¢ = exp(@;/2)sign(s;) such that Wy = (@1 ... Wne) fort =1,...,T

13 fori < 1tondo

14 Compute the order statistics w; (rrq-1)y and w;([r(1—a+)7) Of Wi
15 Compute the lower bound ELTH‘T(OF) = ﬁ,TH‘T + 55,7417 Ui([Ta-1)
16 Compute the upper bound I:{\i’T+1|T(Oc+) = 571-,T+1\T + §¢,T+1\T @((T(kuﬁrﬂ)

which is equivalent (see e.g. Lemma 1 in Christoffersen, 1998) to the hypothesis that

~

Hirr1r() id Bernoulli(1 — «). (4.9)

That hypothesis can be tested against alternatives of insufficient coverage probability values, against non-sharp
prediction limits, or against alternatives of serial dependence. We refer to Section 6.3 for details and implementa-
tion.

5 Simulation study

5.1 Setup

To study the performance of our estimator on finite samples, we simulate data (M replications) according to the
model described in (4.1)-(4.2).

For each Monte Carlo replication m = 1,..., M and for given values of n, T, ¢, and (), we first simulate
a multiplicative factor model for the volatilities which in turn implies a factor structure also for the levels. The
common component of the log-volatilities is generated as

Xnton = Mp(D) " Ryméetm, t=1,...,T,
where g, ud N(0g,1g), Ry m is nx@Q with entries [Ry, 1, )5 ud N (0, 1) and rescaled such that R;L’mRmm =n,
and M,, ,(L) = I, — Zzzl M;m’mLk where the coefficients My, ,,, are diagonal n x n matrices with en-

19



itd

tries [Mgnmlij ~ N(0,1) and rescaled in such a way that det(IM,, ,,,(2)) # O for |z| < 1.* Then, we generate

the process

€:t,m = (P:L,m(L)>_1V;t,m7 = 17"'7T?
where vy ., i N(0y, Zm), with 3, ,,, a Toeplitz matrix with entries [y, ,,,];; := 0.5777L, if |i — j| < 2 and
zero otherwise, and Py (L) generated in the same way as M, ;,,(L). Denoting by &, ,,, the ith element of £, |,
we rescale it into £, = & | [Var(Xit,m)/{2Var (¢}, ,,) }] 1/2 50 that the signal-to-noise ratio is 2.
Define

€itm = eXP(Xitn/2) Titym, and v = exp(Xitim/2) exp(&pm/2)Titm, t=1,....T,i=1,...,n,

where ;1 ,, = 1 with equal probabilities 0.5 and ;¢ ., is the ith element of X ,,,. The volatility and log-volatility
proxies then are

S?t,m = ( ;th + U;t m>2 = eXp(Xit m) [1 + eXp( it m) + 26Xp(§zt m/Q)] ’
hit m = log(s Ztm) Xit,m + log [1 +exp(&im) +2€Xp(fltm/2)] ,t=1,...,T, i=1,...,n,

from which we see that, since each x; ,,, is driven by the ()-dimensional vector of shocks &,,, it has the role of
common log-volatility, while the n shocks v, ,,, have only an idiosyncratic role.
Letting V be the g normalized eigenvectors corresponding to the g largest eigenvalues of the sample covariance

of the vector e}, ., := (€], ,, - - - €nt ) > We build the level shocks as

ent.m = VV'e! and vntm:—VLVLemm—kvmm, t=1,...,T,

nt m

where V| is n x (n —¢) such that V!, V = 0(,,_g) x> and v}, , = (V3 - - - Ut )" Note that, by construction,
the elements e ,, and v;y, y, of the vectors ey, and vy, are such that (€it,m+Vitm) = (eft7m+v;‘t,m): therefore,
we can also write 82, = (€t.m + Vit.m)>

Finally, we generate the vectors of common and idiosyncratic components of the levels as

Xnt,m = (In - An,mL)ilent,m’ and Znt,m = (In - Cn,mL)ilvntma t=1,...,T

where A, ,, is a diagonal n x n matrix with entries [Amm]i] ud U[-0.3,0.7], and C,,,m is generated in the

. : . o id . .
same way but with entries from a uniform distribution over [C,, ,,]i; Yy [—0.5,0.5]; since these matrices

are diagonal, the autoregressive models for X,, ,,, and Z,, ,,, are causal. The panel of levels then is generated
as Yyim = Xptm + Zintm.

In our numerical study, we let n € {100,200}, T" € {200, 500, 1000}, and either ¢ = 1 and Q@ = 1, ¢ = 3
and (Q = 2 (as in the empirical application of the next section), or ¢ = 2 and ( = 3. For each configuration
considered, we simulate and estimate the model M = 200 times.

It has to be noticed that the data-generating process we are considering is similar to a stochastic volatility
model. To illustrate the properties of the generated data, we report in Table 1 the autocorrelations up to lag 10
of Rims Siims €ims Viims Xim, Xfm, Zim, Zﬁm, im.> and Yfm, averaged over all M replications and over
all n series, and when n = 200, T = 1000. It can be seen that log-volatilities /; ,, and volatilities s; ,,, have high
persistence, while, due to the way they are generated, the shocks e; ,,, and v; ,,, display no linear serial dependence,
i.e. are weak white noises. Turning to the kurtosis of the level shocks reported in the left panel of Table 2, these
display heavy tails (especially the common ones) for the case ¢ = 1 and () = 1, while the kurtosis tends to
decrease when increasing (), possibly due to the aggregation of shocks in generating the common components
of the log-volatility x; ,,. Similar comments apply to the absolute values of skewness reported in the right panel
of Table 2: especially in the case ¢ = 1 and () = 1, the common shocks display a high degree of asymmetry.
Because of these features of the simulated data the case ¢ = 1 and () = 1 is particularly interesting to study to
assess the performance of our estimators when dealing with heavy-tailed and skewed data.

*In particular, when looking at simulated data 25% of the total 3n? roots are found to be in the range (0.7, 1), thus accounting for high
persistence in log-volatilities, see also Table 1 below.
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TABLE 1: Autocorrelations of simulated variables. Average values over all n series and all M replications for n = 200,

T = 1000, and M = 200. Values outside the [+1.96/v/T] = [+0.0620] interval are starred.

qg=1 lag

Q=1 1 2 3 4 5 6
him 0.2967*  0.2856*  0.1178* 0.1691*  0.0528  0.1142*
Si,m 0.3082*%  0.2743*  0.1201* 0.1426* 0.0552 0.0758*
€i,m -0.0378  0.0696*  -0.0565  0.0089  -0.0099 -0.0283
e?_’m 0.0326 0.0495 0.0020 0.0035 0.0031 0.0042
Vi, m -0.0023  -0.0017  -0.0035  0.0005 -0.0015 -0.0028
vf,m 0.2961*  0.2674*  0.1196* 0.1445*  0.0565 0.0771*
Xi,m 0.1753*  0.1770* 0.0096 0.0302  -0.0032 -0.0262
Xﬁm 0.0989*  0.0791%* 0.0068 0.0023 0.0016  -0.0037
Zim 0.0020 0.0783*  -0.0033  0.0118 -0.0018 -0.0002
sz 0.2877*  0.2260*  0.1054*  0.1200*  0.0522  0.0622*
Yim 0.1174*  0.1439%* 0.0051 0.0219  -0.0031 -0.0172
Yfm 0.0994*  0.0798%* 0.0073 0.0023 0.0018 0.0029
q=3 lag

Q=2 1 2 3 4 5 6
him 0.2654*  0.2826*  0.1183* 0.1611*  0.0508 0.1272*
Si,m 0.2757*  0.2607*  0.1237* 0.1305*  0.0511  0.0913*
€i,m -0.0089  -0.0690*  -0.0028  0.0304 -0.0353 -0.0071
e?m 0.1939*  0.0721* 0.0034 0.0166 0.0077 0.0113
Vi,m -0.0010  -0.0011 -0.0030  0.0002  -0.0038 -0.0030
vfym 0.2635*  0.2515*  0.1212*  0.1283*  0.0503  0.0907*
Xim 0.1977* 0.0592 0.0465 0.0492  -0.0142  0.0002
Xim 0.2545*%  0.0822* 0.0161 0.0222 0.0073 0.0101
Zim -0.0172  0.0814*  -0.0052  0.0119  -0.0045 -0.0013
Zﬁm 0.2708*  0.2133*  0.1076* 0.1059*  0.0502  0.0764*
Yim 0.1227*  0.0671* 0.0285 0.0374  -0.0123  -0.0003
Yfm 0.2166*  0.0909* 0.0237 0.0242 0.0079 0.0009
q=2 lag

Q=3 1 2 3 4 5 6
Rim 0.2730*  0.2692*  0.1254*  0.1717*  0.0494  0.1293*
Si,m 0.2375*%  0.2348*  0.1036* 0.1481*  0.0238  0.0885*
€im -0.0221 0.0127 -0.0204  -0.0001  -0.0071 -0.0067
ef’m 0.0025 0.0640%* 0.0222 0.0616 0.0001 0.0134
Viom -0.0026  -0.0002 0.0000 0.0026  -0.0011 -0.0035
vf,m 0.2330*  0.2313*  0.1015* 0.1456*  0.0229  0.0879*
Xim 0.1835%  0.1254%* 0.0364 0.0277 0.0079 0.0008
Xﬁm 0.1159*  0.1020* 0.0388 0.0377 0.0131 0.0057
Zim 0.0317 0.0872%* 0.0032 0.0156  -0.0008 -0.0007
Zﬁm 0.2509*  0.1918*  0.0969*  0.1227*  0.0293  0.0711*
Yim 0.1313*  0.1121* 0.0253 0.0220 0.0040 0.0012
Yfm 0.1047*  0.0869* 0.0426 0.0425 0.0043 0.0133

TABLE 2: Kurtosis and absolute value of skewness of simulated common level shocks e; ., and idiosyncratic level
shocks V; p,. Maximum and average values over all n series and all M replications for n = 200, T' = 1000, and M = 200.

kurtosis skewness
¢q=1Q=1 | ¢=30Q=2 | ¢=2Q=3|¢=1L,0Q=1|¢=30=2|¢=20Q=3
max. aver. max. aver. max. aver. max. aver. max. aver. max. aver.
ei,m | 16140 83.53 | 67.60 1094 | 31.86 5.60 7.88  0.28 | 4.08 0.03 2.53 0.02
Vi,m 15.03 3.02 12.68 3.02 9.36 3.01 1.14 0.01 1.07 0.01 0.85 0.01

Furthermore, notice that e,, ,,,, by construction, is a singular vector (as it should be) and has the role of a
common level innovation. Moreover, the elements of vy, ,,, in general, are cross-sectionally dependent. As a
consequence, both Y, ,,, and h,, ,,, have an approximate dynamic factor structure. In Figure 2 we show scree-plots
with the ten largest eigenvalues of the zero-frequency sample spectral density matrices of Y, ,,, (blue crosses),
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FIGURE 2: Normalized eigenvalues of the zero-frequency spectral densities of simulated data for n = 200 and T = 1000.
Blue crosses: levels, Y, n,,; red circles: log-volatilities, hy, .
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and h,, ,,, (red circles), normalized by the largest zero-frequency eigenvalue, averaged over all M realisations,
when n = 200, T'= 1000, ¢ = 3, and Q = 2.

5.2 Results

For each replication, we estimate the model as described in Section 3. The capping constants 7 and the band-
widths Br and M7 involved in the estimation of the spectral density are chosen as in the empirical analysis of
the next section. Specifically, we let Kk € {0,0.2,0.4}, while the bandwidths values are By = 2 and M7 = 10
for T' = 200, By = 2 and M = 15 for T' = 500, By = 2 and Mt = 20 for 7' = 1000 (see Appendix D for
results based on other values). Once we obtain estimated common components )/(\',m for the levels and Y, for
the log-volatilities, we compute the global error measures

M n
MSEX Z ZZ it,m T Azt m)za MSEX = thlT Z ZZ(Xit,m - SC\it,m)27

m: i=1 t=1 m=
MADY = f: Zn: ZT: | Xitm — Xitml, MADX = 1 i
T == — ’ Y MnT

and the maximal errors over all realizations:

MAXX = max max \thm*Xit,mL

i=1,....,nt=1,.. ,Tmfl, LM
MAXY = I, 1%y B PXitm = Kitom|
Notice that the error in the estimation of the common component X ,,, of the levels (first step of the estimation
procedure) has already been studied in Forni et al. (2017) and Forni et al. (2018). We therefore consider it as
the benchmark error with respect to which the performance of the second estimation step, which is the novelty of
this paper, is to be compared. Results are provided in Table 3. We note that MSE and MAD in the second step
tend to be about 1.5 times higher than in the first step, which is not unexpected as first- and second- step errors
typically cumulate in a two-stage procedure. However, when turning to MAX, this is no longer the case, since
levels in our data-generating process display heavier tails than log-volatilities—in line with the typical behavior
of daily stock returns and their volatilities. Increasing n and 7' improves the performance of all estimators; the
role of n, in that respect, seems to be the main one—a manifestation of the “blessing of dimensionality". On
the other hand increasing () the number of common log-volatility shocks, tends to make estimation of the second
step harder, but still results are in line with the case () = 1. Capping has an effect in controlling the maximum
error but does not affect the MSE and MAD results much. To illustrate the good performances of our method,

22



TABLE 3: Simulation results. MSEs and MADs for common components. Bandwidths are By = 2 and Mr = 10
for T =200; By =2 and My = 15 for T' = 500; By = 2 and Mt = 20 for T' = 1000.

q=1,Q=1
T = 200 T = 500 T = 1000
n=100 n=200 | n=100 n=200 | n=100 n =200
MSEX 0.215 0.219 0.168 0.164 0.125 0.154
MSEX k=0 0.368 0.321 0.302 0.247 0.251 0.241
MSEX  kpr=0.2| 0.369 0.324 0.276 0.247 0.240 0.230
MSEX rkr = 0.4 0.377 0.334 0.279 0.238 0.238 0.230
MADX 0.278 0.245 0.255 0.226 0.234 0.228
M ADX kT =0 0.442 0.401 0.394 0.346 0.360 0.342
M ADX kK = 0.2 0.436 0.395 0.367 0.346 0.344 0.323
MADX  kp =04 | 0437 0.397 0.364 0.324 0.337 0.317
MAXX 10.797 13.560 17.113 16.352 14.405 19.757
MAXX  kp =0 6.587 6.709 8.996 6.270 7.462 7912
MAXX kr = 0.2 8.259 7.247 7.967 6.270 9.328 8.431
MAXX k= 0.4 8.987 8.402 8.295 10.223 9.821 8.960
qg=3,Q=2
T = 200 T = 500 T = 1000
n=100 mn=200 | n=100 n=200 | n=100 n =200
MSEX 0.143 0.155 0.101 0.112 0.086 0.085
MSEX kp=0 0.291 0.284 0.237 0.216 0.209 0.185
MSEX k= 0.2 0.262 0.261 0.197 0.199 0.179 0.163
MSEX kK = 0.4 0.250 0.252 0.182 0.176 0.162 0.141
MADX 0.265 0.261 0.227 0.228 0.210 0.205
M ADX k=0 0.412 0.402 0.370 0.348 0.346 0.322
MADX  kpr=0.2| 0.389 0.381 0.336 0.327 0.317 0.299
M ADX k= 0.4 0.378 0.372 0.321 0.307 0.300 0.275
MAXX 6.634 8.693 9.682 12.606 10.943 19.277
MAXX k=0 5.532 5.624 5.128 6.725 4.488 5.209
MAXX kp=02| 5.688 5.800 5.561 6.204 4.813 4.675
MAXX kr = 0.4 5.713 6.180 5.630 7.317 4978 5.235
q=2,Q=3
T = 200 T = 500 T = 1000
n=100 n=200 | n=100 n=200 | n=100 n =200
MSEX 0.151 0.161 0.112 0.129 0.082 0.085
MSEX k=0 0.356 0.323 0.290 0.277 0.247 0.224
MSEX kK = 0.2 0.324 0.299 0.259 0.247 0.210 0.190
MSEX  kr=04| 0311 0.287 0.248 0.231 0.193 0.173
MADX 0.279 0.271 0.241 0.248 0.212 0.213
M ADX k=0 0.461 0.434 0.414 0.398 0.382 0.360
M ADX kT = 0.2 0.437 0.415 0.387 0.372 0.350 0.327
M ADX k= 0.4 0.426 0.404 0.376 0.356 0.334 0.311
MAXX 5.395 9.180 5.900 8.936 6.210 11.411
MAXX k=0 4.833 5.066 5.009 5.654 5.111 5.571
MAXX rkr = 0.2 4988 5.325 5.269 5.998 5.355 5.654
MAXX kK = 0.4 5.058 5.748 5.660 6.208 5.599 5.413

in Figure 3 we show, for one replication, the estimated (in red) and simulated (in blue) common components of
levels, and of volatilities, respectively, for n = 200, 7" = 1000, ¢ = 1, and @) = 1 (which is the case exhibiting
the heaviest tails), setting k7 = 0.2. The choice of bandwidths adopted seems to work quite well, and, comparing
to alternative choices considered in Appendix D, it can be shown that M7 must be large enough to capture the
persistence in log-volatilities, while lower values of By are enough for levels and do not affect much the second
step of estimation.

Finally, for 7' = 1000, we estimated the model using the first 900 observations, then ran a recursive pseudo-
out-of-sample forecasting exercise constructing one-step-ahead prediction intervals for the remaining 100 obser-
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FIGURE 3: Simulation results. True (blue) and estimated (red) common components of levels, )?it,m, and of volatilties,
exp(Xit,m), whenn =200, T = 1000, ¢ = 1, Q = 1, and k1 = 0.2. One series and one realisation.
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vations (from 901 to 1000), as described in Section 4. The «/2-upper and «/2-lower bounds ﬁi,ﬂuﬂm(a /2)

and L; ;1 1|7,m(c/2) of prediction intervals with coverage probability (1 — «) are then computed for each series
and replication and each out-of-sample observation. From the latter, we compute the observed coverage frequen-
cies across all series and replications

n 999

C(Oé = M’n,lOO Z Z Z ( i, r+1|mm Oé/2) < KT+1m<uz7—+1|Tm(a/2))

m=1 i=1 7=900
and the proportions of coverage violations in the upper and lower tails,

n 999

(a/2 MnlOO ZZ Z ( zT+1m>UzT+1|Tm(a/2))

m=1 i=1 7=900

and

n 999

Vo(a/2) = s Sy Y 1(Yirtrm < Lirarm(a/2)),

m=1 i=1 7=900

respectively. Results are shown in Table 4. Overall performances look reasonably good—the larger n and 7',
the better. We note that capping has a clear effect on the empirical coverage; too much capping seems to affect
mostly the cases in which a = 0.32 and 0.2. No capping at all works quite well in practice, despite the fact that
theoretical results require k7 > 0. Moreover, the same comments apply to empirical coverage as for the choice of
bandwidths, with the additional finding that higher values of Bz yield more reliable prediction performances (see
Appendix D).

6 Interval prediction for S&P100 returns

In this section, we apply our methodology to a panel of n = 90 daily returns of stocks from the Standard &
Poor’s 100 Index. Data are observed from January 4, 2000 through September 30, 2013, for a total of T' = 3456
observations. We run a pseudo-out-of-sample forecasting exercise by estimating the model using data over the
periodt = 1,...,7, with7 = (T'— M),...,(T'— 1) and M = 1948, corresponding to an evaluation period
running from January 3, 2006 through September 27, 2013. For each value of 7, we estimate the n = 90 one-step-
ahead prediction intervals as defined in (4.7). The data cover the following sectors (in parentheses, the number
of series in each sector): Consumer Discretionary (11), Consumer Staples (10), Energy (12), Financials (13),
Health Care (11), Industrials (14), Information Technology (12), Materials (3), Telecommunications Services (2),
Utilities (2) (see Appendix C for the names of individual stocks).

Although we should, in principle, fully re-estimate the whole model at each of the M iterations, some quan-
tities were kept fixed throughout the exercise. In particular, when applied to the full n x 7" panel, the Hallin and
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TABLE 4: Simulation results. Empirical coverage and frequencies of prediction bounds violations, averaged over all n
series and all M replications, for T = 1000 and M = 200. Bandwidths values: By = 2 and M = 10 for T = 200;
Br =2and Mr = 15 for T' = 500; By = 2 and Mt = 20 for T = 1000.

q=1,0=1
n =100 n = 200
«Q «
0.32 0.2 0.1 0.05 0.01 0.32 0.2 0.1 0.05 0.01
C(a) k=0 0.6409 0.7637 0.8667 0.9312 0.9869 | 0.6765 0.7992 0.9082 0.9573 0.9926
Vi(a/2) 0.1810  0.1195 0.0674 0.0342 0.0057 | 0.1635 0.1026 0.0470 0.0221  0.0040
V_(a/2) 0.1781 0.1168  0.0659 0.0346 0.0074 | 0.1601 0.0983 0.0449 0.0206 0.0035
C(a) kr = 0.2 | 0.6691 07769 0.8685 0.9197 0.9681 | 0.7201 0.8285 0.9226 0.9628 0.9934
Vi(a/2) 0.1636  0.1124  0.0682 0.0403 0.0153 | 0.1422 0.0876 0.0392 0.0194 0.0034
V_(a/2) 0.1673  0.1107  0.0633 0.0400 0.0166 | 0.1378 0.0840 0.0383 0.0179  0.0033
C(a) kr = 0.4 | 07072 0.7987 0.8799 0.9238 0.9699 | 0.7119 0.7957 08763 0.9257 0.9703
Vi(a/2) 0.1453  0.1023  0.0617 0.0384 0.0145 | 0.1429 0.1007 0.0600 0.0360 0.0150
V_(a/2) 0.1475  0.0990 0.0584 0.0378 0.0156 | 0.1453 0.1037 0.0638 0.0383 0.0147
q=3,0Q=2
n = 100 n = 200
«Q «Q
0.32 0.2 0.1 0.05 0.01 0.32 0.2 0.1 0.05 0.01
C(a) k=0 0.6350 0.7523 0.8543 0.9131 0.9688 | 0.6718 0.7917 0.8929 0.9457 0.9895
Vi(a/2) 0.1810  0.1252  0.0749 0.0449 0.0157 | 0.1619 0.1037 0.0530 0.0277  0.0053
V_(a/2) 0.1840  0.1225 0.0708 0.0420 0.0155 | 0.1664 0.1047 0.0542 0.0266 0.0053
C(a) kr =02 | 0.6767 0.7775 0.8665 0.9206 0.9701 | 0.7031 0.8081 0.8986 0.9469 0.9916
Vi(a/2) 0.1601  0.1145  0.0691 0.0422 0.0162 | 0.1458 0.0935 0.0503 0.0250 0.0039
V_(a/2) 0.1632  0.1080 0.0644 0.0372 0.0137 | 0.1512 0.0985 0.0512 0.0282 0.0046
C(a) kr = 0.4 | 0.7129 07993  0.8803 0.9267 0.9724 | 0.7565 0.8447 09222 0.9610 0.9923
Vi(a/2) 0.1445 0.1033  0.0614 0.0384 0.0147 | 0.1209 0.0780 0.0382 0.0196 0.0043
V_(a/2) 0.1426  0.09740 0.0583 0.0349 0.0129 | 0.1227 0.0774 0.0397 0.0195 0.0035
q=2,Q=3
n =100 n = 200
«Q «Q
0.32 0.2 0.1 0.05 0.01 0.32 0.2 0.1 0.05 0.01
C(a) kr =0 0.6888  0.8045 0.8981 0.9500 0.9874 | 0.6391 0.7563 0.8623 0.9215 0.9784
Vi(a/2) 0.1568  0.0995  0.0527 0.0258 0.0065 | 0.1786 0.1212 0.0678 0.0387 0.0107
V_(a/2) 0.1544  0.0960  0.0492 0.0242 0.0061 | 0.1824 0.1226 0.0700 0.0399 0.0110
C(a) kr = 0.2 | 0.7335 0.8290 0.9105 0.9539 0.9890 | 0.6770 0.7814 0.8752 0.9277 0.9791
Vi(a/2) 0.1345 0.0863  0.0459 0.0239 0.0056 | 0.1602 0.1077 0.0613 0.0355 0.0103
V_(a/2) 0.1320  0.0847 0.0436 0.0222 0.0054 | 0.1629 0.1110 0.0636 0.0368 0.0106
C(a) kr = 0.4 | 0.7733  0.8539 0.9213 0.9595 0.9898 | 0.7167 0.8066 0.8879 0.9352 0.9809
Vi(a/2) 0.1154  0.0747  0.0408 0.0207 0.0055 | 0.1395 0.0953 0.0551 0.0326  0.0093
V_(a/2) 0.1113  0.0714 0.0379 0.0198 0.0047 | 0.1439 0.0981 0.0570 0.0322  0.0099

Ligka (2007) criterion returns § = 3 common factors for the level panel and @ = 2 common factors for log-
volatility panel: those values are used in all subsequent analyzes. We also choose the bandwidths by minimizing,
over a grid of possible bandwidth values, the mean-squared errors

n T n T

1 PN 1 ~ -
T > ) (Yie = Xigp—1)® and T >N (hie = Rige—1)?,
=1 t=1 =1 t=1

respectively, leading to possibly distinct bandwidths for X it|t—1 and )?it‘t_l. More precisely, we first determine B

and then determine M7 using the chosen Bt to compute h;;. As aresult we throughout use By = 2 and Mp = 17.
The VAR orders and the orders of their truncated inverse MA representations needed to compute impulse responses
are set as follows: (i) deg[A,(L)] = 1, with inverse MA truncated at lag k; = 20; (ii) deg[C,(L)] = 1, with
inverse MA truncated at lag ko = 20; (iii) deg[M,,(L)] = 5, with inverse MA truncated at lag k} = 100;

25



(iv) deg[P,,(L)] = 1, with inverse MA truncated at lag k5 = 100. The estimation of the GDFM is based on 10
cross-sectional permutations, as explained at the end of Section 3.1. Finally, regarding the choice of the capping
constant k7, we choose k € {0, 0.1, 0.25, 0.5} irrespective of 7; note that, with reference to Assumption (R), we
have log~! 7' = 0.12. Also note that, on the average across the M iterations, 6%, out of the total n7 observations,
are capped when x7 = 0.1, 14% when k7 = 0.25, and 27% when xkp = 0.5.

For any given sample size 7, we compute the quantiles of w; using (W;,—¢+1,...,W; ), Where we
set £ € {126, 252,504, 7}, hence using either the past six months, one year, or two years of available data, or using
all available past observations. Denoting by vAVZ(E) the vector of the most recent £ observations (so that vAVZ(T) coin-
cides with w;), for levels o € {0.32,0.2,0.1,0.05,0.01} and window sizes ¢, and for 7 = (T — M), ..., (T —1),
we obtain the estimates

10 > ~ ~(¢ l > ~ L
49 ()= 0 70 . !

— )
i+ Q Y; ,TH1T + Si,r+1|T wi(fﬂ(l—a)])’ i 7—+1|T( ) = Lir41r + 5 T W [¢a])’

=0 {4 —\ 77 {4
L) () = (L) (00U @], and AL (@) = 1Y €T, ().

6.1 Coverage performance: qualitative analysis

For each of the n = 90 series considered we compute the coverage frequency

o 1 T-1 1 T—1 N
Cle)i=gp D A (@) = M H(ﬁ§9+m( )< Yira <UD (o *)),
T=T M r=T—M
the proportions
T-1 T—1
VZ(?(Q ):= % Z ]I(YZ T+ > Z/{z(‘r)+1| (a )) and V( )( T)= % Z ]I<Ym+1< EET)H‘T(Q_))
r=T—M r=T—M

@O \._ 1 20 2(0)
L(a) == > (L{”HIT(Q)—£i7T+1|T(a)>.

=T-M

Table 5 reports, fora™ = a~ = a/2 with « € {0.32,0.2,0.1,0.05,0.01} (corresponding to coverage levels 68%,
80%, 90%, 95% and 99%) and x7 € {0,0.1,0.25,0.5}, the cross sectional average C'¥) () of the empirical cov-

erage frequencies CZ-( )( ), the cross-sectional averages V (a /2) and v (/2) of the proportions of coverage

violations Vz(ﬁ) (o) and Vz(_)( ), and the cross-sectional average L‘ )( ) of the average interval lengths LE )( ).

Inspection of the table reveals that C(“)(a) ~ (1 — ) and V (a/2) _(E)(oz/Q) ~ «/2, which is a
qualitative confirmation of the validity of our methodology (see Sectlon 6.3 for more formal validation). Three
remarks emerge from these results. First, regarding the sensitivity of our procedure to capping, lower values of <7,
in general, provide better results when « is higher, while larger values of k7 provide better results for lower values
of «; in all cases, kp = 0.5 yields a mostly conservative coverage frequency higher than (1 — «). In particular,
note that the choice of k7 = 0 (no capping at all), although ruled out by Assumption (R), still provides very
good results. Second, setting ¢ = 7, that is, considering the entire past history to compute quantiles apparently
is not the best strategy, and shorter horizons ¢ seem preferable. This finding is possibly related to some time
variation in the distribution of the innovations of log-volatilities at horizons longer than one year. Third, for any
given «, shorter intervals are obtained when setting ¢ = 252 or 504 regardless of the choice of x7. Overall,
choosing k7 = 0.1 and ¢ = 252 or 504 works best for &« = 0.32 and 0.2, while k7 = 0.25 and ¢ = 126 or 252
works best for « = 0.1, 0.05, and 0.01.

In Figures 4 and 5, we set k7 = 0.25 and ¢ = 252 and we show (in grey) Y; 41 for some selected individual
stocks, together with (in red) the estimated upper and lower bounds of the 90% one-step-ahead prediction interval,

ie. Z/ll(%fi' (0.05) and 25253”7(0.05), respectively. Figure 4 shows results for six of the most volatiles stocks in
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TABLE 5: Standard & Poor’s 100 Index data (n = 90 daily returns). Empirical coverage, frequency of prediction bounds
violations, and average length of prediction intervals for GDFM, averaged over the cross-section.

RT = 0 RT = 0.1
e «

0.32 0.2 0.1 0.05 0.01 0.32 0.2 0.1 0.05 0.01
CT%(a) 06709 07894 0.8887 09400 09812 | 0.6874 0.7985 0.8931 09416 0.9813
Vf%)(a/2) 0.1641 0.1048 0.0552 0.0299  0.0094 | 0.1559 0.1002 0.0533 0.0291  0.0095
V32 (q/2) | 0.1650 0.1058 0.0561 0.0301  0.0094 | 0.1566 0.1013 0.0536 0.0292  0.0091
L(126)(a) 3.3934 45156 6.1305 7.7681 12.4174 | 3.4726 4.5726 6.1553 7.7698 12.3130
() 0.6708 0.7903 0.8902 0.9415 0.9848 | 0.6882 0.7999 0.8940 0.9424  0.9846
(a/2) | 0.1647 0.1044 0.0544 0.0289 0.0077 | 0.1560 0.0998 0.0526 0.0287  0.0078
(a/2) | 0.1644 0.1053 0.0554 0.0296 0.0075 | 0.1558 0.1003 0.0534 0.0289 0.0076
L(%2) (@) 33621 44794 6.0949 7.7240 12.5008 | 3.4351 4.5290 6.1078 7.7074 12.3767

>(a) 0.6711 0.7895 0.8895 09412 0.9846 | 0.6886 0.7995 0.8929 0.9419  0.9843
VO (@/2) | 0.1651  0.1057 00551 0.0290 0.0078 | 0.1561 0.1005 0.0536 0.0288  0.0081
v (a/2) | 0.1638  0.1047 0.0554 0.0298 0.0076 | 0.1553 0.1000 0.0535 0.0292  0.0076
LB (q) 33034 44179 6.0266 7.6643 12.1190 | 3.3786 4.4708 6.0439 7.6539 12.0462
(o) 0.7010 0.8142 0.9049 0.9506  0.9881 | 0.7187 0.8244 0.9096 0.9523  0.9881
Vf) (a/2) 0.1516  0.0933 0.0474 0.0247  0.0061 | 0.1424 0.0879 0.0452 0.0237  0.0062
74 (a/2) 0.1474  0.0925 0.0477 0.0248  0.0058 | 0.1389 0.0877 0.0452 0.0239  0.0057

L7 () 34523  4.6632 64305 82802 13.3895 | 3.5562 4.7560 6.5201 8.3747 13.5115
Kt = 0.25 kr = 0.5
(0% e
0.32 0.2 0.1 0.05 0.01 0.32 0.2 0.1 0.05 0.01
129 (q) 0.7126 0.8141 0.8997 0.9452 09821 | 0.7552 0.8391 09119 0.9507 0.9836

(
V29 (q/2) | 01435 00926 0.0500 0.0274 0.0091 | 0.1222 0.0800 0.0436 0.0243  0.0082
(a/2) | 0.1439  0.0932 00504 0.0274 0.0088 | 0.1226 0.0809 0.0446 0.0251  0.0081
L)) | 3.6203 4.6949 62419 7.8371 123547 | 39076 4.9426 64443 8.0189 12.5330
(a) | 07138 0.8143 09009 09452 09851 | 07556 0.8398 09127 09512  0.9866
(a/2) | 0.1433 00928 00491 00271 00077 | 0.1224 0.0798 0.0432 0.0242  0.0069
(a/2) | 0.1428 0.0929 0.0500 0.0277 0.0072 | 0.1219 0.0804 0.0440 0.0246  0.0065
L™ () | 35796 4.6500 6.1923 7.7700 124405 | 3.8737 49105 64108 7.9706 12.7086
(@) | 07149 08150 09002 09449 09846 | 0.7588 0.8422 09132 09514 0.9861
VO (a/2) | 01430 00927 0.0495 0.0274 0.0080 | 0.1204 0.0782 0.0426 0.0236  0.0072
J(a/2) | 0.1420  0.0923 0.0502 00277 0.0074 | 0.1208 0.0795 0.0442 0.0250  0.0067
LO(a) | 35336 46035 6.1513 7.7434 12.1898 | 3.8584 49070 6.4371 8.0357 12.6302
(a) 07430 0.8387 09162 09551 09886 | 0.7824 0.8633 09283 09613  0.9900
V(a/2) | 01301 00808 00415 00221 00061 | 0.1091 0.0680 0.0351 00189  0.0053
V(a/2) | 01269 00805 00422 0.0228 0.0054 | 0.1085 0.0687 0.0366 0.0198  0.0047
L) (a) 37420 49317 6.6982 85677 137991 | 4.1045 52913 7.0734 89901 14.4295

our dataset, all belonging to the financial sector: America International Group (AIG), Bank of America (BAC),
Citigroup (C), Goldman Sachs (GS), JPMorgan Chase (JPM), Morgan Stanley (MS). Figure 5 provides the same
results for eight relevant non-financial stocks: Apple (AAPL), Microsoft (MSFT), Amazon (AMZN), Wallgreens
(WAG), Exxon Mobil (XOM), Johnson & Johnson (JNJ), Boeing (BA), General Electric (GE). Volatilities, in
those series, which were the most seriously affected by the great financial crisis, are notoriously hard to predict.

6.2 Coverage: comparison with GARCH

The novelty of our prediction intervals is that they are exploiting the information contained in the available cross-
section of n = 90 stocks. This is in sharp contrast with the usual GARCH approach, which is strongly univariate,
and disregards cross-sectional information by analyzing the n series one by one. Moreover, estimating 90 uni-
variate GARCH models requires much more computing time than estimating our model. GARCH nevertheless
constitute the more common practice in this context, and serves as a natural benchmark.

We therefore compare our prediction intervals with those obtained by fitting, via quasi-maximum likelihood,
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FIGURE 4: One-step-ahead 90% conditional prediction intervals (in red; £ = 252): America International Group (AIG),
Bank of America (BAC), Citigroup (C), Goldman Sachs (GS), JPMorgan Chase (JPM), Morgan Stanley (MS).

06 07 08 09 10 11 12 13

time

| ! J
5L . " I\ \ -
A [RRTTE 7””‘““ v ‘| ' '“ ) LU (i M »” 1 1n “

0
N uv T [ 1i|
ol o Il 0 h””” s 'l“'}r W ] &,4 | \

06 07 08 09 10 11 12 13

univariate GARCH(1,1) models to all series in our panel. Specifically, for each series i, we estimate the model

i
Yie = Elyir] + oueir, e ~ (0,1), t=1,...,7,

O-’i2t = w; + ’7’51/1%—1 + ﬁiazzt—h wi > 07 ’72751 2 07 Vi + /BZ <1

For given 7 = (T — M),...,(T — 1), we obtain estimated parameters &;,; and B;, from which we com-
pute the estimated volatilities 52 and the innovation values €; = Y;;/Gy, t = 1,...,7. Innovation quan-
tiles are computed from (€ ;_¢11,...,€ ), where as before we set ¢ € {126, 252, 504, 7}. Then, for any
given level o and window size , and fort = (T'— M),...,(T — 1), given the one-step-ahead volatility pre-

dictor o az e = =w; + 'yzY + ﬁl 0;..» we compute the the upper and lower confidence bounds

A(E)GARCH(O[) :

i, 7+1|7 Z:\(Z)GARCH(O[) = Y

_ o ~(0) L ()
=Y+ 0irpilr €fea—ay)) 24 L), =Yi + G117 €([0a))

yielding the one-step-ahead prediction intervals

i-(f)GARCH(a) — [ GARCH( /2) (K)GARCH(Q/Q)]

i, 7+1|7 i,7+1|7 i, 7+1|T
75 (£)GARCH Z(£)GARCH
and the indicators of correct interval prediction #; "'\~ (o) == I(Yirq1 € VA (o). Based on these

quantities, we then compute, for « € {0.32, 0.2, 0.1, 0.05, 0.01}, the empirical coverage frequency, denoted
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FIGURE 5: One-step-ahead 90% conditional prediction intervals (in red; { = 252): Apple (AAPL), Microsoft (MSFT),
Amazon (AMZN), Wallgreens (WAG), Exxon Mobil (XOM), Johnson & Johnson (JNJ), Boeing (BA), General Electric (GE).
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as CZ.(Z)GARCH(a), the proportions of coverage violations in the upper and lower tail, denoted as Vi(i)GARCH(a /2)

and V;(e_)GARCH(a /2), respectively, and the average interval length, denoted as LZ(.e)GARCH(a). Averages of these

quantities over the n series under study are shown in Table 6. Inspection of this table reveals that the GDFM
performances are slightly better than the GARCH ones in terms of coverage frequencies, based on similar interval
lengths. This, however, is mainly a descriptive and, due to cross-sectional dependence, somewhat misleading
assessment, which ideally should be reinforced into a more formal testing analysis.

A formal comparison between the GDFM and GARCH(1,1) coverage performances should take into account
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TABLE 6: Standard & Poor’s 100 Index data (n = 90 daily returns). Empirical coverage, frequency of prediction bounds
violations, and average length of prediction intervals for GARCH, averaged over the cross-section.

e
0.32 0.2 0.1 0.05 0.01

CIZ0)GARCH (@) 0.6755 0.7947 0.8933 0.9429  0.9834
VUIROGARTH (4 /9y | 0.1576  0.0991  0.0507 0.0267  0.0076
v<126>GARC“(a /2) | 0.1669 0.1062 0.0560 0.0304  0.0090
L(126)GARCH () 3.4401 45562 61207 7.7282  12.3986

(C(252)6ARCH ) 0.6786 0.7981 0.8968 0.9460  0.9871

(
VPROARM (0 /2) | 0.1567  0.0978  0.0491  0.0255  0.0060
v(252’GARC“(a/2) 0.1647 0.1041 0.0541 0.0285  0.0069
) 34142 45235 6.0755 7.6329 122536

(@) | 06807 07994 08983 09479 0.9878
VEOVOARCH (o 19) | 01560  0.0975  0.0488  0.0248  0.0056
V<5°4>GARC“(a/2) 0.1633  0.1031  0.0529 0.0274  0.0066
L(GONCARCH () 33822  4.4801 6.0220 7.5581  11.7469
C(TIGARCH () 0.6920 0.8077 0.9036 0.9510  0.9897
VDGR (0 /2) | 01520  0.0935 0.0458 0.0228  0.0048
V“)GARCH(a/ 0.1560  0.0988 0.0505 0.0262  0.0055
L(TIGARCH () 34139 44942 6.0156 7.5369 11.6268

Q

L(252)GARCI—I(

((504)GARCH

[\
~

the fact that the coverage results of the two methods, for given ¢ and 7, are not independent. The situation is quite
similar to that of comparing paired proportions, where tests are to be carried out on the basis of the traditional
McNemar (1947) test. For given « and ¢, consider, for all ¢, the events (discordant GDFM and GARCH coverage
results)

Y4
AL @) = {Yirsr €T, () N Vi € T (@)

l
B (0) = {Yir € 271 (@) N Yirn € ZO5 (@)}

and define

T-1 T—1
n%)i(a) = Z H(.AE?H‘T(Q)) and ngzl)l(a) = Z ]I(BgT)H‘T(a)).

=T—M T=T—-M

Consider the null hypothesis under which the indicators of a successful interval prediction in both methods are
i.i.d. Bernoulli, with identical (but otherwise unspecified) coverage probabilities. The McNemar test of that hy-

pothesis is conditioning on the sum n((fzc (o) == n&?z( ) + nézl)i(a) of discordant coverage results: concordant

results indeed carry no information on a difference between coverage probabilities. Conditional on n@ (), the

disc,i
null distribution of ngg)i(oa) is binomial Bin(néi)c i(a), 0.5). At probability level 4, the test rejects in favour of

a better GDFM coverage for “large values” of n&Q)i(a), in favour of a better GARCH coverage for “small val-

ues” of the same (equivalently, “large values” of ngzl)i), with critical values the (1 — ¢) and ¢ binomial quantiles,
respectively.

Table 7 reports the McNemar empirical rejection frequencies (over the n = 90 series)—in favour of a better
GDFM coverage in the left-hand panel, in favour of a better GARCH coverage in the right-hand one. We consider
the cases in which a = 0.1 or 0.05, £ = 126 or 252, k7 = 0.25 (for the GDFM); testing was performed at
significance levels 6 = 0.1, 0.05, and 0.01. Irrespective of ¢ and «, the GDFM approach appears to outperform,
quite consistently and significantly, the GARCH one.

6.3 Coverage: backtesting

As explained in Section 4, a formal assessment of the validity of our approach can be based on the backtesting
procedure proposed by Christoffersen (1998). The idea consists in testing the null hypothesis (4.9) under which
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TABLE 7: Standard & Poor’s 100 Index data (n = 90 daily returns). Proportions of McNemar rejections in favour of a
better GDFM coverage (left-hand panel), in favour of a better GARCH coverage (right-hand panel).

better GDFM coverage better GARCH coverage
a=0.1 0=01 06=005 6=001|d6d=01 6=0.05 6=0.01
{=126 0.6000 0.5444 0.3667 0.1000 0.0778 0.0667
=252 0.5333 0.4556 0.2889 0.1333 0.1222 0.0889
a=005|0=01 6=005 6=001|6=01 6=0.05 6=0.01
¢ =126 0.4111 0.2778 0.1556 0.1111 0.0778 0.0556
=252 0.2556 0.2000 0.0556 0.1778 0.1222 0.1111

the ﬁ”H‘T(a)’s (the indicators of a successful interval prediction) are i.i.d. Bernoulli(1 — «). Depending on
the objectives, several alternatives can be considered. One can be interested (Section 6.3.1) in the validity of
interval prediction or the sharpness of the nominal coverage level. Else, one may consider (Section 6.3.2) alter-
natives of serial dependence. Or, those two issues can be combined (Section 6.3.3) by merging the corresponding
alternatives.

Irrespective of the alternative, however, it should be insisted that all those tests—one for each cross-sectional
item—are intrinsically univariate. When simultaneously performing several or all of them, one should be ex-
tremely cautious with the interpretation of the results. The tables we are providing below are reporting empirical
rejection frequencies (over the n = 90 series). Those n tests, however, are not functionally interrelated (as they
would be if the prediction intervals were based on the quantiles of common shocks only); hence, they are not
about testing the validity of joint prediction intervals with global asymptotic coverage level (1 — «). Neither are
they mildly interrelated (as they would be if the prediction intervals were exclusively based on idiosyncratic quan-
tiles), providing joint prediction intervals with global asymptotic coverage level of the order of (1 — «)™. High
rejection frequencies across the n series thus do not imply bad forecasting properties, but can result from complex
cross-sectional dependencies. A standard attitude would consist in adopting a Bonferroni or a Sidak correction;
for n = 90, and for a global testing level of 1%, this would lead to implementing the n = 90 individual tests at
an overly conservative level § ~ 0.0001 = 10~%—a level at which none of the null hypotheses under study is
rejected.

All tests below are performed for k7 = 0.25, a = 0.1 or 0.05, £ = 126 or 252; testing significance levels
are 0 = 0.1, 0.05, and 0.01.

6.3.1 Testing for valid or sharp conditional coverage probabilities

If we are interested in the validity of interval prediction, the relevant testing problems are (one-sided)

Hoi : B[H), | ()] > (1—0a) versus Hy:B[A | (a)] <(1-a). 6.1)

If instead we are interested in testing whether (1 — «), as a nominal confidence level, is sharp, the testing problems
are (still one-sided)
N N
Hoi :B[A, | ()] < (1—0a) versus Hy:E[#H (a)]>(1-a). 6.2)

Both testing problems (6.1) and (6.2), admit a level-é uniformly most powerful solution, rejecting Hp; whenever
the test statistic

ne)= Y HY ()

T=T—-M
falls below the binomial Bin(M,1 — «) quantile of order & when testing (6.1), or above the
Bin(M, 1 — «) quantile of order (1 — §) when testing (6.2). Since M is large, the same tests are well approximated

by rejecting Hy; whenever the proportion ng? (a)/M of correct coverage is smaller than (1 — «) — 25/ (1 — «)
when testing (6.1), or larger than (1 — «) + z51/a(1 — ) when testing (6.2), where z;5 stands for the (1 — 0)
standard normal quantile. A two-sided coverage test can also be computed

LRY (@)= (n{Y(a) = M(1 — a))*/Ma(1 - a), (6.3)

cover,i
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TABLE 8: Standard & Poor’s 100 Index data (n = 90 daily returns). Proportion of rejections when testing for valid nominal
coverage (6.1) (left-hand panel) and for sharp nominal coverage (6.2) (middle panel), and when considering the two-sided
test (6.3) (right-hand panel)

valid nominal coverage test sharp nominal coverage test two-sided coverage test

a=0.1 0=01 6=005 6=001|6=01 6=005 §6=001|5=01 §=0.05 6=0.01
£ =126 0.1444 0.1222 0.0889 0.2444 0.1444 0.0333 0.2667 0.1889 0.0778
=252 0.1556 0.1333 0.0778 0.3111 0.2111 0.0889 0.3444 0.2556 0.1333

a=005|06=01 6=005 6=001|6=01 6=005 6=001|5=01 6=0.05 6=0.01

{ =126 0.2889 0.1889 0.1333 0.0111 0.0000 0.0000 0.1889 0.1556 0.1000
=252 0.3000 0.2000 0.1444 0.0556 0.0111 0.0000 0.2111 0.1556 0.1333

with asymptotic X%1) null distribution (as M — c0).

Table 8 reports the empirical rejection frequencies (over n = 90 series) when testing (6.1) (left-hand panel)
and (6.2) (right-hand panel), respectively and using the normal approximation of the binomial. The general com-
ments above apply when interpreting those tables: the only valid global conclusions are those resulting from
Bonferroni or Siddk corrections, which do not lead to any rejections.

6.3.2 Testing against serial dependence

If the alternative of interest is serial dependence among coverage indicators, we propose considering, for each
individual stock i, alternatives of binary first-order Markov dependence. More precisely, defining the transition

probabilities
pri(e) = P (A (@) =k | (@) =h), hk=10,

i, 7+1|7 i,7|T—1

we consider the testing problem (with unspecified unconditional probability p;(«) of correct coverage)
Ho; : po1i(a) = p11i(a) =:pi(a)  versus  Hy; @ pori(@) # pr1i(a); (6.4)

note that po; ; () = p11,(a) automatically implies poo i () = p10,i(«). Defining

l Y4 l Y4
n{fi(a) = Z HE o @HS (@), niG() = n{) (@) = n{l(),
r=T—-M+1
¢ =l Y4 YA Y4
nyp(a) == Z A @1 =HD (@), nlgie) =nf) (@) —nii(a),
r=T—-M+1

the statistics , , ,
' (a) = (ngri(a) + nigi(@) /M
are estimators of the p;(«)’s under the null, while
¢ ¢ ¢
min(@) = i (@)/ni (), i) =1 -7 (a),
¢ ¢ ¢ [
77(()1)z‘(04) = n((]l)z(a)/(M - ngi)(a))v and 7T((Jo)z( )i=1- 77((J1)z(04)

are estimating the transition probabilities pjy, ;(«) under the alternative. Log-likelihoods under the null and the
alternative are

Loi(a) = (n () +nlg;(a)) log[L — 7 ()] + nli);(@) + n{%; () loglm” ()],
and

LY) (@) =nfgy(@)log[l — x) ()] + nd) (@) loglmyy; ()]

+nig () log[l — w2 ()] + nlY; () log[riD ()],

’It is easily seen that LREQV)er ; (@) is equivalent, up to a constant term, to the so-called “unconditional coverage” likelihood ratio test

statistic proposed in Section 3.1 of Christoffersen (1998) which therefore yields the same results.
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TABLE 9: Standard & Poor’s 100 Index data (n = 90 daily returns). Proportion of rejections when testing against serial
dependence (6.4) (left-hand panel) and in the combined problem (6.5) (right-hand panel).

a=0.1 0=01 6=005 6=001|6=01 6=0.05 6=0.01
{=126 0.3222 0.2222 0.0778 0.3667 0.2222 0.1222
=252 0.4000 0.3556 0.1889 0.4889 0.4222 0.2556
a=005|0=01 6=005 6=001|6=01 6=0.05 &6=0.01
£=126 0.2778 0.2000 0.0556 0.2778 0.2111 0.1222
=252 0.3667 0.2667 0.1667 0.3556 0.2667 0.2222

respectively. For any given ¢, « and /¢, thus, we can construct a likelihood-ratio test for (6.4), based on the
asymptotically X%1) null distribution (as M — oo) of LR () :=2 [L%)(a) — Loi(a)] (see also Section 3.2 in

ind,3
Christoffersen, 1998). More general alternatives, involving higher-order serial dependencies, could be considered
as well, based on the tests proposed by Dufour et al. (1998).
In Table 9 (left-hand panel), we report the proportions of rejections (over the n series) when testing (6.4). The

same remarks apply as in the interpretation of Table 8.

6.3.3 Combined test

Combining the above tests, a likelihood ratio test (given 4, «, and £) for
Ho; : por,i(a) = pr1i(a) = (1 —a) versus Hy; @ pori(a) # piri(e) or pori(a) = pii(a) # (1 —a) (6.5)

can be based on the asymptotically Xé) (as M — o0) null distribution of

(a) + LR ()

ind,?

LR’EK) (a) - LRéﬁzler,i

(see also Section 3.3 in Christoffersen, 1998). The fraction of rejections (over n series) when testing (6.5) is
reported in Table 9 (right-hand panel). The same remarks as in Table 8 still apply.

6.4 Discussion

In Table 10, we report (four panels, according to the values of « and £) the ten individual series for which the four
tests above return the most significant rejections. Rejecting in (6.1) the null hypothesis of a valid coverage (“small”
values of ng? /M) means that the approximations we are making in the construction of the intervals lead to a loss
of prediction accuracy for that specific series: the intervals for that series are not wide enough—equivalently, their
actual coverage probability is less than the nominal (1 — «) level. The series listed in the first column of each panel
thus are “hardest to predict”. Among them are stocks belonging to the Financial sector, as America International
Group (AIG), Bank of America (BAC), and Citigroup (C). These series, in particular, were among those mostly
affected by the great financial crisis. Rejecting in (6.2) the null hypothesis of a sharp coverage (‘“large” values
of n&? /M) also means that the approximations we are making in the construction of the intervals lead to a loss of
prediction accuracy for that specific series, now in the sense that we could do better: the intervals for that series are
too wide—their actual coverage probability is more than the nominal (1 — «) level. The series listed in the second
column of each panel thus are “easiest to predict”. Among them, stocks belonging to the Energy and Consumers
sectors, as Exxon Mobil (XOM), Cisco Systems (CSCO), and McDonalds (MCD).

When testing against serial dependence, rejection (“large” values of LRi(le ;(«)) indicates that the predic-
tive information available in past observations has not been fully exploited in the construction of the prediction
intervals. This could be the case, for example, if some informative idiosyncratic cross-correlation is available:
idiosyncratic cross-correlations indeed are not captured by our univariate autoregressive modelling of idiosyn-
cratic components. Alternative multivariate models for idiosyncratic components, such as sparse VAR, are likely
to improve on this (see e.g. the approach proposed in Barigozzi and Hallin, 2017b), and could be incorporated
into our two-step GDFM approach. We do not explore this any further in this paper, though. Such dependencies
could be related to sectoral co-movements which, being specific to some restricted sector, are not captured by the
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market-wide factors. This seems to be the case especially for Financial and Energy stocks. A symptom of that
phenomenon is the fact that the explained variance of the common component of the Financial stock returns is
about 30% less than the variance explained by the common component of all other stock returns. The importance
of this idiosyncratic variation, which is not accounted for by our approach, may explain why combined tests of
correct coverage and independence exhibit, for Financial stock returns, high rejection frequencies.
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7 Conclusions

In this paper, we consider a two-step GDFM approach for jointly modelling stock returns and their volatilities in
order to build conditional prediction intervals. A careful study of the consistency properties (as the cross-sectional
dimension n and the sample size T' both tend to infinity) of the resulting estimators is conducted. Those results
are the theoretical foundation of (Barigozzi and Hallin, 2016, 2017a,b, and Barigozzi et al., 2019); here, we are
using them in the construction of one-step-ahead prediction intervals.

We then apply our methodology to a panel of 90 daily returns of stocks listed in the S&P100. Through a
recursive exercise, we show that we are able to obtain one-step-ahead prediction intervals which are in general
more accurate than univariate GARCH methods.

Many extensions of this work are possible, which are left for future research. First, our empirical results
indicate that, by exploiting also the cross-sectional lagged dependencies among idiosyncratic components, we
could achieve better coverage especially for those series belonging to the Financial sector, which remains strongly
interconnected even after controlling for common factors. This could be achieved by computing predictions of
idiosyncratic components by fitting multivariate models such as sparse VARs. Second, our methodology imme-
diately allows us to consider bivariate or multivariate prediction intervals. Third, asymmetric prediction intervals
can also be considered. In particular, Value-at-Risk indicators are readily computable; moreover, by considering
many values of the coverage, we can approximate the whole conditional distribution of returns. Last, another
possible application consists in the construction od prediction intervals for macroeconomic variables as GDP or
inflation taking into account, in a way similar to Jurado et al. (2015), the uncertainty related to the business cycle.
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