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ERRATUM TO “LEFSCHETZ THEORY FOR
EXTERIOR ALGEBRAS AND FERMIONIC DIAGONAL

COINVARIANTS”

JONGWON KIM, ROBERTO PAGARIA, AND BRENDON RHOADES

This erratum corrects the proof of the main result [1, Thm. 5.2] of
[1, Sec. 5]. While this result is correct as stated, its proof is flawed.
We adopt the notation of [1, Sec. 5].

The total order ≺ is not a term order, so that [1, Lem. 5.3] loses
meaning. In particular, [1, Lem. 5.1] is false because the depth d(σ) is
not multiplicative.

Example 1. For n = 6, the elements u, v ∈ ∧{Θ6,Ξ6} given by
u = ξ1θ3ξ3θ4θ5ξ5 and v = θ1θ2ξ2θ4θ6ξ6 have the following lattice path
representations as in [1, Sec. 5]:

u • •

•

• •

•

•
ξ θ

v • •

•

• •

•

•
θ θ

Both u and v have degree 6 and depth −1. So u ≻ v because ξ1 ≻ θ1.
However ξ4u ≺ ξ4v because d(ξ1θ3ξ3θ4ξ4θ5ξ5) = −2 and d(θ1θ2ξ2θ4ξ4θ6ξ6) =
−1. Therefore the depth is not multiplicative and≺ is not a term order.

We correct the proof of [1, Thm. 5.2] as follows. We shall calculate a
Gröbner basis for the ideal In = ⟨δn⟩ ⊂ ∧{Θn,Ξn} where δn =

∑n
i=1 θiξi

with respect to the lexicographical term order <lex.
For each Motzkin path σ as in [1, Sec. 5], we define j(σ) to be the

x-coordinate where the depth d(σ) is achieved the first time. We have
d(σ) = 0 if and only if j(σ) = 0. If u, v are the Motzkin paths (or
monomials) in Example 1 then j(u) = 5, and j(v) = 2.
Given a Motzkin path σ = (s1, s2, . . . , sn) and i ≤ n we define ki to

be the difference between the y-coordinate of the starting point of si
and d(σ). For example k1 = −d(σ) and kj(σ)+1 = 0. For i ≤ j(σ) we
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introduce the exterior algebra elements

pi(σ) :=


(
∑

l>i θlξl)− kiθiξi si = (1, 1) is an up-step

θi si = (1, 0) is decorated by θ

ξi si = (1, 0) is decorated by ξ

1 si = (1,−1) is a down-step

and let p(σ) := p1(σ)p2(σ) · · · pj(σ)(σ) be their product. In Example 1

we have p(u) = ξ1(
∑6

l=3 θlξl − θ2ξ2)θ4 and p(v) = θ1. The definition of
p(σ) is motivated by the following identities

δkn = kθ1ξ1δ
k−1
n−1 + δkn−1

θ1δ
k
n = θ1δ

k
n−1

ξ1δ
k
n = ξ1δ

k
n−1

(δn−1 − kθ1ξ1)δ
k
n = δk+1

n−1

where δn−1 =
∑n

l=2 θlξl. Those identities are fundamental in the proof
of the following theorem.

Theorem 2. The initial ideal inlex(δ
k
n) with respect the lexicographical

term order contains all monomials σ with depth d(σ) ≤ −k.

Proof. We claim that the leading monomial of p(σ)δ
−d(σ)
n divides the

monomial wt(σ) and we prove this statement for all n by induction on
j(σ). The base case j(σ) = 0 is trivial because all monomials belong
to the ideal generated by δ0n = 1.
For the inductive step, we remove the first step s1 from σ to get a new

path τ = (s2, . . . , sn) involving only the variables θ2, . . . , θn, ξ2, . . . , ξn.
Notice that p(σ) = p1(σ)p(τ). We divide proof in three cases according
to the first step s1.
Case 1: s1 = (1, 1) is an up step.
We have d(τ) = d(σ)− 1, wt(σ) = wt(τ), and

p(σ)δ−d(σ)
n = p(τ)

(
(
∑
l>1

θlξl)− (−d(σ))θ1ξ1

)
δ−d(σ)
n

= p(τ)δ
−d(σ)+1
n−1 = p(τ)δ

−d(τ)
n−1 .

By induction, the leading term of p(σ)δ
−d(σ)
n = p(τ)δ

−d(τ)
n−1 divides wt(σ) =

wt(τ).
Case 2: s1 = (1, 0) is a horizontal step.
We assume that the horizontal step s1 is labelled with θ; the other

case is identical. We have d(τ) = d(σ), wt(σ) = θ1wt(τ), and

p(σ)δ−d(σ)
n = θ1p(τ)δ

−d(σ)
n = θ1p(τ)δ

−d(τ)
n−1 .

Notice that θ1 · lm(p(τ)δ−d(τ)
n−1 ) ̸= 0 and so the leading monomial

lm(p(σ)δ−d(σ)
n ) = θ1 · lm(p(τ)δ−d(τ)

n−1 )
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divides θ1 · wt(τ) = wt(σ) by the inductive hypothesis.
Case 3: s1 = (1,−1) is a down step.
We have d(τ) = d(σ) + 1, wt(σ) = θ1ξ1wt(τ), p(σ) = p(τ), and

p(σ)δ−d(σ)
n = −d(σ)p(τ)θ1ξ1δ

−d(σ)−1
n−1 + p(τ)δ

−d(σ)
n−1 .

The leading monomial of the element p(τ)θ1ξ1δ
−d(τ)
n−1 is equal to θ1ξ1 ·

lm(p(τ)δ
−d(τ)
n−1 ) ̸= 0. Moreover, the monomial θ1ξ1 · lm(p(τ)δ−d(τ)

n−1 ) is

bigger than every monomial appearing in p(τ)δ
−d(σ)
n−1 because we are

using the lexicographical term order. Hence the leading monomial

lm(p(σ)δ
−d(σ)
n ) = θ1ξ1lm(p(τ)δ

−d(τ)
n−1 ) divides the monomial θ1ξ1wt(τ) =

wt(σ) by inductive hypothesis.

We conclude that wt(σ) ∈ inlex(δ
−d(σ)
n ) ⊆ inlex(δ

k
n) for all k ≤ −d(σ)

and the proof is complete. □

The above theorem substitutes [1, Lem. 5.3]. The second part of the
proof of [1, Thm. 5.2] is correct and can be left unchanged.

Corollary 3. The set {p(σ)δn | σ s.t. d(σ) = −1} is a Gröbner basis
for the ideal In = ⟨δn⟩ with respect to the lexicographical term order.
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