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Abstract
Terrestrial ecosystems affect climate by reflecting solar irradiation, evaporative cool-
ing, and carbon sequestration. Yet very little is known about how plant traits affect cli-
mate regulation processes (CRPs) in different habitat types. Here, we used linear and 
random forest models to relate the community-weighted mean and variance values 
of 19 plant traits (summarized into eight trait axes) to the climate-adjusted proportion 
of reflected solar irradiation, evapotranspiration, and net primary productivity across 
36,630 grid cells at the European extent, classified into 10 types of forest, shrubland, 
and grassland habitats. We found that these trait axes were more tightly linked to log 
evapotranspiration (with an average of 6.2% explained variation) and the proportion 
of reflected solar irradiation (6.1%) than to net primary productivity (4.9%). The high-
est variation in CRPs was explained in forest and temperate shrubland habitats. Yet, 
the strength and direction of these relationships were strongly habitat-dependent. 
We conclude that any spatial upscaling of the effects of plant communities on CRPs 
must consider the relative contribution of different habitat types.

K E Y W O R D S
albedo, biodiversity change, climate change, climate-surface models, greenhouse gases, land 
use change, leaf economics spectrum, nature-based solutions, transpiration
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1  |  INTRODUCTION

Climate change and biodiversity loss pose two of the biggest 
threats to human well-being in the 21st century (Atwoli et al., 2021; 
Díaz et al., 2019; Steffen et al., 2015; Stocker et al., 2014; World 
Resources Institute,  2005). Nature-based solutions to protect, 
manage and restore natural ecosystems (IUCN, 2020) could provide 
viable options to mitigate both the climate and biodiversity crisis 
(Griscom et al., 2017; Seddon et al., 2020). Terrestrial ecosystems 
affect the local and global balances of energy, water, and carbon 
via their effects on the proportion of reflected solar irradiation 
(albedo), evapotranspiration and carbon sequestration (Anderson-
Teixeira et al., 2012; Chapin et al. 2008; Pielke et al., 1998), which 
are all related to important climate regulation processes (CRPs). 
The mass ratio hypothesis posits that the functioning of ecosys-
tems is driven by the traits of dominant species (Grime,  1998). 
Accordingly, one could assume that local CRPs should be re-
lated to the trait composition of local plant communities (Chapin 
et al., 2000; Díaz et al., 2016; Garnier et al., 2016; Hinojo-Hinojo 
& Goulden,  2020; Lavorel & Garnier,  2002), also in interaction 
with large-scale climatic gradients (Enquist et al., 2015). We fur-
ther know that trait-ecosystem functioning relationships depend 
on the type of habitat (Brun, Violle, et al., 2022). Yet, besides the 
current calls to link the distribution of plant functional traits and 
vegetation demographics to the distribution and provisioning of 
CRPs (Fisher et al., 2018; He et al., 2023; Mahecha et al., 2022), 
such analyses have been hampered by the need for fine-resolution 
vegetation data of regional to continental extent and trait infor-
mation across many plant species (cf. Mahecha et al., 2022; Serna-
Chavez et al., 2017).

Previous studies on the relationships between plant traits and 
CRPs have shown that albedo, which quantifies the proportion 
of reflected irradiation, differs between habitat types (Leonardi 
et al., 2015; Oehri et al., 2022) and is related to the tree cover, leaf 
reflectance, and the leaf area index (i.e., the summed area of green 
leaves per unit of ground area, Alibakhshi et  al.,  2020; Ridgwell 
et al., 2009) as well as the amount of plant litter in forest habitats 
(Serna-Chavez et al., 2017). Evapotranspiration, which is the sum of 

plant transpiration and evaporation from the land surface, is related 
to plant hydraulic strategies (Matheny et al., 2017), total plant cover, 
rooting depth and, potentially, the canopy height of plant communi-
ties (Gates & Hanks, 1967). Net primary productivity, which quanti-
fies the amount of carbon captured minus maintenance costs, differs 
between habitat types (Harper et al., 2016) and is related to the spe-
cific leaf area and leaf nitrogen, phosphorus, and chlorophyll content 
(He et al., 2023) as well as the carbon pool in the different layers 
of forest habitats (Serna-Chavez et al., 2017). In summary, the im-
pact of plant communities on local CRPs has been estimated to be of 
comparable magnitude to the impact of local climatic conditions on 
CRPs (Oehri et al., 2022; Serna-Chavez et al., 2017). Yet, most of the 
present findings are based on simulation and studies that covered 
a restricted number of habitat types or geographic extents. Thus, 
we still lack comprehensive analyses on the generality of traits-CRP 
relationships, especially under consideration of the potentially con-
founding effects of local climatic conditions and the habitat type 
under investigation (Figure 1, He et al., 2023).

Here, we used 49,809 geo-referenced vegetation-plot ob-
servations from the European Vegetation Archive (Chytrý 
et  al., 2016), classified into three broad habitats (forests, shrub-
lands, and grasslands) and 10 more narrowly defined habitat sub-
classes (based on the expert-based EUNIS classification, Chytrý 
et al., 2020, 2021) and, averaged across 36,620 grid cells of 500 m 
resolution, assigned them with the community-weighted mean 
(CWM) and variance values of 19 plant functional traits, as well 
as six bioclimatic variables and the proportion of reflected solar 
irradiation, evapotranspiration, and net primary productivity. We 
hypothesized that the three CRPs jointly depend on climate and 
on habitat types (Figure  1). Therefore, CRP values should differ 
between the investigated subclasses of forest, shrubland and 
grassland habitats. Since the effects of climate on plant trait dis-
tributions tend to be habitat-specific (Kambach et  al., 2023), we 
further hypothesized that the predictive power of CRP-trait re-
lationships should also depend on the habitat type under investi-
gation. Yet, if the selected 19 plant traits are (to a certain degree) 
mechanistically linked to the three CRPs, we hypothesized that 
the direction of the observed CRP-trait relationships should be 

F I G U R E  1 Framework depicting the assumed effects of the functional composition of plant communities on climate regulation processes, 
accounting for the effects of climate and habitat type.

 13652486, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.17189 by C

ochraneItalia, W
iley O

nline L
ibrary on [20/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    | 3 of 14KAMBACH et al.

similar among the different subclasses of forest, shrubland, and 
grassland habitats. In testing these hypotheses, we provide the 
first comprehensive analysis of the predictability and generality 
of trait-CRP relationships across large-scale gradients in climatic 
conditions and habitat types.

2  | MATERIALS AND METHODS

2.1  | Vegetation data

Raw vegetation survey data consisted of 1,735,298 plots, col-
lated and curated by the European Vegetation Archive (Chytrý 
et  al.,  2016) and accessed on May 12th, 2021 (project number 
123). Species abundances were converted to percentage cover. 
Each plot was assigned to a habitat type based on the expert sys-
tem for the automatic classification of European vegetation plots 
to EUNIS habitats (European Nature Information System), which 
was updated on October 25th, 2021 (Chytrý et al., 2020, 2021). 
For this study, we selected and merged all plots into the following 
broad habitat types: forest, grassland, or shrubland habitats and, 
at a finer level, into the following more-narrowly defined habitat 
subclasses: coniferous, deciduous, or broadleaved evergreen for-
ests, alpine, heathland or temperate shrublands and alpine, dry, 
mesic, or wet grasslands. The included EUNIS habitat types to-
gether with the respective number of vegetation records are listed 
in Table S1.

To be able to match plot data with satellite data and to reduce 
unaccounted variability in CRP-trait relationships, we included only 
those plots that met all of the following criteria: (1) species abun-
dances were recorded, (2) survey date was between January 1, 
2000, and December 31, 2017, (3) plot location was between the 
southernmost point of 34° N and the northernmost point of 82° N 
and east of the westernmost point of 32° W, (4) location uncertainty 
was reported and lower than 250 m, (5) water bodies covered less 
than 10% of the area in a 250 m radius (following the JRC Global 
Surface Water map, version 1.4, reprojected to 100 m spatial reso-
lution, Pekel et al., 2016), (6) all climatic and satellite variables could 
be extracted, (7) the cumulative percentage cover of vascular plants 
was more than 80% of the plot area, and (8) trait information was 
available for more than 80% of the summed cover of the recorded 
vascular plants. To reduce the effects of forest management, we 
excluded all plots that were classified as tree plantations (EUNIS 
classes T1H, T1K, T29, T2A, T3M, and T3N) or self-sown forests of 
non-native trees (T1J and T3L).

To match trait data to individual species, we harmonized the 
species names with the Taxonomic Name Resolution Service 5.0 
(tnrs.​biend​ata.​org), merged subspecies and varieties at the species 
level (keeping higher level taxa) and matched the resulting species 
list with the taxonomic backbone 3.0 of the sPlot Global Vegetation 
Database (Bruelheide et  al.,  2019). The resulting species names 
complied with the taxonomy of the TRY plant trait database (Kattge 
et  al.,  2020). We omitted all algae, bryophyte, fungi, and lichen 

species and, separately for each of the 10 habitat subclasses, we re-
tained only the most recent record for each unique location, which 
resulted in 49,809 plots with 1,334,114 occurrence observations 
from 6,214 species, distributed between 10.3° W and 50° E and 
35.2° N and 59.5° N, with the highest density in Central Europe (indi-
vidual databases are listed in Table S2).

2.2  |  Community-weighted trait means

To assign species-level trait averages, we used the gap-filled TRY 
plant trait database, version 5 (Kattge et al., 2020), which covered 
species-level mean values for 33 traits from 50,404 species. In 
this gap-filled dataset, any missing trait values were predicted at 
the individual level with Bayesian hierarchical probabilistic matrix 
factorization based on observed trait records, bivariate Pearson 
correlations between all pairs of traits (Figure S1), and the taxo-
nomic hierarchy (see Kambach et al., 2023; Schrodt et al., 2015; 
Shan et al., 2012). The original publications for the trait data are 
listed in Table S3. From this gap-filled dataset, we extracted spe-
cies- and genus-level average values of 19 traits that we deemed 
potentially important for the analyzed CRPs (listed at the bottom 
of Table 1 and described in Table S4). We matched and extracted 
species-level trait values for 4,139 species and, when no species-
level estimates were available, we assigned the genus-level mean 
values to an additional number of 385 species. For each trait in 
each plot, we calculated a community-weighted mean (CWM) and 
community-weighted variance (CWV) value based on the trait 
value t and the abundance (i.e., relative cover) p of species i = 1 … n 
(as presented in Bruelheide et al., 2018).

All CWMs were log-transformed.
To match the spatial resolution between vegetation and satel-

lite data, we calculated an average value for each of the 19 CWMs 
and CWVs within each trait × habitat combination within the 500 m 
grid cells of the albedo raster data (which is described below). The 
resulting dataset contained 36,620 grid cell records (Figure S2) from 
coniferous (3,452 grid cells), deciduous (10,742), and broadleaved 
evergreen forests (532), alpine (600), heathland (922), and temper-
ate shrublands (854) and alpine (1,051), dry (6,163), mesic (8,546), 
and wet grasslands (3,758). For the following analyses, we scaled all 
grid cell-averaged CWM and CWV values to unit variance (via sub-
traction of the mean followed by division of the standard deviation).

To remove the covariation among the 19 CWMs, we con-
ducted separate principal component (PC) analyses (within the 
EUNIS level 1classification, i.e., within forests, shrublands and 
grasslands) and extracted the first eight PCs, which we varimax-
rotated to maximize the correspondence of the PCs to individual 
plant traits (hereafter main trait axes). The resulting first four trait 
axes were related to known gradients of plant trait syndromes 

CWM =

n
∑

i

piti CWV =

n
∑

i

pi
(

ti−CWM
)2

i .
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along the leaf economics spectrum, leaf size/leaf mass and plant 
height/seed size (Díaz et al., 2016; Weigelt et al., 2021), whereas 
trait axes five to eight were mostly related to single traits (Table 1; 
Tables S5–S7).

2.3  |  Bioclimatic variables

For each plot, we extracted the 19 bioclimatic variables from the 
CHELSA Climatologies, version 1.2 (Karger et al., 2017, 2018), and 
the following CHELSA-BIOCLIM+ variables (at a resolution of 30 arc 
sec [~1 km], Brun, Zimmermann, et  al., 2022; Karger et  al., 2017): 
climate moisture index, growing season length, growing season 
precipitation, growing season temperature, potential net primary 
productivity, potential evapotranspiration, surface downwelling 
shortwave radiation, near-surface wind speed and soil water bal-
ance (Brun, Zimmermann, et al., 2022). To match the spatial resolu-
tion between vegetation and satellite data, we calculated an average 
value for each of the 19 bioclimatic and the six BIOCLIM+ variables 
in each trait × habitat combination within the 500 m grid cells of the 
albedo raster data (which is described below). To reduce the number 
of bioclimatic variables for the following analyses, we conducted a 
PC analysis with all bioclimatic and BIOCLIM+ variables and, after 
visual inspection of the resulting PCs (Figure  S3), we decided to 
keep the following six BIOCLIM+ variables for all further analyses: 
climate moisture index, growing season length, temperature, precip-
itation, surface downwelling shortwave radiation and near-surface 
wind speed. These six BIOCLIM+ variables were reasonably weakly 
correlated with each other (pairwise Pearson's r < .6). Yet, they cap-
tured 94.2% of all the variability of the 19 bioclimatic variables, as 

estimated with a constrained PC analysis. The spatial distributions of 
the grid-cell averaged values of the six selected BIOCLIM+ variables 
are shown in Figure S4.

2.4  |  Climate regulation variables

For each vegetation plot, we calculated (1) the annual proportion of 
reflected irradiation, (2) the annual evapotranspiration, and (3) the 
net primary productivity from satellite data.

1.	 To quantify the proportion of reflected irradiation, we used 
monthly mean albedo and monthly mean solar surface radia-
tion estimates from 2001 to 2017. Monthly mean albedo was 
determined as the black-sky albedo for the shortwave broad-
band from the Moderate Resolution Imaging Spectroradiometer 
(MODIS) product MCD43A3 version 6 (Schaaf & Wang,  2015), 
which provides daily albedo estimates (based on 16 days of 
observation) at a resolution of 500 m and was pre-processed 
by the Google Earth Engine Catalogue (Gorelick et  al.,  2017). 
Monthly mean solar irradiation was quantified using monthly 
mean surface incoming shortwave radiation from the Satellite 
Application Facility on Climate Monitoring of the European 
Organization for the Exploitation of Meteorological Satellites 
(EUMESAT CM SAF) product SARAH-2.1, which is available 
at a resolution of 0.05° × 0.05° (~5 km) and was processed to 
a 500 m resolution (Pfeifroth et  al.,  2019). Monthly average 
albedo values were multiplied with the monthly average solar 
irradiation to determine the absolute amount of monthly re-
flected irradiation. These monthly reflected irradiation values 

TA B L E  1 Varimax-rotated principal components of 19 community-weighted mean traits.

Main axes structuring the relationships among community-weighted mean trait values

Forests Shrublands Grasslands

PCA 1 25.4% Leaf economics spectruma 27.1% Leaf economics spectruma 18.5% Leaf economics spectruma

PCA 2 16.8% Leaf size 17.8% Leaf size 17.8% Leaf size

PCA 3 10.8% Stem diameter/plant height 11.5% Stem conduit diameter/leaf 
delta 15N

12.4% Leaf water content

PCA 4 9.8% Stem conduit density 9.1% Stem diameter/plant height 8.4% Stem diameter/plant height

PCA 5 8.1% Leaf thickness 6.5% Leaf thickness 7.7% Rooting depth

PCA 6 6.1% Rooting depth 6.1% Specific root length 6.8% Stem specific density

PCA 7 6.1% Specific root length 5.8% Rooting depth 6.1% Stem conduit density

PCA 8 5.9% Stem conduit diameter 5.6% Stem specific density 6% Stem conduit diameter

∑ = 88.9% ∑ = 89.4% ∑ = 83.7%

Note: Numbers show the individual and summed variation captured by the first eight varimax-rotated principal component axes within forests, 
shrublands and grasslands (see Tables S5–S7). Axis naming was based on the most strongly correlated traits. Vegetation traits included in principal 
component analyses: Leaf dry matter content, leaf nitrogen isotope signature* (leaf delta 15N), leaf area*, leaf carbon content, leaf carbon to nitrogen 
ratio, leaf dry mass, leaf fresh mass, leaf nitrogen content, leaf phosphorous content, leaf thickness, leaf water content, plant height*, rooting depth*, 
specific leaf area*, specific root length*, stem conduit density*, stem conduit diameter*, stem specific density, and stem diameter. “*” Indicates traits 
included in supplementary analyses on the effects of single CWMs (Figure S8a–d) and CWVs (Figure S9a–d).
Abbreviations: CWM, community-weighted mean; CWV, community-weighted variance.
aRefer Díaz et al. (2016).
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were summed across the year to obtain the annual reflected 
irradiation and divided by the summed monthly mean solar irra-
diation to obtain the annual proportion of reflected irradiation.

2.	 Mean annual evapotranspiration from 2001 to 2017 was ex-
tracted from the MODIS product MOD16A3GF version 6.1 
(Running et al., 2021), which provides the annual total of evapo-
transpiration (in kg/m2) at a resolution of 500 m. The obtained 
values of evapotranspiration were log-transformed prior to the 
following statistical analyses.

3.	 Mean annual net primary productivity (in kg C m−2) from 2001 to 
2017 was extracted from the MODIS product MOD17A3HGF 
version 6 (Running & Zhao, 2019), which provides gap-filled yearly 
estimates at a resolution of 500 m.

To match the spatial resolution between vegetation and satellite 
data, we calculated an average value for each of the three climate 
regulation variables in each trait × habitat combination within the 
500 m grid cells of the albedo raster data. The spatial distribution 
and relationships between the grid cell-averaged values of the three 
CRPs are shown in Figures S5 and S6.

2.5  |  Statistical analyses

Variations in mean CRP values among the 10 more narrowly defined 
habitat types were analyzed with separate analyses of variances, 
followed by post-hoc pairwise Tukey Honest Significant Difference 
tests for multiple comparisons at p < .05 (two-sided).

All following analyses were separately conducted for each com-
bination of the 10 habitats and the three CRPs. We accounted for 
the effects of climate on the distribution of CRPs by applying lin-
ear regression models with the CRPs as the dependent and the six 
BIOCLIM+ variables as independent predictor variables and we 
extracted the model residuals (i.e., the climate-adjusted variation in 
CRPs) for further analyses.

We analyzed the relationships between the climate-adjusted 
CRPs and the eight main trait axes as predictor variables with ran-
dom forest models because they can capture complex non-linear and 
interaction patterns. For each combination of habitat type and CRP, 
we constructed a separate random forest model from 2,000 indi-
vidual trees with two randomly sampled candidate variables at each 
split, which should minimize the out-of-bag error rates, according to 
prior tests with different numbers of candidate variables. From each 
random forest model, we quantified the relative importance and 
the significance of each predictor variable. Relative importance was 
determined as the mean increase in mean squared error when the 
focal variable was randomly permuted. Predictor significance was 
determined by comparing the value of the variable importance met-
ric against a null distribution obtained from 99 random permutations 
of the response variable (based on random data subsets of up to 
2,000 grid-cell observations to speed up computations). Significant 
trait-CRP relationships were illustrated by calculating the marginal 
effects from the respective random forest model. To increase the 

interpretability of the resulting partial dependence splines, we ap-
plied a locally estimated scatterplot smoothing (loess smoothing) 
with an alpha parameter of 0.2.

To check if the observed variability and multimodality of the 
obtained trait-CRP relationships could be an artifact from the ap-
plied random forest approach, we repeated all analyses with ordi-
nary linear regression instead of random forest models. From each 
linear-effects model, we determined the set of significant predictors 
by selecting the best model from the pool of all potential predic-
tor combinations (based on the lowest Akaike information criterion) 
and we inferred the relative importance of the resulting significant 
predictors from the absolute of the t-statistic of the corresponding 
coefficient estimates. Individual relationships between significant 
predictors and individual CRPs were calculated as marginal regres-
sion slopes.

To check if our aggregation of 19 CWMs into eight main trait 
axes could have blurred any individual effects of single traits means 
or variances, we repeated the outlined linear-effects analyses with 
the grid cell-averaged CWMs and CWVs of the following eight traits: 
plant height, leaf area, specific leaf area, leaf nitrogen isotope signa-
ture, rooting depth, specific root length, stem conduit density and 
stem conduit diameter.

2.6  |  Software

We extracted plot-level information from satellite-derived CRP and 
bioclimatic data with the Google Earth Engine platform (Gorelick 
et al., 2017) and the NASA Application for Extracting and Exploring 
Analysis Ready Samples (appee​ars.​earth​datac​loud.​nasa.​gov, ac-
cessed on November 1st, 2021). An example of the generated earth-
engine code is stored at github.​com/​Steph​anKam​bach/​trait​-​clima​te_​
regul​ation_​relat​ionships. All statistical analyses were conducted in 
R (R Core Team, 2022) using the packages edarf for partial depend-
ence plots (Zachary & Linder, 2017), FactoMineR for PC analysis (Lê 
et al., 2008), ggeffects for marginal regression slopes (Lüdecke, 2018), 
ggplot2 for data visualization and smoothing via generalized addi-
tive models (Wickham,  2016), MuMIn for AIC-based model selec-
tion (Bartoń, 2022), randomForest for random forest models (Liaw & 
Wiener, 2002), and rfPermute to determine the significance of ran-
dom forest predictor variables (Archer, 2023).

3  |  RESULTS

Mean values of the grid-cell averaged CRPs differed significantly 
between the investigated habitat types (see Figure 2, p < .001 with 
F9, 36,610 = 2,212, 3,98.7 and 1,277 for the proportion of reflected 
irradiation, log evapotranspiration, and net primary productivity, 
respectively). In comparison to all other habitats, we observed that 
broadleaved evergreen forests had the highest productivity and 
evapotranspiration and the lowest proportion of reflected irradia-
tion. Alpine shrubland and grassland habitats, on the contrary, had 
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the highest proportion of reflected irradiation and the lowest net 
primary productivity.

Across all habitats, climate explained, on average, 37.9% of the 
observed variation in the proportion of reflected irradiation, 28.0% 
of the variation in evapotranspiration and 43.8% of variation in net 
primary productivity (Figure 3). Here, the highest proportion of CRP 
variability could be explained in alpine grasslands (66% and 66.6% in 

the proportion of reflected irradiation and net primary productivity, 
respectively).

After accounting for the effects of climate, the eight main trait 
axes explained the highest proportion of remaining climate-adjusted 
variation in log evapotranspiration (6.2%), followed by the propor-
tion of reflected irradiation (6.1%), and net primary productivity 
(4.9%). Yet, the specific proportion of explained variation in CRPs 

F I G U R E  2 Distributions and box-whisker-plots of observed climate regulation processes in forest, shrubland, and grassland habitats. 
Different letters indicate significant differences between habitats according to Tukey honest significant difference tests for multiple 
comparisons at p < .05.
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    | 7 of 14KAMBACH et al.

depended on the CRP and habitat type investigated and ranged 
from 0% for the proportion of reflected irradiation and net primary 
productivity in heathland shrublands to 17% for the proportion of 
reflected irradiation in evergreen forests (Figure 3).

The relative predictive importance of the first four main trait 
axes for the three climate-adjusted CRPs was highly habitat-specific, 
even among habitat types that belonged to the same broad habi-
tat class (Figure 4). The lowest number of significant CRP predictors 
was found in heathland shrublands and for log evapotranspiration in 
deciduous and evergreen forests. Individual relationships between 
climate-adjusted CRPs and the gradients in the leaf economics spec-
trum, leaf mass and plant height were also habitat- and CRP-specific, 
indicating mostly monotone (linear and nonlinear), sometimes uni-
modal, and rarely multimodal relationships (Figure 5).

This observed habitat-specificity of the importance and direc-
tion of trait-CRP relationships also emerged when analyzed with 
linear-effects models (Figure  S7a–c). In comparison with random 
forest models, the linear-effects analyses yielded fewer significant 
predictors with altered relative importance ranks. Across habi-
tats, we found consistent negative relationships between the plant 
height axis and the proportion of reflected irradiation, positive rela-
tionships between the leaf size axis and log evapotranspiration and 
positive relationships between the leaf economics spectrum and net 
primary productivity (Figure S7a–c).

Regarding the effects of the CWMs and CWVs of single traits, 
we found that the pattern in the explained variation in climate-
adjusted CRPs was similar between CWMs and CWVs, albeit CWVs 
had a generally lower predictive power than CWMs (cf., Figures S8a 
and S9a). Analogue to the importance of the main trait axes, the rel-
ative predictive importance of single CWMs and CWVs depended 
on the CRP and habitat investigated (cf., Figures S8b and S9b). Only 
for the proportion of reflected irradiation, the CWV of plant height 
emerged as the first- or second-best predictor in eight out of the 10 
habitats. In search for consistency patterns in trait-CRP relationships 

(cf., Figures S8c,d and S9c,d), we observed that the proportion of 
reflected irradiation was negatively correlated with the CWM and 
CWV of plant height (except for broadleaved evergreen forests). 
Log evapotranspiration was positively correlated with the CWM 
and CWV of plant height, leaf area, specific leaf area, and stem con-
duit diameter (except for broadleaved evergreen forests and alpine 
shrublands) and negatively correlated with the CWM and CWV of 
rooting depth. Net primary productivity was positively correlated 
with the CWM and CWV of plant height and specific leaf area (ex-
cept for forest habitats).

4  | DISCUSSION

In this study, we showed that, after accounting for the effects of 
local climatic conditions, the functional composition of plant com-
munities within certain habitat types is significantly related to the 
local provisioning of CRPs. Our results demonstrated that CWMs 
and CWVs of individual traits are linked to differences in the ob-
served proportion of reflected irradiation, evapotranspiration, and 
net primary productivity. These relationships are stronger for the 
means than for the variances of individual traits, suggesting that cli-
mate regulation functions are rather determined by the functional 
composition than by the functional diversity of plant communi-
ties. Yet, as often observed in ecology, the strength and direction 
of the resulting trait-CRP relationship depended on the CRP and 
the habitat type investigated (e.g., Alibakhshi et al., 2020; Kambach 
et al., 2023; Oehri et al., 2022).

Overall, the climate-adjusted predictive power of vegetation 
traits was relatively low and the distribution of all three CRPs 
was more strongly related to differences in locally prevailing cli-
matic conditions (like in Serna-Chavez et  al.,  2017). In particular, 
habitats covered by snow for longer periods (i.e., alpine habitats) 
showed the highest proportion of reflected solar irradiation and the 

F I G U R E  3 Proportion of variation in climate regulation processes (CRPs) explained by climate (with linear models) and the eight main 
trait axes (with random forest models). The variation explained by climate (in grey) refers to the total explained variation between CRPs 
and six bioclimatic variables. The variation explained by the trait composition (in color) refers to the explained variation between the 
climate-adjusted CRPs (i.e., the residuals from the climate models) and the eight varimax-rotated principal components from the community-
weighted mean values of 19 plant traits.
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8 of 14  |     KAMBACH et al.

lowest productivity. Since climatic gradients across the European 
continent are a significant driver of the distribution of plant traits 
(Kambach et al., 2023), the remaining predictive power of commu-
nity mean traits for the climate-adjusted CRPs might be expected 
to be rather low. Yet, for temperate forests, our approach of using 
non-linear relationships with the main trait axes yielded a compara-
ble or higher predictive power than previous linear analyses among 
North American forests (12.6% vs. 12% for albedo, 4.7% vs. 1% for 
evapotranspiration, and 4.6% vs. 0% for net primary productivity, 
cf. Serna-Chavez et  al., 2017). The relatively high predictability of 
reflected irradiation in broadleaved evergreen forests might be a 
result of the less pronounced seasonality and the absence of snow. 
Tighter trait-CRP relationships for forests and shrublands (as com-
pared to grasslands) might be explained by the co-occurrence of 
woody and non-woody plant species, resulting in a wider range of 
plant traits and higher structural complexity, which has been found 
to be a significant predictor for the reflection of solar irradiation 
(Alibakhshi et al., 2020; Ridgwell et al., 2009). We hypothesize that 

higher predictive power for CRPs could be achieved if future studies 
of trait-CRP relationships include additional mechanistic traits. For 
instance, the proportion of reflected irradiation is also shaped by 
leaf angle, glaucousness, and cuticular waxes, mesophyll compart-
mentation and canopy nitrogen content (Grant et al., 2003; Harding 
& Pomeroy,  1996; Hollinger et  al.,  2010; Holmes & Keiller, 2002; 
Thomas & Rowntree,  1992). Evapotranspiration is influenced by 
the water-use strategy and its associated traits, such as diffusion 
resistance, stomata density and type of photosynthesis (Gates & 
Hanks, 1967; Kannenberg et  al., 2022; Matheny et  al., 2017). Net 
primary productivity is additionally affected by the leaf CO2 uptake, 
chlorophyll content, and the structural density of the plant commu-
nity as quantified by the leaf area index (He et  al., 2023; Hinojo-
Hinojo & Goulden, 2020). Yet, most of the required trait data are not 
(yet) available for a sufficient large number of plots or plant species.

The observed high degree of habitat-specificity in trait effects 
on ecosystem functioning has also been reported for the productiv-
ity of grassland types (Brun, Violle, et al., 2022) and is supported by 

F I G U R E  4 Relative importance of the first four main trait axes for predicting the three climate-adjusted climate regulation processes 
with random forest models. The numbers in the circles indicate the relative importance rank of significant trait axes (cf., Table 1) within each 
combination of climate regulation process and habitat (non-significant trait axes are omitted). % Increase in MSE − mean increase in mean 
squared error when the focal trait axis randomly permuted. Trait pc3/4 refers to trait axes that represent stem conduit density in forests, 
stem conduit diameter/leaf delta 15N in shrublands and leaf water content in grasslands.
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    | 9 of 14KAMBACH et al.

F I G U R E  5 Partial dependence plots from random forest models showing the marginal effects of the first four main trait axes on 
climate-adjusted climate regulation processes. Partial dependence splines were smoothed with generalized additive models to increase 
interpretability. Trait pc3/4 refers to trait axes that represent stem conduit density in forests, stem conduit diameter/ leaf delta 15N in 
shrublands and leaf water content in grasslands (cf., Table 1).
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different effects of specific leaf area on light reflectance in tropical 
versus northern hardwood forests (Doughty et al., 2018; Limberger 
et  al.,  2021; Sullivan et  al.,  2013). Further inconsistencies in the 
observed strength, direction and non-linearity of trait-CRP rela-
tionships might be partly explained by the application of complex 
random forest models as well as the classification into 10 habitat 
types of which each one included multiple Level-3 EUNIS habitats 
(Table S1) that might differ in biophysical properties and trait-climate 
relationships (Kambach et al., 2023). Accordingly, linear-effect mod-
els tended to yield more consistent trait-climate relationships (at 
least for some traits), such as plant height and leaf area being mostly 
positively associated with a lower proportion of reflected irradia-
tion and higher evapotranspiration and net primary productivity 
rates. In temperate and boreal forest, these results are supported by 
findings of short-statured or broadleaved stands showing a higher 
proportion of reflected irradiation than comparable stands (Halim 
et al., 2019; Serna-Chavez et al., 2017).

Since our analyses were based on plot-level plant surveys, we 
could not account for unreported variables such as soil conditions, 
topography, ecosystem management, or the effects of the sur-
rounding landscape (Serna-Chavez et al., 2017, 2018). Our analyses 
did not account for the spatial scale of trait-CRP analyses (Fisher 
et al., 2018), although previous investigations concluded that trait-
CRP relationships might be more pronounced at grid-cell resolution 
>500 m (Serna-Chavez et  al., 2018). Our dataset further only per-
mitted the assignment of plant trait values at the scale of species 
and not at the site-level, which neglected any specific characteristics 
of local populations and might have reduced the predictive power 
of the analyzed trait-CRP relationships. CWM and variance values 
were only based on species abundances and, thus, did not account 
for potentially significant effects of individual keystone species 
(shown for productivity by Brun, Violle, et al., 2022) or the effects of 
canopy versus understory species in forest and shrubland habitats 
(as shown by Serna-Chavez et al., 2017). Also, we could not include 
the effects of leaf area index, as this important measure of vege-
tation structural density was already used to calculate evapotrans-
piration and net primary productivity in the MODIS data (Running 
et al., 2021; Running & Zhao, 2019).

In this study, we demonstrated that changes in the functional 
composition of local plant communities (especially in forest habi-
tats) can significantly affect the local reflectivity and evapotrans-
piration, with likely effects on local temperature regimes (Alkama 
& Cescatti,  2016). Considering the limitations of our approach to 
link plot-level vegetation data with satellite-based climate regulation 
data, the actual effects of vegetation traits on the provisioning of 
CRPs might be expected to be stronger than shown here. Still, the 
extent to which our correlative results can be translated into nature-
based solutions to mitigate the effects of climate warming on the 
local scale (Alkama et  al.,  2022) is far from understood. In search 
for management options to mitigate the climate and biodiversity cri-
sis (Gardner et  al.,  2020), we still need a better understanding of 
how the structure, functional composition, and potentially the di-
versity of different habitats is related to the provisioning, stability, 

seasonality, or trade-offs among different CRPs. Based on the find-
ings of this study, we emphasize (i) a need for further fine-scaled 
studies that help us to better predict the local effects vegetation 
shifts and (ii) the necessity of any upscaling approaches and climate 
models to consider the proportions of different habitats, as the cli-
mate regulation effects of plant communities tend to be site- and 
habitat-specific.
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