
12 August 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Macaluso, A., Clissa, L., Lodi, S., Sartori, C. (2020). A Variational Algorithm for Quantum Neural Networks
[10.1007/978-3-030-50433-5_45].

Published Version:

A Variational Algorithm for Quantum Neural Networks

Published:
DOI: http://doi.org/10.1007/978-3-030-50433-5_45

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/765667 since: 2024-02-12

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1007/978-3-030-50433-5_45
https://hdl.handle.net/11585/765667

A Variational algorithm
for Quantum Neural Networks

Antonio Macaluso1, Luca Clissa2,3, Stefano Lodi1, and Claudio Sartori1

1 Dept. of Computer Science and Engineering, University of Bologna, Bologna, Italy
2 Dept. of Physics and Astronomy, University of Bologna, Bologna, Italy

3 Istituto Nazionale di Fisica Nucleare (INFN), Bologna, Italy
{antonio.macaluso2, luca.clissa2, stefano.lodi, claudio.sartori}@unibo.it

Abstract. Quantum Computing leverages the laws of quantum me-
chanics to build computers endowed with tremendous computing power.
The field is attracting ever-increasing attention from both academic and
private sectors, as testified by the recent demonstration of quantum
supremacy in practice. However, the intrinsic restriction to linear op-
erations significantly limits the range of relevant use cases for the appli-
cation of Quantum Computing. In this work, we introduce a novel vari-
ational algorithm for quantum Single Layer Perceptron. Thanks to the
universal approximation theorem, and given that the number of hidden
neurons scales exponentially with the number of qubits, our framework
opens to the possibility of approximating any function on quantum com-
puters. Thus, the proposed approach produces a model with substantial
descriptive power, and widens the horizon of potential applications al-
ready in the NISQ era, especially the ones related to Quantum Artificial
Intelligence. In particular, we design a quantum circuit to perform linear
combinations in superposition and discuss adaptations to classification
and regression tasks. After this theoretical investigation, we also pro-
vide practical implementations using various simulation environments.
Finally, we test the proposed algorithm on synthetic data exploiting both
simulators and real quantum devices.

Keywords: Quantum AI ·Quantum Machine Learning ·Quantum Com-
puting · Quantum Variational Algorithms · Machine Learning · Neural
Networks

1 Background and Motivation

The field of quantum computing (QC) has recently achieved a historic milestone
with quantum supremacy [1], thus attracting increasing interest and fostering
future research. One of the topics in which QC may have a higher impact is
Quantum Machine Learning (QML), i.e. a sub-discipline of quantum informa-
tion processing whose intent is developing quantum algorithms that learn from
data. However, the ability to deliver a significant boost in performance through
quantum algorithms on near-term devices is still to be demonstrated. Given
these premises, Neural Networks (NN) are among the most desired targets when

2 A. Macaluso et al.

coming to transposing classical models into their quantum counterpart. In fact,
NN have demonstrated remarkable performances in many real-world applica-
tions and multiple learning tasks, including clustering, classification, regression
and pattern recognition.

In this work, we introduce a general model framework that reproduces a
quantum state equivalent to the output of a classical Single Layer Perceptron
(SLP). This is achieved by implementing an efficient variational algorithm that
performs linear combinations in superposition. The results are then passed al-
together through an activation function with just one application. Importantly,
the framework supports pluggable activation function routines, thus allowing an
easy way to adapt the approach to different use cases. In Section 2, we design
a quantum circuit that generates a quantum SLP (qSLP) with two hidden neu-
rons. Section 3 is devoted to practical experiments to test our model as a linear
classifier. Finally, Section 4 describes how our approach can be extended to the
case of more hidden neurons.

1.1 Quantum Variational Algorithms

The construction of full-scale, error-corrected quantum devices still poses many
technical challenges. At the same time, significant progress has been made in
the development of small-scale quantum computers, thus giving rise to the so-
called Noisy Intermediate-Scale Quantum (NISQ) era. For this reason, many
researchers are currently focusing on algorithms for NISQ machines that may
have an immediate impact on real-world applications, e.g. chemistry [2] and
optimisation [3,4].

Such machines, however, are still not sufficiently powerful to be a credible al-
ternative to the classical ones. For this reason, hybrid computation was proposed
to exploit near-term devices to benefit from the performance boost expected
from quantum technologies. Quantum variational algorithms [5,6] represent the
most promising attempt in this direction, and they are designed to tackle opti-
misation problems using both classical and quantum resources. The latter com-
ponent is referred to as variational circuit, and it presents three ingredients: i)
a parametrised quantum circuit U(x; θ), ii) a quantum output f(x; θ) and iii)
an updating rule for the parameters θ.

The general hybrid approach is illustrated in Figure 1. The data, x, are
initially pre-processed on a classical device to determine the input quantum
state. The quantum hardware then prepares a quantum state |x〉 and computes
U(x; θ) with randomly initialised parameters θ. After multiple executions of
U(x; θ), the classical component post-processes the measurements and generates
a prediction f(x; θ). Finally, the parameters are updated, and the whole cycle is
run multiple times in a closed loop between the classical and quantum hardware.

Interestingly, the first practical demonstration of quantum advantage over
classical supercomputers is related precisely to variational algorithms [7]. Other
applications related to Machine Learning (ML) problems were also explored [8,9].
More recently, Schuld et al. [10] proposed a low-depth variational algorithm for

A Variational algorithm for Quantum Neural Networks 3

Fig. 1: Scheme of a hybrid quantum-classical algorithm for supervised learning.
The quantum variational circuit is depicted in green, while the classical compo-
nent is represented in blue.

classification. The strengths of this approach are two-fold. On one side, the pos-
sibility of learning gate parameters enables the adaptation of the architecture
for different use cases. On the other hand, the choice of amplitude encoding al-
lows obtaining model predictions with a single-qubit measurement. Importantly,
simulations on standard benchmark datasets showed good performances, with
the advantage of requiring fewer parameters than classical alternatives.

1.2 Neural Network as Universal Approximator

A Single Hidden Layer Neural Network (or Single Layer Perceptron - SLP) [11]
is a two-stage model suitable for both classification and regression. Given a
training point (xi, yi), the output of a feedforward NN with a single hidden
layer containing H neurons can be expressed as:

f(xi) = σout

 H∑
j=1

βjσhid (L(xi; θj))

 . (1)

Each hidden neuron j computes a linear combination, L(·), of the input features
xi ∈ Rp with coefficients given by the p-dimensional vector θj . This operation
is performed for all neurons, and the results are individually fed into the inner
activation function σhid. The outputs of the previous operation are then lin-
early combined with coefficients βj . Finally, a task-dependent outer activation
function, σout, is applied.

Despite being more straightforward than the deep architectures proposed in
recent years, the SLP model can be very expressive. According to the universal

4 A. Macaluso et al.

approximation theorem [12], in fact, a SLP with a non-constant, bounded and
continuous activation function can approximate any continuous function on a
closed and bounded subset of Rn, provided that enough hidden neurons are
specified. In spite of this crucial theoretical result, SLP are rarely adopted in
practice due to the unfeasibility of large amounts of hidden neurons on classical
devices. Quantum computers, however, could leverage state superposition to
scale the number of hidden neurons exponentially with the number of available
qubits. Starting from these considerations, cleverly implementing a quantum
SLP endowed with a proper activation function would therefore enable a real
chance to benefit from the universal approximation property.

1.3 Related works

Several attempts for building a quantum perceptron unit were discussed in the
literature [13,14,15]. A concrete implementation in near-term processors is illus-
trated in [16], where the authors introduced a model for binary classification
using a modified version of the perceptron updating rule. A key characteristic of
their architecture is the theoretical exponential advantage in storage resources
over classical alternatives. This constitutes the first step towards the efficient
implementation of quantum NN on near-term quantum processing hardware.

To the best of our knowledge, however, there are no trainable algorithms
that efficiently reproduce a quantum state encoding the output of a classical
SLP. Also, the available approaches rely on the introduction of severe constraints
on the input data in order to reproduce non-linear activation functions, which
makes the algorithms hardly useful in practice.

1.4 Contribution

In this work, we propose a new variational algorithm reproducing a quantum
Single Layer Perceptron, whose output is equivalent to the classical counterpart.
In particular, building on top of the approach described in [10], we design a
general framework that allows efficient computation using just mild constraints
on the input. Also, the flexible architecture enables to plug in custom implemen-
tations of the activation function routine, thus adapting to different use cases.
Thanks to the possibility of learning the parameters for a given task, the pro-
posed framework allows training models that can potentially approximate any
function.

However, we do not address the problem of implementing a non-linear ac-
tivation function. Our goal is to provide a framework that generates multiple
linear combinations in superposition entangled with a control register. In this
way, instead of executing a given activation function for each hidden neuron, a
single application is needed to propagate it to all of the quantum states. This
allows scaling the number of hidden neurons exponentially with the number of
qubits, thus enabling the qSLP to be a concrete alternative for approximating
complex and diverse functions.

A Variational algorithm for Quantum Neural Networks 5

2 Variational Algorithm for Single Hidden Layer Neural
Network

2.1 Encode Data in Amplitude encoding

The first issue to address when using a quantum computer for data analysis is
state preparation, i.e. the design of a process that loads the data from a classical
memory to a quantum system. The most general encoding adopted in QML is
amplitude encoding [17]. This strategy associates quantum amplitudes with real
vectors of observations at the cost of introducing just normalisation constraints.
Formally, a normalised vector x ∈ R2n can be described by the amplitudes of a
quantum state |x〉 as:

|x〉 =

2n∑
k=1

xk |k〉 ←→ x =

 x1
...
x2n

 . (2)

In this way, it is possible to use the index register to indicate the k-th feature.
The main advantage of this encoding is that we only need n qubits for a vector
of p = 2n elements. This means that, if a quantum algorithm is polynomial
in n, then it will have a polylogarithmic runtime dependency on the data size.
A possible strategy for amplitude encoding has been proposed by Möttönen
et al. [18], which is the one used for experiments in this work. The goal of this
approach is to map an arbitrary state |x〉 to the ground |0 . . . 0〉. Once the circuit
is obtained, then all of the operations are inverted and applied in the reversed
order.

2.2 Activation function

The implementation of a proper activation function – in the sense of the Univer-
sal Approximation Theorem – is one of the major issues for building a complete
quantum Neural Network. This is due to the restrictions to linear and unitary
operations imposed by the laws of quantum mechanics [19]. The most promis-
ing attempt to solve this problem is described in [20], where the authors use
the repeat-until-success technique to achieve non-linearity. The most significant
limitation is the requirement of inputs in the range

[
0, π2

]
, which is a severe

constraint for real-world problems.
In this work, we do not discuss how to implement a non-linear activation

function. However, we provide an framework that permits to train a quantum
SLP for a given activation function Σ. Our architecture is naturally capable of
incorporating any implementation of an activation function whose parameters
are learned, like the one described in [21]. Indeed, we can think of extending
the circuit that trains the qSLP to also learn the activation parameters. For this
reason, new implementations of non-linear activation functions are naturally
pluggable in the proposed framework as long as they fit in a learning paradigm.

6 A. Macaluso et al.

2.3 Gates as Linear Operators

A variational circuit U(θ) is composed of a series of gates, each one possibly
parametrised by a set of parameters {θl}l=1,...,L. Formally, U(θ) is the product
of matrices:

U(θ) = UL · · ·Ul · · ·U1, (3)

where each Ul is composed of a single-qubit or a two-qubit quantum gate. In
order to make the single-qubit gate trainable it is necessary to formulate Ul in
terms of parameters that can be learned. This is possible by adopting a single-
qubit gate G which is defined as the following 2× 2 unitary matrix [22]:

G(α, β, γ) =

(
eiβcos(α/2) eiγsin(α/2)

−e−iγsin(α/2) e−iβcos(α/2)

)
. (4)

Thus, we can now express each Ul in terms of single-qubit gates, Gi, acting
on the i-th qubit:

Ul = 11 ⊗ · · · ⊗Gi ⊗ · · · ⊗ 1n, (5)

where n is the total number of qubits of the quantum system. This representation
of U(θ) is convenient since it allows computing the gradient analytically, as shown
in [10].

Alternatively, we can express equation (4) using complex numbers z, u ∈ C
instead of trigonometric functions:

G(z, v) =

(
z v
−v∗ z∗

)
, (6)

where |z|2 + |v|2 = 1. This parametrisation avoids non-linear dependencies be-
tween the circuit parameters and the model output. Notice that the definition
of linear operator given in Equation (6) involves complex coefficients. Therefore,
it describes a more general operation with respect to the classical counterpart
adopted in an SLP, that only allows for linear combinations with real-valued co-
efficient. Nonetheless, one can still parametrise the circuit using Pauli-Y rotation
in case one wants to restrict the computation to the real domain.

2.4 Quantum Single Hidden Layer Network with two neurons

In this section we introduce the basic idea of a quantum Single Layer Perceptron
with two neurons in the hidden layer. The generalisation of the algorithm is then
discussed in section 4.

Intuitively, a qSLP can be implemented into a quantum computer in two
steps. Firstly, we generate different linear operations in superposition, each one

A Variational algorithm for Quantum Neural Networks 7

having different parameters θj , entangled with a control register. Secondly, we
propagate the activation function to all the linear combinations in superposi-
tion. Notice that, thanks this approach, instead of executing a given activation
function for each hidden neuron, we need only one application to obtain the out-
put of all the neurons in the hidden layer. To this end, three quantum registers
are necessary: control, data (denoted by |ψ〉) and temporary register (|φ〉). The
latter is responsible for generating the linear combinations of the input data in
superposition. Also, it can be in any arbitrary state, possibly even unknown.

The algorithm is composed of five main steps: state preparation, entangled
linear operators in superposition, application of the activation function, read-out
step, post-processing.

State Linear Activ. Readout Post

Preparation Operators 〈M〉 processing

control |0〉 RY (β) • • f(x; θ, β)

data |ψ〉 Sx × G(θ1) × Σ Loss(x;β, θ, b)

temporary |φ〉 × G(θ2) × Update β, θ, b

|Φ0〉 |Φ1〉 |Φ2〉 |Φ3〉 |Φ4〉 |Φ5〉

Fig. 2: Quantum circuit for training a qSLP.

(Step 1) The state preparation includes encoding the data, x, in the amplitude
of |ψ〉 and applying a parametrised Y -rotation Ry(β) to the control qubit:

|Φ1〉 =
(
Ry(β)⊗ Sx ⊗ 1

)
|Φ0〉 =

(
Ry(β)⊗ Sx ⊗ 1

)
|0〉 |0〉 |φ〉

= (β1 |0〉+ β2 |1〉)⊗ |x〉 ⊗ |φ〉 = β1 |0〉 |x〉 |φ〉+ β2 |1〉 |x〉 |φ〉), (7)

where Sx indicates the routine that encodes the data, |β1|2 + |β2|2 = 1 and
β1, β2 ∈ R.

(Step 2) We exploit the idea of quantum forking [23] to generate two different
linear operations in superposition, each entangled with the control qubit.

2.1 The first controlled-swap is applied to swap |x〉 with |φ〉 if the control
qubit is equal to |1〉:

|Φ2〉 =
1√
E

(
β1 |0〉 |x〉 |φ〉+ β2 |1〉 |φ〉 |x〉

)
(8)

where E is a normalisation constant.

8 A. Macaluso et al.

2.2 Two linear operations parametrised by two different sets (θ1 and θ2) act
on |ψ〉 and |φ〉 respectively:

|Φ3〉 =
(
1⊗G(θ1)⊗G(θ2)

)
|Φ2〉

=
1√
E

(
β1 |0〉G(θ1) |x〉 |φ〉+ β2 |1〉 |φ〉G(θ2) |x〉

)
=

1√
E

(
β1 |0〉 |L(x; θ1)〉 |φ〉+ β2 |1〉 |φ〉 |L(x; θ2)〉

)
. (9)

2.3 Then, the second controlled-swap is executed to swap |L(x; θ2)〉 with |φ〉
if the control qubit is equal to |1〉:

|Φ4〉 =
1√
E

(
β1 |0〉 |L(x; θ1)〉 |φ〉+ β2 |1〉 |L(x; θ2)〉 |φ〉

)
. (10)

Finally, the two linear operations are stored in |ψ〉 and are then entangled with
one state of the control qubit. At this point, a routine is necessary to propagate
the activation function in both the trajectories of |ψ〉.

(Step 3) Activation function:

|Φ5〉 =
(
1⊗Σ ⊗ 1

)
|Φ4〉

=
1√
E

(
β1 |0〉Σ |L(x; θ1)〉 |φ〉+ β2 |1〉Σ |L(x; θ2)〉 |φ〉

)
=

1√
E

(
β1 |0〉

∣∣σhid[L(x; θ1)
]〉
|φ〉+ β2 |1〉

∣∣σhid[L(x; θ2)
]〉
|φ〉
)
. (11)

At the end of Step 3 the two linear operations, L(·), are put through the same
activation function, σhid, represented by the gateΣ. The results are then encoded
in the quantum register |ψ〉. Each output is finally weighed by the parameters
of the control qubit (β), i.e. the coefficients attached to the hidden neurons in
the linear combination that produces the output of the NN. This is exactly the
quantum version of the two-neurons classical SLP presented in Equation (1).

(Step 4) The measurement of |ψ〉 can be expressed as the expected value of the
Pauli-Z operator acting on the quantum state |x〉:

〈M〉 = 〈Φ0|U†(β, θ)(1⊗ σz ⊗ 1)U(β, θ) |Φ0〉 = π(x;β, θ), (12)

where U(β, θ) represents the qSLP circuit. In order to get an estimate of π(·),
we have to run the entire circuit multiple times.

(Step 5) The post-processing is performed classically and is task-dependent.
For classification models we need four steps: (i) adding a learnable bias term
b to produce a continuous output, (ii) applying a thresholding operation, (iii)
computing the loss function and (iv) updating the parameters. Notice that all
these steps are customisable and can be adapted to the particular needs of the

A Variational algorithm for Quantum Neural Networks 9

application. In the case of the experiments presented in Section 3 we adopt the
following thresholding operation:

f(xi;β, θ, b) =

{
1 if π(xi;β, θ) + b > 0.5

0 else
, (13)

where b is the bias term and f(xi;β, θ, b) gives us the predicted class for obser-
vation x. As loss function we choose the Sum of Squared Errors (SSE) between
the predictions and the true values y:

SSE = Loss(Θ;D) =

N∑
i=1

[yi − f (xi;Θ)]
2
, (14)

where N is the total number of observations in the sample and Θ = {β, θ, b}.
Finally, we exploit the Nesterov accelerated gradient method for updating the
parameters, although many alternative optimisation strategies can be adopted
to update the parameters [24] .

To summarise, the variational algorithm described above allows reproducing
a classical Neural Network with one hidden layer on a quantum computer. In
particular, it includes a variational circuit adopted for encoding the data, per-
forming the linear combinations of input neurons and applying the same activa-
tion function to their results with just one execution. A single iteration during
the learning process is then completed using classical resources to measure the
output of the network, compute the loss function and update the parameters.
The whole process is then repeated iteratively until convergence, as for classical
Neural Networks.

As a final remark, notice that having a post-processing step that is extremely
flexible enables the adoption of this model both for regression and classification
problems, thus enhancing the impact of such algorithm.

3 Experiments

To test the performances of the qSLP, we implemented the circuit illustrated
in Figure 2 using PennyLane [25], a software framework for optimisation and
Machine Learning. This library can be used for both quantum and hybrid com-
putations, and allows using quantum objects (e.g. qubits, gates) in conjuction
with classical elements (e.g. variables, functions). It can handle many learning
tasks such as training a hybrid ML model in a supervised fashion. In addition, we
also implemented a version of the qSLP on the Qiskit framework. In this way, we
were able to execute the pre-trained algorithm obtained with PennyLane both
on QASM simulators and on a real device.

In our case, the goal is to find the parameters of the quantum circuit (β, θ)
plus the additional bias term b. In absence of a gate Σ which implements a
non-linear activation function, the final quantum state of |ψ〉 is:

|Φ5〉 =
1√
E

(
β1 |0〉 |L(x; θ1)〉 |φ〉+ β2 |1〉 |L(x; θ2)〉 |φ〉

)
, (15)

10 A. Macaluso et al.

(a) (b)

Fig. 3: The plot on the left illustrates the distributions of generated data in the
two classes (0, 1). The plot on the right shows the trends over training epochs of
the cost function and the accuracy.

which is a linear transformation of the input data and defines a linear classifier.
Notice that Pr [yi = 1|xi] for a given observation xi corresponds to the square
of the linear transformation of hidden neurons with coefficients βj plus a bias
term, b.

In practice, we generated linearly separable data to test our classifier. In
particular, we drew a random sample of 500 observations (250 per class) from
two independent bivariate Gaussian distributions, with different mean vectors
and the same covariance matrix (Figure 3a). Then, we used the 75% of the
data for training and the remaining 25% for testing. The training metrics for
the model trained on the PennyLane simulator are illustrated in Figure 3b.
The results demonstrate that the quantum SLP is able to classify correctly the
observations, as testified by the high classification accuracy in both training and
test sets, 0.97 and 0.95 respectively. After the model was trained, the variational
algorithm was also implemented using Qiskit, and its performance was tested
on 50 newly-generated observations. In this way, it was possible to test the pre-
trained model on both the QASM simulator – which emulates the execution

PennyLane QASM IBM (Vigo)

94% 90% 64%

Table 1: Test accuracy of multiple implementations. The performance deterio-
rates as we introduce intrinsic quantum noise (QASM) and current technology
limits (IBM – Vigo).

A Variational algorithm for Quantum Neural Networks 11

Fig. 4: Assessment metrics trend as a function of distributions overlapping.
Larger standard deviations cause the two distributions to overlap, so that ob-
servations belonging to the two classes are mixed together and, hence, harder
to separate. As a consequence, model performances decrease and non-linearity
is required.

of a quantum circuit on a real device, also including highly configurable noise
models – and a real device. Results are reported in Table 1. The PennyLane
implementation was in line with the training results, and was the most accurate
(94% accuracy), as expected since the framework assumes a perfect device. The
effects of introducing the intrinsic noise due to quantum computations, instead,
can be appreciated in the Qiskit implementations. Both alternatives showed
lower performances, although the decrease in accuracy was certainly smaller for
QASM. The real device, instead, presented a significant deterioration. This may
be due to the depth of the implemented circuit, especially regarding the encoding
part, that seems to be prohibitive considering the actual quantum devices.

In addition, we investigated how the performance of the qSLP implemented
in PennyLane changes as the generated distributions get closer and less sepa-
rated. To this end, we drew multiple samples from the two distributions, each
time increasing the common standard deviation so to force reciprocal contami-
nation. As expected, the accuracy showed a decreasing trend as the overlap of
the distributions increased (Figure 4). In conclusion, the experiments show that
the proposed architecture works well for linearly separable data. However, per-
formance decreases as we add to the problem a level of complexity that cannot
be solved by linear classifiers.

4 Generalisation to H hidden neurons

In this section we discuss the generalisation of the quantum SLP to the case of
H > 2 hidden neurons.

12 A. Macaluso et al.

In order to extend the quantum state in Equation (11), we can consider
a data register whose size depends on the number of input features, a control
register made by d qubits, and another register (output) that stores the out-
put of the Neural Network. Intuitively, the algorithm can be summarised into
three steps. First, the control register is turned into a non-uniform superposition
parameterised by the 2d-dimensional vector β by means of an oracle B:

|Φ1〉 = (1⊗B ⊗ 1) |x〉data |0〉control |0〉output

→ 1√
E

(
|x〉 ⊗

∑
j

βj |j〉 ⊗ |0〉
)
. (16)

The second step generates a superposition of the same linear operation with
different parameters entangled with the control register. This is possible by as-
suming to have a quantum oracle Λ that performs the following operation:

|Φ2〉 = Λ |Φ1〉 →
1√
E

(
|x〉
∑
j

βj |j〉 |L(x; θj)〉
)
. (17)

Finally, the third step applies the Σ gate to the third register, thus propa-
gating the activation function in all of the quantum states of the superposition:

|Φ3〉 = (1⊗ 1⊗Σ) |Φ2〉 →
1√
E

(
|x〉
∑
j

βj |j〉 |σ[L(x; θj)]〉
)
. (18)

In this way, the result of the algorithm above can be accessed by a single-qubit
measurement. Regarding the parameters, β and {θj}j=1,...,H can be randomly
initialised and the same hybrid optimisation process presented in Section 2.4 can
be exploited.

As a final remark, it is important to notice that our algorithm entangles
linear combinations to the states of the control register. As a consequence, the
number of linear combinations that can be performed is equal to the number of
possible states of the quantum system. This, in turn, implies that the number of
hidden neurons H scales exponentially with the number of states of the control
register, 2d. This is a consequence of each hidden neuron being represented by
a single linear combination. Thus, the exponential scaling property enables the
construction of quantum Neural Networks with an arbitrary large number of
hidden neurons as the amount of available qubits increases. In other terms, we
can build qSLP with an incredible descriptive power that may be really capable
of being an universal approximator.

5 Conclusions and Outlook

In this work, we proposed an implementation of a quantum version of the Single
Layer Perceptron. The key idea is to use a single state preparation routine and
apply different linear combinations in superposition, each entangled with a con-
trol register. This allows propagating the routine of a generic activation function

A Variational algorithm for Quantum Neural Networks 13

to all of the states with only one operation. As a result, a model trained through
our algorithm is potentially able to approximate any desired function as long as
enough hidden neurons and a non-linear activation function are available.

Furthermore, we provided a practical implementation of our variational algo-
rithm that reproduces a quantum SLP for classification with two hidden neurons
and an identity function as activation.

In addition, we tested our algorithm on synthetic data and demonstrated
that the model works well in case of linearly separable observations, with a test
accuracy of 95%. However, the performance deteriorates when facing the intrinsic
noise due to quantum computations and current technology limits. On the other
hand, experiments showed how the performance of the model deteriorates as
the distributions of the two classes overlap so to contaminate each other, thus
testifying the necessity of introducing non-linearity into the model. For this
reason, the main challenge to tackle in the near future is the design of a routine
that reproduces a non-linear activation function.

Another natural follow-up of this work is the implementation of a general-
isation of the quantum SLP to the case of H > 2 hidden neurons. This would
be beneficial for more hands-on experimentation, including, for instance, the
discussion of a regression task.

In conclusion, we are still far from proving that Machine Learning can ben-
efit from Quantum Computing in practice. However, thanks to the flexibility of
variational algorithms, we believe that the hybrid quantum-classical approach
may be the ideal setting to make universal approximation possible in quantum
computers.

References

1. Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin, Rami
Barends, Rupak Biswas, Sergio Boixo, Fernando GSL Brandao, David A Buell,
et al. Quantum supremacy using a programmable superconducting processor. Na-
ture, 574(7779):505–510, 2019.

2. Benjamin P Lanyon, James D Whitfield, Geoff G Gillett, Michael E Goggin,
Marcelo P Almeida, Ivan Kassal, Jacob D Biamonte, Masoud Mohseni, Ben J Pow-
ell, Marco Barbieri, et al. Towards quantum chemistry on a quantum computer.
Nature chemistry, 2(2):106, 2010.

3. Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approximate
optimization algorithm. arXiv preprint arXiv:1411.4028, 2014.

4. Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus
Brink, Jerry M Chow, and Jay M Gambetta. Hardware-efficient variational quan-
tum eigensolver for small molecules and quantum magnets. Nature, 549(7671):242,
2017.

5. Dave Wecker, Matthew B. Hastings, and Matthias Troyer. Progress towards prac-
tical quantum variational algorithms. Phys. Rev. A, 92:042303, Oct 2015.

6. Nikolaj Moll, Panagiotis Barkoutsos, Lev S Bishop, Jerry M Chow, Andrew Cross,
Daniel J Egger, Stefan Filipp, Andreas Fuhrer, Jay M Gambetta, Marc Ganzhorn,
et al. Quantum optimization using variational algorithms on near-term quantum
devices. Quantum Science and Technology, 3(3):030503, 2018.

14 A. Macaluso et al.

7. Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou,
Peter J Love, Alán Aspuru-Guzik, and Jeremy L O’brien. A variational eigenvalue
solver on a photonic quantum processor. Nature communications, 5:4213, 2014.

8. Diego Ristè, Marcus P da Silva, Colm A Ryan, Andrew W Cross, Antonio D
Córcoles, John A Smolin, Jay M Gambetta, Jerry M Chow, and Blake R John-
son. Demonstration of quantum advantage in machine learning. npj Quantum
Information, 3(1):16, 2017.

9. Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan
Wiebe, and Seth Lloyd. Quantum machine learning. Nature, 549(7671):195–202,
2017.

10. Maria Schuld, Alex Bocharov, Krysta Svore, and Nathan Wiebe. Circuit-centric
quantum classifiers. arXiv preprint arXiv:1804.00633, 2018.

11. Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical
learning, volume 1. Springer series in statistics New York, 2001.

12. Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward
networks are universal approximators. Neural networks, 2(5):359–366, 1989.

13. Maria Schuld, Ilya Sinayskiy, and Francesco Petruccione. The quest for a quantum
neural network. Quantum Information Processing, 13(11):2567–2586, 2014.

14. Maria Schuld, Ilya Sinayskiy, and Francesco Petruccione. Simulating a perceptron
on a quantum computer. Physics Letters A, 379(7):660–663, 2015.

15. Jean Faber and Gilson A Giraldi. Quantum models of artificial neural net-
works. Electronically available: http://arquivosweb. lncc. br/pdfs/QNN-Review.
pdf, 5(7.2):5–7, 2002.

16. Francesco Tacchino, Chiara Macchiavello, Dario Gerace, and Daniele Bajoni. An
artificial neuron implemented on an actual quantum processor, zak1998quantum.
npj Quantum Information, 5(1):26, 2019.

17. Maria Schuld and Francesco Petruccione. Supervised Learning with Quantum Com-
puters, volume 17. Springer, 2018.

18. Mikko Mottonen, Juha J Vartiainen, Ville Bergholm, and Martti M Salomaa.
Transformation of quantum states using uniformly controlled rotations. arXiv
preprint quant-ph/0407010, 2004.

19. Michael A Nielsen and Isaac Chuang. Quantum computation and quantum infor-
mation, 2002.

20. Yudong Cao, Gian Giacomo Guerreschi, and Alán Aspuru-Guzik. Quantum neu-
ron: an elementary building block for machine learning on quantum computers.
arXiv preprint arXiv:1711.11240, 2017.

21. Wei Hu. Towards a real quantum neuron. Natural Science, 10(3):99–109, 2018.
22. Adriano Barenco, Charles H. Bennett, Richard Cleve, David P. DiVincenzo, Nor-

man Margolus, Peter Shor, Tycho Sleator, John A. Smolin, and Harald Weinfurter.
Elementary gates for quantum computation. Phys. Rev. A, 52:3457–3467, Nov
1995.

23. Daniel K Park, Ilya Sinayskiy, Mark Fingerhuth, Francesco Petruccione, and June-
Koo Kevin Rhee. Quantum forking for fast weighted power summation. arXiv
preprint arXiv:1902.07959, 2019.

24. Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv
preprint arXiv:1609.04747, 2016.

25. Ville Bergholm, Josh Izaac, Maria Schuld, Christian Gogolin, Carsten Blank, Keri
McKiernan, and Nathan Killoran. Pennylane: Automatic differentiation of hybrid
quantum-classical computations. arXiv preprint arXiv:1811.04968, 2018.

	A Variational algorithm for Quantum Neural Networks

