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OLIGOPOLY DYNAMICS WITH ISOELASTIC DEMAND:

THE JOINT EFFECTS OF MARKET SATURATION AND

STRATEGIC DELEGATION

Lorenzo Cerboni Baiardi∗,1 and Fabio Lamantia∗,+

∗ University of Calabria, Via Bucci 0-1C, Rende (CS), Italy
+ Faculty of Economics, VŠB–Technical University of Ostrava, Ostrava,

Czech Republic

Abstract. In the framework of a Cournot oligopoly game with isoelas-

tic demand, we examine the simultaneous presence of both market sat-

uration and strategic delegation. Although these two (realistic) aspects

have already been considered in the literature each on its own, we aim at

deepening their joint interactions when matched together in oligopolistic

competition. In addition, we admit the possibility that delegation activ-

ities actuated by firms to weaken or even exclude competitors from the

market may cease if undertaken by successful players, which thus regain

their pure profit maximizing behavior. In this context, a limited market

saturation level (positively) influences the effectiveness of delegation strate-

gies and, at the same time, can sustain equilibrium configurations for the

winning (monopolistic) firm even under the isoelastic market structure.

Through local stability analysis, we show how the combination of strategic

delegation with market saturation contributes to determine the equilib-

rium number of active players and the local asymptotic stability of the

(economically relevant) equilibrium. Moreover, non-equilibrium dynamics

reveal the presence of periodic cycles along which a firm is active while

its competitors alternatively exits and enters the market. We show why

these interesting scenarios are due to the joint interplay between strategic

delegation and market saturation.

Keywords: strategic delegation; market saturation; Cournot oligopoly; isoe-

lastic demand; non-linear dynamics.

1. Introduction

The seminal paper [10] presents chaotic dynamics in a micro-founded duopoly

with isoelastic demand. [10] has been a fundamental source of inspiration for

1Corresponding author: lorenzo.cerboni@unical.it

1
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other works on mathematical economics and industrial organization, see [3]

for a broad overview.

In this paper, we extend the model in [10] by considering the joint effects of

two further elements, namely market saturation and strategic delegation. The

first addition that we consider, the market saturation of the demand proposed

in [14], represents an important and realistic element of the model, linking

inter-temporally the market demand at a certain time with the quantity placed

on that market at previous times, which is mostly the case for durable goods.

A further important point related to market saturation, often overlooked in

the literature, concerns the economic significance of the model with isoelastic

demand even in the case of a single active firm, consult [15] for a discussion

about the monopoly model with isoelastic demand.

The second addition we address is related to strategic delegation, which en-

tails firms setting their choices according to the maximization of a performance

criterion different from profit. The concept of strategic delegation has been

prevalent in the industrial organization literature starting from the seminal

contributions in [16] and [5]. In particular, here we assume that firms maxi-

mize a convex combination of profits and revenues, see for the isoelastic case

[4]. When the company management is committed to maximizing (partially)

sales, firms behave more aggressively. This behavior, if not reciprocated, can

severely damage competitors.

The joint presence of market saturation and strategic delegation in the same

model leads to interesting dynamic scenarios. This is indeed more evident

when more than two players operate with different costs of production, see

also [11] and [12] on this point. More precisely, in the context considered, the

presence of delegation accentuates the possible outcomes with asymmetries in

firms’ costs. As highlighted in [6], oligopoly models with asymmetric costs

have been relatively under-studied, with their equilibrium configurations in

which some firms may be inactive. This is particularly interesting also for its

dynamic consequences, as shown in this paper.

For instance, starting from an oligopoly it is possible that companies that

compete harder will push less aggressive companies out of the market, even

to the case of having only a monopolist in the market, which is economically

meaningful under isoelastic demand due to the presence of market saturation.
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To introduce a further element of interest in the model, we assume the pos-

sibility that the degree of aggressiveness of the delegating firms depends on

the number of active firms in the market. For example, if only a monopolist

operates in the market, it is likely that, having no competitors, it maximizes

standard profit. The degree of delegation, therefore, can dynamically depend

on the competitive pressure of the market according to a trigger-like strategy.

Taking into account market saturation and strategic delegation as a function

of competitive market pressure, we can mathematically express the model as

a discontinuous (N + 1)-dimensional map, where N is the number of potential

incumbents in the market. We study the possible equilibrium configurations

under asymmetric costs and asymmetric degrees of delegations, in particu-

lar highlighting the number of active firms of the different configurations.

The global dynamics analysis of the model shows the possible endogenous en-

try/exit scenarios by firms that can adapt their level of delegation, that is

aggressiveness, according to actual market pressure.

More precisely, we first discuss the presence of such periodic entry/exit pat-

terns in the duopoly: the more aggressive firm manages to send the competitor

out of the market thus becoming monopolist and, after some latent period,

a new incumbent firm succeeds in re-entering that market once the active

firm reverts to standard profit maximizing behavior as market saturation re-

duces over time. We then detect similar cases with more than two firms and

non-equilibrium productivity cycles whenever no steady state exists or it is

unstable. To the best of our knowledge, this is the first time that this kind of

entry/exit dynamics arises endogenously in repeated oligopoly games. Notice

that the model we propose does not address directly firms’ entry/exit deci-

sions, which are rather a possible dynamical outcome of myopic interaction

between boundedly rational players which adjust their competitiveness level

according to the pressure in the market.2

The paper is organized as follows. Section 2 describes the model, character-

izes the equilibrium, and provides interpretations of the system with saturation

only and with saturation and delegation. Here in particular we consider the

case of the monopolist with saturation. Section 3 describes the typical behav-

ior of the system when the equilibrium is locally unstable or does not exist and

2In the recent literature, several works model directly firms’ entry/exit decisions within the
framework of deterministic or stochastic dynamic games, see for recent contributions [2], [9]
and [1]
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provides an economic interpretation of such dynamics. Section 4 concludes.

All technical proofs are contained in the Appendix.

2. Formulation of the model

We consider a Cournot oligopoly with N ≥ 2 firms in a market characterized

by an isoelastic demand with unitary elasticity (see [10]). Player i sets its

output qi at the (constant) unit cost ci, where i = 1, · · · , N . In the following,

Q =
∑N

j=1 qj denotes the aggregate production of the industry and we set

Q−i = Q − qi. Along the line marked by [14] (see also [8]), the market’s

saturation Q is the sum between the aggregate current production and the

unsold production from previous periods. Assuming a constant absorption

rate, the saturation level is recursively defined as

Q′ = δQ+Q′ (1)

where parameter δ ∈ (0, 1) is the persistence rate while its complement 1− δ
is the absorption rate and where “ ′ ” denotes the unit time advancement

operator. Assuming the market price to be determined as p = Q−1, profits of

firm i can be expressed as πi = qiQ−1 − ciqi.

Remark 1. A possible economic motivation for the market saturation model

proposed in [14] can be given assuming the aggregate production Q to be entirely

delivered by manufacturers to the market and integrated with the part δQ of

goods unsold in the previous period and kept as inventories by retailers. In this

setting, retailers are willing to manage the entire quantity Q, corresponding to

the demand for the product, so that having price p = Q−1 is consistent with

the isoelastic demand hypothesis. Under this interpretation, p is the price rec-

ognized to manufacturers, which depends not only on the current total quantity

placed on the market but also on the warehouse stocks present at the retailers.

It is worth noting that retailers can buy from manufacturers at lower prices

in the next period by withholding some of the supply from direct sales in the

present and allocating it as inventory to be used later. The term δQ is in-

versely related with the next period price indeed, being p′ = (δQ+Q′)−1. We

also refer the reader to the literature on inventories and supply chain manage-

ment strategies as well as on retailers’ (secondary) market operating modes

(see e.g. [7] or [17]).



Oligopoly dynamics with isoelastic demand 5

Implementing a delegation scheme as in [5], we assume player’s i objective

to be the following convex combinations of profits and sales:

Wi = αiπi + (1− αi)qip =
qi
Q
− αiciqi (2)

where coefficient αi and its complement 1−αi represent the incentive weights

firm’s i management poses on maximizing profits and sales respectively. With

this performance criterion, objective maximising players are interested both in

raising profits and the volume of sales. As it is clear from the second equality

in (2), such players behave as profits maximizing, treating production costs

as if they were lower than they actually are. The reason for this attitude is

to allow players to set non-optimal over-productions, which, in turn, results

in aggressive behavior to harm competitors. Indeed, the very existence of a

management incentive based on (2) makes this non-optimal behavior credible

for opponents, that is (2) introduces a commitment device for such behaviors.

As already remarked, according to (2) manager i views αici as its marginal

cost of production. Thus, the lower the adjusted cost αici considered by the

manager of firm i, the higher the quantity that firm i places on the market,

thus resulting in a greater level of competitiveness (or aggressiveness) of firm

i.3 Accordingly, in the following we will refer to the quantity αici as the level

of competitiveness of player i.

Similarly, a monopolist could put more incentives on sales as well, in order

to maintain a sufficiently high level of competitive pressure, aiming at discour-

aging other firms to enter the market. Assuming that the relevance given by

a player to sales in their objectives is straightened by the presence of active

competitors, we consider endogenous weights αi : R≥0 → [0, 1] defined by

αi(Q−i) =

{
α0
i if Q−i > 0

α1
i otherwise

(3)

where 0 < α0
i ≤ α1

i ≤ 1, for all i = 1, · · · , N .4

The dynamic choice of quantities by the oligopolists occurs through the

well-known best reply dynamics described in [10], although here firms try to

3If firm i maximizes Wi with respect to qi, so that q∗i = arg maxqi Wi, this claim easily

follows by observing that
∂q∗i

∂(αici)
< 0.

4Clearly, the assumption of a stepwise dependence of αi on the aggregate current production
of the rest of the industry Q−i is a simplification, but it generalizes the delegation scheme
in [5] and introduces a dependence of the level of aggressiveness of a firm on the presence of
active competitors.
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maximize convex combinations of profits and sales as performance criteria,

having expectations on the next period saturation level.

According to equation (1), at period t+ 1 firm i forecasts a saturation level

Qi,e(t+ 1) = δQ(t) +Qi,e−i(t+ 1) + qi(t+ 1) (4)

where Qi,e−i(t+1) =
∑

j 6=i q
i,e
j (t+1) is the aggregate output that i expects from

the rest of the industry. At decision stage t + 1, firm i sets its output at its

(non negative) best reply level

qi(t+ 1) : = max (0, Ri(t+ 1)) (5)

where Ri(t+ 1) is

Ri(t+ 1) = arg max
q
W e
i (t+ 1) =

√√√√δQ(t) +Qi,e−i(t+ 1)

αi(Q
i,e
−i(t+ 1))ci

−
(
δQ(t) +Qi,e−i(t+ 1)

)
In the following, we will consider static expectations for all players. Hence,

qi,ej (t + 1) = qj(t) holds for all i and j 6= i. As a consequence, the equality

Qi,e−i(t + 1) = Q−i(t) follows. The oligopoly dynamics is determined by the

(N + 1)-dimensional map T : (q1, · · · , qN ,Q) → (q′1, · · · , q′N ,Q′) given by

recurrences (5) and (4):

T :


q′i = max

0,

√√√√ δQ+
∑

j 6=i qj

αi

(∑
j 6=i qj

)
ci
−
(
δQ+

∑
j 6=i qj

) , i = 1, · · · , N

Q′ = δQ+
∑N

i=1 q
′
i

Remark 2. In the special case in which α0
i = α1

0 = 1 for all i = 1, · · · , N ,

players maximize own profits and map T differs from the one considered in

Section 3 of [14] for the case of static expectations because of the max operator

in the first N components of map T .

Without loss of generality and to present the results in a more concise way,

we consider firms’ labels to be assigned as specified in the following assumption.

Assumption 1. We set α0
i ci ≤ α0

jcj, for all i, j = 1, · · · , N and j ≥ i.

Under Assumption 1, firms are ordered with decreasing levels of competi-

tiveness. The following proposition provides analytic expressions of the steady
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states of map T . Differently from [14], we characterize not only the inner equi-

librium in which all firms operate, but also boundary equilibria in which some

but not all firms deliver their output in the market. In the following, we dis-

tinguish between N , the total number of potential firms in the market, and n

the number of active firms, that are firms that deliver positive quantity in the

market.

Proposition 1. Under Assumption 1, a steady state E = (q̄1, · · · , q̄N , Q̄), at

which n active firms are present, exists in the following alternatives:

i) if α1
1c1 ≤ δα0

2c2 holds; in this case n = 1, q̄1 = δ(1 − δ)/(α1
1c1), qi = 0 for

all 1 < i ≤ N and Q̄ = δ/(α1
1c1);

ii) if α0
1c1 > δα0

2c2 holds; in this case n > 1 is determined as

n = max

{
k :

k + δ − 1∑k
i=1 α

0
i ci
− 1

α0
kck

< 0

}
Moreover

q̄i =
n+ δ − 1∑n
i=1 α

0
i ci

(
1− α0

i ci
n+ δ − 1∑n
i=1 α

0
i ci

)
if i ≤ n and qi = 0 otherwise and

Q̄ =
n+ δ − 1∑n
i=1 α

0
i ci

Proof. See Appendix A. �

In the remaining part of this section we will discuss some economic conse-

quences of Proposition 1.

2.1. Economic insights for the scenario with saturation and without

delegation. In this case, players are standard profit maximizers, namely α0
i =

α1
i = 1 for all i. As observed in Remark 2, map T corresponds to the dynamical

system studied in [14] in the case of static expectations, with the inclusion of

the “max” operator to account for possible inactive firms. It follows that

steady states of T may be internal, i.e. characterised by strictly positive

components, describing equilibrium configurations of the game characterized

by active players only. Such internal points have already been studied in

[14]. Moreover, boundary steady states of T may also be present, which are

characterised by some (but not all) null components, describing equilibrium

configurations in which some players decide not to produce. These boundary
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steady states will play an important role in the dynamics of the system, as

described below.

2.1.1. Market activity and saturation. Saturation discourages firms to enter

the market with only the most efficient ones surviving at equilibrium. Indeed,

if n is the equilibrium number of active firms for a given value of δ, then for

any other value δ′ such that δ′ > δ no more than n firms can be active at

equilibrium. In other words, n is non-increasing in δ. This is an immediate

consequence of the definition of the number of active firms provided in Propo-

sition 1. In addition, we note that active firms are the most efficient ones.

Indeed, under Assumption 1, firms are ordered (i.e. indexed) with non de-

creasing marginal costs, so that n corresponds to the index of the less efficient

player among those that are active. Clearly, all subsequent indexes denote

players with higher unit costs.

It is worth noticing that the higher the value of parameter δ is (or equiv-

alently the less the absorption rate is), the more past productions persist in

the market and, hence, the higher values of equilibrium supply Q̄ are reached

(see Figure 1 left panel, showing the equilibrium saturation level Q̄ at increas-

ing values of δ).5 On one hand, this is coherent with the inverse relationship

between the number of active firms n and the persistence rate δ: market’s

saturation causes the reduction of prices with less efficient firms being forced

to be inactive in order not to earn negative profits (see Figure 1 right panel,

showing the number of active firms at increasing values of δ). On the other

hand, in the presence of saturation, active firms will set restrained productions

in order to maintain sufficiently high prices, so that their profits remain pos-

itive. This attests for an inverse relationship between the average individual

equilibrium productions and the persistence rate δ. To show this, let us pick δ1

and δ2 such that δ1 < δ2. If n ≥ 2 firms are active, the average individual pro-

duction is lower when δ = δ2. If q̃δ1 and q̃δ2 denote such average productions,

the relation q̃δ2 < q̃δ1 always holds, which follows from the relation

q̄δ1
q̄δ2

=
1− δ1
1− δ2

· n+ δ1 − 1

n+ δ2 − 1
> 1

that is always satisfied whenever n ≥ 2.

5Saturation Q̄ is indeed strictly increasing in δ. Indeed, Q̄ is continuous with respect to
δ. Moreover, Q̄ is piecewise differentiable and, when the derivative is defined, it results
∂Q̄/∂δ = 1/

(∑n
i=1 ci

)
> 0.
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Figure 1. Q̄ (left panel) and n (right panel) at increasing δ.
Common parameters are N = 50, ci = 0.05(1 + i/N) with
0 ≤ i < N . Moreover, α0

i = α1
i = 1, for all i = 1, · · · , N .

2.1.2. Monopolistic market. The non-existence of an equilibrium in the mo-

nopoly case with isoelastic demand is clearly described in [15]: “one of the

best known results in economic theory is that a monopolist’s price setting prob-

lem does not possess a solution in the case of isoelastic demand curves with

own-price elasticity (in absolute value) smaller than or equal to one. How-

ever, many estimates of elasticities yield values not exceeding one. Moreover,

the non-existence of a solution is somewhat embarrassing for economic mod-

elling since for example Cobb-Douglas utility functions, which are probably the

most basic and the most frequently adopted type of utility functions used by

economists, yield unit elastic demand functions and thus cannot be employed

in general equilibrium models with a monopolist”.

Indeed, in absence of saturation, the monopolistic profit function 1−C(q1)

does not attain the maximum over the set of positive quantities (for any in-

creasing cost function). Then, a monopolistic firm has the incentive to set

infinitesimal amounts of output at unbounded prices. However, the presence

of market’s saturation allows to solve the monopolist’s quantity setting prob-

lem in the case of isoelastic demand with unitary elasticity. This situation is

described by the monopolistic equilibrium of map T , to which steady state E

reduces when only one active firm is present. The monopolistic equilibrium is

feasible because of the presence of unsold products, which implies a minimum

level of market supply and, in turn, bounded prices (even if the monopolist sets

null output). From the monopolist’s viewpoint, the presence of unsold prod-

ucts is equivalent to the presence of a (virtual) competitor (i.e. the saturated
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market behaves as the zero player or nature). Saturation causes a change in

the structure of monopolist’s profits, so that optimal productions belong to a

set of feasible (i.e. non-negative) outputs.6 In the present model, monopolistic

equilibrium arises when only player 1, the most efficient, is active while all its

competitors have no convenience in entering the market because of their higher

production costs (recall that firms are labeled in descending order of marginal

costs). By Proposition 1, this occurs when condition c1 ≤ δc2 holds, ensuring

positiveness of firm 1’s output and null productions of all its competitors.

2.2. Economic insights for the scenario with both saturation and del-

egation. Incentives on sales are now included in the discussion. The outcomes

under unitary isoelastic demand are analogous to those occurring in the lin-

ear case, examined in the seminal works [5] and [13]: such incentives on sales

lead firms to set non-optimal over-productions in order to harm competitors.

Indeed, if we apply comments given in subsection 2.1.1 to this case (where

the role of efficiency of firms is replaced by competitiveness) it can be stated

that saturation discourages firms to join the market with only the most com-

petitive ones surviving at equilibrium. Moreover, the presence of saturation

straightens the conflicting power of delegation. Indeed, suppose that n ≥ 2

active firms are present at equilibrium. Hence, the inequality

n+ δ − 1∑n
i=1 α

0
i ci
− 1

α0
ncn

< 0

holds. This is equivalent to α0
ncn <

n

n+ δ − 1

(
1

n

∑n
i=1 α

0
i ci

)
, where the

average level of competitiveness is highlighted in the brackets. Taking into

account Assumption 1, it follows that

α0
1c1 ≤ α0

2c2 ≤ · · · ≤ α0
ncn <

n

n+ δ − 1

(
1

n

n∑
i=1

α0
i ci

)
(6)

Note that the value n/(n+δ−1) is decreasing in δ and belongs to the interval

(1, 2). The sequence of inequalities in (6) is satisfied whenever competitiveness

levels are not exceeding too much their average value. In detail, the value of δ

fixes an upper threshold that bound competitiveness near their average. Be-

cause of the multiplicative factor n/(n+ δ− 1), which is decreasing in δ, such

upper threshold moves towards the average level of competitiveness the more

6which indeed becomes q1/(δQ̄+ q1)− c1q1 that is concave in q1 ∈ [0,+∞)
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saturated the market is. Then, saturation reduces the displacement between

firms’ competitiveness and the competitiveness average value that is allowed

for them to remain active. As a result, if n firms survive at equilibrium at

a given value of δ, the same firms may not be all active for another value

δ′ > δ. A further consequence of the sequence of inequalities in (6) is the re-

quirement of having similar competitiveness degrees among active players at

equilibrium. In other words, active firms are characterized by sufficiently simi-

lar competitiveness level. This entails that saturation favors, or rather pushes,

equilibrium configurations at which active firms are almost homogeneous with

respect to their competitiveness level.

This result is not surprising recalling the literature on delegation, which

highlights how the deformation of the objective function of the firms implies

the existence of suboptimal equilibrium configurations with respect to the

standard Cournot-Nash ones. Despite their sub-optimality, these equilibria

are indeed achieved if the delegating behavior is reciprocated in the market. In

other words, the final outcome in the oligopoly resembles a prisoner’s dilemma,

in which all agents delegate but they get less than they would have gotten by

maximizing standard profit, see again [13] on this point. What we add in the

picture is how the presence of saturation reinforces the need for homogeneous

behavior to survive in equilibrium, as clearly implied by the inequalities in (6).

In other words, saturation results in a greater need to conform to the most

aggressive agents, that is, to reciprocate the delegating behavior to survive in

the market. Indeed, the higher the saturation level is (which corresponds to

low absorption rates) the more the competitiveness levels must approach the

same value (their average) to maintain the number of active firms unchanged.

To highlight a second relevant interplay between saturation and delega-

tion, let us consider the extreme consequence to which delegation may lead,

namely the persistence of a unique dominant firm and the exclusion of any

other competitor in the market. This scenario corresponds to the monopo-

listic equilibrium described in Proposition 1, where the dominant firm is the

most competitive one. Remarkably, the possibility for the delegation mecha-

nisms to bring the industry towards a monopolistic configuration is possible in

the present framework because of saturation, see the discussion in Subsection

2.1.2. Indeed, the condition for the emergence of the monopolistic equilibrium

requires both sufficiently high competitiveness level of firm 1, even when it



Oligopoly dynamics with isoelastic demand 12

operates as a monopolist, and sufficiently high values of δ (sufficiently low

absorption rates). Conversely, monopolistic configurations are possible when

δ is small (high absorption rates) only in the residual occurrence of extremely

high competitiveness level of firm 1, even in absence of competitors. We stress

again that no monopolistic equilibrium is defined with no saturation (i.e. when

δ = 0).

Figure 2. Equilibrium outputs q̄1 and q̄2 (left panel) and
saturation level Q̄ (right panel) when varying δ. N = 2,
c1 = c2 = 0.05, α0

1 = 0.4, α1
1 = 0.8, α0

2 = α1
2 = 1.

We show in Figure 2 simulations of equilibrium outputs (left panel) and

saturation level (right panel) in a duopoly as parameter δ increases. In this

example, N = 2 and both firms are active when δ is below the threshold

α0
1c1/α

0
2c2 (0.4 in that simulation). In this occurrence, competitiveness pa-

rameters allow both firms to set positive outputs. Differently, values of δ be-

yond that threshold makes non sustainable the simultaneous presence of two

active firms, so either the equilibrium does not exist or monopolistic configu-

rations are observed for sufficiently low absorption values (high δ). Scenarios

in which equilibria do not exist describe cases in which the more competitive

firm 1 forces firm 2 not to produce in order not to incur in negative values

of its own objective. Once firm 1 becomes dominant, it tunes its incentive

according to (3), that is by putting the higher weight α1
1 on profits.
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In this situation, some other competitor (starting with firm 2) has incentive

to enter the market, which fact, however, implies the adoption of higher incen-

tive α0
1 by firm 1 in the next period. This mechanism prevents the formation

of equilibrium configurations. Differently, as it will be discussed in Section 3,

this makes possible the appearance of periodic cycles along which some less

competitive firms may enter and exit the market. Sufficiently high levels of

Figure 3. Equilibrium productions q̄1 and q̄2 (left panel) and
saturation Q̄ (right panel) varying α0

1 up to α1
1. N = 2, c1 =

c2 = 0.05, α1
1 = 0.8, α0

2 = α1
2 = 1, δ = 0.4.

heterogeneity in competitiveness at a given δ imply the non-existence of steady

states as well. In Figure 3, equilibrium outputs q̄1 and q̄2 (left panel) and Q̄
(right panel) are shown in a duopoly, with α0

1 varying from 0 to α1
1. When

α0
1 is close to zero, competitiveness of firms 1 and 2 are so much different to

exclude the existence of a steady state. Instead, as α0
1 increases, heterogeneity

between players reduces, steady state E emerges and the outputs of the two

players approach each other.

We end this section with Figure 4, which shows equilibrium outputs (left

panel) and saturation (right panel) in the case of an oligopoly with 5 com-

petitors as parameter δ increases. The increment of δ entails increasing levels

of saturation, which, in turn, explain the step-by-step exit of less competitive

firms. The qualitative behavior of equilibrium production as δ increases can

be explained as in the duopoly case once only the most competitive firms 1

and 2 remain active.
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Figure 4. Equilibrium productions q̄i, i = 1, · · · 5 (left panel)
and saturation Q̄ (right panel) varying δ. N = 5, ci = 0.05,
{α0

i }5i=1 = {0.2, 0.25, 0.3, 0.35, 0.4}, {α1
i }5i=1 =

{0.22, 0.9, 1, 1, 1}.

3. Non-equilibrium dynamics

Let us focus on dynamic patterns described by map T . We limit our atten-

tion to those trajectories that are iterations of points in the set

F = {x ∈ RN+1 : xk ≥ 0, all k = 1, · · · , N and xN+1 > 0}. (7)

Such points are indeed characterised by having the first N components non-

negative and a strictly positive value of the last component, as they are the

only points that represent feasible configurations of this Cournot game. In

the following, we will call feasible those trajectories that are bounded and

made up by elements of F only. Feasible trajectories represent non-exploding

production paths along which market prices are defined. The presence of

feasible trajectories of T is considered in the following Proposition, which

shows that trajectories generated by T with feasible initial conditions are

feasible as well. As a consequence, T always describes meaningful economic

dynamics, whichever economically relevant initial configuration is given.

Proposition 2. Let the point (q1, · · · , qN ,Q) be feasible. Then, there exists

a bounded set A ⊂ F of feasible points such that (q1(t), · · · , qN (t),Q(t)) ⊆ A

for all t ∈ N, where (q1(t), · · · , qN (t),Q(t)) := T t((q1, · · · , qN ,Q)).

Proof. See Appendix B. �
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Remarkably, non-equilibrium dynamics emerge both when no steady state

of T exists (see to this purpose Proposition 1) as well as when point E is locally

unstable. We refer the reader to [14] for sufficient local stability conditions of

equilibrium E involving n ≤ N active firms. Such conditions, however, should

be joined up at those parameters’ values at which one player turns from being

active to being inactive. Indeed, at those points, map T is not differentiable

and stability conditions cannot by obtained through the study of eigenvalues

of the Jacobian matrix of T . In the following, we detect trajectories starting

with several active firms which eventually lead to a monopoly, that is with

only one active firm. Such scenarios are not encompassed in [14] but are a

remarkable feature of our setting. Therefore, in the following proposition we

highlight that the monopolistic equilibrium is always locally asymptotically

stable.

Proposition 3. Under Assumption 1, let condition α1
1c1 < δα0

2c2 be fulfilled.

Then, the monopolistic equilibrium

E =

(
δ(1− δ)
α1
1c1

, 0, · · · , 0, δ

α1
1c1

)
is locally asymptotically stable.

Proof. See Appendix D. �

3.1. Economic insights from numerical simulations. Proposition 2 claims

the existence of relevant economic dynamics even when steady state E is either

unstable or does not exist. Numerical simulations allow to further investigate

such non-equilibrium paths. In detail, as observed in equilibrium scenarios,

both saturation and heterogeneity among players disincentive market partic-

ipation, forcing firms with lower competitiveness to marginally contribute to

overall production. This fact extends to non-equilibrium paths through emer-

gence of endogenous competition dynamics, where the activity of the most

competitive firm prevails at the expense of its competitors’ productions and

cyclical entry/exit patterns are observed.

Figure 5 shows the long-run dynamics of both individual productions (left

panel) and market saturation (right panel) in the duopoly case varying δ.

Those diagrams reveal a locally asymptotically stable steady state E for low

values of δ. The increment of δ causes the loss of stability of E and the emer-

gence of a stable cycle of period 4. Moreover, the further increase of δ beyond
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Figure 5. Long run productions q1 (green) and q2 (blue) (left
panel) and saturationQ (green) (right panel) varying δ. N = 2,
c1 = c2 = 0.05, α0

1 = 0.4, α1
1 = 0.8, α0

2 = α1
2 = 1.

the threshold α0
1c1/α

0
2c2 causes the disappearance of E, preserving, however,

the qualitative structure and stability property of the remaining attractor. We

stress that the presence of stable periodic cycles is found to be a robust con-

figuration, being observed in simulations whenever no steady state is present.

In Figure 6 the asymptotic behaviors of three trajectories are shown for

different values of δ when no steady state of T exists. Such trajectories are

represented through time series of variables q1 and q2 (left panel) and by means

of the corresponding periodic points (right panel) in the phase plan (q1, q2).

The time series show non-equilibrium regimes where the activity of the less

competitive firm 2 becomes more and more marginal as δ increases and, at the

same time, the most competitive firm 1 produces more than its opponent. This

translates into a decreasing player’s 2 willingness to be active in the market as

saturation increases. We note that the same effect can be observed as firm’s

1 competitiveness increases, which occurs for example at decreasing values of

parameter α0
1 (see Figure 7).

Moreover, time series show player’s 2 alternating activity and inactivity

periods along cyclic production scenarios. The basic (endogenous) mechanism

underlying this observed cyclic behavior can be explained in the simplest case

of a period 4 cycle. Suppose that, at period t, player 1 sets a positive output
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Figure 6. Time series of productions q1 and q2 in the long run
(left panel) and corresponding periodic cycles in the phase plan
(q1, q2) (right panel). Parameters are N = 2, c1 = c2 = 0.05,
α0
1 = 0.4, α1

1 = 0.8, α0
2 = α1

2 = 1 with, from top to bottom,
δ = 0.41, 0.6, 0.75.

Figure 7. Long run productions q1 (green) and q2 (blue) (left
panel) and saturation Q (green) (right panel) varying α0

1 up to
α1
1. N = 2, c1 = c2 = 0.05, α1

1 = 0.8, α0
2 = α1

2 = 1, δ = 0.4.

while player 2 is inactive. In this configuration, firm 1 is the monopolist and

adopts a less aggressive behavior in deciding its own next-period production,

expecting its opponent to remain inactive (due to the assumption of static

expectations). Then, firm 1 will produce at a sufficiently low level at period
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t+ 1. This allows player 2 to enter the market in period t+ 2, expecting the

same non-aggressive behavior by firm 1 at that time (due, again, to firm’s 2

static expectations). However, player 1 observes an active opponent at period

t + 2, which led it to become more aggressive to harm the opponent. This

implies a high production of firm 1 in period t+ 3. This forces player 2 to set

zero output in period t+ 4 not to achieve negative values of its own objective,

thus exiting the market and becoming inactive.

Figure 8 shows non-equilibrium productivity cycles when no steady state is

present, even with more than two firms. Along such cycles, the most compet-

itive firm forces its competitors to alternate activity and inactivity periods.

As for the duopoly case, such a behavior is supported by the attitude of firm

1 in changing its competitiveness from a low level - when it is the monopolist

- to a higher level in the presence of competitors. We remark that entry/exit

patterns of less competitive firms as well as the rise of a stable monopolistic

equilibrium at sufficiently high values of δ are possible due to the presence

of the saturation mechanism, which allows to define the best reply of the

monopolist even in the presence of isoelastic demand (see Subsection 2.1.2).

Furthermore, the same example shows non-equilibrium dynamics arising when

the steady state E is unstable, which occurs due to supercritical flip bifurca-

tions occurring as parameter δ varies. In detail, at a given number of active

firms, increasing values of δ implies higher levels of market saturation and,

in turn, decreasing individual productions at equilibrium. Then, competitive

pressure reaches important levels, which are paired with the rise of instability

of industry’s outputs. However, the max operator limits the amplitude of os-

cillations, so the further increase of δ leads the less competitive firm to be less

and less productive, until it becomes inactive. This fact relieves competitive

pressure and steady state E retrieves local stability. For the sake of complete-

ness, we mention that the periodic cycle that emerged from the second flip

bifurcation loses its stability as well and trajectories are trapped by a third

attractor, coexisting with the other unstable ones.

4. Conclusions

In this paper, inspired by the works of T. Puu in [10] and [11], we have

proposed and studied an oligopoly model with isoelastic demand and satu-

ration, where firms may employ different delegation schemes. In particular,
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Figure 8. Bifurcation diagrams varying δ of variables qi, with
i = 1, · · · , 5 (left panel), and Q (right panel). Parameters
are N = 5, ci = 0.05, {α0

i }5i=1 = {0.2, 0.25, 0.3, 0.35, 0.4},
{α1

i }5i=1 = {0.22, 0.9, 1, 1, 1}.

the level of delegation of each firm is heterogeneous and can be based on the

current competitive pressure. In fact, we assumed that the same firm may

behave differently if it is a monopolist or if other competitors are active on

the market. From a dynamic point of view, we find the scenarios of interest

when the internal equilibrium does not exist or is unstable with endogenous

dynamics of firms entering and exiting the market. We believe that the re-

sults obtained are a starting point for studying similar models with different

demand functions and with incentive schemes that depend more generally on

the actual level of competitive pressure that each firm faces on the market.
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Appendix A. Proof of Proposition 1

Proof. Steady states of map T are the solutions of the following system of

N + 1 equations
qi = max

(
0,

√
δQ+Q−i
αi(Q−i)ci

− (δQ+Q−i)

)
, i = 1, · · · , N

Q = δQ+Q

(A-8)

where Q−i = Q − qi and Q =
∑N

j=1 qj . It is immediate that the origin E0 is

a steady state of T . Let E = (q1, · · · , qN ,Q) 6= E0 be a solution of system

(A-8). It is easily verified that qi > 0 if and only if 0 < Q < 1/(αi(Q−i)ci).

Moreover, qi > 0 implies qi = Q(1 − αi(Qi)ciQ). We now we distinguish the

following cases.

Case i)

Suppose E be such that qi > 0 for a given i and qj = 0 for all j 6= i. From the i-

th and the last equations in system (A-8) and taking into account that Q−i = 0

holds (so that Q = qi), the equations Q = δ/(α1
i ci) and qi = δ(1 − δ)/(α1

i ci)

follow. Moreover, the j-th equation in system (A-8) together with qj = 0

imply √
δQ+Q−j
α0
jcj

− (δQ+Q−j) ≤ 0

for all j 6= i. The previous inequalities are satisfied whenever α1
i ci ≤ δα0

jcj for

all j 6= i. However, we claim that i = 1 must hold. Indeed, suppose i > 1.

Then, for any j < i, the relation α0
jcj ≤ α0

i ci follows from Assumption 1.

Since, by construction α0
i ≤ α1

i , it results

α0
jcj < α0

i ci ≤ α1
i ci ≤ δα0

jcj < α0
jcj

which is impossible. To conclude, E is a steady state whenever α1
1c1 ≤ δα0

jcj

for all j > 1. Under Assumption 1, this is equivalent to α1
1c1 ≤ δα0

2c2.

Case ii)

Let E be such that the set of active firms {k : qk > 0} includes at least two

players. Since, in this case, Q−i > 0 holds for all i, then αi = α0
i . We claim

that qi > 0 holds for a given i if and only if qj > 0 for all j ≤ i. Indeed, if
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qi > 0, then Q < 1/(α0
i ci). By Assumption 1, it follows Q < 1/(α0

jcj) for all

j ≤ i, which, in turn, implies qj > 0. Similarly, it can be shown that qi = 0

implies qj = 0 for all j ≥ i. Hence, the number of active firms can be expressed

as n = max{k : qk > 0} or, equivalently, as

n = max{k : Q < 1/(α0
kck)}

As a consequence, the aggregate production can be expressed asQ =
∑N

i=1 qi =∑n
i=1Q(1− α0

i ciQ) and the last equation of system (A-8) fixes Q at the level

Q =
n+ δ − 1∑n
i=1 α

0
i ci

The number of active firms n can be determined as n = max {k : f(k) < 0},
where

f(k) =
k + δ − 1∑k
i=1 α

0
i ci
− 1

α0
kck

To conclude, E is a steady state of map T whenever n ≥ 2 or, equivalently,

f(2) < 0.7 This is satisfied provided that condition α0
1c1 > δα0

2c2 holds. �

Appendix B. Proof of Proposition 2

Proof. Suppose by contradiction that for all bounded sets A of feasible points,

it results

{T t((q1, · · · , qN ,Q)), t ∈ N} * A

Since all the components of vector (q1(t), · · · , qN (t),Q(t)) are non negative for

all t ∈ N, then either (1) Q(t)→ 0 holds in the limit t→ +∞ or (2) at least

one component of vector (q1(t), · · · , qN (t),Q(t)) tends to +∞ as t→ +∞. If

(1) holds, then qi(t) → 0 for all i = 1, · · ·N , which can be deduced from the

last component of map T . Hence, a number t̂ ≥ 0 can be found such that for

all i = 1, · · · , N the relation qi(t) < q̂ := max{q1(t̂), · · · , qN (t̂)} holds for all

t > t̂. However, when q̂ is sufficiently small, a component qi always exists for

which it is

qi(t̂+ 1) ≥

√
δQ(t̂) + q̂

α0
i ci

−
(
δQ(t̂) + q̂

)
> δQ(t̂) + q̂ ≥ q̂

7Clearly, f(k) < 0 implies f(k′) < 0 for all k′ ≤ k. Also f(k) ≥ 0 implies f(k′) ≥ 0 for all
k′ ≥ k.
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leading to a contradiction. If (2) holds, then as t → +∞ either qi(t) → +∞
or Q → +∞ is satisfied. If qi(t)→ +∞, then for all j 6= i it results

Rj(t) =

√
δQ(t) +

∑
k 6=j qk(t)

α0
jcj

−

δQ(t) +
∑
k 6=j

qk(t)

→ −∞
Hence, for all j 6= i, it is qj(t) = max(0, Rj(t)) → 0 as t → +∞. In addition,

qi(t + 1) → +∞ implies Q(t + 1) = δQ(t) + Q(t + 1) → +∞ as well. From

this, it follows

Ri(t) =

√
δQ(t)

α1
i ci
− δQ(t)→ −∞

implying qi(t) = max(0, Ri(t)) → 0, a contradiction. Similarly, if Q(t) →
+∞, then qi(t) → 0 for all i and the evolution of variable Q approaches a

contraction (with fixed point 0) in the long run. Hence Q(t)→ 0 as t→ +∞,

a contradiction. �

Appendix C. Existence of a positively invariant set

We highlight the presence of a positively invariant set M such that T (M) ⊆
M , which is included in the plane of RN+1 identified by points of the form

(x1, 0, · · · , 0, xN+1) and representing monopolistic scenarios. We consider the

set

M =
{

(x1, 0, · · · , 0, xN+1) ∈ RN+1 : x1 ≥ 0, xN+1 ≥ f(x1)
}

where

f(x1) = max

(
1

δ

(
1

α0
2c2
− x1

)
,Q−

)
with

Q− =
1

δα1
1c1

(
(1 + δ)2

2

(
1−

√
1− 4

(1 + δ)2
α1
1c1
α0
2c2

)
− α1

1c1
α0
2c2

)

Note that 0 < Q− < 1/(δα1
1c1). In the following, with intM we will denote

the interior of M . We omit the proof of the following lemma.

Lemma C.1. Under Assumption 1, let the condition α1
1c1 < δα0

2c2 be fulfilled.

Then, E ∈ intM and T (M) ⊆M hold.

Since the set M is positively invariant, the restriction of map T to M can

defined, which fact will be used in the proof of Proposition 3.



Oligopoly dynamics with isoelastic demand 23

Appendix D. Proof of Proposition3

Proof of Proposition 3. The restriction TM of map T to the invariant set M

(see Lemma C.1 in Appendix C) is the two dimensional map

TM :


q′1 = max

(
0,

√
δQ
α1
1c1
− δQ

)

Q′ = δQ+ q′1

(A-9)

with fixed point EM =
(
δ(1− δ)/(α1

1c1), δ/(α
1
1c1)

)
. The Jacobian matrix of

TM evaluated at EM results

JM (q̄1, Q̄) =

 0 1/2− δ

0 1/2


whose eigenvalues λ1 = 0 and λ2 = 1/2 are included in the unit circle of the

complex plane. Hence, trajectories with initial conditions in M and placed

sufficiently close to E converges to E as t→ +∞. Now, let us pick an initial

condition in a sufficiently small neighborhood of E, namely a point

P =

(
δ(1− δ)
α1
1c1

+ ε1, ε2, · · · , εN ,
δ

α1
1c1

+ εQ

)
where ε1, εQ 6= 0 and εj > 0 for all j 6= 1. For all j 6= 1 it results

R′j =
1

α0
jcj


√√√√√δα0

jcj

α1
1c1

+ α0
jcj

ε1 + εQ +
∑
k 6=1,j

εk

+

−

δα0
jcj

α1
1c1

+ α0
jcj

ε1 + εQ +
∑
k 6=1,j

εk


Since, by hypotheses, 1 <

δα0
2c2

α1
1c1

≤
δα0

jcj

α1
1c1

, then R′j < 0 holds for all j 6=

1 provided sufficiently small |ε1| and |εQ| are given. Hence, after the first

iteration of P through map T , it results q′j = 0, for all j 6= 1. Moreover, it

results q′1 ≥ 0 and, after some analytic manipulations, the relation Q′ ≥ f(q′1)

can be verified. Then, T (P ) ∈ M and, taking into account the previous

argument, it follows T t(P )→ E as t→ +∞. �
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