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Abstract: Autism spectrum disorders (ASD) encompass a heterogeneous group of neurodevelopmental
disorders resulting from the complex interaction between genetic and environmental factors. Thanks to
the chromosome microarray analysis (CMA) in clinical practice, the accurate identification and
characterization of submicroscopic deletions/duplications (copy number variants, CNVs) associated
with ASD was made possible. However, the widely acknowledged excess of males on the autism
spectrum reflects on a paucity of CMA studies specifically focused on females with ASD (f-ASD).
In this framework, we aim to evaluate the frequency of causative CNVs in a single-center cohort of
idiopathic f-ASD. Among the 90 f-ASD analyzed, we found 20 patients with one or two potentially
pathogenic CNVs, including those previously associated with ASD (located at 16p13.2 16p11.2, 15q11.2,
and 22q11.21 regions). An exploratory genotype/phenotype analysis revealed that the f-ASD with
causative CNVs had statistically significantly lower restrictive and repetitive behaviors than those
without CNVs or with non-causative CNVs. Future work should focus on further understanding of
f-ASD genetic underpinnings, taking advantage of next-generation sequencing technologies, with the
ultimate goal of contributing to precision medicine in ASD.

Keywords: autism spectrum disorders; copy number variants; females; Array-Comparative Genomic
Hybridization (Array-CGH)

1. Introduction

Autism spectrum disorders (ASD) are a heterogeneous group of neurodevelopmental pathologies
characterized by early onset abnormalities in social communication and interaction, as well as
atypically restricted and repetitive behaviors and interests [1]. Despite the exact pathogenesis of
idiopathic ASD not yet being fully elucidated, recent evidences suggest an interaction between
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genetic liability and environmental influences in producing early alteration of brain development [2].
In particular, among environmental risk factors, several maternal factors (including age ≥ 35 years,
chronic hypertension, preeclampsia, gestational hypertension, and overweight before or during
pregnancy) were associated with ASD in an updated review of the literature [3]. Updated data on
the prevalence of ASD in the US (Centers for Disease Control and Prevention, CDC [4]) identified 1
in 54 children as having ASD, while the estimated prevalence of ASD in Italian population is 1 in 87,
according to a recent investigation [5].

Crucially, since the first descriptions of autism [6,7], a strong male bias in ASD prevalence has
been consistently observed, which becomes even more pronounced in individuals without intellectual
disability, according to data from the 80s [8,9]. More recent studies have challenged this assertion,
suggesting that missed or wrong diagnoses of ASD females, especially of those with good intellectual
and language abilities, contribute to the skewed sex ratio in ASD [10].

The exact mechanisms underlying male vulnerability or female protection in ASD remain complex
and scarcely investigated. A multifactorial model has been proposed where a mixture of gene variants
and environmental factors contribute to liability, possibly interacting with sex-specific pathways such
as those related to hormones or immune function [11,12].

Genetic investigations in ASD revealed frequently sexually dimorphic results. For example,
a greater number of de novo copy number variants (CNVs) [13–16] as well as a higher rate of de novo
single nucleotide variants (SNVs) found in exome sequences [17,18] have been observed in females
with ASD (f-ASD) than in male cases, especially non-sense and splice site [19,20]. Conversely, a more
recent study pointed to sex-specific mutations, specifically on the X chromosome, that may contribute
to male prevalence in ASD [21]. On the other hand, as far as sex differences in symptom profiles
are concerned, some previous studies suggested different phenotypic features in females than in
males with ASD [22] like lower IQ [23], more impaired social and/or communicative functioning [24],
psychopathological problems [25] and milder restricted and repetitive behaviors [26–28]. However,
this issue remains controversial [29–33]. Females with ASD displayed also a higher rate of co-occurring
neurological conditions than ASD males, i.e., microcephaly, developmental regression in socialization,
minor neurological and musculoskeletal deficits [34], and epilepsy [35], all pointing to sex differences
in genetic backgrounds.

The advent of chromosome microarray analysis (CMA) in clinical practice [36] allows for fast
detection and accurate characterization of submicroscopic deletions and duplications (CNVs) of
genomic DNA associated with ASD [37,38]. Learning societies and ASD experts recommend CMA
as part of the first-line evaluation for individuals with ASD [39–41]. However, CMA brings up a
higher level of polymorphic genomic rearrangements and the process to attribute causality in complex
conditions such as ASD is not easy and straightforward.

This study aims to investigate the frequency of causative CNVs in a single-center cross-sectional
idiopathic f-ASD cohort to delineate possible genotype/phenotype associations.

2. Methods

We collected the clinical data of a group of 93 females referred consecutively to the Autism
Spectrum Disorders Unit of our Children Neuropsychiatry Hospital between 2015 and 2016. The age
at the last clinical evaluation ranged from 21 months to 17 years. All participants received a clinical
diagnosis of ASD based on the criteria of the Diagnostic and Statistical Manual of Mental Disorders
(DSM-5) [1]. All the patients were unrelated.

According to our ASD-screening protocol, neurometabolic conditions and hypoxic-ischemic injury
were investigated. All participants were evaluated by an expert clinical geneticist in order to exclude
recognizable monogenic syndromes. Prior to this study, each individual had also been tested for the
expanded repeat sequences in 5′-UTR of the FMR1 gene as previously reported [42].

Based on this screening, we excluded two females with a history of perinatal hypoxia and diffuse
white matter disease detected on brain magnetic resonance imaging (MRI), and one patient with
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macrocephaly harboring a pathogenic mutation in PTEN. In a single case (patient P11) we analyzed
CNVs in spite of her presentation of a low-level somatic mosaicism for a fully-mutated/pre-mutated
FMR1 allele, because the patient’s phenotype could not be fully explained by this genetic condition.

Hence, we tested 90 ASD female individuals for CNVs. Participants were classified as clinically
affected by “essential” autism, based on the absence of major congenital abnormalities and major
dysmorphism [43,44].

Cognitive evaluation was performed in 87 participants with specific cognitive scales based
on the age and the language level. According to the age, children were tested respectively with
the Griffiths Mental Development Scale—Revised (GMDS-R) [45], Wechsler Preschool and Primary
Scale of Intelligence—third edition (WPPSI, III) [46] or Wechsler Intelligence Scale for Children—
IV (WISC, IV) [47]. The evaluation of non-verbal females was performed using the Leiter International
Performance Scale-Revised (Leiter-R) [48]. In three participants, the cognitive assessment was not
performed because of scarce compliance due to severe autism symptoms.

Clinical assessment of expressive language skills defined females with a complete absence of
language (n = 27) and a group of “verbal” f-ASD (n = 63).

The semi-structured Autism Diagnostic Observation Schedule second edition (ADOS-2)
evaluation [49], which provides a measure of autism severity, was available in 67 participants.
We recorded the score on the Social Affect (SA) and the Restricted and Repetitive Behaviors (RRB)
domains for each proband. Since we used different ADOS modules according to the non-echolalic
expressive language level of each patient at the time of the evaluation, we converted the global ADOS
scores and the sub-scores of the SA and RRB domains in the corresponding Calibrated Severity Score
(CSS) [50,51].

This study was approved by the Pediatric Ethic Committee of Tuscany Region (Italy), and was
performed according to the Declaration of Helsinki and its later amendments or comparable ethical
standards. All parents or legal representatives signed an informed consent form before the inclusion of
their child in the study. The identities of all individuals were omitted.

3. Procedure

3.1. Genetic Analysis

CMA analyses were performed using the Agilent 8 × 60 K Microarray oligonucleotide platform
with a median resolution of 100 Kbp, according to the manufacture’s protocol (Agilent Technologies,
Santa Clara, CA, USA). CNV coordinates refer to the Genome Reference Consortium Human Build
37 (GRCh37/hg19).

In each proband, CNVs were confirmed by quantitative polymerase chain reaction (qPCR).
Segregation analyses in parental DNA (whenever available) were performed by qPCR. Polymorphic
CNVs, based on Database of Genomic Variants data (DGV) [52]), were filtered out.

Non-polymorphic CNVs were classified as “causative” (C-CNVs) or “non-causative” (N-CNVs)
according to the American College of Medical Genetics and Genomics (ACMG) guidelines [53].
We considered as “causative”: (i) CNVs encompassing genomic regions or genes associated with ASD
or with other neuropsychiatric conditions (i.e., intellectual disability, epilepsy and schizophrenia) in the
Online Mendelian Inheritance in Man (OMIM) database [54]; (ii) CNVs containing “high confidence”
ASD-genes reported in the Simons Foundation Autism Research Initiative (SFARI) Gene database [55]
with a score < 3 or in the Autism Knowledge Base version 2.0 (Autism KB 2.0) database [56] with a
score > 16; (iii) CNVs involving “candidate-genes” for ASD either reported in association with autism
in literature, or listed in the aforementioned databases and with a SFARI Gene score ≥ 3 or an Autism
KB score ≤ 16 (suggestive or “low confidence” candidate-genes). Conversely, CNVs were considered
non-causative (N-CNVs) if they have never been associated with ASD or other neurodevelopmental
disorders (NDDs). Patients who tested negative for CNVs were classified as “without CNVs” (w-CNVs).
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To recognize significantly enriched functional modules, ASD-candidate genes encompassed by
C-CNVs were evaluated by bioinformatics tools. A Core analysis run in the Variant Effects Analysis
mode through the use of the Ingenuity Pathway Analysis (IPA) software [57] figured out cellular
processes related to our gene dataset (21 genes). A functional network encompassing our ASD-candidate
genes was generated. Bridging nodes were denoted evaluating both direct and indirect interactions
with stringent level of confidence and only related to neurological diseases. Gene ontology (GO)
categorization was carried out using ToppGene Suite [58]. The top three ontologies for Molecular
Functions and Cellular Component were annotated and statistical significance of GO terms was
reported as -log10 (p-value).

3.2. Statistical Analyses

We used a chi-square test to investigate the association between the CNVs subtype and the type
of CNVs (duplication or deletion) and the pattern of inheritance (de novo or inherited, paternal or
maternal). A Mann–Whitney test was used to verify if there were any differences in the CNVs burden of
the different CNVs subtypes (excluding patient P23 who carried a whole X-chromosome duplication).

We also investigated the phenotype of the individuals with the different CNVs subtypes testing
with the chi-square test the association between the CNVs subtype and cognitive (IQ ≤ 70 vs. >70)
and language (non-verbal vs. verbal) levels. A Mann–Whitney test was used to ascertain that the
groups with different CNVs subtype were matched on age and to verify if there were any differences
in the CCS score obtained on the total ADOS and on its AS and RRB domains. In case of statistically
significantly differences we compute for r score as effect size index. This was interpreted as negligible
(r < 0.10), small (0.10 ≤ r < 0.30), medium (0.30 ≤ r < 0.50), or large (r ≥ 0.50).

4. Results

4.1. Chromosome Microarray Analysis (CMA)

We performed CMA in 90 females affected by idiopathic ASD, detecting 35 CNVs (17 duplications
and 18 deletions) in 29 (32.2%). Twenty-three participants had one CNV and six carried 2 imbalances.
Sixty-one f-ASD were considered w-CNVs (67.8% of the whole group).

Out of 35 CNVs, 25 were classified C-CNVS (71.4%) and 10 N-CNVs (28.6%). In the whole group
of 90 f-ASD, 20 patients harbored at least one possible disease-causing CNV (diagnostic yield 22.2%)
(Figure 1).
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Figure 1. Graphical representation of chromosome microarray analysis (CMA) results in our group of
90 females affected by autism. In the pie chart is depicted the percentage of individuals with causative
copy number variants (C-CNVs), non-causative copy number variants (N-CNVs) or without copy
number variants (w-CNVs).
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Table 1 illustrates the results of CMA investigations. There were not recurrent C-CNVs, with the
exception of two unrelated subjects who harbored a 15q11-q13 microduplication. Ten CNVs involved
genomic regions already associated with known contiguous gene-deletion/duplication syndromes
associated with ASD or NDDs, 5 CNVs encompassed “high-confident” ASD-genes and ten involved
genes reported in literature or in the SFARI Gene/Autism KB databases as possible candidates for autism.

The function and evidence of possible disease-association of the reported candidate-genes are
summarized in Table 2. Bioinformatic analysis showed that 11 out of 21 of the reported disease-associated
and candidate genes are involved in synaptic structure and transmission (ADARB1, ASIC2, CADM2,
DMD, GRIN2A, GRM7, NEDD4, NRXN1, PCDH15, PTPRD, TRPM2) (Figure 2).

In 24 f-ASD, carrying 29 CNVs, we assessed a de novo origin in 8 and a paternal in 12, whereas CNVs
were maternally-inherited in 9 patients. In 5 children we could not assess segregation because of lack of
parental DNA. Table 3 shows the proportion of duplications and deletions and the mode of inheritance
in relation to the different subtypes of CNVs. Overall, the rate of de novo CNV was 9.4%. All de novo
CNVs involved known NDDs-associated genes/chromosomal regions. CNVs encompassing suggestive
or “low confidence” ASD-genes were all inherited; 6 out 9 disrupted more than one NDD-gene or were
associated with an additional C-CNV. Seven out of 9 maternally inherited vs. 6 out of 12 paternally
inherited CNVs were causative.
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Table 1. Chromosomal microarray (CMA) results in the 29 participants carrying at least one Copy Number Variant (CNV). For each participant with positive CMA
results are reported the genomic location and breakpoints of each CNV, the CNV subtype (deletion or duplication), the size in base pairs, the inheritance status,
the associated known genetic syndrome or Autism Spectrum Disorders (ASD) candidate genes involved in the rearrangement, and the CNV classification (causative or
non-causative).

ID. CNV Breakpoints CNV Type Size (bp) Inheritance Syndrome/Candidate Gene CNV Class Reference

P1
22q13.33 (50781138-51219009) del 437,871 de novo Phelan-McDermid syndrome C #MIM 606232
Xp11.4 (38491539-38628756) dup 137,217 mat TSPAN7 C #MIM 300210

P2 14q32.13 (94817951-94883978) del 66,027 - - N -

P3
16p13.3 (6881091-7070689) del 189,598 mat RBFOX1 C [59]
16p13.2 (9015110-10321593) dup 1,306,483 de novo USP7, GRIN2A C [60]

P4 21q22.3 (45822805-46530451) dup 707,646 mat ADARB1, TRPM2, ITGB2, SUMO3 C [61]
P5 1q31.2 (191644543-191775583) del 131,040 pat - N -
P6 2q34.3 (214919902-215051057) del 131,155 mat - N -
P7 1q21.2 (147211160-147824207) dup 613,047 pat - N -
P8 17p11.2 (16822483-20193310) del 3,370,827 de novo Smith-Magenis syndrome C #MIM 182290
P9 15q21.3 (56283008-56384604) del 101,596 mat NEDD4, RFX7 C [62]
P10 17q12 (34851537-36168104) del 1,316,567 de novo 17q12 deletion syndrome C #MIM 614527
P11 10q21.1 (55616917-55791973) del 175,056 mat PCDH15 C [63]

P12
4q34.1 (172930618-173074943) dup 144,325 pat - N -
4q34.2 (176984739-177190235) dup 205,496 pat - N -

P13 17q12 (31953228-32922965) dup 969,737 mat ACCN1, TMEM132E C [64]

P14
3p12.1 (85615568-85672801) del 57,233 pat CADM2 C [32]
3p26.1 (7353126-7403750) del 50,624 pat GRM7 C [65]

P15 7q31.1 (110954950-111202026) del 247,076 pat IMMP2L C [66]
P16 2q23.3 (153898093-154164672) del 266,579 pat - N -
P17 5q23.3 (129687092-130006500) del 319,408 mat - N -
P18 15q11.2q13.1 (23669701-28525460) dup 4,825,759 - 15q11q13 duplication syndrome C #MIM 608636
P19 2p16.1p15 (58566616-61546442) del 2,979,826 de novo 2p16.1p15 deletion syndrome C #MIM 612513
P20 16p11.2 (29673954-30197341) dup 523,387 - 16p11.2 duplication syndrome C #MIM 614671
P21 15q11.2q13.1 (23669701-28525460) dup 4,855,759 mat 15q11-q13 duplication syndrome C #MIM 608636

P22
9p24.1 (7800020-8528849) dup 728,829 - PTPRD C [61]

Xp22.31 (6552712-8115153) del 1,562,441 - Xp22.31 deletion syndrome C [67]
P23 2p16.3 (48915312-48979903) del 64,591 pat - N -
P24 Xp22.33q28 (61529-155190083) dup 155,128,554 de novo 47, XXX C [68]
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Table 1. Cont.

ID. CNV Breakpoints CNV Type Size (bp) Inheritance Syndrome/Candidate Gene CNV Class Reference

P25 Xp21.1 (31893344-32289012) dup 395,668 de novo DMD C [69]
P26 8q24.3 (146053353-146174033 dup 120,680 - - N -

P27 2q12.2q12.3
(106929257-108403252) dup 1,473,995 pat ST6GAL2 C [70]

P28 22q11.21 (20754422-21440514) dup 686,092 pat 22q11.2 duplication syndrome C #MIM 608363

P29
2p16.2 (50909765-51083469) del 173,704 pat NRXN1 C [71]

Xp22.33 (581803-920279) dup 338,476 de novo SHOX C [72]

Pt: participant; CNV: copy number variant; bp: base pairs; del: deletion; dup: duplication; mat: maternal; pat: paternal; C: causative; N: non-causative.

Table 2. Function and evidences of disease-association of the reported candidate-genes encompassed in causative- Copy Number Variants (CNVs). The table reports
evidences that supports the possible role in autism of the reported “high confidence” autism spectrum disorder (ASD) genes (genes with a Simons Foundation Autism
Research Initiative SFARI Gene score < 3 or with an Autism KB 2.0 score > 16), and suggestive or “low confidence” candidate-genes (genes with a SFARI Gene
score ≥ 3 or with an AutismKB 2.0 score ≤ 16). For each gene, genomic region, participant ID, function of the encoded protein and scores assigned in the SFARI Gene
and AutismKB 2.0 databases are reported (NR: gene not reported in the database).

Gene Genomic Region (Participant ID) Protein Function SFARI Gene/AutismKB 2.0

“High confidence” ASD-genes
USP7 16p13.2 (P3) Ubiquitin-specific protease; regulates ubiquitination processes 2/4

GRIN2A 16p13.2 (P3) Subunit 2A of the glutamate N-Methyl-D-Aspartate (NMDA) receptor 2/10
RBFOX1 16p13.3 (P3) RNA-binding protein that regulates alternative splicing events 2/28

DMD Xp21.1 (P25) Component of the dystrophin-glycoprotein complex (DGC), which bridges the
inner cytoskeleton and the extracellular matrix S/28

SHOX Xp22.33 (P29) Belongs to the paired homeobox family, nuclear transcription factors involved in
cell-cycle and growth regulation 2/2

NRXN1 2p16.2 (P29)
Cell adhesion molecule, form a complex with neuroligins at synapses in the
central nervous system required for neurotransmission and involved in the
formation of synaptic contacts.

1/68

Suggestive or “low confidence” candidate ASD-genes

TSPAN7 Xp11.4 (P1)

Member of the tetraspanin family, encodes a cell surface glycoprotein that
complex with integrins. It may have a role in neurite outgrowth and
Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)
receptor trafficking

3/2

ITGB2 21q22.3 (P4) Integrin B2, adhesion molecule implicated in synaptic pruning NR/3
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Table 2. Cont.

Gene Genomic Region (Participant ID) Protein Function SFARI Gene/AutismKB 2.0

TRPM2 21q22.3 (P4) Voltage-independent cation channel, mediates sodium and calcium ion influx in
response to oxidative stress; modulates oxytocin release. NR/11

ADARB1 21q22.3 (P4)
Protein involved in the editing of the RNA of glutamate, serotonin and
Gamma-Aminobutyric Acid (GABA) receptors, and potassium
voltage-gated channels.

5/1

SUMO3 21q22.3 (P4) Involved in SUMOylation of proteins, a post-translational modification that
modulates the activity of several neuronal transcription factors NR/0

RFX7 15q21.3 (P9) Transcription factor NR/4

NEDD4 15q21.3 (P9)
Protein involved in the ubiquitin proteasome system. It plays a critical role in the
ubiquitination and degradation of AMPA receptors, endocytic machinery
components and Phosphatase and Tensin Homolog (PTEN) protein.

NR/4

PCDH15 10q21.1 (P11) Member of the cadherin superfamily, membrane proteins that mediate
cellular adhesion 3/16

ACCN1
(ASIC2) 17q12 (P13)

Non-voltage-dependent Na+ channel; facilitates Acid-Sensing Ion Channel (ASIC)
localization to synapses interacting with synaptic scaffolding proteins as
Postsynaptic Density Protein 95 (PSD95)

NR/7

TMEM132E 17q12 (P13) Neural adhesion molecule NR/NR

CADM2 3p12.1 (P14) Adhesion molecule involved in synapse organization, providing regulated
trans-synaptic adhesion. 3/0

GRM7 3p26.1 (P14) Metabotropic glutamate receptor mGluR7 3/12

IMMP2L 7q31.1 (P15) Subunit of an inner mitochondrial membrane peptidase complex involved in
processing of mitochondrial proteins 3/10

PTPRD 9p23p24 (P22)

Receptor protein tyrosine phosphatase, induces pre- and post-synaptic
differentiation and regulates neurogenesis. Interacts with proteins involved in
intellectual disability/ASD as IL1RAP and IL1RAPL1 and proteins of the
mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase
(ERK) pathway.

NR/7

ST6GAL2 2q12.3 (P27) Encodes a sialyltransferase mostly expressed in embryonic and adult brain. CNVs
were reported in autism studies. NR/2
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Figure 2. Bioinformatic analyses performed on ASD-candidate genes encompassed by C-CNVs.
(A) A Core analysis run in Variant Effects Analysis mode using the Ingenuity Pathway Analysis
software figured out cellular processes related to our gene dataset (21 genes) generating a functional
network encompassing 11 genes (in red). Synaptic transmission resulted the most significant functional
annotation (p-value 6.05 × 10−9). Bridging nodes (in white) were denoted evaluating both direct and
indirect interactions related only to neurological diseases and with stringent level of confidence (B).
Gene ontology (GO) categorization was carried out using ToppGene Suite. Top three ontologies for
Molecular Function (dark grey) and Cellular Component (light grey) were annotated; statistical significance
of GO terms was reported as −log10 (p-value). The number of genes belonging to each category was
reported on the right of each bar.

4.2. Phenotypic Characterization

Twenty-seven f-ASD had an absence of language whereas 63 were “verbal”.
Cognitive evaluation was performed in 87 participants, being three participants unfit for

psychometric testing. Forty-two of the tested individuals had IQ ≤ 70 and 45 had IQ ≥ 70.
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The 67 participants tested with ADOS-2 had the following mean (SD) Total, SA and RRB ADOS
CSS, respectively: 6.57 (2.36), 6.79 (2.34), and 7.22 (2.30).

Supplementary Table S1 recapitulates clinical data of the studied population.

Table 3. Proportion of deletions vs. duplications and pattern of inheritance of the reported CNVs
according to their classification (causative vs. non-causative).

Type of CNVs Inheritance

Duplication Deletion De novo Paternal Maternal
(n = 17) (n = 18) (n = 8) (n = 12) (n = 9)

C-CNVs 13/25 (52%) 12/25 (48%) 8/21 (38.1%) 6/21 (28.6%) 7/21 (33.3%)
(n = 25)
N-CNVs 4/10 (40%) 6/10 (60%) 0/8 (0%) 6/8 (75%) 2/8 (25%)
(n = 10)

Total 17/35
(48.6%)

18/35
(51.4%) 8/29 (27.6%) 12/29

(41.4%) 9/29 (31%)

Note: Inheritance was assessed in 29 out of 35 CNVs. C-CNVs = causative CNVs; N-CNVs = non-causative CNVs;
n = number of CNVs for each group.

4.3. Statistical Analysis

We observed a statistically significant association between the heritage (de novo vs. maternal
and paternal) and the subtypes of CNVs (C-CNVs vs. N-CNVs) (Chi2(1) = 4.21, p = 0.04). Indeed,
all N-CNVs were transmitted and never arose de novo while all de novo CNVs were causative (38% of
C-CNVs); 7 out of 9 (77.8%) C-CNVs were maternal and 6 out of 12 (50%) were paternal.

Whilst the type of genomic micro-rearrangement (deletion vs. duplication) was not statistically
correlated to causative/non-causative definition (Chi2(1) = 0.41, p = 0.52), not considering CNVs
associated with contiguous-gene syndromes, most of the breakpoints of causative duplications lie
within at least one NDD-candidate gene (n = 6/8). C-CNVs had a CNVs burden value statistical
significantly higher than those of the N-CNVs subtypes (mean (SD) = 1.14 (1.43) vs. 0.19 (0.16);
Mann-Whitney U = 52.50, z = 2.56, p = 0.01, r = 0.49).

Table 4 shows the age, the cognitive and linguistic level as well as the autism severity of the
three groups of individuals according to different CNV subtypes (causative, non-causative and
without CNVs).

To investigate whether there were significant differences in clinical features between groups,
we regrouped participants with negative CMA results (N-CNVs and w-CNVs) and compared
their characteristics with cases with C-CNVs. The two groups resulted matched for age
[mean (SD) = 66.95 (38.55) vs. 56.74 (38.03); Mann–Whitney U = 523.00, z = 1.72, p = 0.09].

We found that there were no differences between the two groups on the cognitive level (IQ ≤ 70
vs. IQ > 70; Chi2(1) = 0.47, p = 0.49), language level (non-verbal vs. verbal; Chi2(1) = 0.31, p = 0.58),
and on the CSS obtained on the total score and on the AS ADOS domain (Mann–Whitney U = 262.50,
z = 1.42, p = 0.16; Mann–Whitney U = 303.00, z = 0.77, p = 0.44).

The relative frequencies of the phenotypic features were the following: in the group with C-CNVs,
55% (11/20) had IQ ≤ 70; 60% had a moderate-severe level of autism symptoms (9/15), 35% had
absence of language (7/20); in the group with negative CMA, 46% (31/37) had IQ ≤ 70; 75% had a
moderate-severe level of autism symptoms (47/62), 28% had absent language (20/70).

Conversely, we found that the f-ASD with C-CNVs had a statistically significantly lower CSS on
the RRB ADOS domain that those without CNVs or with non-causative (mean (SD) = 6.08 (2.14) vs.
7.50 (2.27); Mann–Whitney U = 197, z = 2.48, p = 0.01, r = 0.30).
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Table 4. Demographic features of participants grouped according to CMA results. For each group
(with causative and non-causative CNVs, or without CNVs) are reported the mean age at the last
examination (in months), the rate of patients with a IQ level > 70 vs. ≤70, the rate of verbal vs.
non-verbal patients, and the mean calibrated severity scores (CSS) of the global Autism Diagnostic
Observation Schedule (ADOS) scores and the sub-scores of the Social Affect (SA) and Restricted and
Repetitive Behaviors (RRB) domains. The language level was assessed in all 90 participants, the IQ
level and the ADOS scores were available for 87 and 67 of the 90 individuals, respectively.

C-CNVs N-CNVs w-CNVs
(n = 20) (n = 9) (n = 61)

Mean age at the last examination
in months (SD) 66.95 (38.55) 47.11 (15.57) 58.16 (40.19)

IQ > 70 9/20 (45%) 4/8 (50%) 32/59 (54.2%)
IQ ≤ 70 11/20 (55%) 4/8 (50%) 27/59 (45.8%)

Verbal 13/20 (65%) 5/9 (55.6%) 45/61 (73.7%)
Non-verbal 7/20 (35%) 4/9 (44.4%) 16/61 (26.3%)

Mean ADOS-CSS: - - -
Mean SA-CSS (SD) 6.38 (2.26) 7.50 (1.64) 6.81 (2.45)

Mean RRB-CSS (SD) 6.08 (2.14) 5.50 (3.83) 7.75 (1.92)
Mean Global-CSS (SD) 5.69 (2.25) 6.83 (2.64) 6.77 (2.35)

C-CNVs = participants with causative CNVs; N-CNVs = participants with non-causative CNVs;
w-CNVs = participants without; n = number of patients for each group; SD = standard deviation.

5. Discussion

Although a recent meta-analysis and multidisciplinary consensus statement proposes exome
sequencing at the beginning of the evaluation of unexplained neurodevelopmental disorders [73],
CMA is still the recommended first-tier genetic analysis in the evaluation of ASD subjects [40,74].

In the last few years, investigations of large cohorts of ASD individuals [13,37,75] have identified
a high burden of CNVs with rare C-CNVs being found in 5–10% of idiopathic ASD [76]. However,
these data are often affected by gender-bias due to the high M/F ratio in the vast majority of the
studies and even more recent investigations addressing type and frequency of C-CNVs did not allow—
with few exceptions—for separate gender examinations due to relatively small sample size [77–80].

Herein, we focused exclusively on a cohort of f-ASD and we found clinically significant CNVs in
about 22% of patients. Few investigations have considered CNVs and clinical features in f-ASD in
comparison with ASD males. In one study, large CNVs (>400 kb) were more frequent in f-ASD than in
males (29% vs. 16%), and this difference was even higher (F/M 3:1) if analyses were limited to regions
containing genes involved in NDDs [81]. In a similar vein, Levy and colleagues (2011) [13] detected that
f-ASD have a high frequency of de novo CNVs (11.7% vs. 7.4% in males), and Sanders et al. (2015) [15]
identified a significant difference in the rate of de novo CNVs between boys (5.3%) and girls (8.7%).
Our numbers in an only girl cross-sectional, monocentric study denote a similar sex effect with a high
diagnostic yield and a 9.4% occurrence of de novo variants.

All de novo CNVs involved known NDDs-associated chromosomal regions whereas CNVs
encompassing suggestive or “low confidence” ASD-genes were all inherited and mostly disrupting
more than one NDD-gene or associated with an additional C-CNV. Among C-CNVs, there was an
excess of maternally-inherited potentially pathogenic CNVs. These findings support the “two-hit
model” suggested in previous studies in which the compound effect of a small number of rare variants
may contribute to phenotypic heterogeneity of ASD [82].

While literature in the ASD field reported an excess of clinically-significant deletions, we did
not find a correlation between the type of genomic rearrangement and causative/non causative
definition. Haploinsufficiency for genes within a deletion is a well-recognized cause of genetic disease.
Conversely, interpreting the phenotypic consequences of microduplications is often challenging
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because the pathogenicity of most duplications cannot be explained by triplosensitivity. Sequencing the
breakpoints of 119 duplications, Newman et al. (2015) demonstrated that, rather than an extra copy
effect, the phenotype of microduplications can be related to the misregulation of genes that span the
breakpoints, through loss-of-function mechanisms due to altered transcription or translation or to the
creation of fusion proteins with unknown functions [83]. In our f-ASD cohort, most of the causative
non-syndromic duplications breakpoints disrupted at least one NDD-candidate gene, hence we can
suppose that the pathogenic phenotype could be caused by similar mechanisms.

Unlike previous literature results [78], we did not find any association between C-CNVs and
IQ or language deficits. Analyzing the phenotypic features of females with C-CNVs versus those
with negative CMA results, we only observed statistically significantly lower scores on the restricted
repetitive behaviors (RRB) ADOS domain in f-ASD with clinically significant variants. Recently,
Barone et al. reported more severe autistic symptoms in individuals with C-CNVs [79]. The discrepancies
with our data could reflect the diverse characteristics of the studied population, indeed several studies
suggested a sex effect on RRB scores, which are reported to be repeatedly lower in female than in
male subgroups [28,84–86]. Crucially, several lines of evidence suggest that social-communication
(SC) and RRB symptom domains are underpinned by different genetic mechanisms. For instance,
a recent genome-wide association study demonstrated that the RRB trait “systemizing” is heritable
and genetically correlated with autism in the general population and that the SC and RRB domains
in autistic subjects show low shared genetics [87]. In particular, the contribution of genetic factors to
the RRB domain is sustained by their significative presence on both parents [88] and siblings [89] of
probands with ASD. Overall, the impact of C-CNVs on ASD symptoms is still unclear and a recent
work highlighted the contribution of environmental factors (i.e., maternal infections during pregnancy)
on RRB severity in individuals with CNVs [90]. We can only speculate that we registered lower RRB
scores in our f-ASD with positive CMA results because this sample represents the mild-end of a
genomic “simple” disorder, while those girls with negative results could reflect the group of f-ASD
with “complex” multifactorial etiology, as the largest portion of idiopathic autistic males.

With the exception of two subjects with a 15q11-q13 microduplication, no overlapping
CNVs were detected, confirming the high genetic heterogeneity of ASD. Fifteen CNVs involved
ASD/NDDs-associated genes or genomic regions already identified, whereas 10 CNVs encompassed
genes reported as possible candidates for ASD in literature or in ASD databases (Tables 1 and 2).
The contribution of each CNV to the phenotype of our f-ASD patients is discussed in the Supplementary
File S1. Out of this list, some cases appear worth discussing.

The known contiguous-gene deletion/duplication syndromes detected in our cases were associated
with a diagnosis of “idiopathic” ASD because these patients did not display any of the additional
non-neurodevelopmental features specific of these syndromes, as dysmorphisms or congenital
defects which can be seen in Smith-Magenis (P8), 17q12 microdeletion (P10), 2p15p16 deletion
(P19), 22q11 duplication (P28) and SHOX duplication (P29) syndromes. These patients could represent
the mild-end of the phenotypic spectrum of these genomic disorders, due to the “NDDs-protective
effect” reported in females [16].

In some cases, reverse phenotyping allowed the investigation and prevention of important
comorbidities, as in P25, who carries a de novo partial duplication of the DMD gene, which in
females could manifest with muscle weakness and cardiomyopathy, and in P20, who carries a
16p11.2 duplication widely reported in ASD studies which is associated with the risk of developing
psychotic symptoms [91].

Among clinically relevant rearrangements, aneuploidy was identified in a single subject,
who presented an X chromosome trisomy (47, XXX). Interestingly, data in the literature did not
report a greater risk for autism in X chromosome trisomy [92], even if difficulties in social functioning
and, more broadly, an increased vulnerability for autistic traits are described [68].

The de novo 16p13 duplication detected in one patient (P3) involves partially UPS7.
Variants affecting this gene were recently reported in 23 individuals with syndromic Developmental



J. Pers. Med. 2020, 10, 160 13 of 18

Delay/Intellectual Disability [93], and about half of reported subjects had ASD. P3 presents mild
motor developmental delay, absent speech, behavioral anomalies and ASD, suggesting that USP7
haploinsufficiency should be suspected in a case of ASD with absence of speech and behavioral
disorders. CNVs detected in P3 spans also GRIN2A and RBFOX1, so we cannot exclude a possible
additional role of these genes in the phenotype of the patient.

The deletions found in P11, P14 and P15 reinforce the evidence of a possible contribution of
PCDH15, GRM7, CADM2 and IMMP2L genes to ASD susceptibility.

Finally, five CNVs spanned some “low-confidence” ASD-genes, which can be investigated in
future studies (i.e., TRPM2, ADARB1, RFX7, NEDD4, ASIC2, PTPRD, ST6GAL2).

When new and old genes pinpointed by CMA studies were combined in functional modules
using IPA and ToppGene Suite, we observed an enrichment in genes involved in synaptic function and
transmission, which are well-established biological processes involved in autism and NDDs [94].

In conclusion, this study provides a representative picture of the spectrum of CNV in f-ASD
investigated in a clinical setting. As expected, no specific CNVs have been found to be required for
developing ASD, supporting the heterogeneity of affected molecular pathways. However, genes in
the C-CNVs of our sample of f-ASD code mainly for proteins that could be grouped in two different
functional systems: synaptic function/structure, and mRNA/protein processing. Of note, environmental
exposures during specific windows of vulnerabilities in prenatal and perinatal life critically interact
with genetic susceptibility contributing to ASD pathogenesis [95]. Our study suggests that females with
idiopathic ASD have a high rate of pathogenic CNVs encompassing both known and new candidate ASD
genes. Hence, studies on large samples of f-ASD carefully assessed from a clinical point of view could
help in unraveling the genetic determinants of autism. Moreover, f-ASD with normal-array comparative
genomic hybridization analysis could benefit from whole exome or genome sequencing [96], paving the
way for the implementation of personalized treatments based on genetic findings.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-4426/10/4/160/s1,
Table S1: Phenotipic characteristics of participants; Supplementary File S1: Contribution of each CNV to the
phenotype of f-ASD patients.
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