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Abstract

Warehouse premarshalling (also pre-marshalling or remarshalling) is the ac-

tivity of reordering items in a storage location so that subsequent retrieval

orders can be serviced with little or no need for further relocations. It has

deep impact on warehouse efficiency. We are interested in a stochastic case,

where pickup orders become known only at the moment when they are to

be retrieved. The problem is framed in a business analytics settings, where

a forecasting statistical model based on historic data generates the input of

a two stage stochastic optimization module. Computational results both on

artificial and real-world data confirm the effectiveness of the approach.

Keywords: Warehouse premarshalling, business analytics, stochastic

optimization

1. Introduction

Warehouses contain goods, which could be arranged in many different

ways. The most widespread storage strategy is stacking [20], which is both

straightforward and robust. No racking or storage facility is required for

this system and it can be employed in any warehouse with wide floor space.

When stacking, homogeneous boxes (also known as blocks, pallets, ...) are

piled up on one another in stacks, where each level of the stack is called a
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tier (first tier boxes are on the floor, second tier ones lay on first tier boxes

and so on). The number of tiers is determined by the physical characteris-

tics of the warehouse equipment and of the boxes, such as their crushability,

the stability of the obtained stacks, the clearance height of the warehouse,

and so on. In case they become too high, stacks can possibly be divided in

successive substacks. The essential feature is that each stack can only be

accessed following a LIFO policy, i.e., only the last inserted box can be re-

trieved first. The stacks are then arranged in parallel within the warehouse.

Floor stacking (also named block stacking) is a very common warehousing

strategy, as it implies the least setup costs and permits a good storage den-

sity. Typically it is a primary choice for storing building materials, ceramic

or roof tiles and in general non-crushable palletized products.

Big warehouses are often partitioned into areas, which could in turn be

partitioned into blocks. The storage location of a box is therefore given by

the area (block), stack, and tier in which it is placed [41]. Usually, bigger

companies make use of a Warehouse Management System (WMS), where

each box is represented by a Stock Keeping Unit (SKU), which represents

the smallest unit of a product that can be retrieved or added to inventory.

In the framework of this work, we assume that SKUs make direct reference

to boxes, i.e., there is no further consolidation level where several SKUs are

contained in one same box.

Operating stack-arranged warehouses involves several different activities,

where the most sensitive one is order picking, reputedly the most labor-

intensive and time-consuming process in warehouse logistics [50]. Order

picking refers to the retrieval of one or several boxes from their storage

locations [13], and storage location assignment influences almost all key

warehouse performance indicators [40, 39]. Among the main competitiveness

KPI of a warehouse are therefore the time for retrieving the boxes requested

by the customers and the amount of work to complete this task [10], which is
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fundamentally affected by the stacking configuration and warehouse layout

[54, 45].

Unfortunately, the LIFO policy imposed by stacking possibly implies the

need to relocate unrequested boxes before getting access to the one targeted

by the picking. An optimized planning strategy is thus crucial to mini-

mize the number of relocation movements and to achieve overall logistic

efficiency [12]. Planning has the objective of storing the boxes in locations

where they will be readily accessible for future retrieval, with little need

of relocations. Great attention has been devoted to this topic by the opti-

mization community, but the high level of unpredictability inherent in the

supply chains precludes to reliably maintain an optimized stack layout [56].

To face this further problem, one common procedure is premarshalling (al-

ternatively denoted as pre-marshalling or sometimes remarshalling), which

has the objective of reorganizing the warehouse in order to reduce the total

number of relocations later on. Premarshalling is usually carried out in low

activity periods, for example during night shifts when underworked forces

are available, in order to minimize labor requests in the high activity peri-

ods. Thus, the Premarshalling Problem (PMP) asks to find the minimum

number of relocations necessary to rearrange the warehouse boxes so that

subsequent picking will need no further relocations. The PMP is NP-hard

[7].

An additional difficulty comes when the orders that should drive premar-

shalling are not known with sufficient advance. This happens both because

of the intrinsic uncertainty related to logistic processes and because more

and more warehouses accept late orders, which induces the need of work-

load forecasting [51]. This paper presents a solution facing this last use case,

where premarshalling has to be driven by forecasts made on the basis of past

order history.
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1.1. Contributions

This work presents a full Business Analytics case study on an actual

warehouse management problem, thus focuses on the synergies between op-

erations research methods, statistics and economics, applied to the analysis

of stochastic warehouse management. The method we propose leverages on

the interplay of information services and stochastic methods to get prescrip-

tive directives that help reducing the impact of uncertainty.

We apply our methodology to a very significant application case, i.e.,

warehouses managed using the most widespread storage strategy, and we

apply original statistic models, devised for this specific case, and an op-

timization methodology which can be framed in the area of matheuristics

[38]. The approach put forth is based on historical data, and first defines

the probability distribution of the picking requests, later using it for pre-

marshalling optimization. The computational results show that the need of

item relocations during picking decreases by a significant percentage.

Finally, we point out that the method we propose can have an even

greater impact in practice, as it is not limited to stacked warehouses, but

can be also applied to automated warehouses.

1.2. Related work

Large part of the relevant literature does not directly address the ware-

house premarshalling problem, but the closely related container yard pre-

marshalling, which shares the same core problem. This last is a problem

arising in port yard management, where containers are stacked, and asks to

find the minimal sequence of container movements to rearrange containers

in the stacks, so that the resulting configuration is compatible with the time

each container must leave the port.

Another closely related problem whose literature can be partly exploited

is the block relocation problem, which considers also the removal from the

warehouse of the boxes in the picking list.
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These problems, and specifically premarshalling, are enjoying an increas-

ing interest in recent years, even though contributions in the literature are

mostly dedicated to deterministic settings, for which a number of heuristic

and exact approaches have been presented. A survey thereof was proposed

by Lehnfeld and Knust [35].

Exact methods are based on different approaches, which include integer

programming formulations, dynamic programming, constraint programming

and A* adaptations.

Parreño-Torres et al. [42] recently presented different families of inte-

ger programming models of the PMP, which proved computationally very

effective. Lee and Hsu [34] presented a mixed-integer linear programming

formulation of the PMP based on a multi-commodity network flow model

with side constraints, which permits them to compute lower bounds and to

solve small instances to optimality. Exposito-Izquierdo, Melian-Batista and

Moreno-Vega [16] were primarily interested in a heuristic method, but to

assess its effectiveness they also designed an exact code based on A*. This

way of approaching the problem has then been used also by Tierney, Pacino

and Voß [48], who extend it to IDA* (Iterative Deepening A*) and include

novel branching and symmetry breaking rules. Prandstetter [43] proposes a

dynamic programming approach based on a DP formulation, later embedded

into a branch-and-bound framework in order to increase the computational

effectiveness. The final exact procedure is also converted into a heuristic by

means of heuristic state equivalence determination. Rendl, Prandstetter [44]

presented a first constraint programming model, which is computationally

dominated by dynamic programming, and extend it to a robust variant of

the problem. Finally, Zhang, Jiang and Yun [55] present a heuristic-guided

branch-and-bound, which integrates in the B&B a guiding heuristic, which

eliminates numerous branches prior to evaluating the lower bound at the

corresponding nodes.
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The state of the art of exact approaches is represented by the branch

and bound of Tanaka and Tierney [46], further expanded in [47], where

lower bounds, dominance rules, an iterative deepening branch and bound

search, a specific branching heuristic, and a greedy partial solution comple-

tion heuristic contribute to effectively solving testsets from literature, albeit

much smaller than those presented in the present paper.

Another noteworthy contribution was made by de Melo et al. [14], who

devised a unified integer programming model capable of representing both

the PMP and the block relocation problem, permitting to obtain good so-

lution performance on instances of both.

On the heuristic side, the range of different approaches is wide, too.

Among the recent proposals, we find Caserta and Voß [8] who approached

the PMP by a corridor method, which is an effective matheuristic approach

[6]. Other methods that can be classified as a matheuristic were presented by

Forster and Bortfeldt [5] for the closely related container relocation problem,

and consisted in a heuristic tree search procedure based on a classification of

possible moves and on a branching scheme using move sequences of promis-

ing single moves, and by Kim and Bae [30], who decomposed the PMP into

a sequence of integer programming problems. More standard heuristics or

metaheuristics were used by Lee and Chao [33] who relied on neighborhood

search, by Huang and Lin [25], who used simple labeling procedures, by

Gheith, Eltawil and Harraz [19], who implemented a genetic algorithm, and

by Jovanovic, Tuba and Voß [27], who used multiple tailored heuristics. Re-

cently, Wang et al. [52] further proposed a target-based heuristic of good

performance.

An innovative approach has been proposed by Hottung et al. [23] with

their Deep Learning Heuristic Tree, which uses deep neural networks to learn

solution strategies and lower bounds through analyzing existing solutions

of PMP instances. The networks are then integrated into a tree search
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procedure to decide which branch to choose next and how to prune the

search tree.

The only contribution we are aware of on a stochastic optimization model

for a problem related to PMP was presented by Borjan et al. [4], who devised

a mathematical model for a dynamic version of the container relocation

problem, where stacking and retrieving periods overlap, and which considers

uncertainty in container arrival and departure times. The problem details

and the source of aleatority are different from the ones of interest to us,

but the modeling approach is similar, in that the authors use a two stage

stochastic optimization framework that differently from us relies on a model

of the deterministic version of the problem.

Zhao and Goodchild [53] investigate the possible benefits of using (in-

complete) information on truck arrival for relocating containers by yard

cranes in order to quickly retrieve desired containers. There are some sim-

ilarities to our model. The main differences are (i) that we assume that

premarshalling (i.e., a more prolonged, connected series of re-locations) is

done in preparation for expected demand, and (ii) that in our approach, a

stochastic model is used to represent uncertain information on the set and

temporal sequence of customer orders, whereas in [53], uncertainty concerns

only the arrival sequence of trucks and is represented by partial information,

an important special case being that one knows successively arriving groups

of trucks but not the exact order of arrivals within each group.

Also Ku and Arthanari [32] are concerned with the goal to minimize

necessary reshuffling moves in container terminals. They make a similar

assumption as Zhao and Goodchild [53] by supposing that the container

pickups (truck arrivals) can be grouped into “time windows”, where the

precedence relationship between pickups in the same group is unknown in

advance. The relative retrieval order of containers with the same time win-

dow is assumed to be a random permutation. In combination with the
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objective of minimizing the expected number of re-handles, this leads to

a stochastic dynamic programming model that is solved by a search-based

algorithm in a tree search space and by a heuristic technique. We also use

a stochastic model, but as our focus is on premarshalling, it refers to the

random pickup list rather than to the departure times.

As the two articles mentioned above, Galle et al. [17, 18] deal with the

Container Relocation Problem (CRP) and focus therefore on the optimiza-

tion of move sequences for the retrieval of a known set of items. Their

stochastic extension of the CRP is a modification of the one presented in

[53, 32], using again the assumption that the order of containers assigned

to the same time window is a random permutation, but deviating from the

previous models by assuming that this permutation will have already be-

come known at the time when the retrieval of the corresponding containers

starts. The authors derive bounds and develop exact and approximate solu-

tion algorithms for this model. A major difference to our work is again that

in our problem of premarshalling type, already the set of items is uncertain

(random).

Tierney and Voß [49] address the premarshalling problem by a robust

optimization approach. Starting from the observation that exact retrieval

times cannot be predicted, they investigate a version of the problem where

each container has to be retrieved within a certain time interval. They

solve their problem formulation to optimality and show that their method

outperforms prior related approaches. While our present work also deals

with premarshalling, we use the stochastic rather than the robust paradigm

for addressing uncertainty, and we consider also the items to be retrieved as

uncertain.

The same differences can also be stated with respect to the robust-

optimization approach by Boge et al. [3]. They derive uncertainty sets from

priority classes of items based on the swap-distance between permutations,
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and define “robust” configurations by the constraint that under each sce-

nario from the uncertainty set, there are no items blocking the retrieval of

other items. They provide theoretical results, formulate mixed-integer pro-

gramming optimization models, and report on computational experiments

with benchmark instances from the literature.

Other related contributions are the robust optimization by Rendl and

Prandtstetter [44], which solves by constraint programming a robust variant

considering uncertainty on collecting times, and the simulated annealing of

Kang, Ryu and Kim [28], which considers uncertainty on container weights

and their effect on problem specific side constraints.

Finally, it is noteworthy to mention the works which try to estimate the

optimal number of relocation moves in the PMP, which include the works

of Kim [29], of Kang, Ryu and Kim [28] and of Kim and Hong [31] for

the block relocation problem. All of these refer to the uncertainty of the

resulting number of moves, not of the input data.

Contrary to this, the work of van Gils et al. [51] addresses from an

application viewpoint the same uncertainty we were confronted with, in their

case motivated by the observation that as warehouses accept late orders, the

assumption of a completely known demand becomes questionable. The work

presents a time series forecasting model to forecast the daily number of order

lines, applied to a real life case study.

2. Business Analytics and Stochastic Model

We are interested in premarshalling optimization for stack-arranged ware-

houses, divided in blocks containing geometrically identical boxes. In the

following we will focus on the independent reoptimization of each single

block of the warehouse, that is, under the assumption that no movement

is possible among different blocks. Furthermore, we assume that picking

orders become known the moment they have to be satisfied, therefore pre-
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marshalling optimization can only have a statistical basis.

Extensive historic data are usually available on the company WMS, in-

cluding past picking lists, and these can be used to determine the order

lines of the daily picking lists [11]. We envisage a solution architecture

that is typical of Business Analytics applications, where “Business analyt-

ics (BA) refers to the skills, technologies, practices for continuous iterative

exploration and investigation of past business performance to gain insight

and drive business planning” [1]. In our case, data mining on historic data,

on sufficiently long but significant time spans, can provide the past picking

lists, therefore the picking frequency distribution over the currently avail-

able SKUs, where we remind that a SKU value is the accounting record of

a physical box in storage.

The overall optimization method that we propose goes therefore through

two stages.

The first stage solves a premarshalling problem implementing:

� a statistical model, which works on completely known past picking lists

and identifies the probability distribution of SKU requests,

� an optimization module that works on the identified probability distri-

bution functions and proposes a premarshalling scheme.

The second stage solves a block relocation problem induced by the next

day picking list. We remark that in some actual cases, the picking list

could become known only one box at a time, thus the overall problem could

become a multistage problem, where the first stage is the premarshalling

problem mentioned above, and each successive stage corresponds to a block

relocation problem requiring to extract one single box. Notice that even the

number of successive stages would not be known in advance, being a random

variable itself.

The paper contributes a method only for the first stage. The second stage
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Table 1: Notation

symbol referent

n number of boxes (items)
B index set of boxes, B = {bi}
S index set of stacks

SKU index set of SKUs
L picking list, a sequence of SKU indices
nS number of stacks
capk height (capacity) of stack k ∈ S
h(k) number of boxes in stack k
nk number of boxes in stack k (alternative notation)
Bk index set of boxes in stack k
Lh a lineitem in L, a SKU index

nSKU total number of SKUs
gs number of boxes with SKU index s

SKUi SKU of box i
L picking list, list of SKU
prii priority index of boxes according to picking list L
pi probability of SKU i to appear in the picking list L

in case of two stage or the further stages in case of multistage are solved

by the basic heuristic in use in the actual warehouses, and their solution is

of interest only to determine the quality of the premarshalled configuration.

Given this, we will continue to refer only to the two stage case.

The elements of the first stage premarshalling problem are formally in-

troduced in the following, and the used notation is listed in table 1.

The warehouse block to rearrange contains n boxes (items), let B =

{1, . . . , n} be the index set of all boxes in the block. In the following we will

use both notations bi and i, when this is not ambiguous, to denote the i-th

box in the block. A block can also be seen as a collection of stacks, i.e.,

piles of boxes, let S = {1, . . . , nS} be the index set of the stacks. The width

of the block is given by the number of stacks, nS . Each stack is arranged

in a number of tiers, also named levels, the topmost of which defines the

height hk of its stack k, k ∈ S. An arbitrary distribution of the n boxes to

the stacks in S is called a layout or a configuration.
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The set B of boxes can be partitioned in two different ways:

� each box is part of a stack, let Bk, k = 1, . . . , nS , be the index set of

the boxes contained in the k-th stack. Clearly, B =
⋃

k Bk.

� each box i ∈ B belongs to a set SKUs, s = 1, . . . , nSKU , which contains

the indices of all boxes with identical content, and which correspond

to one same SKU in the accounting system.

Customer orders are received daily as a picking list L of SKUs to be

retrieved, thus, given a lineitem Lh, Lh ∈ L, any box i such that i ∈ SKULh

could satisfy it. When multiple boxes with a same SKU are requested, we

assume to find multiple repetitions of that SKU in the list. The ordering of

the list is significant. Picking lists are completely known for past data and

are progressively uncovered for the next day. Furthermore, we assume, as it

is generally the case in real-world practice, that external considerations (such

as for example storage age), differentiate all boxes from one another and

thus impose an ordering on the suitability of each box to satisfy any specific

customer order. Any lineitem specifying a SKU can thus be translated into

a request of a specific box.

A picking list L induces an ordering among boxes. Each box i will

have a priority index prii ∈ {1, . . . , |L| + 1}, so that boxes to be retrieved

first will have a higher priority than those to be retrieved later. Boxes not

contained in the picking list will all have the lowest priority value, i.e., |L|+1.

Notice that it is common practice in the literature to indicate through the

priority index the order in which the boxes will have to be retrieved, therefore

boxes with high priority will have a low priority index value, which could be

confusing at first. After premarshalling, the boxes with higher priority have

to be on the top of boxes with lower priority, in any stack.

Boxes can be moved among the stacks. A move can only shift one item

from the top of a stack to the top of another one (relocation). Moves that
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would pick an item from the top of a stack and bring it outside the warehouse

(removal), when it is requested in a picking list, are not considered in the

PMP and would turn it into the block relocation problem.

The PMP asks to find a move sequence of minimum length, i.e. with the

smallest number of moves, such that in the final layout no box is stored in

a stack, having a lower priority box over it.

Further assumptions usually accepted for premarshalling are:

� All the boxes in the block have the same dimensions.

� The position of each box in the block is known in advance.

� Relocation is allowed only to other stacks within the same block.

� Relocated boxes can be put only on top of other stacks, i.e., no rear-

rangement of boxes within a stack is allowed.

We make one further operational assumption, derived from the real-

world cases that motivated our research, that whenever it is necessary to

relocate a box i, it is always possible to find a stack k to move it to with

sufficient capacity and containing only boxes with lower priority, i.e., prij ≥

prii, ∀j ∈ Sk. This comes from the fact that daily picking lists are much

shorter than the number of stacks of the warehouse, and the occupancy ratio

is usually significantly lower than 100%, therefore there surely is at least one

stack k which is not affected by picking, or that contains lower priority items.

Such a stack k will be called a feasible stack for the relocation of box i. Note

that this operational setting is not shared with the related area of container

terminals, in which there are typically fewer stacks per block and where the

number of items to move as a ratio to the total number of items in the yard

is higher.

Furthermore, we mention that in warehouses such as those we are dealing

with, there is usually space for opening a new stack, which is simply done
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by laying a pallet on some empty floor. However, this possibility is seen as

a last resort, as suitable free space for a new stack is probably far from the

stacks the operator is working on.

Since we do not assume the availability of the incoming picking list L

at the time of the premarshalling, the block has to be rearranged without

a precise knowledge of the orders that will later be received. A precise

definition of the picking order is therefore not possible, though we can still

define priorities among boxes containing items with the same SKU, for which

the picking order is dictated by external considerations, such as storage

age. Upon designing a suitable statistical model of the picking process, it is

however possible to identify the best fitting distribution for random variables

associated to each SKU h in the WMS, which tells the expected number of

boxes ñh of each particular h ∈ SKU that will be requested on the following

day.

The WMS contains in fact the past history of picking lists, and this

provides the basis for remarshalling. For example, a possible historic picking

list could be (3,8,1,3,4), asking first for a box with content with SKU 3, then

SKU 8 and so on.

Figure 1 shows a sample instance, already used by [33] and [8]. The

instance was proposed for the deterministic case, but in the context of this

paper we interpret it as the configuration of a warehouse, consisting of 10

stacks, each with capacity 5. The number of boxes in stock is 35, yielding

an occupancy ratio of 70%. Each box is specified by its contained SKU, so

that, for example, there are 4 boxes containing SKU 1, 3 boxes containing

SKU 2, etc.

When a list to service arrives, say (4,9,2,4,5), it will be necessary to de-

termine which box must be retrieved for each requested SKU and to proceed

with possible relocations. For example, the first SKU could be associated

with the box at the fourth tier of the first stack, thus the topmost box of the
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Figure 1: Storage configuration, instance adapted from Lee, Chao [33].

stack should be relocated. We remark that in our case, even after premar-

shalling, there could always be the need for relocations given the aleatory

nature on the picking lists.

2.1. Mathematical model

The stochastic premarshalling problem problem can be modeled as a

two-stage stochastic programming problem, where:

� first stage decisions are made on data known in advance, in our case

these are the premarshalling moves acting on the known initial layout;

� a random event, in our case the arrival of a specific picking list L (one

order at a time) imposes second stage decisions, as described in section

2;

� the second stage decision, or recourse action, copes with the actual case

induced by the random event by handling the orders in the picking list,

possibly further relocating some boxes.

As in all two stage processes, the cost is given by the sum of the costs

induced by the two successive decisions. However, in our case, the first-stage

decision, whose cost function is associated with the number of relocation

moves, dictates activities to underwork staff. The first-stage cost term is

therefore 0, subject to a constraint that the total number of relocation moves
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must not exceed a threshold. This limit is determined by the duration of the

underwork interval. Clearly, even if no direct cost is faced, it makes sense

anyway to premarshal the warehouse by as few moves as possible. We can

therefore consider a first stage cost which is lexicographically dominated by

the second stage costs.

The relevant cost is in fact incurred in the second stage, which con-

tributes to the objective function by the expected value of the handling

cost, i.e., the expected number of relocation moves needed to pick all the

boxes in L.

In the model, first stage variables, which are decided before the actual

realization of the random parameters, correspond to premarshalling choices.

Then, the random event (the disclosure of the picking list) occurs, after

which the second-stage decision on the handling of the actual orders is made.

In the case of our problem, a full formulation of the two stages quickly

becomes awkward because of the complex structure of the several problem

elements involved.

For the first stage, we can refer to the time indexed multicommodity

flow formulation with side constraints proposed by Lee and Hsu [34]. The

formulation minimizes the total number of moves during premarshalling of

a container yard, but at this level of abstraction the problem is the same as

that arising in the warehouse. The formulation is linear, and makes use of

5 sets of 0-1 decision variables, which could correspond to our x variables.

It is convenient for our application that the formulation requires to specify

the set of allowed time intervals, in our case the maximum allowed number

of moves.

The second stage is based on the solution of a block relocation problem.

A mixed-integer linear formulation for this problem was presented for exam-

ple by Exposito-Izquierdo et al. [16], again using 0-1 variables, which could

correspond to our y ones.
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The combination of the formulations for the two stages could result in

a mathematical programming feasible way to approach the problem, but

we deem it impractical, given the complexity of the models and the size of

instances we aim to solve.

3. Statistical Model

The method for solving the PMP described in section 2 cannot currently

be based on mathematical programming results. To get grounded directives

we revert to a statistical guidance, based on WMS historic data. We study

a statistical model of the PMP process of interest and obtain the expected

cost of the recourse action for any given configuration. This is later used as a

quality measure of each configuration we produce during the rearrangement

process. By the explicit computation of the expected recourse cost, we avoid

the necessity of resorting to a time-consuming combination of optimization

with sampling, as it is frequently required for the solution of rich stochastic

optimization problems (cf. [2, 21]).

To obtain the expected cost, we must fit the appropriate statistical distri-

bution on historic pickup frequency data. If we consider day-long intervals,

pickings could be modeled by a Poisson distribution: the number of times a

specific SKU is picked in a day is discrete, pickings of different SKU are often

independent of one another (for a discussion on this, see [24]), the rate at

which picking orders are issued is constant, thus the probability of a picking

in an interval is proportional to the length of the interval. To get to this,

we first propose a Bernoulli model of the process, and then generalize it to

a Poisson model, under the assumption of independence of SKU requests in

the picking lists. This last assumption seems to be satisfied in all our study

cases, but can be relaxed at the cost of adding some more complexity to the

model.

A further assumption is that there is always room for relocating boxes,
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i.e., the warehouse is never so fully occupied that there is no stack where to

reposition a box which has to be relocated.

3.1. Bernoulli model

It is well known that a Poisson distribution is actually a limiting case

of a Bernoulli process when the number of trials gets very large and the

probability of success is small. In our case, this corresponds to saying that

the picking probabilities should be defined for requests of each specific SKU

(which could be modeled as a Bernoulli process), but with reference to time

intervals much shorter than a day, thus inducing small success probabilities.

Initially, we work on a model according to the following assumptions:

� The occurrence of each item i (i = 1, . . . , n) in the actual picking list

L is Bernoulli-distributed with parameter pi: item i occurs in the list

with probability pi. The pi can easily be estimated from the historical

data. Different items are assumed to occur independently from each

other.

� The current configuration of the block is described as follows: the

block, consisting of nS stacks and containing n items, each occurring

exactly once, has a completely known configuration, described by the

numbers

a(j, k) =

 index of item on level j in stack k, if level j is occupied

0 otherwise.

Therein, 1 ≤ j ≤ capk and 1 ≤ k ≤ nS . Clearly, in any feasible

configuration we cannot have a(j, k) > 0 if a(j − 1, k) = 0.

� The recourse action, i.e., the handling procedure for processing the

picking list L is as follows: Stacks 1 to nS are processed one after the

other. From stack k, those items that belong to L are removed, and

those items that have to be relocated during this procedure because
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they lie above items from L although they do not belong to L them-

selves, are temporarily moved to another stack. The latter items are

moved back to stack k again after the deepest item belonging to L has

been removed.

3.1.1. Expected Cost of Recourse Action

Define for each k = 1, . . . , nS :

� the height of stack k,

h(k) = max{j : a(j, k) ̸= 0},

� the level of the deepest required item in stack k,

d(k) = min{j : a(j, k) ∈ L},

If no box of the stack is required, d(k) = 0.

� the number of required items in stack k,

r(k) = |{j : a(j, k) ∈ L}|.

Then it follows immediately from the description of the handling proce-

dure that for fixed list L, one needs

2(h(k)− d(k) + 1)− r(k) (1)

moves to properly rearrange stack k (k = 1, . . . , nS), reinserting in it the

boxes that were relocated in other stacks.

For a given, fixed, configuration a = [a(j, k)], the numbers h(k) are

constants. Let

Xjk =

 1, if a(j, k) ∈ L,

0, otherwise
(2)

for 1 ≤ j ≤ capk, 1 ≤ k ≤ nS , and let
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Yjk =

 1, if Xj′k = 0, ∀j′ ≤ j,

0, otherwise.
(3)

for 1 ≤ j ≤ capk, 1 ≤ k ≤ nS .

Then, the number of required items in stack k is

r(k) =

h(k)∑
j=1

Xjk (k = 1, . . . , nS) (4)

and the lowest tier of the stack containing a required item is

d(k) =

h(k)∑
j=1

Yjk + 1 (k = 1, . . . , nS). (5)

In the special case where stack k does not contain any element of L, formula

(5) produces the value d(k) = h(k)+ 1, which is consistent with a cost term

of zero in equation (1).

By insertion in (1) and summation over all stacks, we get the following

formula for the recourse cost:

Q = 2

nS∑
k=1

h(k)−
h(k)∑
j=1

Yjk

−
nS∑
k=1

h(k)∑
j=1

Xjk. (6)

Finally, let us consider the list L and therefore the variables Xjk and Yjk

as random. In case of a Bernoulli process we have

E[Xjk] = pa(j,k)

and

E[Yjk] = P (Xj′k = 0 ∀j′ ≤ j) =

j∏
j′=1

(1− pa(j′,k)),

the latter because of the assumed independence. This shows that the ex-

pected recourse costs are given by

E[Q] = 2

nS∑
k=1

h(k)−
h(k)∑
j=1

j∏
j′=1

(1− pa(j′,k))

−
nS∑
k=1

h(k)∑
j=1

pa(j,k). (7)
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As an aside, by inserting this explicit formula for the recourse function, a

deterministic equivalent of premarshalling problem could be formulated and

solved by any (exact or heuristic) method.

This model can now be easily extended to an actual stack handling

procedure, where the items that have been moved to another stack in order

to get access to the required items of the current stack k are not moved back

to stack k later.

In order to avoid unnecessary costs, the stack to which a not needed item

is moved should be one that has already been accessed in a former iteration,

or a stack from which no item will be required according to the current

day’s list. Its existence is ensured by the operational assumption made in

the introduction of section 3, which includes the possibility of opening a new

stack. Not moving items back will of course reduce the total cost, at the

price of possibly leading to a more unbalanced distribution of the stack sizes.

Our equations above can be modified in a straightforward way to address

the just described alternative procedure. This produces expected recourse

costs of

E[Q] =

nS∑
k=1

h(k)−
h(k)∑
j=1

j∏
j′=1

(1− pa(j′,k))

 (8)

instead of (7).

3.2. Poisson model

We generalize now the model from the previous subsection by taking

the possibility into account that different boxes contain the same content,

i.e., that the sets SKUs ⊆ B (s = 1, . . . , nSKU ) are not singletons. The

assumption
⋃nSKU

s=1 SKUs = B is made, and the current distribution of the

SKUs over the stacks is supposed to be known.

A priority prii is assigned to each box i as described in section 2. Smaller

values of prii mean higher priorities.

Let si = s if i ∈ SKUs, in other words, si is the index of the SKU
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contained in box i. Then box i can be uniquely represented by the pair

(si, prii). Here, prii is only important for determining the order in which

boxes i belonging to the same SKU are retrieved, thus we can assume

without loss of generality that prii ∈ {1, . . . , gs} with gs = |SKUs| for all

s = 1, . . . , nSKU , each value from {1, . . . , gs} occurring exactly once as a

priority of a box i ∈ SKUs.

The list L is an ordered list of SKU indices, L = (s1, . . . , sm). Repetition

is allowed. Since in the case of orders for the same SKU, boxes with higher

priority (lower prii) have to be delivered first, we extend the elements L by

the addition of priority values prii in the following way: the extended list is

L̃ = ((s1, pri1), . . . , (sm, prim)), where

priµ = |{µ′ ≤ µ : sµ′ = sµ}| (µ = 1, . . . ,m).

For example, list L = (2, 7, 1, 7, 6, 5) could be extended to

L̃ = ((2, 1), (7, 1), (1, 1), (7, 2), (6, 1), (5, 1)).

We remark that the priority given to different boxes containing the same

SKU is derived from management considerations, usually the boxes with

longest permanence in stock are to be retrieved first. What is important

for us, is that there is a deterministic rule that permits to differentiate the

desirability of boxes containing the same SKU.

In the extended context of this subsection, we need now a more refined

way to describe a layout. Based on the numbers a(j, k) introduced in sub-

section 3.1, we define

α(j, k) = sa(j,k) and β(j, k) = pria(j,k) (j = 1, . . . , capk; k = 1, . . . , nS)

with s0 = pri0 = 0 to denote empty locations. The numbers α(j, k) and

β(j, k) give the SKU index of the box in tier j of stack k and the priority

of this box, respectively. The current layout is completely described by
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the rectangular scheme of pairs (α(j, k), β(j, k)) for j = 1, . . . , n and k =

1, . . . , nS .

Building on the example of Section 2, the layout of the last 5 stacks

consists in the scheme below, where the stacks are columns and the tiers are

rows, see figure 2.

(a) Alpha values (b) Beta (pri) values

Figure 2: Alpha and beta distributions

Here, we have

h(k) 2 4 5 1 2

d(k) 2 3 3 0 1

r(k) 1 1 2 0 2

The SKU sizes are g1 = 1, g2 = 2, g3 = 1, g5 = 2, g6 = 3, g7 = 2, g8 =

1, g9 = 1, g10 = 1.

Analogously to (2), we define

Xjk =

 1, if (α(j, k), β(j, k)) ∈ L̃,

0, otherwise
(9)

for 1 ≤ j ≤ capk, 1 ≤ k ≤ nS . From the numbers Xjk, the numbers Yjk

are derived by (3). The equations (4) and (5), expressing the number of

required items in stack k and the tier index of the deepest required item in

stack k, respectively, are still valid.
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3.2.1. Model of the picking list

Let us turn now to the stochastic model for the list L. We assume that

the number of orders of SKU s in L satisfies a Poisson distribution with

parameter λs (s = 1, . . . , nSKU ). The numbers of orders of different SKUs

are assumed as independent.

Since there is no upper bound on a Poisson-distributed random variable,

it can happen that the number of orders of SKU s exceeds the number gs of

existing boxes containing this SKU. In this case, the orders exceeding gs can

obviously not be satisfied. To represent this feature, we prune the actual

list L̃ by removing all pairs (sµ, priµ) with priµ > gsµ . The resulting pruned

list is denoted by L̂. Let

Zs = |{µ : (s, priµ) ∈ L̂}|

be the random variable representing the number of occurrences of an item

belonging to SKU s in L̂. Furthermore, consider the probability function of

min(Poisson(λ), g),

πλ,g(t) =


λt

t! e
−λ, if t < g,

1−
∑g−1

ℓ=0
λℓ

ℓ! e
−λ, if t = g,

0, if t > g,

(10)

where λ is the mean number of orders of the considered SKU, and t, g ∈

N0. Since Zs obeys the distribution (10), we have P (Zs = t) = πλs,gs(t).

Applying this to the SKU s = α(j, k) found on position (j, k), we get

E[Xjk] = P (Xjk = 1) = P ((α(j, k), β(j, k)) ∈ L̂) = P (β(j, k) ≤ Zα(j,k))

=

gα(j,k)∑
t=β(j,k)

πλα(j,k),gα(j,k)
(t). (11)

In the example, the expected Xjk values, E[Xjk], are reported in figure

3, where we set λs = 1 for all s.

24



Figure 3: Expected Xjk values

Finally, a representation for E[Yjk] is needed. By (3),

E[Yjk] = P ((α(j′, k), β(j′, k)) /∈ L̂, ∀j′ ≤ j).

The event described in the argument of P on the right hand side says

that no box at any position (j′, k) below position (j, k) in stack k, including

(j, k) itself, is ordered. The boxes on or below position (j, k) in stack k can

be partitioned in parts, each of them corresponding to one specific SKU.

For each of these parts, only the box with lowest pri value (highest priority)

is relevant, since if this box is not in L̂, than the other boxes of the same

part are not in L̂ either: (s, pri) /∈ L̂ implies (s, pri′) /∈ L̂ for all pri′ > pri.

Therefore, we can focus on the pri-minimal elements of each part.

For fixed j and k, let

Sjk = {α(j′, k) : 1 ≤ j′ ≤ j}

denote the set of SKU indices occurring at or below the considered posi-

tion (j, k).

Figure 4: Example Sjk values
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For s ∈ Sjk, let

p̄rij,k,s = min{β(j′, k) : α(j′, k) = s, 1 ≤ j′ ≤ j}

be the minimum priority value in the part belonging to SKU s. Then

(α(j′, k), β(j′k)) /∈ L̂, ∀j′ ≤ j ⇔ Zs < p̄rij,k,s, ∀s ∈ Sjk.

Since the events Zs < p̄rij,k,s refer to different SKUs s and independence

holds, the probabilities of these events can be multiplied in order to get the

joint probability. Thus, because of

P (Zs < p̄rij,k,s) =

p̄rij,k,s−1∑
t=0

πλs,gs(t),

it follows that

E[Yjk] =
∏

s∈Sjk

p̄rij,k,s−1∑
t=0

πλs,gs(t). (12)

In the example, the expected Y values are reported in figure 5.

Figure 5: Expected Yjk values

By inserting (11) and (12) into

E[Q] = 2

nS∑
k=1

h(k)−
h(k)∑
j=1

E[Yjk]

−
nS∑
k=1

h(k)∑
j=1

E[Xjk], (13)

we get the expected costs of the recourse action for the Poisson case, which

can be extended analogously to the model at the end of Subsection 3.1. In

the example carried on, the final value is E[Q] = 14.55.
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4. Optimization Model

The statistical model presented in section 3 provides the basis for solving

stochastic premarshalling instances.

4.1. First stage

The problem of the first stage is the premarshalling problem PMP, which

asks to rearrange the warehouse so that the picking of the list, later specified

as a random event, will be made with as few relocations as possible. The

data that can be used in the first stage are the initial warehouse configuration

and the historic picking lists.

As mentioned in section 2, this first stage has no cost for the company,

as it is performed by underwork staff in slack periods. However, as there is

a constraint on the maximum time that can be dedicated to premarshalling,

thus on the maximum number of movements that can be made, we are

interested in rearranging the warehouse configuration using the least possible

number of relocation moves. This maximizes the probability of being able to

complete all premarshalling operations in the available time, besides having

the least impact on the staff’s usual activity.

The solution procedure that we propose for the first stage tries therefore

to premarshal the warehouse using the least number of relocation moves.

We propose two procedures, first a simple greedy heuristic based on the

estimator of formula (13) and then a more involved heuristic, again using the

estimator. In both cases, in order to compute the estimates, it is necessary to

know λs, for each s ∈ SKU . These value will be computed using a maximum

likelihood estimator applied to the historic picking lists, thus yielding the

average number of occurrences of items belonging to each SKU in a picking

list.

4.1.1. Local search

The pseudo code of solution algorithm is thus as follows. Let Ξ be the

set of all feasible warehouse configurations and ξ0 be an initial warehouse
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configuration, ξ0 ∈ Ξ. Furthermore, if two feasible configurations ξh and

ξk differ only by the position of one single box at the top of a stack, let

µhk be the move that transforms configuration ξh into ξk and let Ξh be the

subset of Ξ identified by all the moves (i.e., single box relocations) that can

be applied to ξh.

A local search premarshalling heuristic based on the estimator of formula

(13) is as follows.

Algorithm Local Search (ξ0, maxiter)

1. let i = iter = 0

2. let minq = E[Qi]

3. repeat

4. let minh = ∞
5. for each ξh ∈ Ξi

6. compute E[Qh] by formula (13)

7. if (E[Qh] < minq) minq = E[Qh], minh = h

8. end // for each

9. i = minh, iter = iter+1

10. until (minh = ∞ or iter ≥ maxiter)

11. return ξi

The algorithm starts with a solution to be carried to its local optimum,
which is the initial incumbent solution. It computes the estimator on each
solution in the neighborhood identified by the move of one single box, and
if the solution in the neighborhood with lowest estimate is better than the
incumbent one, it becomes the new incumbent solution.

At the core of the algorithm lays the computation at step 6, where differ-
ent alternatives are ranked on the basis of formula (13) of Section 3.2. Note
that the additive structure of expression (13) permits an efficient computa-
tion of the difference of the expected number of relocation moves between
the configuration obtained after the move and that existing before it.

As an example of its usage, consider again the configuration of figure 2,
to be rearranged following the picking list reported in Section 3.2. Let it
be ξ0. A possible box to move is that at the top of stack 3, and it could
be moved on the top of any of the 4 remaining stacks, thus yielding four
configurations included in Ξ0. Figure 6 shows the 4 corresponding obtained
configurations.

Notice that one iteration of algorithm Local Search corresponds to one
premarshalling move. As a consequence, satisfying the constraint on the
maximum time that can be dedicated to premarshalling amounts to stopping
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the algorithm after a given number of iterations.
We can now compute the expected number of relocations on each of

these 4 configurations by means of formula (13), obtaining E[Q] = 14.388
for move 1, E[Q] = 14.438 for move 2, E[Q] = 13.283 for move 3, and E[Q] =
14.388 for move 4. Move µ03 produces therefore a configuration which leads
to lower recourse costs (costs for retrieving the items in the second stage),
and is therefore preferred over the three other ones.

Configuration ξ1 after move µ01 Configuration ξ2 after move µ02

Configuration ξ3 after move µ03 ξ4 after move µ04

Figure 6: Alternative configurations after moving top box of stack 3 of fig. 2

4.1.2. Dynamic Programming matheuristics

The local search of section 4.1.1 is a straightforward option when the
estimate of formula (13) is available, but its operational recommendations
can be impractical in actual cases where the warehouse has hundreds of
stacks, thus a front of hundreds of meters. In fact, since the reduction is
made only with respect to the number of moves, but not with respect to
their lengths, the final solution can be unacceptable in case of big blocks.
The neighborhood to consider in step 5 could be restricted to a reasonable
subset small enough to permit operational efficiency, but this at the cost of
reducing the effectiveness of the algorithm.

In order to overcome the operational concerns of a basic greedy approach,
we adapted to our case two methods from the literature, namely the corridor
method by Caserta and Voß [9] and the multiheuristic by Jovanovic et al.
[27].

The adaptation to our case, and the objective to improve the compu-
tational effectiveness over the greedy approach, was pursued by using all
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historic data not only to estimate the λ coefficients of equation (10), but
also in an attempt to capture some temporal information about when the
order was placed during the one year span of the history. To that end, we
explicitly considered in the code the sequence L of all orders available in
the history, in the sequence they were actually received, and we designed a
Dynamic Programming (DP) approach to the problem, whose structure is
similar to the one proposed by Caserta and Voß [9] for the block relocation
problem but which makes use of our estimator as a steering component.

The DP model is as follows. Let l0 be the first unprocessed item in the
sequence L, and let i be the topmost box in the stack where l0 is stored,
that is, i = l0 if no box lays over l0, i ̸= l0 otherwise. Box i will in any case
be the next item considered for relocation.

The elements of the DP model are:

� State: the state s is defined as s = (Ls, ξ
s), where Ls is the sub-

sequence of items still to remove, and ξs is the configuration of the
warehouse items. Let i be the next item to relocate and k = 1, . . . , nS

be the index of the stack in which the item is stored. From the con-
figuration ξs it is easy to compute the set Fi of the stacks where it is
feasible to relocate box i. Let f(s) be a function that associates to
each state s the expected minimal number of relocations necessary to
move from the warehouse initial configuration to ξs

� Stage: A new stage is obtained by moving box i to a feasible destina-
tion stack σ ∈ Fi . Stages are defined by the number of box movements
from the initial configuration, ξ0.

� State transition function: let s′ = (Ls′ , ξ
s′) be the state obtained

by moving item i to the least cost stack σ ∈ Fi. The new state cost is
specified by the forward recursion:

f(Ls′ , ξ
s′) = 1 + min

σ∈Fi

{f(Ls, ξ
s)} (14)

where Ls′ = Ls (thus i
′ = i and k′ = k) if i ̸= l0, otherwise Ls′ = Ls\l0.

The base of the recursion is f(L, ξ0) = 0.

It is impractical to directly use the DP formulation to solve a big in-
stance, as the DP algorithm quickly generates an exponential number of
states even for small-sized instances. Therefore, to scale to real-world size,
we need to resort to heuristics, an adapted corridor heuristic (see [8]) in our
case. We note that the solution algorithm could be equivalently framed as
a beam search or VLSNS algorithm, as matheuristics often overlap in spe-
cific application cases [37, 38], but the corridor is a much more established
approach in the relocation literature.
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Differently from [8] we make direct use of the DP formulation in our
code, and we base all choices of the most promising box to relocate on ex-
pression (13), which permits to estimate the number of relocations needed
to premarshal the current configuration. It is therefore possible to apply the
estimation to each configuration that would be obtained after each possible
relocation move, and prefer the move that forecasts a complete remarshalling
with less expected relocations. Moreover, in our code the corridor is com-
puted dynamically, obtaining a set of configurations that locally seem most
promising.

After the corridor method has identified a solution, we start the multi-
heuristic (adapted from [27]), which is not linked to the dynamic program-
ming formulation, but it is applied as a local optimization, where the greedy
cost functions is not that derived from the work of Exposito-Izquierdo [16]
but again from formula (13).

More in detail, in the corridor phase we start from state s0 corresponding
to ξ0 and L0 = L. Let S0 = {s0}. We compute formula (13) for each feasible
relocation stack for i, we keep only the δ best and compute a new state for
each of them by means of the forward recursion formula (14). Let S1 be the
set of these δ newly generated states.

We then proceed by considering in turns each of the δ states of the
set generated at the last stage. For each one that corresponds to a non
request sequence, Ls ̸= ∅, we compute formula (13) and expand only the δ
best, storing in the set SiStage+1 the non dominated ones. We then keep in
SiStage+1 only the δ overall best, an proceed expanding them until we obtain
only states corresponding to a fully processed picking list.

To improve efficiency, when an intermediate state appears, with a promis-
ing expected number of rehandles, we apply an iteration-constrained version
of the multiheuristic by Jovanovic et al. [27], denoted MH, where the heuris-
tic or random choices of the next box to move or of the stack to move it
to, were deterministically based on formula (13). In case this finds a final
solution, the corresponding number of moves may become an upper bound
and thus a further dominance, as no state is expanded when the expansion
would correspond to a number of moves higher than that of the current
upper bound. The pseudo code of solution algorithm is thus as follows.

Algorithm CorridorHeuristic (δ, maxMHiter)

1. Set l0 and i. Set iStage = 0 and S0 = {s0}
2. repeat

3. for each s ∈ SiStage compute formula (13)

4. Compute formula (14) for the δ best configurations of step 3.

5. for each newly generated state s’

6. if (L completed) check upper bound

7. else

8. if (E[Q](ξs
′
) < maxMHiter)
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9. Apply modified multiheuristic to ξs
′

10. check upper bound

11. end // if

12. add s’ to SiStage+1

13. end // if

14. end // for each s’

15. shrink SiStage to its δ best states

16. iStage = iStage + 1

17. until (SiStage = ∅)

In lines 6 and 10 we check whether the newly computed solution is the
best obtained so far, in which case we store it as the best so far, and its cost
as the new upper bound.

Line 8 contains the application condition of the modified multiheuristic
MH. The termination condition inside MH is the number of iterations, which
must not exceed maxMHiter. We apply MH only if the expected number
of relocations needed to premarshal the current configuration is less than
maxMHiter. Line 8 makes use of formula (13) in a heuristic way. The local
optimization is invoked only when it is expected to solve the problem in the
allowed number of internal moves (i.e., iterations).

4.2. Second stage

The problem of the second stage is a Block Relocation Problem, BRP,
where the boxes of a list L2 have to be successively removed. The interest in
solving the second stage is only for assessing the quality of the premarshalled
solution obtained in the first stage, according with the actual procedures
that are being implemented in the real-world case.

To assess the quality of a PMP solution, both for artificial and for real-
world instances, we proceed as follows. The cost of a solution corresponds
to the number of relocations that are needed in the second stage of the
solution process to pick up all boxes of the next-day picking list. As our
solution is to be compared to actual manual operations, we compute the
manual operations needed to respond to the picking list the way they do
in the warehouses which originated our data, which is to relocate blocking
boxes into stacks at most 2 stacks apart from the original one. Therefore,
both in the case of premarshalled and of non rearranged configurations,
during the second stage for each box to pick up, in case it were blocked, we
move each blocking box into a stack at most two stacks away, i.e., we choose
among four possible relocations for each blocking box (in the following this
will be referred to as manual rule). This corresponds to a basic heuristic for
solving the BRP, justified by actual practice, which can result in a number
a relocations higher than that estimated in formula (13) (which assumes
the possibility to relocate in any stack of the warehouse). In no case we
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assume the knowledge of the subsequent box to pick, when deciding where
to relocate a box blocking the currently requested one.

The only difference in our validation code between the premarshalled
and the non premarshalled cases, is that in case of non-rearranged config-
urations, the chosen stack is the smallest among the four, while in case of
premarshalled ones, it is the stack which yields a configuration with smallest
expected relocation cost according to formula (13). This last information
corresponds to a datum that could easily be made available to stackcrane
operators, in case it was computed.

The cost computed for an instance is given in any case by the number of
manual relocations, computed for each picking list of a validation set. This
last set consists of a set of independent lists, different from those used in
the first stage.

5. Computational experiments

We implemented the algorithm of Section 4 in C# and ran it on a Win-
dows 10 Intel i7 quad-core computer equipped with 32 Gb of RAM, with a
time limit of 600 secs.

We were given 8 real-world instances for as many warehouse blocks, each
one with a final warehouse configuration and 1 year of picking history. As the
instances were large ones, 700 to 2300 boxes, we also designed a generator
which could produce parametrized artificial instances, showing descriptive
statistics similar to those of the real-world ones. We were concerned about
structural similarity with real-world instances, as it is well known from prac-
titioners, and progressively accepted in theory, what came to be known as
the “No Free Lunch” theorem [26, 15], that the relative performance of
heuristics on instances sharing a certain structure does not always trans-
pose to instances with a different structure. It is therefore important to test
on instances as much similar as possible to those that will be of interest in
practice.

For the premarshalling tests, we used picking lists for validation different
from those used for estimating the λ parameters, in order to avoid bias
induced by already processed data.

5.1. Artificial instances

We generated scaled instances, showing descriptive statistics similar to
those of the real-world ones. The generation was a three steps process:

1. determine the storage configuration of the warehouse.

2. determine the length of each pickup list.

3. determine the SKUs actually reported in each list.
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To determine the storage configuration, a distribution fit was made on
historic data. The fit was derived from a specific statistical model, based
on a negative binomial distribution, which is an option to model count data
[22]. To define the model, we used the real-world instances presented in
Table 3, using half of them to fit the two distribution parameters and the
other half for validation. Figure 7 shows the results on one of the instances,
with the empirical and modeled frequency counts of the number of boxes of
each SKU in stock.

Figure 7: Fit of storage distribution

Similarly, we fitted the distribution of the available positions in each
stack to determine the occupancy ratio to be allotted by means of the same
approach used for computing the number of boxes of each SKU. Having
these distributions, we used the generator in [16] to generate the storage
configuration of the instances. Feasible instances could be obtained upon
interpreting the “priority” parameter in the generator as the SKU identi-
fier, which is possible since that parameter is dealt with as a label. The
initialization of the SKU levels in stock was set to the negative binomial dis-
tributed values computed as described above. Figure 8 shows an example
of an obtained configuration.

Figure 8: Storage configuration, instance 20x8.
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Table 2: Artificial instances

name stacks tiers nbox nsku λp

testLC 10 5 35 9 3.0
test10x5 10 5 40 6 3.2
test20x8 20 8 120 15 4.9
test30x10 30 10 250 30 7.0
test40x12 40 12 400 60 9.0
test50x15 50 15 700 100 11.0

The second element to define is the counterpart of the historic picking
list dataset.

In order to determine the length of the picking lists, we assume that the
pickup requests in each day arrive following a Poisson distribution, since we
clearly deal with a discrete distribution, where the requests occur indepen-
dently, with the probability of getting a request in a time interval propor-
tional to the length of the interval, and where the rate at which requests
arrive is reasonably constant along the workshift.

We therefore fit Poisson distributions to our real-world data and we try
to derive a relation that links the parameter of the Poisson distribution
to the instance descriptions. (The Poisson parameter will now be denoted
by λp to avoid confusion with the λ introduced in section 3.2.) One such
relation, albeit loose, can be identified with respect to the number of boxes
in the instance, which leads to generation of instances with characteristics
reported in Table 2.

Finally, having determined the length of each pickup list, we have to
dictate the specific SKUs in the list, which will be later translated to box
id’s in a company specific, deterministic way (in our case, we had to retrieve
the oldest box of the SKU, unless a newer one with the same SKU was stored
above the oldest one). By this procedure we generated sets of picking lists
for each storage case consisting of 50 lists each.

The free parameters of the instance generator are the number of stacks
nS , the capacity of each stack capk, k = 1, . . . , ns, the number of stored boxes
n, the number of picking lists and the average number of boxes requested
in each picking list, λp. The generated instances, both configurations and
picking lists, are available from [36].

5.2. Real-world case study

Further validation of the proposed methodology was carried out on real-
world data. We were provided with extracts of WMS data relative to 1 year
operation of 8 warehouses. The general descriptive statistics of these data
were used as seeds for the generation of the instances described in subsection
5.1, in such a way that the biggest of the instances of subsection 5.1 was

35



Table 3: real-world instances

name stacks tiers nbox nsku λp

instance1 51 15-24 737 102 11
instance2 69 12-18 999 113 15
instance3 71 18-30 1161 184 31
instance4 85 18-30 1735 304 30
instance5 88 24-30 1831 358 31
instance6 90 18-24 1852 371 28
instance7 92 18-24 1998 376 30
instance8 95 30 2330 362 64

comparable with the smallest of the real-world instances made available to
us.

The characteristics of these instances are listed in Table 3. In this case
the picking lists were the actual ones as derived from the WMS.

Using these data, we constructed two instance sets, one making use of the
whole year’s lists (which amounted to 291 working days lists) and one where
we extracted the last 50 lists for each warehouse, roughly corresponding to
two months activity, which was the horizon of interest for the analysis.

5.3. Estimates validation

A first set experiments is aimed at validating the quality of the estimator
of section 3, upon which all our algorithms hinge. Figure 9 shows the boxplot
of the validation, where the value estimated for each instance is represented
by a gray rectangle, superimposed to the boxplot of the distribution of the
actual number of rehandles that are necessary on the corresponding instance
for each of the picking lists in the one-year dataset.

Note that the distributions of the number of rehandles is very skewed,
being impossible to have less than 0 movements while a high number of
them might be needed, therefore boxplots represent (as usual) medians and
quartiles, the means being always higher than the median value, as the
estimates suggest. Numerically, the mean number of rehandles per instance
were on average 4.09% lower than their estimates on the 8 instances under
study, with the interval of estimation errors ranging between -12.06% and
+5.01%, which is a good fit for practical purposes.

5.4. Computational results, 2 stages

The first test we made was aimed at determining whether the combi-
nation of the two heuristics we implemented, namely, the Corridor Method
(CM) and the MultiHeuristic (MH), which make up the algorithm Corri-
dorHeuristic (CH) of section 4.1.2, performed better than the local search
of section 4.1.1 and of any of the two alone.
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Figure 9: Estimate validation. The second axis shows the number of requested rehandles.
Gray boxes: estimates of the means; red dots: actual means; boxplots: actual values.

We use for testing the two artificial instances together with the smallest
and biggest real-world instance, obtaining coherent outcomes. All instances
are tested on their 50 picking lists datasets, with the lists used for premar-
shalling different from the lists used for validation, as described in Section
2. Table 4 shows the quantitative results, where we report:

� name: the name of the instance of the block, or the quantity type.

� n.box: the number of box to remarshal.

� manual: the total number of relocations made in order to pick all boxes
from the lists, using the manual rule described at the beginning of this
section on all lists of the validation set.

� LS: data relative to the local search algorithm, here denoted LS.

� CH: data related to the CH algorithm.

� CM: data related to CM alone.

� MH: data related to MH alone.

For each instance and for each algorithm, we report also:

train : number of relocations made by the algorithm for remarshalling the
warehouse on the basis of the lists in the training set.

val : number of relocations needed by themanual rule, after remarshalling,
to pick all the boxes from the picking lists of the validation set.
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Table 4: Comparison among methods

name n.box manual LS CH CM MH

testLC 35 253
train 3 27 77 34

val 112 109 226 148
gap% 55.73 56.92 10.67 41.50
t.cpu 0.40 0.58 0.15 0.69

test50*15 700 3362
train 64 410 1103 560

val 2491 2388 3294 2883
gap% 28.66 31.61 5.67 17.44
t.cpu 39.09 15.01 13.66 1.09

instance1 737 3760
train 50 1432 5023 2112

val 2362 2316 2810 2448
gap% 37.18 38.40 25.27 34.89
t.cpu 40.07 16.22 14.18 3.59

instance8 2330 15978
train 218 7344 15569 8620

val 12927 12081 13530 12443
gap% 19.09 24.39 15.32 22.12
t.cpu 2058.48 32.85 21.68 36.00

gap% : percentage ratio (manual - val)/manual.

t.cpu : cpu time, in seconds.

The parameter maxIter is set for all algorithms to the value of 5000,
a value that never causes termination of LS but is the active termination
condition in all other cases.

Notice how local search, albeit permitting at each step a relocation of a
blocking box anywhere in the warehouse, is in all cases less effective than
the CH heuristic, despite the cpu time, which is rapidly increasing with the
size of the instance due to the computational impact of the computation
of the estimator on higher numbers of configurations. On the contrary, all
other heuristic approaches limit the number of stacks to consider, therefore
the cost of the computation of the estimators.

As an example of the trace of a test, on the big real-world instance8,
Figure 10 shows the trace of the decrease of the E[Q] estimator value along
one run of LS and the average number of actual relocation moves which
are used in the best solution of the 50 lists verification set in the case of
LS (LSbest) and in the case of the CorridorHeuristic (CHbest). The latter
value is smaller than the former one. We deem this result to be ascribable to
the possibility of the CH heuristic to implicitly consider also some temporal
information about when the orders were issues (as mentioned in section
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4.1.2), thus, for example, to favor the picking of SKUs which were often
requested later over those that were often requested at the beginning of the
training horizon.

Figure 10: LS trace and LS and CH effectiveness comparison.

These preliminary tests provide a confirmation of the usefulness of the
hybridization of the corridor method with the multiheuristic, a result that
was consistently obtained in all tests we eventually made. All subsequent
results are obtained by this method.

2 months scenarios:. Another set of tests was made both on artificial and on
real-world instances on the basis of 50 picking lists, i.e., roughly two months
of picking history. The results for the artificial instances are reported in
Table 5 and those for the real-world ones are in Table 6.

In case of manual operations we report the number of relocations needed
to service either the lists used for training (‘training’) or the validation
ones (‘validation’). In case of CorridorHeuristic, we report the number of
relocations needed to premarshal according to the training set (‘training’),
the number of relocation to service all lists in the validation set (‘validations’)
and the percentage gap on the number of relocations to be made using the
manual rule, computed between the non-premarshalled case (Manual =⇒
validation) and the premarshalled one (CH =⇒ validation).

The column ‘training’ in the manual operations reports the number of
relocations needed by the manual rule to service all picking lists of the
training set, provided to as a basis for premarshalling, as such it should not
be directly compared with any other column (the ‘training’ column for CH
reports the number of relocation moves needed to service the lists in the
training set after warehouse CH premarshalling). It has been included to
ascertain that training and validation are structurally coherent.

Both in Table 5 and 6 it is apparent the benefit that can be achieved
by premarshalling using historic data. The variance of the benefit is high,
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Table 5: Artificial instances, 50 lists

Manual CH
name n.pallet training validation training validation gap

10x5 40 181 199 15 97 51.26%
20x8 120 529 464 19 296 36.21%
30x10 250 991 1091 86 708 35.11%
40x12 400 1766 1991 211 1124 43.55%
50x15 700 2610 3362 410 2388 31.61%

Table 6: real-world instances, 50 lists

Manual CH
name n.pallet training validation training validation gap

instance1 737 4123 3760 1432 2316 38.40%
instance2 999 6180 5328 2399 3182 40.28%
instance3 1161 5786 5126 2962 2256 55.99%
instance4 1735 12497 15103 4375 8508 43.67%
instance5 1831 11143 11906 5484 9147 23.17%
instance6 1852 14751 12860 6548 8379 34.84%
instance7 1998 12656 13987 6076 10306 26.32%
instance8 2330 18811 15978 7344 12081 24.39%

deriving from the high randomness of the list content, but in any case the
benefit is remarkable.

1 year scenarios. A further test was made to assess the impact of the quan-
tity of historic data on the final outcome. In this case, we use all data that
were provided to us for the real-world instances, i.e., one year of picking his-
tory, corresponding to 291 working days. As the picking lists are applied to
the initial warehouse configuration we were provided with, we remove from
them all SKUs that were not present in the stock, which amount to ca. 5%
of the historic picking orders.

The results are reported in Table 7. They are not significantly different
from those of Table 5, even though on average somewhat worse (31.96% av-
erage gap versus 35.88%). This is possibly due to a shift on the distribution
of the SKU requests along the year, so that very old data induce a bias that
can be avoided considering only the more relevant, recent ones.

5.5. Computational results, multistage

Subsection 5.4 reports about the improvements that can be achieved on
the first day of operation after performing all remarshalling relocations. Ac-
tually, the warehouse operations would consist in a first deep remarshalling,
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Table 7: real-world instances, 291 lists

Manual CH
name n.pallet validation training validation gap

instance1 737 22878 1457 17103 25.24%
instance2 999 32494 2886 19830 38.97%
instance3 1161 31447 3330 20050 36.24%
instance4 1735 82108 4203 48265 41.22%
instance5 1831 72911 6383 54623 25.08%
instance6 1852 80650 6595 54462 32.47%
instance7 1998 75873 7786 57310 24.47%
instance8 2330 97696 8099 61595 36.95%

Table 8: Multistage operation

operation 1 2 3 4 5 6 7 8 9 10 Avg

Premarshal 14 3 1 2 0 2 1 1 1 1
Validation 93 99 124 97 135 64 144 60 61 96 97.3
Manual 170 209 176 190 202 203 220 156 222 233 198.1

then in a sequence of days where lesser impact remarshalling would be per-
formed overnight, as the warehouse configuration is not deeply affected by
a single day of work.

Table 8 reports a validation in such a multistage setting considering a
row of 10 days in the case of instance 10x5. The final gap between the
number of relocations in the case of premarshalled configurations is 50.88%,
which is coherent with the result reported in Table 5, but it is evident the
decrease of the number of relocations needed to premarshal the warehouse.

The same holds true for the data reported in Table 9, which refers to
10 days of operations on the instance 50x15. Here the final gap is 20.04%,
lower than that of the first day alone, but the substantial decrease of pre-
marshalling relocation is still evident.

6. Conclusions

This paper presents the first optimization approach to stochastic pre-
marshalling of warehouses, where randomness is associated to the picking

Table 9: Multistage operation

operation 1 2 3 4 5 6 7 8 9 10 Avg

Premarshal 410 3 8 6 8 14 8 16 7 5
Validation 2374 2388 3020 3033 3144 2824 2956 2506 3104 2014 2736.3
Manual 3362 3492 3678 3316 3384 3370 3641 3079 3593 3308 3422.3
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lists.
We describe a business analytics application, where the statistical module

permits to fit probability distributions of picking lists and to estimate the
number of relocation moves, and the optimization module permits to suggest
sequences of relocation moves leading to optimized configurations.

The results were validated both on artificially generated and on real-
world instances, with results that show that, even in actual application set-
tings, a significant reduction of the number of the relocation moves needed to
service a picking list can be obtained by a low-effort premarshalling process,
to be carried out in underwork periods.
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[1] Bartlett, R. A Practitionerś Guide To Business Analytics: Using
Data Analysis Tools to Improve Your Organizationś Decision Making
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