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Abstract

The structures of discourse used by legal and ordinary languages share differences
that foster technical issues when applying or fine-tuning general-purpose language
models for open-domain question answering on legal resources. For example, longer
sentences may be preferred in European laws (i.e., Brussels I bis Regulation EU
1215/2012) to reduce potential ambiguities and improve comprehensibility, dis-
tracting a language model trained on ordinary English. In this article, we investi-
gate some mechanisms to isolate and capture the discursive patterns of legalese in
order to perform zero-shot question answering, i.e., without training on legal docu-
ments. Specifically, we use pre-trained open-domain answer retrieval systems and
study what happens when changing the type of information to consider for retrieval.
Indeed, by selecting only the important parts of discourse (e.g., elementary units of
discourse, EDU for short, or abstract representations of meaning, AMR for short),
we should be able to help the answer retriever identify the elements of interest.
Hence, with this paper, we publish Q4EU, a new evaluation dataset that includes
more than 70 questions and 200 answers on 6 different European norms, and study
what happens to a baseline system when only EDUs or AMRs are used during infor-
mation retrieval. Our results show that the versions using EDUs are overall the best,
leading to state-of-the-art F1, precision, NDCG and MRR scores.

Keywords Legal question answering - European Legislation - Knowledge
graph extraction - Discourse theory - Abstract meaning representations - Private
international law - European arrest warrant - GDPR - Electronic signature

1 Introduction
We are witnessing a growing need for the digitisation of our society, which requires

great interdisciplinary efforts in law, information technology and engineering. This
need has led to the birth of institutions such as the Ministry of Digital Governance
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of Greece and the Australian Digital Transition Agency, or long-term plans like the
European Digital Transition Action Plan and many others.

In the literature of Al, answering questions using an extensive collection of docu-
ments of diversified topics (i.e., Private International Law) is called open-domain
Question Answering (QA). Modern open-domain QA systems usually combine tra-
ditional information retrieval techniques and neural reading comprehension models.
Nevertheless, neural reading comprehension of legal texts (e.g., European legisla-
tion) is challenging because legalese is rarer, mercurial and in many ways differ-
ent from a commonly used natural language. Hence, the difference between legal
and ordinary languages does foster technical issues when applying or fine-tuning
general-purpose language models for open-domain question answering on legal
resources. This is especially true when the meaning of a legal document is encoded
in its (discourse) structure in a way that is different from the spoken language. For
example, long sentences or more “formal” writing may be preferred in legislative
documents (e.g., Brussels I bis Regulation EU 1215/2012) to reduce potential ambi-
guities and improve comprehensibility. However, the noise introduced by the exces-
sive length of the sentence or their unusual structure can distract a language model
trained in ordinary English, pushing it to commit more errors.

As a result, standard neural reading comprehension models may only be able to
represent the semantics of a legal text if they are adequately specialised to do it. This
is because legalese is not repetitive. It is canonical and has semantic terminology
that tends to avoid polysemy and to be used punctually in particular contexts as if
the sentences it forms were governed by formal rules. Hence, applying these formal
rules impacts the discourse structure, as suggested by Sovrano et al. (2022).

Here, we expand the work published by Sovrano et al. (2020), investigating some
mechanisms to perform “zero-shot” legal question answering. More specifically,
“zero-shot” means that question answering is performed through pre-trained lan-
guage models (e.g., a model that is trained on generic non-legal documents) with-
out fine-tuning them on the downstream legal task of question answering. In this
sense, zero-shot legal question answering can be a necessary solution for all those
tasks characterised by a paucity of data (e.g., European hard laws, the resolutions
of the United Nations General Assembly) and for which we want to train Al-based
solutions through machine learning without having enough information for effective
fine-tuning. Conversely, zero-shot legal question answering might be less helpful
whenever data are abundant (e.g., American case law or privacy policies).

In this article, we investigate the role of discourse structure in legalese, trying to
understand and exploit its importance in encoding the meaning of legal documents.
The goal of this investigation is also practical, not just theoretical. Understand-
ing how legalese differs from its spoken counterpart can help solve the data scar-
city problem in legalese processing/comprehension. This would allow us to better
exploit generic language models not calibrated to a downstream legal task or even
not trained on legal documents, as shown throughout the paper.

Specifically, we use open-domain QA systems based on information retrieval
and neural reading comprehension and study what happens when changing the
type of information to consider for retrieval. These QA systems encode all the
possible answers (e.g., parts of articles, recitals) with a general-purpose neural
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model and then use the encoding for fast similarity-based retrieval. Usually, these
answers are just a short part (a grammatical sub-tree) of one sentence or par-
agraph, especially if the whole is very long. Suppose the neural model is not
specialised in legalese. In that case, it will likely fail to identify and capture the
importance of grammatical sub-trees that are uncommon in the spoken language.
Hence, by selecting only those grammatical sub-trees deemed the most important,
we should be able to help the information retriever and the QA system by par-
tially hiding noise within answers. To identify these important grammatical sub-
trees, we used the theory of Elementary Discourse Units (EDUs) (Prasad et al.
2008) and the theory of Abstract Meaning Representations (AMRs) (Banarescu
et al. 2013).

In other words, we show how to produce more effective answer retrieval tools
by capturing discourse structure, leveraging existing tools for QA specialised in
common natural languages. Therefore, to shed more (empirical) light on what
constitutes meaning in legalese, we decided to design an experiment focused on
understanding whether there is a benefit in using only EDUs or AMRs, as triplets
in the knowledge graphs extracted by the pipeline proposed by Sovrano et al.
(2020). We devised a simple experiment where we study what happens to the
baseline QA system when using EDUs or AMRSs during information retrieval.

In particular, to evaluate our results, we present a new dataset called Q4EU
that extends Q4PIL (Sovrano et al. 2021) with 3 European norms, for a total of 72
unique questions and 225 expected answers (in the form of articles and recitals)
on 6 heterogeneous European norms spanning from Private International Law to
Human Rights Law (i.e., the General Data Protection Regulation, UE 2016/679),
from regulations of electronic signatures to the European arrest warrant.

The results of our experiments show that the versions using EDUs are overall
the best, leading to state-of-the-art top-k precision and F1 scores for all the values
of k we considered. Our instances of DiscoLQA were able to generalize across
the different legal sub-domains tested, even if the deep language models involved
were not pre-trained on legal corpora.

However, we tested and evaluated DiscoLQA on specific European norms and
a relatively small dataset, without using deep language models pre-trained on
legal corpora.

Our contribution is threefold:

1. We show where a general-purpose language model may fail when applied to legal
documents, hinting at how to intervene for effective fine-tuning or re-training.
In other words, we show that legalese’s semantics may be encoded differently.
Identifying the sources of meaning may be beneficial for effectively improving
the state-of-the-art neural reading comprehension of legal documents.

2. We show a way to effectively use discourse analysis for legal question answering,
improving state-of-the-art without fine-tuning or re-training the language models
on the regulations at hand.

3. We publish Q4EU, a new evaluation dataset for legal question answer retrieval
that extends the work by Sovrano et al. (2021).
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For reproducibility purposes, we also publish on GitHub the source code of
DiscoLQA.!

This paper is structured as follows. In Sect. 2, we discuss the related work on
(legal) QA, while in Sect. 3 we give all the necessary background information to
understand the pipeline of algorithms presented in Sect. 4. Finally in Sect. 5 we dis-
cuss our experiment and present the Q4EU dataset, analysing the results in Sect. 7
while pointing to future work in Sect. 8.

2 Related work

Legal QA is a relatively recent field of study in the context of Al and Law, with
many exciting solutions available today. Some of these solutions follow end-to-end
approaches, exploiting existing language models. In contrast, some others try to
exploit ontologies and knowledge graphs by framing QA as a task of information
retrieval.

On the one hand, we can see a paucity of end-to-end generic solutions to legal
QA that are usually focused only on particular and narrow applications for which
large enough datasets are available. Instead, when no large dataset is available for
training, we generally have that using deep language models pre-trained on ordinary
English does not always produce good results. Zheng et al. (2021) showed that the
more complex the legal reasoning task to answer, the less effective the fine-tuning
could be. An example of end-to-end QA system is the work by Kim et al. (2015),
where a deep neural network is trained on a dataset of Boolean questions from Japa-
nese legal bar exams. Another interesting example is the work by Ravichander et al.
(2019), proposing an end-to-end question-answering solution for privacy policies.

On the other hand, an example of an answer retrieval system specific to Private
International Law is the one proposed by Sovrano et al. (2020). It consists of a com-
bination of TF-IDF and some deep language models to retrieve pertinent answers
from an automatically extracted knowledge graph of contextualised grammatical
sub-trees. In particular, the knowledge graph is aligned to a legal ontology based
on Ontology Design Patterns (i.e., agent, role, event, temporal parameter, action) to
mirror the legal significance of the relationships within and among the provisions. In
this sense, we extend the work by Sovrano et al. (2020), trying to overcome some of
the issues of using language models not trained in legalese.

While another example of an answer retrieval system is the work by Vold and
Conrad (2021), comparing the performance of a deep learning-based solution with
that of a traditional SVM. In particular, Vold and Conrad (2021) fine-tuned a deep
language model (called RoOBERTa) on a dataset of questions about privacy policies
(that usually use a language closer to spoken English rather than legalese), obtaining
better results than with an SVM.

! https://github.com/Francesco-Sovrano/DiscoLQA
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3 Background

In this section, we provide all the necessary background information to understand
state-of-the-art automated question-answering and the relationship between dis-
course theory and legalese.

3.1 Question answering and law

Natural language processing/understanding is of utmost importance in the inter-
section of Al and Law. This is why many works in this field have focused on gen-
eral-purpose state-of-the-art language models for the generation of word/sentence
embeddings (Shao et al. 2020; Condevaux et al. 2019; Vink et al. 2020).

For example, Bommarito et al. (2018) published a framework for natural language
processing and information extraction for legal and regulatory texts. While Chalkidis
and Kampas (2019) proposed one of the first models for legal word embeddings.
Also, the Incorporated Council of Law Reporting for England and Wales (ICLR
2019) published Blackstone, a library meant to allow researchers and engineers to
automatically extract information from long, unstructured legal texts (such as judge-
ments, skeleton arguments, scientific articles, Law Commission reports, pleadings).
More generally, natural language processing for legal texts has recently raised a lot
of interest, highlighting “the need to create a bridge between conceptual questions,
such as the role of legal interpretation in mining and reasoning, as well as compu-
tational and engineering challenges, such as the handling of big legal data and the
complexity of regulatory compliance” (Robaldo et al. 2019).

Automating legal reasoning is not a trivial task, as it requires a deep understand-
ing of language, non-monotonic logic and the theory of interpretation, as well as
sufficient flexibility to handle the plethora of changes to which law and hermeneu-
tics are subject over time. Current state-of-the-art Al for reasoning is divided into
two approaches: the symbolic and the sub-symbolic. The symbolic approach draws
from formal languages and logic. It requires every component of the reasoning to
be an abstract symbol with a pre-defined and context-independent interpretation of
its meaning, making the Al based on this approach hardly compatible with natural
languages such as English, Chinese, and Spanish. On the other hand, the sub-sym-
bolic approach draws from recent advancements in deep learning. Exploiting large
amounts of data, it can “understand” natural language and visual inputs in a scalable
and highly effective way. However, it loses transparency by working on non-sym-
bolic representations (i.e., arbitrary numerical vectors) frequently not interpretable.

Non-monotonic reasoners based on Defeasible Logic (Lam and Governatori
2009), Deontic Logic (Hage 2000) and Argumentation (Gordon and Walton 2009)
are famous examples of symbolic Al applied to the legal domain. All require legal
documents to be translated (manually) from their original natural language into
some particular formal language upon which classical logical reasoning can be
applied. This type of reasoner usually struggles to scale to handle natural language
(i-e., English) inputs such as documents and questions.

@ Springer



F. Sovrano et al.

On the other hand, the sub-symbolic approach is more versatile and well-known
to be more easily applied directly to natural language documents. Famous sub-sym-
bolic approaches to (legal) reasoning are the so-called QA algorithms. As suggested
by Xie et al. (2020); Cao et al. (2019); Zhang et al. (2018); Hudson and Manning
(2019) and others, in many cases, question answering can be seen as an instance
of reasoning. These QA algorithms are usually trained end-to-end to extract short
(i.e., 2-3 words) answers from a whole document (text or image) to match a given
question.

The most common end-to-end QA algorithms, i.e. those collected by Wolf et al.
(2020), rely on Transformers (Vaswani et al. 2017). Hence they have quadratic com-
plexity in the size of the whole document to be searched for an answer. This char-
acteristic makes end-to-end QA based on Transformers fail in all those situations
where collections of large documents of diversified topics (i.e., Private International
Law) are involved, or parts of the same answer are scattered across multiple docu-
ments. A solution to this problem is seen in Question-Answer Retrieval, also known
as Dense Passage Retrieval or open-domain QA (Chen and Yih 2020). Modern
open-domain QA systems usually combine traditional information retrieval tech-
niques and neural reading comprehension models. These QA systems encode all the
identified possible answers (e.g., parts of articles, recitals) with a general-purpose
neural model. Then they use the encoding for fast similarity-based retrieval. There-
fore, differently from end-to-end QA, Question-Answer Retrieval is less end-to-end,
requiring the a priori identification of the possible snippets of text functioning as
answers, but it is much faster. In fact, it has a complexity that is usually proportional
to the product of the size of the context (normally a small paragraph) and the size of
the answer (commonly smaller than the context).

Among the most important Question-Answer Retrieval models, we distinguish
between those that use the answer’s context for the generation of embeddings?
(Yang et al. 2020; Karpukhin et al. 2020; Roy et al. 2020) and those who do not
(Chen et al. 2020).

3.2 Discourse theory and legal language

The relation between discourse theory and legalese is complicated and still open to
discussion. Discourse theory is a branch of linguistics that studies how coherence
and cohesive relations can be the threads that make up a text to form a discourse. A
discourse is said to be coherent if all of its pieces belong together, while it is said to
be cohesive if its elements have some common thread. Sanders et al. (1992) identi-
fied two requirements for a theory of discourse:

e Descriptive adequacy: A theory discourse structure makes it possible to describe
the structure of all kinds of (natural) texts.

2 Intuitively, using the answer’s context should help the answer embedder to contextualise and disam-
biguate better, producing more high-quality embeddings.
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e Psychological plausibility: A theory of discourse structure should at least gener-
ate plausible hypotheses on the role of discourse structure in constructing cogni-
tive representation.

In recent years, many different theories of discourse have been spelt out, each
with different pros and cons. Among them, we cite the Rhetorical Structure The-
ory (Mann and Thompson 1988), assuming that discourse is structured as a tree,
the Segmented Discourse Representation Theory (Lascarides and Asher 2007)
assuming that discourse is structured as a graph (therefore allowing long-distance
attachments), and the theory of EDUs (Miltsakaki et al. 2004; Prasad et al. 2008;
Webber et al. 2019) making no assumption on the text structure. Common to
them is probably the identification of something that may be called Elementary
Discourse Unit (EDU). EDUs are spans of text denoting a single event serving as
a complete, distinct unit of information that the surrounding discourse may con-
nect to Stede (2013). EDUs can be combined to form many different types of dis-
course Fludernik (2000); D’Angelo (1984) including: argumentation, exposition,
description, narration.

The theory of EDUs encoded by the Penn Discourse Treebank (PDTB) model
is considered one of the most generic theories of discourse. Indeed, PDTB is
data-driven (based on lexically grounded relations) and makes little assumptions
about the underlying language. As a result, with little or no change in annotative
style, PDTB appears to be usable for modelling discourses of natural languages
belonging to different families (Zufferey and Degand 2017), e.g., Chinese, Ara-
bic, and Hindi. In particular, PDTB is based on the assumption that “the meaning
and coherence of a discourse result partly from how its constituents relate to each
other”. Therefore discourse relations are defined as semantic relations between
abstract objects (or EDUs) mentioned in discourse and connected by explicit
(e.g., “but”, “then”, “for example”, and “although”) or implicit relations. Accord-
ing to PDTB, discourse relations can be of one of 4 main types: temporal, contin-
gency (causality, purpose, etc.), expansion, and comparison. PDTB-style annota-
tions and the other theories of discourse have inspired an ISO standard (Prasad
and Bunt 2015).

The application of PDTB to legalese has been explored by some Robaldo et al.
(2008); Cabrio et al. (2013), but has yet to have much follow-up. The point is that
ordinary discourse theory is better suited to judgments, Hansard reports, testi-
monies and reports of debates. Instead, it seems unsuited to legislative texts and
contracts, for which a specific vocabulary (e.g., definitions) or textual structure
(e.g., hierarchy) is used to identify meaning through interpretation theory. Indeed,
legislative texts have a deeper structure than common sentences. For example, a
list has a legal meaning of conditions linked together by specific semantics. Fur-
thermore, the classical linguistic structures based on discourse connectives tend
to be used differently in law. Legal connectives do not have the same semantic
value as everyday discourse. They are operators of deontic rules with multiple
meanings (e.g., “xor”, “or”, “and”). Also, some discourse structures tend not to
be used at all because they are not a good practice in legal drafting (e.g., “but”
and “for example”™).
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Fig.1 Sketch of the pipeline used in the baseline and DiscoLQA. The baseline extracts only clauses
from the source texts (articles, recitals, commission statements, etc.). DiscoLQA also extracts discourse
relations and AMR as information units. The information units are then passed to the knowledge graph
extractor that produces a graph used by the Question-Answer Retriever

4 DiscoLQA: discourse theory for legal question answering

This paper proposes a novel pipeline of algorithms called DiscoLQA, short for
Discourse-based Legal Question Answering. DiscoLQA is based on the automatic
extraction of special knowledge graphs designed to address Legal QA through gen-
eral-purpose deep language models that are not specifically trained on legal docu-
ments. In particular, DiscoLQA is composed by the baseline tool of Sovrano et al.
(2020) extended with a new component responsible for the extraction of special
information units representing EDUs and AMRs.

The baseline tool described by Sovrano et al. (2020) is composed of a pipeline
of algorithms for efficient Question-Answer Retrieval through the extraction of a
knowledge graph from a set of information units. In this sense, the main difference
between DiscoLQA and the baseline is (as shown in Fig. 1) the type of information
units considered by the knowledge graph extractor. The baseline uses as informa-
tion units all the clauses® of the source documents.* Instead, DiscoLQA can use as
information units not only the clauses but also the AMRs and discourse relations
extracted from the clauses.

In other words, DiscoLQA supports more types of information units and allows
the retrieval of answers from any combination of clauses, AMRs and discourse

3 A clause is a group of words that functions as one part of speech and that includes a subject and a verb.
4 The identification of sentences and clauses in an English text is straightforward with a dependency
parser, especially with tools such as Spacy.
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relations. Specifically, discourse relations are meant to capture how EDUs are con-
nected, while AMRs are meant to capture the informative components within the
EDUs by possibly supporting answering to basic questions such as “who did what to
whom, when or where”. For example, from the sentence “The existence and validity
of a contract, or any term of a contract, shall be determined by the law which would
govern it under this Regulation if the contract or term were valid’ it is possible to
extract the following discourse relation about contingency (that we represent as a
pair of question and answer for convenience and clarity) “In what case would the
law govern it under this Regulation? If the contract or term were valid’, and the
following AMR question-answer “By what is the existence and validity of a contract
determined? The law that would govern it under this Regulation if the contract or
clause were valid”. So, a discourse relation identifies two EDUs: the first encoded in
the question and the second in the answer.

In this section, we discuss the system implementation of DiscoLQA, starting
from the proposed mechanism for extracting EDUs and AMRs.

4.1 Information units extraction: discourse relations and abstract meaning
representations

The AMRs and EDUs used by DiscoLQA are extracted from sentences and para-
graphs through a deep language model based on T5° Raffel et al. (2020) pre-trained
on a multi-task mixture of unsupervised and supervised tasks.

Vanilla T5 is not trained to recognise AMRs or EDUs. Therefore we had to fine-
tune T5 on some public datasets designed for these tasks. These datasets are namely
QAMR (Michael et al. 2018) for extracting AMRs, and QADiscourse (Pyatkin et al.
2020) for EDUs and discourse relations. Interestingly, both datasets encode AMRs
and EDUs as question-answer pairs; this is done for convenience only. Indeed, as
pointed out by Michael et al. (2018); Pyatkin et al. (2020); Roit et al. (2020) and
others, the question-answer format is more natural, facilitating humans to operate
changes, correct errors, suggesting improvements, even without knowing in detail
all the underlying linguistic theories.

Most importantly, the QAMR and QADiscourse datasets are not related to any
of the technical domains covered by Q4EU. They do not contain legal documents or
text fragments written in legalese. In other words, by fine-tuning TS on QAMR and
QADiscourse, we do not refine T5 on legal texts. Legal fine-tuning would require
the costly extraction of a dataset of AMRs and EDUs from legal texts, also consider-
ing ad hoc adaptations of discourse theories and abstract meaning representation to
legal language.

In particular, the QAMR dataset is made of 107,880 different questions (and
answers) that are a mapping of AMR theory to the following wh-phrases:

e  What (60.9% of the dataset),

5 T5 is an encoder-decoder model based on the assumption that all Natural Language Processing prob-
lems can be converted in a text-to-text problem.
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Who (17.5%),
How (6.9%),
Where (5.0%),
When (4.3%),
Which (2.9%),
Whose (1.9%),
Why (0.6%).

On the other hand, the QADiscourse dataset is made of 16,613 different questions
(and answers) that are a mapping of PDTB to the following wh-phrases mainly on
contingency and temporal relations:

In what manner (25% of the dataset),
What is the reason (19%),
What is the result (16%),

What is an example (11%),
After what (7%),

While what (6%),

In what case (3%),

Despite what (3%),

What is contrasted with it (2%),
Before what (2%),

Since when (2%),

What is similar (1%),

Until when (1%),

Instead of what (1%),

What is an alternative (< 1%),
Except when (< 1%),

Unless what (£ 1%).

The two considered datasets are tuples of < s,q,a >, where s is a source sen-

tence, g is a question (implicitly) expressed in s, and a is an answer expressed in s.
So that T5 is fine-tuned to tackle at once the following four tasks per dataset:

b N

Extract a given s and g,
Extract g given s and a,
Extract all the possible g given s,
Extract all the possible a given s.

Specifically, we fine-tuned the T5 model on QAMR and QADiscourse for five
epochs.® The objective of the fine-tuning was to minimise a loss function measuring
the difference between the expected output (i.e., a for the 1st task, g for the 2nd task,

© An epoch is one complete cycle through the entire training dataset.
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etc.) and the output given by T5. A mathematical definition of the loss function is
given by Raffel et al. (2020).

At the end of the training, the average loss was 0.4098, meaning that our fine-
tuned TS5 model cannot perfectly extract AMRs or EDUs from the text composing
the training set. On the one hand, this is a good thing because it is likely that the
model did not over-fit on the training set. On the other hand, this points to the fact
that the AMRs and EDUs extracted by our TS model can be imperfect, containing
errors that could propagate to the answer retrieval system. Regardless, in the follow-
ing sections, we show that even if the language models we rely on are imperfect, we
can still outperform the baseline information retrieval system.

4.2 System implementation: knowledge graph extraction and answer retrieval

DiscoLQA, similarly to the baseline tool described by Sovrano et al. (2020), consists
in a pipeline of Al algorithms that is capable of extracting from a set of informa-
tion units a particular graph of knowledge that an information retrieval system can
exploit to answer a given question. In particular, this knowledge graph is extracted
by detecting, with a dependency parser, all the possible phrases and sub-phrases
within the information units so that each phrase stands for an edge of the knowledge
graph. In practice, these phrases are represented as special triplets of subjects, tem-
plates and objects called template-triplets. Specifically, the templates are composed
of the ordered sequence of tokens connecting a subject and an object. The subject
and the object are represented in such templates with the placeholders “{subj}” and
“(obj)”.

Hence, the resulting template-triplets are a sort of function, where the predicate
is the body and the object and the subject are the parameters. Obtaining a natural
language representation of these template-triplets is straightforward by design by
replacing the instances of the parameters in the body. This natural representation is
then used as a possible answer for retrieval by measuring the similarity between its
embedding and the embedding of a question. An example of template-triple is:

e Subject: “the applicable law”

o Template: “Surprisingly {subj} is considered to be clearly more related to {obj}
rather than to something else”

e Object: “that Member State”

Because of the adopted extraction procedure, the resulting knowledge graph could
be better. It may contain mistakes caused by wrongly identified grammatical depend-
encies or other issues.

To increase the interoperability of the extracted knowledge graph with external
resources, we formatted it as an RDF graph. RDF is a standard model for data inter-
change on the Web (Allemang and Hendler 2011). In particular, RDF has features
that facilitate data merging even if the underlying schemas differ. To format a graph
of template triplets in an RDF graph, we performed the following steps:
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e We assigned a Uniform Resource Identifier (URI) to every node (i.e., subject and
object) and edge (i.e., template) of the graph by lemmatising the associated text.
To each URI, we assigned an RDEFS label corresponding to the associated text.

e We added special triplets to keep track of the sources from which the template-
triplets were extracted so that for each node and edge is possible to go back to
the source document or paragraph.

e We added sub-class relations between composite concepts (syntagms) and the
simplest concepts (if any) composing the syntagm. For example, “contractual
obligation” is a sub-class of “obligation”.

For more technical details about how we performed all the steps mentioned above to
convert the template-triplets into an RDF graph, please refer to Sovrano et al. (2020)
or the source code of DiscoLQA.

Finally, the algorithm to retrieve answers from the extracted knowledge graph
is based on the following steps. Let C be the set of concepts in a question g, and
m =< s,t,0 > be a template-triplet, and u = #(s, 0) be the natural language represen-
tation of m also called information unit, and z its source paragraph. DiscoLQA per-
forms answer retrieval by finding the most similar concepts to C within the knowl-
edge graph, retrieving all their related template-triplets m (including those of the
sub-classes), and selecting amongst the natural language representations u of the
retrieved template-triplets those that are likely to be an answer to g. The probability
that u pertinently answers g can be estimated through SyntagmTuner (Sovrano et al.
2022) as the numerical similarity between the embedding of u + z (i.e., u concat-
enated with z) and the embedding of ¢. So that if u + z is similar enough to ¢, then z
is said to be an answer to g for the information unit u. Therefore, the algorithm can
retrieve any arbitrary number of answers, given that enough information units are
available.

In particular, the embeddings of u + z and g are obtained through a deep lan-
guage model specialised on QA retrieval and pre-trained on ordinary English to
associate similar vectorial representations to a question and its correct answers. The
pre-trained deep language models we considered for our implementation of Dis-
coLQA and our experiments are the Universal Sentence Encoder (Yang et al. 2020),
MiniLM (Wang et al. 2021), and MPNet (Song et al. 2020).

5 Experiment

Given all the premises stated in Sect. 1 and Sect. 3, we designed an experiment to
better understand the role of discourse relations in legalese, in order to determine
how to exploit existing state-of-the-art general-purpose natural language models for
QA in order to automatically and effectively answer questions on legal documents
(e.g., Private International Law). Indeed, legalese is a technical language in many
ways similar to its related natural language, but with important differences in how
the meaning is encoded in the text. Legalese is not repetitive. It is canonical and
has semantic terminology that tends to avoid polysemy and to be used punctually in
particular contexts as if the sentences it forms were governed by very formal rules.
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We hypothesise that applying these formal rules affects the syntagmatic relation-
ships within sentences and discourse structure. Suppose this hypothesis were cor-
rect, in principle, it would be possible to specialise general-purpose natural language
models to legalese simply by integrating them with external information about the
structure of discourse of legal texts without costly training procedures otherwise
hampered by the scarcity of data. This is why we decided to design an experiment
focused on understanding whether there is a benefit in using discourse relations and
AMRs instead of plain sentences when performing Question-Answer Retrieval on
the body’ of articles and recitals. The overall idea is that using discourse relations
and AMRs as information units would help to partly crystallise into the retrieval sys-
tem the structure of discourse used by the legal texts. This would make it invariant,
avoiding the answer retriever using the discourse schemes learned from the common
language instead.

Hence we designed DiscoLQA that, as described in Sect. 4, extends the baseline
Question-Answer Retrieval system proposed by Sovrano et al. (2020), supporting
different combinations of information units, i.e., AMR and discourse relations. So,
for the experiment, we can compare the performance of different information units
on the same answer retrieval algorithm. More precisely, we want to study the follow-
ing instances of DiscoLQA:

e (lause: equivalent to the QA tool by Sovrano et al. (2020). This is DiscoLQA
which uses only clauses as information units.

e C(Clause+ EDU+AMR: DiscoLQA which uses clauses, discourse relations and

AMRSs as information units, all together.

Clause+EDU: DiscoLQA using clauses and discourse relations but not AMRs.

Clause+AMR: DiscoLLQA using clauses and AMRs.

EDU+AMR: discourse relations and AMRs.

EDU: discourse relations.

AMR.

As a result, if one type/combination of information units would perform better than
the others, the gain in performance would be imputed to the only difference between
the tools: the type/combination of adopted information units. Therefore, if Dis-
coLQA were better than the baseline (Sovrano et al. 2020), we would have some
evidence to support our initial hypothesis by measuring the effects of discourse
structure on the performance of information retrievers trained on general-purpose
natural language.

We consider as a baseline only the answer retrieval system by Sovrano et al.
(2020) mainly for two reasons:

7 Unlike the body, titles/headings (e.g. of articles, sections, chapters) are usually concise (i.e., few
words), so we expect DiscoLQA to have minimal impact on a title, because there would be little noise to
remove and no discourse relation to capture.
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Table 1 Statistics on Q4EU: the column “Art./Rec.” counts the number of recitals and articles. The
column “Questions” counts the number of different questions, and the column “Tokens per Art./Rec.”
counts the mean number of tokens per article/recital, and so on. Please note that Q4EU is the sum of
Q4PIL, Q4EAW, Q4GDPR and Q4eIDAS

Questions Expected Answers  Norms Art/Rec Tokens Tokens
answers  per ques- per Art./
tion Rec
Q4PIL 17: 5 low; 7 normal; 5 65 3.82 3 269 27,280 101.41
high
+ Q4EAW  21: 7 low; 7 normal; 7 68 3.23 1 50 8426 168.52
high
+ Q4GDPR  17: 4 low; 7 normal; 6 55 3.23 1 272 45,138 165.94
high
+ Q4eIDAS 17: 5 low; 7 normal; 5 37 2.17 1 129 17,283 133.97
high
= Q4EU 72: 21 low; 28 normal; 225 3.12 6 720 98,127 136.28
23 high

1. TItis the only system we know that can perform legal question-answering without
any ad-hoc fine-tuning or training procedure. We do not have an extensive enough
dataset to train an end-to-end QA system on specific European legislation; our
focus is on zero-shot legal QA (as defined in Sect. 1).

2. Itis the only legal question-answer retrieval system we know that has been tested
on European legislation. Therefore it is the most suitable baseline for us.

To show that the results generalise across different deep language models, we
decided to run the experiments on different state-of-the-art deep neural networks for
answer retrieval:

e The Universal Sentence Encoder Q &A model (USE, for short), by TensorFlow
(Yang et al. 2020, Google);
MiniLM (Wang et al. 2021, Microsoft);
MPNet (Song et al. 2020, Microsoft).

In particular, the last two models were fine-tuned on 215 million question-answer
pairs® by SBERT (Reimers and Gurevych 2019).

We decided to consider only the models mentioned above because: i) they are
some of the best general-purpose models for the task on TensorFlow and SBERT
(two state-of-the-art repositories for deep neural networks easily accessible through
user-friendly APIs); ii) deep neural networks for answer retrieval (i.e., models for
generating vectorial representations of questions and answers) are different from and
less common than models for question answering or answer extraction.

8 See https://huggingface.co/sentence-transformers/multi-qa-MiniLM-L6-dot-v1.
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Unfortunately, we do not know of any general-purpose open-source deep lan-
guage model trained specifically on legal answer retrieval. The only exception could
be the work by Vold and Conrad (2021), though their language model was trained
on privacy policies, and they are usually written in more plain English than Euro-
pean legislation (Table 1).

Finally, in order to evaluate DiscoLQA and perform the experiment, we need
a dataset of at least 50° relevant questions on European legislation, with known
expected answers. Considering that Q4PIL (Sovrano et al. 2021) comprises only 17
questions on Private International Law, we decided to build a larger test set called
Q4EU, to include more questions on different European norms, as described in
Sect. 5.

6 QA4EU: a test set for legal answer retrieval

Q4EU contains 72 unique questions and 225 expected answers (i.e., articles and
recitals). For simplicity of exposition, Q4EU can be divided into the following
sub-sets:

e QA4PIL (see Table 2): containing questions about 3 private international laws:
Rome I Regulation EC 593/2008; Rome II Regulation EC 864/2007; Brussels
I bis Regulation EU 1215/2012. These regulations are, respectively, on the law
applicable to contractual obligations, on the law applicable to non-contractual
obligations, on jurisdiction and the recognition and enforcement of judgements
in civil and commercial matters. In particular, they aim to provide a tool for
identifying the applicable law and the jurisdiction in cases when two or more
legal systems connect and generate complex relationships (e.g., a sale of goods
contract between an Italian and a German citizen regarding commodities situated
in Spain).

e Q4EAW (see Table 3): containing questions about the Council Framework Deci-
sion (CFD) of 13 June 2002 on the European arrest warrant and the surrender
procedures between Member States.'” In particular, this framework decision
increases the efficiency of extradition procedures for crime suspects. Further-
more, it also determines the abolition of formal extradition procedures between
member states of the EU for persons who are fugitives from justice after being
finally convicted. The framework decision represents the first concretisation of
the principle of free movement of judicial decisions in criminal matters, encom-
passing both pre-sentence and final decisions by fostering judicial cooperation
and the development of a single area of freedom, security and justice in the EU.

° The minimum number of queries required for a valid information retrieval test set in order to obtain
statistically significant results is normally 50 (Clough and Sanderson 2013).

10 https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:02002F0584-20090328 &
from=EN
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¢ Q4GDPR (see Table 4): containing questions about the General Data Protec-
tion Regulation (GDPR),'! the most relevant piece of legislation in the EU legal
framework with regards to data protection law. Its goal is to foster the fundamen-
tal right to data protection, enshrined by the Charter of Fundamental Rights of
the European Union (art. 8), while harmonising rules in data processing, profil-
ing, and risk management.

e Q4eIDAS (see Table 5): containing questions about Regulation (EU) No
910/2014 of the European Parliament and of the Council of 23 July 2014 on elec-
tronic identification and trust services for electronic transactions in the internal
market and repealing Directive 1999/93/EC,'? also known as eIDAS Regulation.
This legislation tackles several issues in electronic identification, electronic sig-
nature, electronic seals, and trust services. Its goal is to provide legal certainty
for cross-border transactions in the EU Single Market.

Some statistics on the datasets mentioned above are shown in Table 1.

To build the Q4EU dataset and, in the first place, the Q4PIL dataset, the pieces of
legislation (i.e., the norms) kept into account are conceived as self-contained legal
environments. While legal interpretation is often grounded on external legal fac-
tors (e.g., jurisprudence, scholars’ opinions), we opted for a “black letter” approach
to the law that only considers the legislative legal formant. Therefore, the point of
view assumed in our analysis is the perspective of the lawmakers. This has a twofold
implication for question-and-answer drafting.

On the one hand, questions have been modelled to be answered solely within the
legal text under scrutiny. They do not refer to legal concepts, such as the hierarchy
of legal sources or competence, that are not explicitly mentioned in the regulations.
Moreover, not all the (legal) questions are the same. While some accept as an answer
a provision that exactly matches the question, others rely on more complex interpre-
tations (i.e., legal reasoning) to be answered. Therefore, questions have been classi-
fied depending on their context specificity, which can either be low, normal, or high.

First, specific questions whose answer is precisely in the domain of the regula-
tions and an answer is provided in the “black letter” of the law were labelled as
highly specific. An example of a question with high specificity is “In what court can
an employee sue its employer?” because it perfectly falls within the scope and goals
of Regulation Brussels I-bis and finds its exact answer in the provisions of Articles
21 and 23.

Questions whose answer falls within the scope of the regulations while requiring
an abstraction of multiple legal provisions were labelled as normally specific. For
instance, “What is the applicable rule to protect the weaker party of a contract?” was
labelled as normally specific since the answer also relies on the concept of “weaker

! Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the
protection of natural persons concerning the processing of personal data and the free movement of such
data, and repealing Directive 95/46/EC, https://eur-lex.europa.eu/eli/reg/2016/679/0j

12 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32014R0910
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party” mentioned across two regulations (Recital 23 Rome I and Recital 18 Brussels
I) concerning any contract (as a legal concept) rather than specific contractual types.

Finally, broad questions whose tentative answer is found through an articulate
combination of articles and recitals were labelled as having low specificity. For
instance, a question with low specificity is “Can the parties choose a different appli-
cable law for different parts of the contract?’. While Rome I Regulation provides
for a discipline on the applicable law to contract, it does not contain any provision
concerning individual parts. The answer is ultimately open to interpretation in such
a question, whereas the Regulation suggests norms that could serve as a reference
point.

Since such classification might be subjective and dependent on each jurist, three
legal experts independently evaluated the level of context specificity and decided by
the majority about the final level.

On the other hand, the answers to the questions provided by legal experts, which
constitute the dataset used to observe the performance of deep language modes, are
obtained by mirroring the question-drafting methodology. Three legal experts, dif-
ferent from the question-drafters, provided answers to the legal questions by looking
for the following:

Specific, punctual, and explicit answers in the case of highly specific questions;
General and conceptual, yet text-based, answers to normally specific questions;
and

3. Prima facie textual references to be used as interpretative points of reference in
the case of low specific questions.

[\ I

These experts only provided textual references in the legislation at the article or
recital level (e.g., Rome I art. 8; B Rec. 18). When at least two experts agree on a
given answer, their response is valid without further enquiry. If one expert provides
another answer, another expert validates this response. In drafting the validation
answers, no other articles or recitals have been considered except those provided by
the original validators.

7 Results and error analysis

Considering that, with the Q4EU dataset, a single answer is not sufficient’® to
respond to a test query altogether, we relied on top-k precision, F1, Normalised Dis-
counted Cumulative Gain (NDCG) and Mean Reciprocal Rank (MRR) as evaluation
metrics. In particular, the top-k precision, or P@k, is measured as the fraction of
expected answers amongst the top-k retrieved instances. The top-k F1 score, or

. R@k-P@k .
Fl1@k, is given by ZM’ where the top-k recall, or R@k, is measured as the

13 DiscoLQA and the baseline have no constraints on the minimum or maximum number of retrievable
responses.
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Table 6 Q4EU—scores of universal sentence encoder

Universal Sentence Top5 Scores Top10 Scores
Encoder All Norms Search Target Norms Search All Norms Search Target Norms Search
P: 0.516 +0.323 P:0.531 £0.313 P:0.614 +0.31 P: 0.653 +0.294

Clause (Baseline)

F1:0.383 £ 0.202
NDCG: 0.425 +0.25
MRR: 0.675 + 0.373

F1:0.409 +0.203
NDCG: 0.47 + 0.261
MRR: 0.728 * 0.357

F1:0.331 +0.166
NDCG: 0.412 +0.226
MRR: 0.686 + 0.355

F1:0.368 + 0.174
NDCG: 0.462 + 0.246
MRR: 0.735 + 0.342

P: 0.434 +0.309
F1:0.322 £ 0.209

P: 0.466 + 0.324
F1:0.354 £ 0.229

P:0.537 +0.339
F1:0.29 £0.186

P:0.579 + 0.342
F1:0.332 £ 0.203

FTR NDCG: 0.397 +0.314 | NDCG: 0.433 +0.325 NDCG: 0.417 +0.314 | NDCG: 0.46 + 0.32
MRR: 0.582 + 0.417 MRR: 0.612 +0.419 MRR: 0.587 + 0.411 MRR: 0.62 + 0.409
P: 0.518 +£0.325 P:0.544 +0.312 P: 0.635 +0.296 P: 0.683 +0.283
EDU F1:0.364 + 0.205 F1:0.403 £0.212 F1:0.353 £0.191 F1: 0.393 + 0.196
NDCG: 0.412 +0.268 | NDCG: 0.467 + 0.264 NDCG: 0.434 £0.245 | NDCG: 0.486 +0.243
MRR: 0.677 + 0.366 MRR: 0.747 + 0.345 MRR: 0.686 + 0.349 RR:0.752 +0.334
P: 0.528 £ 0.32 P:0.554 £0.314 P: 0.649 £ 0.299 P: 0.7 £0.291
EDU+AMR F1:0.383 + 0.204 F1:0.411 £0.211 F1:0.359 + 0.186 F1:0.399 + 0.198
NDCG: 0.442 +0.279 | NDCG: 0.491 + 0.287 NDCG: 0.439 + 0.244 | NDCG: 0.49 + 0.258
MRR: 0.694 + 0.371 MRR: 0.759 + 0.356 MRR: 0.703 + 0.356 MRR: 0.765 + 0.344
P: 0.547 £ 0.324 P: 0.557 £0.322 P:0.63£0.312 P: 0.673 £ 0.285
Clause+AMR F1: 0.396 + 0.203 F1:0.412 £ 0.211 F1:0.352+0.19 F1:0.388 + 0.187
NDCG: 0.423 + 0.25 NDCG: 0.464 + 0.268 NDCG: 0.421 +0.234 | NDCG: 0.469 + 0.247
MRR: 0.682 + 0.358 MRR: 0.74 + 0.355 MRR: 0.685 + 0.353 MRR: 0.744 + 0.346
P: 0.535 £ 0.339 P: 0.562 + 0.325 P: 0.666 + 0.301 P: 0.701 + 0.291
F1: 0.396 + 0.226 F1: 0.428 £ 0.224 F1: 0.368 £ 0.187 F1: 0.402 £ 0.195
Clause+EDU

NDCG: 0.426 + 0.26
MRR: 0.688 + 0.38

NDCG: 0.47 + 0.266
MRR: 0.741 + 0.352

NDCG: 0.417 £ 0.222
MRR: 0.699 + 0.361

NDCG: 0.463 + 0.237
MRR: 0.746 + 0.342

Clause+EDU+AMR

P: 0.526 +0.323
F1:0.39 £ 0.215
NDCG: 0.425 + 0.258
MRR: 0.697 + 0.37

P:0.541 £0.32
F1:0.411 £0.22
NDCG: 0.468 +0.275
MRR: 0.751 +0.36

P: 0.665 + 0.293

F1: 0.368 + 0.185
NDCG: 0.419 £ 0.221
MRR: 0.705 + 0.357

P: 0.696 + 0.287
F1:0.399 + 0.194
NDCG: 0.467 + 0.24
MRR: 0.759 + 0.344

This table shows the macro mean (with standard deviation) of the top-k precision (P), F1, NDCG and
MRR of each combination of information units. We show the values for k = {5, 10}, either considering
all the norms (when retrieving the answers) or considering only the documents for which the questions
were designed. The best column scores are shown in bold, while darker background colours indicate
higher precision column-wise

fraction of correct answers retrieved in the top-k instances. In contrast, the top-k
NDCG (Sakai 2007) is a measure of ranking quality normalised in [0, 1] that meas-
ures the usefulness, or gain, of an answer based on its position in the result list.
Instead, the top-k MRR (Voorhees 1999) only cares about the single highest-ranked
relevant item. It shows what system does the best job at placing a relevant docu-
ment/passage in to highest rank.

It is important to note that the main difference between precision, F1, MRR and
NDCG is that the last two are used to assess the ability of an answer retrieval system
to rank correct answers first. Conversely, the other metrics measure the system’s pre-
cision and accuracy. For these reasons, all selected metrics are considered comple-
mentary measurements that may present different lenses into the problem of under-
standing answer retrieval systems (Dato et al. 2022).

In Tables 6, 7 and 8 we show the macro'* top-k evaluation scores for k = {5, 10}

,15 studying how different types of information units and deep language models

14 Here, the term “macro” means that precision, F1, NDCG and MRR scores are computed indepen-
dently for each test query and then averaged, to put an equal weight upon the contribution of each query.
15 In general, a k greater than or equal to the average number of answers per question (e.g., the score
shown in Table 1) is recommended.
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Table 7 Q4EU—scores of MiniLM

MiniLM Top5 Scores Top10 Scores
1 All Norms Search Target Norms Search All Norms Search Target Norms Search
P:0.539 £0.318 P:0.549 +0.314 P:0.643+0.3 P: 0.669 + 0.294

Clause (Baseline)

F1:0.415 £ 0.207
NDCG: 0.478 £ 0.257
MRR: 0.741 £ 0.344

F1:0.431 +£0.218
NDCG: 0.512 +0.268
MRR: 0.786 + 0.332

F1:0.372 £ 0.187
NDCG: 0.453 +0.225
MRR: 0.746 + 0.335

F1:0.402 £ 0.193
NDCG: 0.499 + 0.242
MRR: 0.79 £ 0.322

P: 0.456 +0.324
F1:0.34 £0.222

P: 0.488 +0.328
F1:0.374 £0.227

P: 0.56 +0.333
F1:0.308 £ 0.192

P: 0.564 + 0.331
F1:0.329 £ 0.204

GBI NDCG: 0.423 +0.318 | NDCG: 0.472 +0.329 NDCG: 0.447 £ 0.305 | NDCG: 0.485 +0.324
MRR: 0.625 + 0.418 MRR: 0.673 +0.414 MRR: 0.631 + 0.409 MRR: 0.675 £ 0.41
P:0.492 £ 0.321 P: 0.528 £0.322 P: 0.628 + 0.308 P: 0.663 £ 0.305
EDU F1:0.365 £ 0.214 F1:0.41 £0.231 F1:0.348 £0.19 F1:0.377 £0.193
NDCG: 0.423 +0.281 NDCG: 0.476 + 0.291 NDCG: 0.439 +0.256 | NDCG: 0.485 +0.259
MRR: 0.667 + 0.385 MRR: 0.707 + 0.368 MRR: 0.677 + 0.369 MRR: 0.713 + 0.358
P:0.527 £0.319 P: 0.554 +0.306 P: 0.688 £ 0.292 P: 0.726 £ 0.279
EDU+AMR F1:0.394 +0.212 F1:0.432 +0.221 F1:0.38 £ 0.185 F1:0.413 £ 0.187
NDCG: 0.454 £ 0.277 | NDCG: 0.507 + 0.286 NDCG: 0.459 +£0.243 | NDCG: 0.506 * 0.249
MRR: 0.705 + 0.37 MRR: 0.747 # 0.355 MRR: 0.713 + 0.355 MRR: 0.755 + 0.34
P:0.54 £0.317 P:0.55£0.315 P:0.652£0.3 P: 0.676 +0.294
Clause+AMR F1:0.412 + 0.204 F1:0.433£0.219 F1:0.375 £ 0.189 F1:0.403 £ 0.198
NDCG: 0.471 £0.256 | NDCG: 0.518 +0.271 NDCG: 0.451 +0.224 | NDCG: 0.498 + 0.244
MRR: 0.741 + 0.334 MRR: 0.798 + 0.322 MRR: 0.742 + 0.33 MRR: 0.8 +0.317
P: 0.562 + 0.314 P: 0.577 £ 0.31 P: 0.679 + 0.287 P:0.726 £ 0.279
Clause+EDU F1: 0.434 £ 0.197 F1: 0.456 £ 0.209 F1:0.386 + 0.182 F1: 0.421 £ 0.189
NDCG: 0.471 £0.243 | NDCG: 0.51 +0.255 NDCG: 0.449 +0.218 | NDCG: 0.492 +0.23
MRR: 0.728 + 0.341 MRR: 0.772 £ 0.331 MRR: 0.731 + 0.334 MRR: 0.775 £ 0.323
P: 0.549 £ 0.316 P: 0.569 + 0.309 P: 0.683 + 0.289 P: 0.727 £ 0.283
Clause+EDU+AMR F1:0.421 £0.2 Fl1:0.452 + 0.208 F1: 0.39 + 0.181 F1: 0.421 £ 0.191

NDCG: 0.472 + 0.244
MRR: 0.752 + 0.33

NDCG: 0.52 £ 0.254
MRR: 0.798 + 0.322

NDCG: 0.457 +0.214
MRR: 0.756 + 0.322

NDCG: 0.499 + 0.228
MRR: 0.802 + 0.312

For further details on interpreting this table, read the caption of Table 6

Table 8 Q4EU—scores of MPNet

- MPNet

Top5 Scores

Top10 Scores

All Norms Search

Target Norms Search

All Norms Search

Target Norms Search

Clause (Baseline)

P: 0.529 £ 0.309
F1:0.413 £ 0.209
NDCG: 0.466 + 0.259
MRR: 0.744 + 0.348

P: 0.566 + 0.3
F1:0.449 £ 0.211
NDCG: 0.507 + 0.266
MRR: 0.778 + 0.331

P: 0.666 + 0.272
F1:0.375+0.173
NDCG: 0.452 + 0.221
MRR: 0.751 +0.334

P: 0.694 + 0.265

F1: 0.409 + 0.189
NDCG: 0.497 + 0.24
MRR: 0.783 +0.319

P:0.452 £0.33
F1:0.337 £ 0.227

P: 0.457 £0.327
F1:0.351 £0.232

P:0.553 £ 0.341
F1:0.299 +0.194

P:0.569 + 0.34
F1:0.323 + 0.203

AR NDCG: 0.412 £ 0.311 NDCG: 0.445 +0.324 NDCG: 0.427 £0.295 | NDCG: 0.463 + 0.309
MRR: 0.602 * 0.405 MRR: 0.65 + 0.412 MRR: 0.608 + 0.397 MRR: 0.654 + 0.407
P:0.502+0.319 P:0.539 +0.327 P:0.641 £0.313 P: 0.67 +0.292

EDU F1:0.373£0.213 F1:0.408 £0.23 F1:0.346 £ 0.195 F1:0.375 £ 0.197
NDCG: 0.434+0.273 | NDCG: 0.476 + 0.281 NDCG: 0.447 £0.255 | NDCG: 0.488 +0.264
MRR: 0.703 + 0.376 MRR: 0.729 + 0.365 MRR: 0.715 + 0.355 MRR: 0.74 + 0.343
P:0.522 £ 0.301 P:0.561 +0.303 P: 0.667 + 0.303 P:0.693 +0.293

EDU+AMR F1:0.391 £0.212 F1:0.426 £0.22 F1:0.37 £0.193 F1:0.393 + 0.202
NDCG: 0.46 + 0.286 NDCG: 0.506 + 0.284 NDCG: 0.458 £ 0.243 | NDCG: 0.493 +0.256
MRR: 0.732 £ 0.364 MRR: 0.782 + 0.343 MRR: 0.74 £ 0.35 MRR: 0.785 + 0.336
P: 0.529 £ 0.316 P:0.558 +0.316 P:0.65 £0.294 P:0.682 +0.28

Clause+AMR F1: 0.4 £0.204 F1:0.43 +0.215 F1:0.371 £ 0.187 F1:0.407 £ 0.191
NDCG: 0.463 £ 0.258 | NDCG: 0.506 + 0.268 NDCG: 0.452+0.224 | NDCG: 0.501 £ 0.24
MRR: 0.751 £ 0.342 MRR: 0.8 + 0.329 MRR: 0.756 + 0.331 MRR: 0.806 + 0.316
P: 0.546 £ 0.312 P: 0.576 £ 0.307 P: 0.685 £ 0.282 P: 0.715 + 0.269

Clause+EDU F1:0.414 £ 0.208 F1:0.448 £0.214 F1: 0.389 + 0.179 F1: 0.423 + 0.189
NDCG: 0.454 + 0.25 NDCG: 0.497 £ 0.258 NDCG: 0.449 +0.21 NDCG: 0.492 + 0.229
MRR: 0.741 + 0.345 MRR: 0.776 + 0.333 MRR: 0.748 + 0.331 MRR: 0.782 + 0.321
P: 0.562 + 0.311 P: 0.581 + 0.307 P: 0.667 + 0.296 P: 0.702 + 0.282

Clause+EDU+AMR F1: 0.426 + 0.202 F1: 0.453 £ 0.215 F1:0.387 £0.191 F1:0.422 + 0.198

NDCG: 0.467 + 0.254
MRR: 0.74 + 0.344

NDCG: 0.506 + 0.264
MRR: 0.775 + 0.336

NDCG: 0.451 £0.219
MRR: 0.743 £+ 0.338

NDCG: 0.494 + 0.235
MRR: 0.778 + 0.328

For further details on interpreting this table, read the caption of Table 6
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Table9 Q4EU—average length

K . . Clauses AMRs Discourse relations
of information units by type

Mean length 32.39 24.98 30.96

This table shows the average number of characters of the discourse
relations, AMRSs and clauses used by DiscoLQA and the baseline

Table 10 Statistical tests

P@10 on USE Precision F1 NDCG MRR

(Targeted search) T pvalue T pvalue T pvalue T p value
EDU+AMR 130.0 0.04 294.5 0.06 806.0 0.08 157.0 0.21
EDU 1385 0.11 456.5 0.08 861.5 0.08 170.0 0.32
AMR 4135  0.89 1061.5 0.94 1146.0 0.43 622.0 0.98
EDU+AMR+Clause  66.0 0.04 149.0 0.01 766.0 0.31 1350 0.22
EDU+Clause 17.0 0.004 62.0 0.001 670.0 0.34 141.0 0.39
AMR+Clause 73.5 0.19 80.5 0.04 581.5 0.37 98.0 0.39

The table reports the Wilcoxon’s statistic 7 and the p value for the top10 scores (“‘target norms search”)
of each combination of information unit and evaluation metric. Statistically significant results (p < 0.05)
are highlighted in bold

affect answer retrieval. In particular, we show two different evaluations in these
tables. The first one is performed by running the answer retrieval algorithm on all
the 6 norms of Q4EU (we will refer to it as “all norms search”), even though the
questions in Q4EU usually target only 1 or 2 norms. Instead, the second one (we
will refer to it as “target norms search”) is performed by considering only the legal
acts targeted by every question (e.g., Q4GDPR targets only the GDPR, Q4eIDAS
only eIDAS), filtering out all the answers coming from unrelated norms.

As expected, all the scores obtained with a “target norms search” are higher than
with a “all norms search”. Interestingly, the difference between the two evaluations
clearly shows the weight of incorrect selection of the target document with Dis-
coLQA in Q4EU. Nonetheless, these results show that regardless of the choice of
k, using discourse relations (EDUs) as information units gives the best precision,
especially when in combination with clauses and AMRs.

Despite their differences, MPNet, MiniLM (the best) and the Universal Sentence
Encoder behave very similarly, suggesting that the information units we considered
may play a role independent from the underlying language model used for retrieval.
DiscoLQA using only discourse relations and AMRs as information units (i.e.,
EDU+AMR) outperforms the baseline in terms of precision. This happens with all
the language models considered, except MPNet. This fact suggests that EDUs and
AMRs can retain most of the relevant information of the corpus of technical docu-
ments, supporting our hypothesis. Moreover, as shown in Table 9, the average length
of EDUs and AMRs is smaller than that of normal clauses, further corroborating
the hypothesis and demonstrating that the deep language models considered can be
distracted by longer clauses.
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Table 11 Statistical tests

P@10 on MiniLM Precision F1 NDCG MRR

(Targeted search) T pvalue T pvalue T pvalue T p value
EDU+AMR 77.0 0.03 275.5 0.12 947.0 0.50 216.5 0.85
EDU 175.5 0.50 509.0 0.84 1109.0 0.75 308.0 0.97
AMR 375.0 0.99 1109.5  0.99 1176.0  0.67 386.0 0.98
EDU+AMR+Clause  17.0 0.004 68.0 0.02 696.0 0.62 72.5 0.28
EDU+Clause 6.0 0.002 60.0 0.04 816.0 0.81 68.0 0.67
AMR+Clause 9.0 0.19 435 0.44 494.0 0.70 25.5 0.25

See the caption of 10 for more details on how to interpret this table

In light of the similarities and differences observed across different algorithms
and information units, a statistical test was essential to ascertain the significance
of these findings. Since the data samples considered are not independent, we opted
for the Wilcoxon signed-rank test (Woolson 2007), a non-parametric version of
the paired T-test that is suitable for paired samples. Indeed, the same questions are
tested across all algorithms (i.e., EDU, Clause, etc.).

The results of the one-sided statistical tests on the topl0 scores (‘“‘target norms
search”) of the Universal Sentence Encoder and MiniLM are shown'® respectively
in Tables 10 and 11. Statistically significant improvements were generally seen in
the precision and F1 scores when using a combination of EDUs, AMRs and clauses.
MiniLM showed significant gains mainly in precision, whereas the Universal Sen-
tence Encoder displayed more widespread improvements, particularly in F1 scores.
Neither answer retriever exhibited statistically significant changes in NDCG and
MRR metrics.

Overall, these findings support our hypothesis. They show that it is possible to
improve a general-purpose language model, making it perform better with legal
texts. This is possible by better capturing syntagmatic relationships and using noise-
less information units, i.e., decomposing a generic clause into one or more discourse
relations or AMRs.

In other words, as expected, the information units representing the (generic)
clauses carry enough noise to distract the answer retriever. By breaking the sen-
tences into EDUs and explicitly keeping their relations, we can crystallise the dis-
course structure into the knowledge graph, making it invariant. Therefore the answer
retriever is forced to “reason” over the discourse patterns, minimising the chances of
relying on common-sense discourse schemes instead.

Examples of how EDUs and AMRs are important for some questions of the
QA4EU dataset are shown in Table 12. In particular, a qualitative analysis of the algo-
rithm’s responses shows that it can identify useful normative references to ensure
the completeness of the answer and develop an overview. For example, among the

16 The results for MPNet are not shown because none of them was significant.
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F. Sovrano et al.

Table 14 Q4EU—P@10 by context specificity

Mean top10 precision scores (with standard deviation) grouped by context specificity, for MiniLM with
“target norms search”. The best column results are in bold, while darker background colours indicate

P@10 on MiniLM Specificity

(Targeted Search) High Normal Low
Clause (Baseline) 0.781 £0.295 | 0.645+0.31 0.586 +0.23
AMR 0.531+0.382 | 0.612+0.327 | 0.535+0.267
EDU 0.783 +0.28 0.631 +0.313 | 0.584 +0.281
EDU+AMR 0.828 £0.225 | 0.702 £ 0.315 | 0.654 +0.246
Clause+AMR 0.758 £0.297 | 0.686+£0.312 | 0.58 +£0.234
Clause+EDU 0.842 + 0.222 | 0.688 +0.302 | 0.658 +0.265
Clause+EDU+AMR | 0.842 +0.222 | 0.685 +0.31 0.667 + 0.266

higher precision column-wise

Table 15 Q4EU—percentage of answers more/less precise than the baseline

P@10 on MiniLM Specificity

(Targeted Search) High Normal Low

AMR More: 9.09% More: 21.43% More: 9.09%
Less: 45.45% Less: 17.86% Less: 27.27%

EDU More: 18.18% More: 14.29% More: 22.73%
Less: 13.64% Less: 17.86% Less: 22.73%
More: 18.18% | More: 25.0% More: 27.27 %

EIDIL AR Less: 9.09 % Less: 7.14% Less: 9.09 %
More: 0.0% More: 17.86% | More: 0.0%

Dlamsz AR Less: 4.55% Less: 0.0% Less: 4.55%

al +EDU More: 9.09% More: 14.29% More: 22.73%

ause Less: 0.0% Less: 0.0% Less: 9.09%

More: 9.09% More: 21.43% More: 22.73 %

Clause+EDUFAMR 1y e 0.0% Less: 7.14% | Less: 4.55%

Percentage of queries for which DiscoLQA (with MiniLM, “target norms search”) made a positive/nega-
tive difference from the baseline in terms of top10 precision. Percentages are grouped by context specific-
ity. The best column deltas are in bold, while darker background colours indicate higher positive deltas
(the difference between “more” and “less”) column-wise

answers to the question “Who decides precedence in the event of a conflict between
a Buropean arrest warrant and a request for extradition from a third country?” the
algorithm identifies Article 16.3 (the most relevant answer) and suggests Recital 8,
which helps interpret Article 16.3. Furthermore, for the same question, the algo-
rithm also suggests Article 10.6, which, while not suitable for answering the ques-
tion, leads the jurist to complementary points of reference for more holistic reason-
ing and interpretation.

Both Tables 12 and 13 show errors committed by the answer retrievers and the
extractor of information units. These examples clearly reveal at least two differ-
ent types of errors. The first type occurs when an information unit is extracted to
be semantically or grammatically incorrect, such as in the first and fourth rows of
Table 12. This type of error is relatively minor since, in some cases, the underlying
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language model is resistant to inaccuracies!’, still allowing a correct answer to be
retrieved, as shown in 12.

In particular, this first type of error is usually caused by the automatic extraction
of AMRs and EDUs by a neural network, as described in Sect. 4.1. For this reason,
it is possible to see in both Tables 12 and 13 examples of information units that
do not perfectly overlap with the text of a response. On the other hand, the second
type of error is due to mistakes in the deep language model for answer retrieval. As
shown in Table 13, this type of error can be rather severe, causing wrong answers to
be selected by the retriever.

As in the evaluation carried out by Sovrano et al. (2021), we studied how (top-10)
precision scores vary when the context specificity changes. Results partly confirm
our expectations. We can see a trend where mean top-10 precision increases propor-
tionally to the context specificity. This is clear in all instances of DiscoLQA, except
AMR. In particular, as shown in Table 14, AMRs only contribute to better answer
questions having low and normal specificity. Furthermore, we also show in Table 15
the percentage of queries for which DiscoLQA made a positive/negative difference
from the baseline in terms of top-10 precision and grouped by specificity.

Our expectations were based on the fact that:

e The specificity of a question is low when it asks something that cannot be explic-
itly found in the Regulations but requires a holistic analysis of principles, compe-
tence rules, and so forth;

e Questions with low specificity usually tend to have more expected answers, and
it may be harder to find all of them;

e Multi-hop reasoning is usually required to answer questions with low specificity,
but the considered answer retrievers are not equipped for that kind of reasoning

(yet).

For example, the question “How should a contract be interpreted according to Regu-
lation Rome 1?7 has a very low specificity. It requires pinpointing both recitals and
articles for a proper answer, therefore, more distinct and distant paragraphs. Most
of the questions regarding hermeneutics would probably require a broader view of
the subject, having a low specificity to the Regulation, therefore requiring multi-hop
reasoning.

8 Discussion and conclusion

With this paper, we empirically investigated the role of discourse structure in lega-
lese, trying to understand its importance in encoding the meaning of legal docu-
ments. Ours is a first attempt to exploit more sophisticated linguistic theories such
as PDTB. To this end, we devised a simple experiment on legal question answering,

17 This mainly happens because the underlying language model relies on the contextualised embedding
of the information unit (and not just that of the unit alone), as explained at the end of Sect. 4.2.
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designed to shed more light on whether Elementary Discourse Units (EDUs) and
Abstract Meaning Representations (AMRSs) are the fundamental information units in
legislative texts as well.

As a result of these experiments, we found that EDUs and AMRs seem to be use-
ful for better capturing long-distant relations between information units, as shown in
Table 15. This leads to an overall improvement of our DiscoLQA over the baseline,
in terms of precision, F1, NDCG and MRR. In particular, EDU+AMR (the version
of DiscoLQA using AMRs and EDUs) was able to produce 23.61% more precise
topl0 answers than the baseline, using MiniLM with “target norms search”. This
percentage rises to 25% and 27.27% when considering only questions with normal
and low specificity, respectively.

The goal of our experiments was also practical, not just theoretical. Understand-
ing how legalese differs from its natural language can help us address the problem
of data scarcity in legalese processing/understanding by allowing us to exploit gen-
eral-purpose language models not specifically trained on legal documents. However,
these generic language models may be one of many available. Indeed, in the lit-
erature, it is possible to find several examples of training data for legal domains, or
at least training data that can be exploited via transfer learning paradigms. None-
theless, transfer learning is challenging, and different legal domains or documents
may deploy different discourse structures, requiring different language models. For
example, privacy policies can be considered legal documents, though their language
is usually closer to plain English than legalese, to help consumers understand the
policy. In other words, transfer learning can be an alternative solution to zero-shot
question answering. However, neither of the two approaches can be considered a
one-size-fits-all solution for all possible problems.

We tested and evaluated DiscoLQA on specific European norms and a relatively
small dataset without comparing our results with deep language models pre-trained
on legal corpora, as explained at the end of Sect. 5. Nonetheless, even though Q4EU
is about different legal sub-domains (respectively: Private International Law, the
European arrest warrant, data protection and electronic signatures), our instances
of DiscoLQA were able to generalise well across them, outperforming the base-
line in all the cases. Notably, this result occurred even though we built DiscoLQA
to perform zero-shot question answering without any training procedure involving
European legislation or (more generally) legal documents. Therefore, DiscoLQA
can potentially be used in various domains where data scarcity is unavoidable. To
implement DiscoLQA, it is not necessary to manually create a new, time-consuming
dataset, such as Q4EU.

Another discussion we should have is about the scalability of DiscoLQA. Indeed,
DiscoLQA introduces some extra overhead on the identified baseline, but this over-
head does not affect either the asymptotic time complexity of answer retrieval or
pre-processing. More precisely, the time complexity of pre-processing changes only
by a constant factor. This is because EDUs and AMRs are extracted in polynomial
time from paragraphs (and not documents) by a pre-trained deep neural network that
does not need to be retrained in order to work. Furthermore, the time complexity
of retrieval can only increase by a constant factor, i.e., when EDUs and AMRs are
combined with normal clauses. This is because the number and size of EDUs and
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AMRs normally never exceed that of clauses. Even when only EDUs or AMRSs are
considered instead of clauses, the time complexity is reduced by the smaller number
of information units to be searched.

In most of today’s deep learning applications, the test and training sets are much
larger than those used in these experiments. For example, the MS Marco (Nguyen
et al. 2016) collection (partly also used for training MiniLM and MPNet) consists
of over 1 million questions whose answers are extracted from 3.5 million web docu-
ments. These large datasets only make sense for training and evaluating generic lan-
guage models on tasks that do not suffer from data scarcity. In these cases, due to
bandwidth and scalability issues, a pre-processing strategy such as that employed by
DiscoLQA and the baseline could introduce a significant memory overhead into the
information retrieval system. Instead, due to the small size of the Q4EU dataset (less
than 300 items per sub-collection), we can easily implement an extractor of knowl-
edge graphs (and other relationship identifiers).

On the one hand, working with less data poses several technical challenges that
sometimes require paradigm shifts. On the other hand, it can also open the way for
several technological solutions previously considered impractical. In this article, we
have shown only a few examples of how deep learning strategies can be rethought
to adapt to smaller data and problems. We have only scratched the tip of an iceberg
that may be uncovered by emerging ideas from joint efforts in the field of Al and
law. For instance, as future work, we point to the possibility of specialising the algo-
rithm for extracting EDUs and AMRs to legislative texts, taking into account what
we already know about legal connectors and discourses.
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