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In this paper, we propose a general modeling and solving framework for a large class of binary quadratic

programs subject to variable partitioning constraints. Problems in this class have a wide range of applications,

as many binary quadratic programs with linear constraints can be represented in this form. By exploiting

the structure of the partitioning constraints, we propose mixed-integer nonlinear programming (MINLP)

and mixed-integer linear programming (MILP) reformulations and show the relationship between the two

models in terms of the relaxation strength. Our solution methodology relies on a convex reformulation of the

proposed MINLP and a branch-and-cut algorithm based on outer approximation cuts, where the cuts are

generated on the fly by efficiently solving separation subproblems. To evaluate the robustness and efficiency

of our solution method, we perform extensive computational experiments on various quadratic combinatorial

optimization problems. The results show that our approach outperforms the state-of-the-art solver applied

to different MILP reformulations of the corresponding problems.

Key words : binary quadratic program, convex reformulation, outer approximation, variable partitioning

constraint

1. Introduction

The objective of this paper is to study, under a unifying framework, a large class of binary quadratic

programs, which we call “partitioning binary quadratic program”, BQPP . The BQPP is a binary

quadratic program with linear constraints (BQP ) that arises in the modelling of real-life appli-

1



Rostami et al.: A convex reformulation and an outer approximation for a class of BQP
2 Article submitted to Operations Research; manuscript no. OPRE-2020-09-613.R2

cations. The graph partitioning problem (Hager and Krylyuk 1999, Zha et al. 2001, Fan and

Pardalos 2010), single allocation hub location problem (Campbell and O’Kelly 2012, Contreras

and Fernández 2014, Rostami et al. 2018b), multi-object tracking in computer vision (Trinh et al.

2012, Dehghan and Shah 2018, Henschel et al. 2018), multi-processor scheduling with communica-

tion delays (Padberg and Rijal 2012), quadratic semi-assignment problem (Hansen and Lih 1992,

Malucelli and Pretolani 1994, Schüle et al. 2009), and test assignment problem (Duives et al. 2013)

are among the known problems that can be represented as BQPP .

Let n and m be positive integers, B= {0,1}, R denote the set of reals, Q∈Rn×n be a symmetric

matrix, A ∈ Rm×n, and c ∈ Rn and b ∈ Rm be real vectors. Moreover, let N = {1,2, . . . , n} and

I1, I2, . . . , IK define a partition of N with index set K = {1,2, . . . ,K} such that for each k ∈ K,

Ik ⊂N and for each pair k, `∈K, Ik ∩ I` = ∅. We consider the following problem:

BQPP : min cTx+xTQx

s.t. x∈X ∩P ∩Bn,

with

X = {0≤ x≤ 1 : Ax= b}, (1)

and

P = {x|
∑

i∈Ik
xi = 1, k ∈K}. (2)

Without loss of generality, we assume that qii = 0, i ∈ N because one can add the diagonal

elements of Q to the linear cost c. The set of constrains P restricts the number of binary variables

in each subset Ik, k ∈K, to be one. By exploiting the structure of the set P , we develop a new non-

convex MINLP formulation of the BQPP and show how to transform it into a convex one. We then

apply an outer approximation scheme and develop a novel branch-and-cut algorithm. We finally

perform computational experiences on three classes of problems. Results show the superiority of

our approach with respect to the state-of-the-art models and algorithms on each of these problems.

It is worth mentioning that it is possible to solve the BQPP directly using CPLEX, Gurobi,

and the Semidefinite-Programming-based software BiqCrunch (Krislock et al. 2017). The overall

performance of those methods in “out-of-the-box” mode is, however, disappointing. More precisely,

the computing times and the number of problems solved within time limit are much worse than

both our proposed algorithm and the best improved formulations in the literature.

1.1. Literature Review

A known solution approach for the BQP is to use an initial linearization to transform the problem

into an equivalent MILP. However, dealing with linear programming (LP) based reformulations,
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two different issues must be considered: the increased size of the problem in terms of the number

of variables and constraints as well as the tightness of the obtained lower bounds. The standard

strategy to linearize the quadratic terms xixj for all i, j ∈N is to introduce new binary variables

yij = xixj satisfying the following set of constraints:

yij ≤ xi, yij ≤ xj, and yij ≥ xi +xj − 1.

The new formulation requires O(n2) additional variables and constraints and it is well known

in the literature (see Glover and Woolsey 1974, Hansen 1979). To reduce the size of the linearized

model, Glover (1975) proposed a new strategy to linearize the quadratic terms xixj through the

introduction of n unrestricted continuous variables and 4n linear inequalities. Adams and Forrester

(2005), Adams et al. (2004), Chaovalitwongse et al. (2004), and Sherali and Smith (2007) provided

different O(n) linearization approaches. The reformulation-linearization technique (RLT) is an

alternative and successful approach to linearize the BQP (see Adams and Sherali 1986, Sherali

and Adams 2013). Applying RLT to the special cases of the BQP leads to tight linear relaxations

(see, for instance, Adams and Johnson 1994, Hahn et al. 2012, Rostami and Malucelli 2014, 2015).

Another relevant track of research on the BQP is to study the polyhedral structure of the set

of feasible solutions to strengthen the LP-based reformulation bounds. One way to construct such

polyhedral relaxation is to generate some valid inequalities dynamically by using cutting-plane

methods. Padberg (1989) proposed a polytope, called boolean quadric polytope, associated with

a linearized integer programming formulation of the unconstrained binary quadratic program and

introduced three families of valid and facet-defining inequalities for it. There are several papers

devoted to studying the polyhedral structure of the special cases of the BQP (see, for instance,

Jünger and Kaibel 2001, Saito et al. 2009, Helmberg et al. 2000, Fischer and Helmberg 2013, Fischer

2014).

Semidefinite programming (SDP) is another popular approach to generate strong relaxations of

the BQP . The SDP can be viewed as an extension of linear programming where the nonnegativity

constraints are replaced by positive semidefinite constraints on matrix variables. More precisely for

any vector x∈Bn of decision variables, a new matrix Y = xxT is introduced, which transforms the

quadratic function of x into a linear function of Y , and then a “rank one” non-convex constraint

Y = xxT is imposed to the problem. Because of the non-convexity of the rank one constraint, a

relaxation of this constraint is considered such that the resulting problem is an SDP. Applications

of SDP for different types of BQP problems can be found in Poljak et al. (1995), Helmberg et al.

(2000), Gao and Li (2013), Sotirov (2013), and Ferreira et al. (2018).

Quadratic reformulations are alternative approaches that transform a BQP into an equivalent

one with either convex or non-convex objective function. The Quadratic convex reformulation
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(QCR) is proposed by Billionnet et al. (2009) to convert the non-convex quadratic objective func-

tion to an equivalent convex one. In the QCR, the optimal multipliers for the new convex program

are found by solving a SDP. Some applications of the QCR can be found in Duives et al. (2013)

and Buchheim and Traversi (2018). The idea of quadratic non-convex reformulations is to perturb

the objective function with some multipliers to obtain a tighter lower bound. The application of

this approach on various special cases of BQP can be found in Carraresi and Malucelli (1992),

Rostami and Malucelli (2015), Rostami et al. (2015), and Rostami et al. (2018a).

1.2. Our contributions

Our main scientific contributions are summarized as follows.

• We propose a unifying model for a large class of binary quadratic programs which include

a variety of important problems in management science, computer science, transportation, and

logistics.

• We exploit the structure of the proposed model to reformulate the BQPP as a convex MINLP.

This problem possesses a special structure which naturally lends itself to decomposition techniques.

We show that one can find an alternative MILP reformulation of the BQPP using a special appli-

cation of the RLT. Moreover, we analyze the relationship between the two formulations in terms

of relaxation strength.

• We apply an outer approximation approach to reformulate the proposed convex MINLP as

a MILP. However, due to the size of the resulting MILP, it is not practical to solve it directly

using the state-of-the-art solver. Instead, we develop a branch-and-cut algorithm, where the outer

approximation cuts are generated on the fly by efficiently solving separation subproblems. Besides,

we use some algorithmic features such as multiple outer approximation cuts and a stabilized cut

generation scheme to speed up the basic implementation.

• We consider three classes of problems in the literature and show how to represent each as a

BQPP . To evaluate the robustness and efficiency of our solution methods, we perform extensive

computational experiments on instances of the quadratic semi-assignment problem, single alloca-

tion hub location problem, and test assignment problem. Moreover, for each problem, we compare

our results with those obtained by Gurobi using the RLT-based model and to the best-known

MILP model in the literature. The results indicate a significant superiority of our solution method.

The remainder of the paper is organized as follows. In Section 2, we present the MINLP, the

MILP reformulations and the relationship between their continuous relaxations. In Section 3, we

describe the outer approximation based solution method and present some acceleration strategies

that improve the convergence and efficiency of the algorithm. The results of extensive computa-

tional experiments performed on different problem types are presented in Section 4. Finally, our

concluding remarks and possible future works are presented in Section 5.
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2. Mixed-integer linear and nonlinear reformulations

In this section, we propose two alternative reformulations for the BQPP . In Subsection 2.1, we

present a MINLP reformulation, while in Subsection 2.2 we give a MILP reformulation based

on an application of the RLT. In Subsection 2.3, we analyze the relationship between the two

reformulations in terms of the quality of the lower bounds provided.

2.1. A mixed-integer nonlinear programming reformulation

Let us consider the BQPP . By using (2), we first rewrite the objective function in the following

extended form:

cTx+xTQx=
∑
i∈N

cixi +
∑
i,j∈N

qijxixj =
∑
k∈K

∑
i∈Ik

cixi +
∑
k,`∈K
k 6=`

∑
i∈Ik

∑
j∈I`

qijxixj. (3)

Notice that for each pairs i, j ∈ Ik, the quadratic expression xixj = 0 due to (2). Therefore, the

quadratic part of the objective function can be expressed in terms of partitions’ interaction costs

rather than the individuals variables quadratic costs. To this end, let us define new continuous

variables yik` for any k, `∈K, k 6= `, and any given i∈ Ik, representing the interaction cost between

i ∈ Ik and the partition I`. Accordingly, the quadratic cost between each two partitions k, ` ∈ K,

k 6= ` is computed as ∑
i∈Ik

yik`xi +
∑
j∈I`

yj`kxj. (4)

Given the fact that in any feasible solution we only select one variable x from each partition,

there must exist ik ∈ Ik and j` ∈ I` with xik = xj` = 1. Therefore, the quadratic cost between each

two partitions k, `∈K, k 6= ` is reduced to the quadratic costs between ik ∈ Ik and j` ∈ I`, i.e.,∑
i∈Ik

yik`xi +
∑
j∈I`

yj`kxj = y
ik
k` + y

j`
`k if xik = xj` = 1. (5)

We then propose the following MINLP reformulation for the BQPP :

MINLP1: min
x

∑
k∈K

∑
i∈Ik

cixi +φ(x)

s.t. x∈X ∩P ∩Bn,
(6)

where, for each x∈X ∩P ∩Bn, φ(x) is the optimal value function of the parametric optimization

problem

φ(x) =min
∑
k,`∈K
k 6=`

(∑
i∈Ik

yik`xi +
∑
j∈I`

yj`kxj

)
(7)

s.t. yik` + yj`k ≥ qij k, `∈K, k 6= `, i∈ Ik, j ∈ I`. (8)
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Theorem 1. Problem MINLP1 is a reformulation of BQPP .

Proof. We have to prove that, for any feasible solution of either problem there exists a feasible

solution to the other problem with the same objective values.

Consider any solution x̂ ∈X ∩ P ∩ Bn. This would be feasible for both problems. We need to

show that the objective values of MINLP1 and BQPP are identical at x̂. For each k, `∈K, k 6= `,

there exist ik ∈ Ik and j` ∈ I` such that x̂ik = x̂j` = 1. Therefore, the value of the objective function

of BQPP is given by ∑
k∈K

cik +
∑
k,`∈K
k 6=`

qikj` . (9)

Let F = {y| (8)} represent the feasible space of the minimization problem φ(x) in (7) and (8). If

F is not empty, the problem can be either unbounded or bounded for any arbitrary choice of x̂.

First, we show that F is not empty. For each k, `∈K, k < `, if we set

yik` = qij` i∈ Ik, (10)

yj`k = max
i∈Ik

{
qij − yik`

}
j ∈ I`, (11)

then yik` + yj`k ≥ qij, i.e., F 6= ∅. Now, we show that φ(x̂) is bounded.

φ(x) = min

{ ∑
k,`∈K
k 6=`

(∑
i∈Ik

yik`xi +
∑
j∈I`

yj`kxj

)
: (8)

}

= min

{ ∑
k,`∈K
k 6=`

(
y
ik
k`xik + y

j`
`kxj`

)
: (8)

}
= min

{ ∑
k,`∈K
k 6=`

(
y
ik
k` + y

j`
`k

)
: (8)

}
, (12)

where, the second and third equalities follows from the feasibility of x̂.

We argue that when the minimum in (12) is attained, φ(x̂) =
∑

k,`∈K
k 6=`

qikj` . Indeed, for k, ` ∈

K, k < ` and i = ik, j = j`, using (10) and (11), we have y
ik
k` = qikj` and y

j`
`k = 0. Therefore, the

inequalities (8) are tight for k, ` ∈ K, k < ` and i = ik, j = j` and the obtained value in (12) is

actually a minimum. Hence, using (12) we have φ(x̂) =
∑

k,`∈K
k 6=`

qikj` which is bounded. This also

proves that MINLP1 and BQPP have the same objective values in x̂.

�

Next, we show how to transform the MINLP1 into a convex MINLP where one minimizes a

convex objective over the intersection of a convex region and integrality requirements. In doing so,

let us define a new convex function ψ :X ∩P →R+ in continuous variables x ∈X ∩P , described

as follows:

ψ(x) =max
∑
k,`∈K
k 6=`

(∑
i∈Ik

yik`xi +
∑
j∈I`

yj`kxj

)
(13)

s.t. yik` + yj`k ≤ qij k, `∈K, k 6= `, i∈ Ik, j ∈ I`. (14)
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The following theorem forms the base of our transformation.

Theorem 2. For any integer solution x̂∈X ∩P ∩Bn, we have ψ(x̂) = φ(x̂).

Proof. Given the fact that in any feasible solution x̂∈X ∩P ∩Bn (because of constraints (2)),

we only select one variable x from each partition, there must exist one ik ∈ Ik with x̂ik = 1 for each

k ∈K. Therefore, ∑
k,`∈K
k 6=`

(∑
i∈Ik

yik`xi +
∑
j∈I`

yj`kxj

)
=
∑
k,`∈K
k 6=`

(
y
ik
k` + y

j`
`k

)
.

Hence, as shown in Theorem 1 we have

φ(x̂) =min
{ ∑
k,`∈K
k 6=`

(
y
ik
k` + y

j`
`k

)
: yik` + yj`k ≥ qij k, `∈K, k 6= `, i∈ Ik, j ∈ I`

}
=
∑
k,`∈K
k 6=`

qikj` .

Analogous to (10) and (11), for each k, `∈K, k < `, we define

yik` = qij` i∈ Ik,

yj`k = min
i∈Ik

{
qij − yik`

}
j ∈ I`.

Following the same reasoning as in Theorem 1, we have

ψ(x̂) =max
{ ∑
k,`∈K
k 6=`

(
y
ik
k` + y

j`
`k

)
: yik` + yj`k ≤ qij k, `∈K, k 6= `, i∈ Ik, j ∈ I`

}
=
∑
k,`∈K
k 6=`

qikj` ,

which completes the proof. �

As a consequence of Theorem 2, we can replace the inner minimization problem in MINLP1 by

ψ(x), x∈X ∩P ∩Bn, to obtain the following convex MINLP:

MINLP2: min
x

∑
k∈K

∑
i∈Ik

cixi +ψ(x)

s.t. x∈X ∩P ∩Bn.

Remark 1. Using the results of Theorem 2 and the fact that for x ∈ X ∩ P , functions φ(x)

and ψ(x) are concave and convex functions, respectively, one could expect the linearity of these

functions. However, the linearity does not hold as functions φ and ψ are equal only at binary points

(i.e., X ∩P ∩Bn ⊆ {0,1}n). To prove this, let us consider a simple example of BQPP where, N =
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{1,2,3,4},K= {1,2}, I1 = {1,2}, I2 = {3,4} and x∈ P with (x1, x2, x3, x4) = (0.5,0.5,0.75,0.25). It

is easy to see that φ(x) = 2.75, while ψ(x) = 2.5. This property can also be explained in the context

of integrally convex functions which fail the discrete separation theorem (see Favati 1990, Murota

1998, 2019, for more details).

2.2. A mixed-integer linear programming reformulation

In this section, we present a MILP formulation for the BQPP based on a special application of the

RLT. The RLT is known for generating tight linear programming relaxations, not only for con-

structing exact solution algorithms, but also for designing powerful heuristic procedures. However,

there is a trade-off between the size of the resulting MILP and the tightness of the LP relaxation.

The RLT essentially consists of two steps: (i) a reformulation step in which nonlinear valid inequal-

ities are generated by combining constraints of the original problem, and (ii) a linearization step

in which each product term is replaced by a single continuous variable.

In the following, we show that the partitioning constraints P defined in (2) are the only set of

constraints needed to construct an RLT-based reformulation of BQPP . To this end, let us, first,

multiply each equation of P in (2) by each variable xj with j ∈ I`, and `∈K to form equations∑
i∈Ik

xixj = xj k, `∈K, k 6= `, j ∈ I`, (15)

and add them to the problem constraints. Then, for each k, ` ∈ K, k 6= `, i ∈ Ik, j ∈ I`, we replace

the product xixj throughout the objective function and constraints with a single nonnegative and

continuous variable wij. Finally, impose wij =wji to result in the following MILP formulation:

RLTP : min
∑
k∈K

∑
i∈Ik

cixi +
∑
k,`∈K
k 6=`

∑
i∈Ik

∑
j∈I`

qijwij

s.t. x∈X ∩P ∩Bn∑
i∈Ik

wij = xj k, `∈K, k 6= `, j ∈ I` (16)

wij =wji k, `∈K, k < `, i∈ Ik, j ∈ I` (17)

wij ≥ 0 k, `∈K, k 6= `, i∈ Ik, j ∈ I`. (18)

Theorem 3. RLTP is a reformulation of BQPP .

Proof. Using constraints (17), one can reduce the number of variables and constraints to obtain

a more compact reformulation. The proof follows Billionnet and Elloumi (2001), where the validity

of this compact reformulation is shown for the quadratic semi-assignment problem.

�
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2.3. A comparison between relaxations strength

We now turn our attention to compare the strength of the LP relaxation of RLTP with the

continuous relaxation of MINLP2. The following theorem formally shows the relationship between

these two relaxations.

Theorem 4. Let CRLTP and CMINLP2 represent the continuous relaxations of problems RLTP

and MINLP2, respectively. Then, CRLTP and CMINLP2 are equivalent.

Proof. The proof is done in two steps. First, we construct a Lagrangian dual corresponding

to the dual problem of the CRLTP . Then, we show the equivalence between the constructed

Lagrangian dual problem and the CMINLP2.

Let us consider CRLTP and write its dual problem as follows:

DCRLTP : max
(α,π,λ,µ)

∑
k∈K

πk +
m∑
r=1

αrbr

s.t. cj −
m∑
r=1

αr arj +
∑

`∈K:` 6=k

λjk`−πk ≥ 0 k ∈K, j ∈ Ik (19)

qij −λikl−µ
ij
k` ≥ 0 k, `∈K, k 6= `, i∈ Ik, j ∈ I` (20)

µji`k =−µijk` k, `∈K, k < `, i∈ Ik, j ∈ I`, (21)

where (α,π,λ,µ) are the dual variables corresponding to (1), (2), (16), and (17), respectively.

Note that we do not consider constraints x ≤ 1 in the CRLTP as it results from partitioning

constraints (2). Moreover, according to constraints (17), variables µijk` are defined for all k, ` ∈ K,

k < `. However, for ease of exposition, we also define µijk` for k > ` and impose constraints (21).

We apply Lagrangian relaxation to constraints (19) using dual multipliers x to obtain the fol-

lowing Lagrangian dual problem:

min
x≥0

L(x) =
∑
k∈K

∑
j∈Ik

cjxj + g(x) + f(x) +h(x),

where

LPα : g(x) = max
α

m∑
r=1

αr(br−
∑
k∈K

∑
j∈Ik

arjxj),

LPπ : f(x) = max
π

∑
k∈K

πk(1−
∑
j∈Ik

xj), (22)

LPµλ : h(x) = max
λ,µ

∑
k,`∈K
k 6=`

∑
i∈Ik

λik` xi

s.t. qij −λik`−µ
ij
k` ≥ 0 k, `∈K, k 6= `, i∈ Ik, j ∈ I` (23)

µji`k =−µijk` k, `∈K, k < `, i∈ Ik, j ∈ I`.
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The optimal objective value of the Lagrangian dual problem gives the optimal value of CRLTP .

Since the original problem is bounded, LPα and LPπ have optimal objective values equal to zero.

More precisely, for the latter subproblem, if 1−
∑

j∈Ik
xj 6= 0, for each k ∈K, then the variables π can

get very large positive or negative values, which in turn, means that the Lagrangian dual problem

would be unbounded. Using the same argument br −
∑

k∈K
∑

j∈Ik
arjxj = 0 for all r = 1, . . . ,m.

Therefore, x must belong to the set X ∩ P . Accordingly, the Lagrangian dual is reduced to the

following problem:

min L(x) =
∑
k∈K

∑
i∈Ik

cixi +h(x)

s.t. x∈X ∩P.

To complete the proof, we need to show that h(x) =ψ(x) for all x∈X ∩P . To this end, we prove

that for any feasible solution of either inner maximization problems, there exists a feasible solution

for the other problem with the same objective value. Let us first consider a feasible solution ȳ of

problem ψ(x) in (13)-(14). We construct a feasible solution for LPµλ as follows:

λ̄ik` = 2 ȳik` k, `∈K, k 6= `, i∈ Ik

µ̄ijk` =

{
2ȳj`k− qij k, `∈K, k < `, i∈ Ik, j ∈ I`
−2ȳik` + qij k, `∈K, k > `, i∈ Ik, j ∈ I`.

It is clear that µji`k = −µijk`, k, ` ∈ K, k < `, i ∈ Ik, j ∈ I`. We now show that (λ̄, µ̄) also satisfies

constraints (23). For given k, `∈K, k 6= `, i∈ Ik and j ∈ I`, constraints (23) at (λ̄, µ̄) read as

λ̄ikl + µ̄ijkl =

{
2ȳik` + 2ȳj`k− qij = 2(ȳik` + ȳj`k)− qij ≤ qij k < `,

2ȳik`− 2ȳik` + qij = qij ≤ qij k > `,

where the inequality in the first part follows from the feasibility of ȳ. Moreover,

h(x) =∑
k,`∈K
k 6=`

∑
i∈Ik

λ̄ik` xi =
∑
k,`∈K
k 6=`

∑
i∈Ik

2 ȳik` xi =
∑
k,`∈K
k 6=`

(∑
i∈Ik

ȳik`xi +
∑
i∈Ik

ȳik`xi

)
=
∑
k,`∈K
k 6=`

(∑
i∈Ik

ȳik`xi +
∑
j∈I`

ȳj`kxj

)
=ψ(x),

where the last equality follows from the fact that
∑

k,`∈K
k 6=`

∑
i∈Ik

ȳik`xi =
∑

k,`∈K
k 6=`

∑
j∈I`

ȳj`kxj. This

is true because the external sum is over any pair k, `, with k different from ` which allows us to

exchange the indices’ names k and `, and also i and j.

Now, let us consider a feasible solution (λ̄, µ̄) of LPµλ. We show that there exists a feasible

solution ȳ for problem ψ(x) in (13)-(14) with h(x) =ψ(x). If we define

ȳik` = 1/2λ̄ik` for all k, `∈K, k 6= `, i∈ Ik, (24)
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then, ȳ satisfies constrains (14), i.e.,

ȳik` + ȳj`k = 1/2(λ̄ik` + λ̄j`k)≤ 1/2(qij − µ̄ijk`) + 1/2(qij − µ̄ji`k) = qij k, `∈K, k 6= `, i∈ Ik, j ∈ I`,

where the last equality follows from the fact that µ̄ij`k =−µ̄ijk` for all k, ` ∈ K, k < `, i ∈ Ik, j ∈ I`.

Moreover, we have

ψ(x) =
∑
k,`∈K
k 6=`

(∑
i∈Ik

ȳik`xi +
∑
j∈I`

ȳj`kxj

)
= 1/2

∑
k,`∈K
k 6=`

(∑
i∈Ik

λ̄ik`xi +
∑
j∈I`

λ̄j`kxj

)
= 1/2

∑
k,`∈K
k 6=`

∑
i∈Ik

λ̄ik`xi + 1/2
∑
k,`∈K
k 6=`

∑
j∈I`

λ̄j`kxj

=
∑
k,`∈K
k 6=`

∑
i∈Ik

λ̄ik`xi = h(x).

�

Observe that one can develop an alternative RLT reformulation in which in addition to the

partitioning constraints P defined in (2) the other constraints in (1) are also multiplied by the

original variables x. Although this new reformulation would generally lead to a tighter LP bound,

solving the linear relaxation requires longer computing times because of its substantially larger size.

We refer the reader to Tables 2 and 3 in Section 4 where even without these additional constraints

the LP relaxation of the current RLTp (which is very tight) takes long computing times for small

size instances and could not even be solved in the time limit of two hours for medium to large size

instances.

3. Solution approach

In this section, we discuss our approach to solve the reformulation MINLP2. In Section 3.1, we

develop an outer approximation algorithm to solve MINLP2. Next, we analyze two ways to improve

the convergence and stability of the proposed algorithm in Sections 3.2 and 3.3, respectively.

3.1. An outer approximation algorithm

Let us consider problem MINLP2. By introducing an auxiliary variable η, we rewrite MINLP2 as

follows:

MINLP3: min
∑
k∈K

∑
i∈Ik

cixi + η

s.t. η≥ψ(x)

x∈X ∩P ∩Bn.
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Note that constraints defining x are enough to ensure feasibility, the value ψ(x) is bounded.

Moreover, if (x,η) is an optimal solution of MINLP3, then x is optimal for BQPP . Furthermore,

since function ψ :X∩P →R+ is convex and the objective function of MINLP3 is linear, the optimal

solution of the problem always lies on the boundary of the convex hull of the feasible set. This allows

us to use cutting-plane techniques to solve the problem. More precisely, for any given (possibly

non-integer) x̄ ∈X ∩ P ⊆ [0,1]n, since ψ(x) is convex, it can be underestimated by a supporting

hyperplane in x̄. Let s̄ ∈ ∂ψ(x̄) be a subgradient of ψ(x) at x̄. Then, following the generalized

Benders decomposition of Geoffrion (1972) and outer approximation of Duran and Grossmann

(1986), we can linearize the convex function ψ(x) around x̄ in a set of points P = {x̄1, x̄2, . . . , x̄M}
to obtain the following master problem:

MP (P): min
∑
k∈K

∑
i∈Ik

cixi + η

s.t. η≥ψ(x̄) + s̄(x− x̄) x̄∈P (25)

x∈X ∩P ∩Bn.

If MP (P) contains a suitable set of points, then it has the same optimal value as MINLP2 (see

Duran and Grossmann 1986, Fletcher and Leyffer 1994, Bonami et al. 2008, for more details).

Therefore, the main goal of outer approximation algorithms is to build this equivalent MILP.

However, it is not practical to solve MP (P) because one would have first to enumerate all feasible

solutions x̄ ∈X ∩ P ∩ Bn. Instead, we solve MP (P) as a MILP by a branch-and-cut algorithm,

where (25) are generated on the fly as described below. Each term ψ(x) is computed by solving

a subproblem. More precisely, for a given solution x̄ of MP (P), we solve subproblem ψ(x) with

x= x̄ to obtain an optimal solution ȳ. Since constraints (14) are independent of x̄, the subgradient

for each i∈N is given by

s̄i =
∑
`∈K:
k 6=`

(2ȳik`),

where k ∈K is the index for which i∈ Ik. The subgradient cut then can be written as

η≥ψ(x̄) +
∑
i∈N

s̄i(xi− x̄i). (26)

The subgradient cut (26) is added to the master problem as it is identified along the branch-and-

cut tree. Starting with an empty set of subgradient cuts at the root node, the linear programming

relaxation of MP (P) is solved at each node of the search tree, and the subgradient cut (26) is

added if it is violated. Otherwise, the algorithm proceeds by branching on binary variables with

non-binary values.
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3.2. A revised multicut reformulation and subgradient computation

Given that function ψ(x) defined in (13)-(14) is a separable convex function, we can rewrite it as

the sum of the compositions of convex functions ψkl(x) for each k, `∈K, k 6= ` where

ψk`(x) = max
∑
i∈Ik

yik` xi +
∑
j∈I`

yj`kxj

s.t. yik` + yj`k ≤ qij i∈ Ik, j ∈ I`.
(27)

Let ȳ be the optimal solution of the above problem and s̄k` =
∑

i∈Ik
s̄i be a subgradient of ψk`(x)

for each k, `∈K, k 6= `. Then, for each x̄∈X ∩P ∩Bn, the subgradient cut (25) is replaced by

ηk` ≥ψk`(x̄) + s̄k`(x− x̄) k, `∈K, k 6= `. (28)

Although the number of the new subgradient cuts are much larger than those in MP (P), our

computational experiments indicate that the overall computational time needed by the branch-

and-cut algorithm to solve an instance of the problem is significantly shorter.

For each k, ` ∈ K, k 6= ` and for any x ∈ X ∩ P , the subproblem (27) is a linear program and

can be solved efficiently by the state-of-the-art solvers. However, we can exploit the structure of

the subproblem (27) to obtain subgradient cuts (28) more efficiently than by using an LP solver.

Following theorem formally gives the main results.

Theorem 5. Given x̄∈X∩P ⊆ [0,1]n, a feasible solution of subproblem (27) for each k, `∈K, k <

`, can be obtained by setting

ȳik` =
∑
j∈I`

qijx̄j i∈ Ik (29)

ȳj`k = min
i∈Ik

{
qij − ȳik`

}
j ∈ I`. (30)

Moreover, if x̄ is integer, then (29) and (30) provide an optimal solution of subproblem (27).

Proof. According to (29) and (30), we can see that ȳik`+ ȳj`k ≤ qij for all i∈ Ik, j ∈ I`. Therefore,

ȳ is a feasible solution of subproblem (27). To prove the optimality for integer x̄, we consider the

dual of problem (27) with variables u. We can show that ūij = x̄ix̄j for all i∈ Ik, j ∈ I`, is a feasible

solution for the dual problem. It is enough to show that the objective value of the primal problem

at ȳ is equal to the dual objective value at ū. i.e.,∑
i∈Ik

ȳik` x̄i +
∑
j∈I`

ȳj`kx̄j

=
∑
i∈Ik

∑
j∈I`

qijx̄ix̄j +
∑
j∈I`

(qa(j)j −
∑
r∈I`

qa(j)rx̄r)x̄j

=
∑
i∈Ik

∑
j∈I`

qijx̄ix̄j +
∑
j∈I`

qa(j)jx̄j −
∑
j∈I`

∑
r∈I`

qa(j)rx̄rx̄j
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=
∑
i∈Ik

∑
j∈I`

qijx̄ix̄j +
∑
j∈I`

qa(j)jx̄j −
∑
j∈I`

qa(j)jx̄j −
∑
j∈I`

∑
r∈I`:r 6=j

qa(j)rx̄rx̄j

=
∑
i∈Ik

∑
j∈I`

qijx̄ix̄j

=
∑
i∈Ik

∑
j∈I`

qijūij,

where

a(j) = arg min
i∈Ik

{
qij − ȳik`

}
j ∈ I`,

and
∑

j∈I`

∑
r∈I`:r 6=j

qa(j)rx̄rx̄j = 0 as we only select one variable from each partition because of (2).

�

Note that for any given fractional solution x̄, (29) and (30) only provide a feasible point to the

subproblem (27) and, hence, the objective value of the subproblem at this point gives a lower bound

on true objective value of subproblem. However, our computational experiments showed that this

bound is very tight, which in turn leads to a very efficient strategy to separate the fractional

solutions (see Table 1). Therefore, we also use (29) and (30) to compute subgradients and, hence,

generating valid cuts at the nodes of the decision tree with fractional solutions x̄.

3.3. A stabilized cutting plane

In the branch-and-cut algorithm proposed in Section 3.1, at each node of the search tree and at

each cut loop iteration, we generate one or more cuts that are violated by the current solution

x̄, add them to the current relaxation, reoptimize it, and get a new optimal solution x̄ to be cut

at the next iteration. The efficiency of the algorithm depends mainly on the number of iterations

required. To decrease the number of iteration, we generate stronger cuts via a stabilized approach.

This approach uses an interior point of the feasible region of the master problem in contrast to

Kelley’s cutting plane method, where the solution provided by the master problem is an extreme

point (see Kelley 1960). In the spirit of the works Ben-Ameur and Neto (2007) and Fischetti et al.

(2016), here we use two points x̄ and x̊ to generate a stabilized solution x̃= α x̄+ (1−α)̊x, where

x̄ is the current solution of the relaxed master problem, x̊ is a point that belongs to the relative

interior of the convex hull x ∈X ∩P ∩Bn and 0<α≤ 1. The new point x̃ is used instead of x̄ in

the subproblem and the following subgradient cut is added to the current LP

η≥ψ(x̃) + s̃(x− x̃), (31)

where s̃ is the subgradient of ψ(x) at x̃. In our implementation, x̊ is set to a relative interior of

the convex hull x ∈X ∩P ∩Bn at the beginning, it is updated using x̊new = 1/2(x̄+ x̊old) at each

cut loop iteration.
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4. Applications and computational study

As we mentioned in Section 1, many quadratic binary programming problems can be represented as

BQPP . In this section, we provide an extensive experimental study on a large class of test instances

from three practical binary quadratic programming problems: quadratic semi-assignment problem

(QSAP), single allocation hub location problem (SAHLP), and test assignment problem (TAP).

Beyond the importance of these problems in the modeling of a large range of practical applications,

the set of linear constraints defining X has a different structure in each problem, which in turn,

provides a challenging ground for our solution methods.

For each problem, we compare our outer approximation based branch-and-cut algorithm (OABC)

with both the RLT-based model and the most effective MILP formulation proposed in the literature.

For the OABC algorithm, we used the closed-form solution presented in Theorem 5 to compute the

subgradients and, hence, the optimality cuts as this decreases the computational times significantly

(see Table 1). Moreover, after trying different settings, the best performance of the OABC was

achieved when we separated all integer solutions in the tree and only fractional solutions at the

root node. As mentioned in the introduction, we also tried to solve the BQPP directly using

CPLEX, Gurobi, and the SDP-based software BiqCrunch (Krislock et al. 2017). However, their

overall performances were much worse. Hence, we do not report detailed results for them here.

We implemented our algorithm in C++ with the use of the Gurobi solver as a subroutine. The

experiments were performed on a machine running Linux Intel Xeon(R) CPU E3-1270 (2 quad-core

CPUs with 3.60 GHz) with 64 gigabytes of RAM. The time limit was set to two hours.

In the following, for each problem we provide a brief description, a short literature review, as

well as details about the adopted benchmark instances and results.

4.1. Single Allocation p-Hub Median Problem

Hub location problems are strategic planning problems that have been studied for almost 30 years

O’Kelly (1987), Alumur and Kara (2008), Campbell and O’Kelly (2012). The problem consists of

organizing the mutual exchange of flows among a broad set of depots by choosing a set of hubs out

of the set of possible locations and assigning each flow to a path from source to sink being processed

at a small number of hubs in between. Hub nodes are used to sort, consolidate, and redistribute

flows and their main purpose is to realize economies of scale: while the construction and operation

of hubs and the resulting detours lead to extra costs, the bundling of flows decreases costs. The

economies of scale are usually modeled as being proportional to the transport volume, defined

by multiplication with a discount factor α ∈ [0,1]. The resulting trade-off has to be optimized.

Typical applications of hub-based networks arise in airline, postal, cargo, telecommunication, and
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public transportation services (see, for instance, Jaillet et al. 1996, Ernst and Krishnamoorthy

1996, Taylor et al. 1995, Klincewicz 1998, Nickel et al. 2001).

Consider a complete directed graph G = (V,A), where V is a set of nodes (representing the

origins, destinations, and possible hub locations), and A is the edge set. Let wk` be the amount of

flow to be transported from node k to node `. We denote by Ok =
∑

`∈V wk` and Dk =
∑

`∈V w`k the

total outgoing flow from node k and the total incoming flow to node k, respectively. For each i∈ V ,

let fi represent the fixed set-up cost of a hub located at node i. The cost per unit of flow for

each path k − i− j − ` from an origin node k to a destination node ` that passes hubs i and j

respectively, is χdki +αdij + δdj`, where χ, α, and δ are the nonnegative collection, transfer, and

distribution costs respectively, and dk` represents the distance between nodes k and `. The Single

Allocation p-Hub Median Problem (SApHMP) consists of selecting p nodes as hubs and assigning

the remaining nodes to these hubs such that each non-hub node is assigned to exactly one hub

node with the minimum overall cost.

O’Kelly (1987) proposed the first quadratic integer programming formulation for the SApHMP.

Since then, many exact and heuristic algorithms have been proposed in the literature, dealing with

locating both a fixed and a variable number of hubs (e.g., Campbell 1994, Ernst and Krishnamoor-

thy 1996, Skorin-Kapov et al. 1996, Ilić et al. 2010, Rostami et al. 2016).

To model the problem, we define binary variables xik indicating whether a source/sink k ∈ V is

allocated to a hub located at i ∈ V . In particular, the variables xii are used to indicate whether i

becomes a hub. For ease of presentation, we set

cik := dki (χOk + δDk)

qikj` = αwk` dij.

The SApHMP can then be formulated as follows:

min
∑
i,k∈V

cikxik +
∑
i,j

∑
k,`

qikj` xikxj`

s.t.
∑

i∈V xik = 1 (k ∈ V ) (32)

xik ≤ xii (i, k ∈ V ) (33)∑
k∈V xii = p (34)

xik ∈ {0,1} (i, k ∈ V ),

where the objective function measures the total transportation costs consisting of the collection

and distribution costs of nonhub-hub and hub-nonhub connections, the hub-hub transfer costs.

Constraints (32) force every node to be allocated to precisely one hub node. Constraints (33) state
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that k can only be allocated to node i if node i is chosen as a hub. Constraint (34) enforces the

number of open hubs to be p.

Due to the quadratic nature of the problem, many attempts have been made in the literature

to linearize the objective function. Skorin-Kapov et al. (1996) and Ernst and Krishnamoorthy

(1996) proposed two main MILP formulations for the problem that are based on a path and a

flow representation, respectively. The path-based formulation of Skorin-Kapov et al. (1996), which

can also be obtained by applying the RLT to constraints (32), has O(|V |4) variables and O(|V |3)
constraints and its LP relaxation provides tight lower bounds for some well-known test instances

in the literature. However, due to a large number of variables and constraints, it is only able to

solve instances with small to medium sizes. The flow-based formulation (F-MILP) use O(|V |3)
and O(|V |2) additional variables and constraints, respectively, to linearize the original formulation.

Among the existing formulations for the SApHMP, the F-MILP is the one that is often considered

the most effective in the literature.

In order to use the outer approximation our approach described in Section 3, it is enough to

define

N = V ×V, K = V, and,

Ik = {(i, k)|i∈ V } k ∈ V.

Because of the single allocation constraints (32), we have Ik ∩ I` = ∅ for all k, ` ∈K with k 6= `.

Therefore, the results of Theorem 1 and the developed solution method can be used to solve the

problem.

4.1.1. Results In this section, we provide an extensive experimental evaluation of our

approach based on some well-know benchmark instances. First, we show the advantage of the

closed-form solution provided in Theorem 5. We then compare our algorithm computationally to

Gurobi applied to both the RLT-based and the F-MILP formulations. For numerical tests, we used

the well-known Australian Post (AP) set of instances which is the most commonly used in hub

location literature. It consists of postal flow and Euclidean distances between 200 districts in an

Australian city. The AP dataset was introduced by Ernst and Krishnamoorthy (1996) and it is

available in the OR library (see, Beasley (1990).) We have selected small to medium size instances

with |V |= 25,40,50,60,70,75 and medium to large size instances with |V |= 90,100,125, and 150

nodes. The transportation cost parameters are chosen as usual: α= 0.75, χ= 3.0, and δ= 2.0.

Table 1 shows the performance of the OABC algorithm where subproblems (27) are solved using

Theorem 5 or directly by the solver. We denote the latter version of the algorithm by OABC0.1

1 Note that the LP used to solve subproblems (27) is warm started from the old dual basis by the dual simplex
method to guarantee an efficient solution.
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We compare the results in terms of the solution time (t) and the number of subgradient cuts. For

each instance with |V | nodes and p hubs, column under t/t0 represents the ratio of the total time

of the OABC to the total time of the OABC0, while column under cut/cut0 shows the ratio of

the total number of subgradient cuts in the OABC to number of subgradient cuts in the OABC0.

We only report the results for those instances for which both versions of the OABC algorithm

were able to solve them within the 2 hours time limit (see Tables 2 and 3 for more details on the

performance of the OABC with the closed-form solution). As we can see from the column cut/cut0,

the average number of generated optimality cuts by the OABC is higher than those generated by

OABC0. This indicates that solving the subproblems by the exact method generates stronger cuts.

However, looking at t/t0, we see that the OABC algorithm with the help of the closed form solution

outperforms the OABC0 significantly. On average, the OABC takes 6% (in the best case) to 21%

(in the worst case) of the total time of the OABC0 to obtain the optimal solutions. It is worth to

mention that, while OABC0 is unable to solve many instances with |V | ≥ 100 within the time limit

of 2 hours, the OABC could solve all instances in less than one hour (see Tables 2 and 3). Although

it is conceivable that subproblems (27) could be optimally solved efficiently by specialized solvers,

due to the effective performances of OABC (where subproblems (27) are solved using Theorem 5),

in the following we concentrate on this version of the algorithm.

Table 1 Performance of the OABC algorithm with and without the results of Theorem 5

p= 2 p= 3 p= 4 p= 5

Instance t/t0 cut/cut0 t/t0 cut/cut0 t/t0 cut/cut0 t/t0 cut/cut0

25 0.03 0.73 0.04 1.04 0.04 0.85 0.03 0.85
40 0.05 1.09 0.09 1.77 0.09 1.43 0.14 1.71
50 0.04 0.82 0.06 1.00 0.12 1.65 0.12 0.48
60 0.06 1.32 0.07 1.28 0.19 0.78 0.19 2.14
70 0.05 0.93 0.09 1.60 0.14 1.80 0.25 0.63
75 0.05 0.92 0.07 1.29 0.12 1.46 0.26 1.57
90 0.05 0.97 0.08 0.58 0.11 1.19 0.45 0.97

100 0.11 1.19 0.11 1.33 0.16 2.07 - -
125 0.07 1.18 0.06 2.74 - - - -
150 0.10 0.38 - - - - - -

Ave. 0.06 0.95 0.07 1.40 0.12 1.40 0.21 1.19

Tables 2 and 3 report the results for the SApHMP. In each table, the first three columns give, for

each instance, the number of nodes (|V |), the number of hubs (p), and the optimal objective value

(Opt.). The next columns present the results of Gurobi applied to RLT-based and the flow-based

models, respectively, and our OABC algorithm. For each algorithm, we present the total number

of nodes enumerated in the search tree (nodes), the total required time, in seconds, to solve the
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Table 2 Comparing the RLT-based and the flow-based models with our OABC algorithm on small to medium

size instances of the AP dataset for SApHMP proposed in Ernst and Krishnamoorthy (1996)

Instance Gurobi + RLT Gurobi + F-MILP OABC algorithm t(G/O)

|V | p Opt. glp(%) nodes g(%) time(s) nodes g(%) time(s) nodes g(%) time(s) RLT F-MILP

25 2 175542 0.0 0 0.0 9.2 0 0.0 0.8 2 0.0 0.7 13.1 1.1
25 3 155256 0.0 0 0.0 9.2 1 0.0 4.2 7 0.0 0.8 12.3 5.7
25 4 139197 0.0 0 0.0 11.5 29 0.0 3.5 5 0.0 0.9 12.2 3.7
25 5 123574 0.0 0 0.0 7.5 5 0.0 3.7 7 0.0 0.9 8.2 4.0

40 2 177472 0.0 0 0.0 108 0 0.0 4.6 3 0.0 2.8 39.3 1.7
40 3 158831 0.0 0 0.0 103.4 4 0.0 16.2 8 0.0 7.8 13.3 2.1
40 4 143969 0.0 0 0.0 89.5 70 0.0 60.9 29 0.0 11.2 8.0 5.4
40 5 134265 0.0 0 0.0 93.9 36 0.0 50.0 26 0.0 13.8 6.8 3.6

50 2 178484 0.0 0 0.0 433.2 1 0.0 17.3 3 0.0 7.6 56.7 2.3
50 3 158570 0.0 0 0.0 366.1 0 0.0 23.6 4 0.0 8.1 45.1 2.9
50 4 143378 0.0 0 0.0 295.8 0 0.0 24.6 7 0.0 9 33.1 2.7
50 5 132367 0.0 0 0.0 277.9 3 0.0 30.3 41 0.0 8 34.6 3.8

60 2 179920 0.0 0 0.0 1454.2 0 0.0 47.6 3 0.0 15 96.8 3.2
60 3 160339 0.0 0 0.0 1232.2 4 0.0 101.3 16 0.0 36.4 33.9 2.8
60 4 144720 0.0 0 0.0 1129.4 17 0.0 148.2 12 0.0 23.4 48.2 6.3
60 5 132850 0.0 0 0.0 902.4 73 0.0 222.7 68 0.0 35.6 25.3 6.3

70 2 180093 0.0 0 0.0 3371.8 0 0.0 105.3 3 0.0 20.5 164.8 5.2
70 3 160933 0.0 0 0.0 3130.6 11 0.0 380.8 5 0.0 32.1 97.7 11.9
70 4 145620 0.0 0 0.0 2477.4 19 0.0 328.6 9 0.0 39.3 63.1 8.4
70 5 135835 0.0 0 0.0 2913.6 63 0.0 706.4 22 0.0 86.8 33.6 8.1

75 2 180119 0.0 0 0.0 5156.9 0 0.0 183.3 3 0.0 26.6 193.9 6.9
75 3 161057 0.0 0 0.0 4715.5 4 0.0 355.6 5 0.0 44.7 105.5 8.0
75 4 145734 0.0 0 0.0 4231.7 21 0.0 367.9 11 0.0 56.5 74.9 6.5
75 5 136011 0.0 0 0.0 4892.7 98 0.0 667.5 36 0.0 167.8 29.2 4.0

problem (time), and the final percentage optimality gap (g(%)). For the RLT-based model, we also

report the percentage LP relaxation gap (glp(%)). In the last column, we report the corresponding

ratios (t(G/O)) between the running times of Gurobi applied to the RLT-based model or the flow-

based model and the OABC algorithm. A value greater than one means an improvement in terms

of computing time. We used the time limit as running time for non-solved instances. Since the

RLT-based model on medium to large size instances could not be solved in the time limit of two

hours, in Table 3, we only report the results of Gurobi applied to the flow-based models and our

OABC algorithm. Note that, on the medium to large size instances even the LP relaxation of the

RLT-based model could not be solved within the time limit.

Tables 2 and 3 reveal several interesting facts. All the algorithms could solve the small to medium

size instances within the time limit. Inspecting the column glp(%) of the RLT-based model, we

can observe the tightness of the LP relaxation of the RLT-based model, i.e., glp = 0 for all the

instances. Regarding the computational times, the flow-based model is solved much faster than

the RLT-based model. However, by inspecting the last two columns of the table, we can see the
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Table 3 Comparing the flow-based models with our OABC algorithm on medium to large size instances of the

AP dataset for SApHMP proposed in Ernst and Krishnamoorthy (1996)

Instance Gurobi + F-MILP OABC algorithm

|V | p Opt. Ub nodes g(%) time(s) nodes g(%) time(s) t(G/O)

90 2 179822 179822 0 0.0 629.3 3 0.0 76.6 8.2
90 3 160437 160437 0 0.0 799.3 12 0.0 143.5 5.6
90 4 145134 145134 25 0.0 862.5 21 0.0 215.6 4.0
90 5 135808 135808 152 0.4 7200.0 27 0.0 268.4 > 26.8

100 2 180224 180224 5 0.0 884.8 3 0.0 103.6 8.5
100 3 160847 160847 5 0.0 1381.7 13 0.0 283.9 4.9
100 4 145897 145897 27 0.0 1822.0 9 0.0 191.4 9.5
100 5 136929 136929 200 0.1 7200.0 27 0.0 386.7 > 18.6

125 2 180372 180372 0 0.0 4472.1 3 0.0 220.6 20.3
125 3 161117 161117 0 0.0 5317.2 10 0.0 460.8 11.5
125 4 146173 148355 1 1.7 7200.0 13 0.0 431.2 > 16.7
125 5 137176 141563 0 4.6 7200.0 27 0.0 933.1 > 7.7

150 2 180899 - 0 - 7200.0 4 0.0 487.5 > 14.8
150 3 161490 - 0 - 7200.0 11 0.0 1578.4 > 4.6
150 4 146521 - 0 - 7200.0 15 0.0 1191.8 > 6.0
150 5 137426 - 0 - 7200.0 41 0.0 3345.5 > 2.2

* Not that even the LP relaxation of the RLT-based model couldn’t be solved
within the time limit.

superiority of our OABC algorithm over the other two approaches. The OABC algorithm is on

average 52 and 5 times faster than the RLT-based and the flow-based models, respectively. The

performance of our OABC algorithm on the medium to large size instances is very promising.

When both the flow-based and the OABC algorithm can solve an instance to optimality within

the time limit, our OABC algorithm is about 9 times faster. Moreover, our algorithm can solve to

optimality all instances whereas Gurobi applied to the flow-based model, solves only 8 instances

out of 16. Note that for the largest instances, even the LP relaxation of the flow-based model could

not be solved within the time limit.

4.2. Quadratic semi-assignment problem

The QSAP is a binary quadratic optimization problem that is NP-hard as shown in Sahni and

Gonzalez (1976) and has many applications in modeling real-life problems. It has been applied to

model clustering and partitioning problems (Hansen and Lih 1992), equipartition problems (Sime-

one 1986), schedule synchronization problems (Malucelli 1996), and some scheduling problems

(see, for instance, Chrétienne 1989). More recently, the QSAP has been applied to model the data
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association problem in multiple object tracking (see for instance, Trinh et al. 2012, Dehghan and

Shah 2018, Henschel et al. 2018). In multiple object tracking, racking-by-detection is a standard

paradigm that splits the problem into two steps: object detection and data association. In a clut-

tered environment, where occlusions are common, the received measurements may not all arise

from the targets of interest. Some of them may be from clutter or false alarm. As a result, there

always exist ambiguities in the association between the previous known targets and measurements.

The goal of the data association step is then to fill in the gaps between detections and filter out

false positives.

Here, we present the QSAP in a general setting. We are given two sets V = {1, . . . , p} and

M = {1, . . . ,m} of p objects and m locations, respectively. Let cik represent the cost of assigning

object k ∈ V to location i ∈M and qijk` denote the cost of assigning object k to location i and

object l to location j, simultaneously. The quadratic semi-assignment problem seeks to assign each

object to exactly one location with minimum overall cost. Here, we define the binary variable xik

equals 1 if object k ∈ V is assigned to location i ∈M , and 0 otherwise to obtain the following

binary quadratic formulation:

QSAP: min
∑
k∈V

∑
i∈M

cikxik +
∑
k,`∈V

∑
i,j∈M

qijk` xikxj`

s.t.
∑

i∈M xik = 1 (k ∈ V ) (35)

xik ∈ {0,1} (i∈M,k ∈ V ).

To solve the QSAP, Malucelli and Pretolani (1994, 1995) propose lower bounds by decomposing

it into reducible graphs within a Lagrangian dual framework. The RLT is a well-known approach

used to solve the problem in the literature. Schüle et al. (2009) investigate different levels of RLT

to obtain the convex hull of feasible solutions. Billionnet and Elloumi (2001) show that the best

reduction of the QSAP using a quadratic pseudo-boolean function with nonnegative coefficients

is the level-1 RLT. Saito (2006) computationally demonstrates that the level-1 RLT formulation

gives integer optimal solutions on many instances derived from the AP dataset for hub location

problem.

In order to use our approach described in Section 3, we define

N =M ×V, K = V and,

Ik = {(i, k)|i∈M} k ∈K.

Because of constraints (35) it is easy to see that Ik ∩ I` = ∅ for all k, `∈K with k 6= `. Therefore,

Theorem 1 can be applied to reformulate the problem and hence our solution method can be used

to solve it.



Rostami et al.: A convex reformulation and an outer approximation for a class of BQP
22 Article submitted to Operations Research; manuscript no. OPRE-2020-09-613.R2

Table 4 Comparing the RLT-based model with our OABC algorithm on a set of randomly generated QSAP

instances

Instance Gurobi + RLT OABC algorithm

|V | |M | Class Opt. glp(%) nodes g(%) time(s) nodes g(%) time(s) t(G/O)

35 15 C50 85032.4 2.1 27 0.0 33.8 27 0.0 6.9 4.9
35 15 C25 68581.2 2.5 23 0.0 49.3 69 0.0 18.3 2.7
35 15 C10 56101.4 3.1 17 0.0 53.6 20 0.0 12.7 4.2
35 15 C01 48225.7 3.7 7 0.0 28.6 36 0.0 13.3 2.2

53 22 C50 88213.3 4.5 11 0.0 69.1 34 0.0 22.9 3.0
53 22 C25 66455.8 3.8 55 0.0 119.2 32 0.0 22.5 5.3
53 22 C10 51874.3 4.8 31 0.0 156.4 29 0.0 23.4 6.7
53 22 C01 42645.2 5.5 7 0.0 143.9 17 0.0 21.8 6.6

70 30 C50 103917.0 6.8 0 0.0 79.1 16 0.0 31.6 2.5
70 30 C25 80506.7 5.6 0 0.0 162.6 34 0.0 88.3 1.8
70 30 C10 63440.6 12.9 16 0.0 569.4 50 0.0 141.7 4.0
70 30 C01 50218.7 18.1 18 0.0 1023.2 37 0.0 140.9 7.3

88 37 C50 107483.0 5.1 45 0.0 769.6 61 0.0 143.7 5.4
88 37 C25 80387.2 2.6 49 0.0 2550.1 48 0.0 276.9 9.2
88 37 C10 59100.0 7.1 42 0.0 3779.4 60 0.0 320.2 11.8
88 37 C01 43671.2 8.3 38 0.0 2468.9 41 0.0 433.6 5.7

105 45 C50 107260.0 2.4 0 0.0 2768.2 31 0.0 205.6 13.5
105 45 C25 75695.8 2.7 44 0.0 6858.7 97 0.0 730.0 9.4
105 45 C10 50548.7 2.8 17 0.0 6673.3 65 0.0 1077.2 6.2
105 45 C01 32950.1 3.8 38 2.9 7200.0 30 0.0 913.5 > 7.9

4.2.1. Results As we mentions earlier, the RLT-based model is considered the most effective

model for the QSAP in the literature. Therefore, in this section, we compare the results of Gurobi

applied to the RLT-based model and the OABC algorithm. To evaluate the performance of the

algorithms, following Saito (2006), we first considered the AP dataset of hub location problems.

However, it turned out that these are very easy instances for both the RLT model and the OABC

algorithm; both methods could solve all instances with |V |= 200 in less than one minute though

the OABC faster. Therefore, to find challenging instances, we randomly generated instances with

different number of objects and locations. We considered complete graphs with size ranging from

n = 50 to n = 150 nodes (generated randomly in a 100× 100 square) and partitioned the node

set of each graph into two subsets V and M with |V | = 0.7n and |M | = n− |V |. For each two

items k, ` ∈ V and each two locations i, j ∈M , we set qijk` = Fk`Dij, where F and D are the flow

and distance matrices associated with each graph.The flow matrix, F , is generated uniformly at

random from {l, . . . ,100}, where l ∈ {1,10,25,50}, while the distance matrix, D, is the Euclidean
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distance matrix. In the spirit of the works Malucelli and Pretolani (1994, 1995), we defined Djj

for j ∈M , to be the 50 percent of the average graph distance to prevent assigning all the objects

to the same location. The linear cost cik for each object k ∈ V and location i∈M is set to δikDik,

where δik is generated uniformly at random from {l, . . . ,100}. We considered four different values

for l ∈ {1,10,25,50} to vary the contribution of the linear costs, which in turn, resulted in four

different classes of instances, i.e., C01,C10,C25, and C100.

Table 4 reports the results. The first four columns give, for each instance, the number of nodes

(|V |), the number of locations (|M |), the instance’s class name (Class), and the optimal objective

value (Opt.) obtained by the OABC algorithm. Columns five to nine present the results of Gurobi

applied to the RLT-based model, while columns ten to twelves give the results of our OABC algo-

rithm. For each algorithm, we present the total number of nodes enumerated in the search tree

(nodes), the total required time, in seconds, to solve the problem (time), and the final percentage

optimality gap (g(%)). For the RLT-based model, and for each instance, we also report the percent-

age LP relaxation gap (glp(%)). In the last column, we report the corresponding ratios (t(G/O))

between the running times of Gurobi applied to the RLT-based model and the OABC algorithm

where a value greater than one means an improvement in terms of computing time. We used the

time limit as running time for non-solved instances.

As we can observe from the table, the OABC algorithm outperforms the solver significantly in

terms of overall computing time; when both approaches can solve an instance to optimality within

the time limit, the OABC algorithm is about six times faster. Moreover, the OABC algorithm can

solve all instances to optimality, while for the largest instances of the class C01, Gurobi reaches

the time limit of two hours with optimality gap of 2.9 %.

4.3. Test-assignment

Consider the problem of assigning the test variants of a written exam to the desks of a classroom

in such a way that desks that are close-by receive different variants. This problem is a generalized

version of the vertex coloring problem (see Malaguti and Toth (2010)) and is defined as follows. We

are given an undirected graph G= (V,A) with a set of nodes V and set of edges A with positive

weights w associated with edges, and a set of available colors H. For each pair of colors i, j ∈H, we

have a positive weight fij that represents the similarity of the two colors. If node k receives color

i and node ` receives color j, the vicinity of the edge-color assignment is wk`fij. In general, the

students will not completely fill the classroom, and there will be p empty desks, thus only |V | − p
nodes of G must be colored. By defining binary variables xik taking value 1 if node k gets color i

and 0 otherwise, the problem is formulated as the following BQP:

TAP: min
∑

(k,`)∈A

∑
i,j∈H

wk`fijxikxj`
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s.t.
∑

i∈H xik ≤ 1 (k ∈ V ) (36)∑
k∈V

∑
i∈H xik = |V | − p (37)

xik ∈ {0,1} (i∈ V,k ∈H),

where constraints (36) restrict each vertex to receive at most one color, and constraint (37) states

that |V |−p vertices must be colored (i.e., |V |−p students must be seated). Following Duives et al.

(2013), we can define a dummy color 0 given to the p uncolored nodes with f0i = 0, i ∈H, and

replace constraints (36) and (37) by the following constraints:

∑
i∈H xik = 1 (k ∈ V ) (38)∑
i∈V xi0 = p.

Duives et al. (2013) apply a general-purpose solver to some convex reformulations of the prob-

lem and develop a Tabu Search algorithm to find feasible solutions. To find a convex BQP, the

authors use the smallest eigenvalue technique (see, for instance, Hammer and Rubin 1970) and

the Quadratic Convex Reformulation (QCR) method of Billionnet et al. (2009).

To represent the TAP as the BQPP , we define

N =H ×V, K = V, and,

Ik = {(i, k) | i∈H} k ∈ V.

Because of constraints (38), the results of Theorem 1 and our solution method can be used to

solve the problem.

4.3.1. Results To evaluate our proposed method, we used the test instances introduced in

Duives et al. (2013). We selected instances derived from 2 real classrooms, with 20 and 49 desks,

used for written exams in the Engineering Faculty of the University of Bologna. A graph G= (V,A)

is associated with each classroom where the node set V represents the desks, and A is the set of

links between the desks. For every graph, in addition to the dummy color (0), three sets of available

colors with sizes 2,3 and 4 are considered. The number of empty desks (nodes that must receive

color 0) is selected from the sets {0,5,10} and {0,10,20} for the classrooms with 20 and 49 desks,

respectively.

Table 5 compares the OABC algorithm with the RLT-based model. The first four columns give,

for each instance, the number of desks (|V |), the number of colors (nc), the number of empty desks

(nuc), and the best-known solution value (BSV) from Duives et al. (2013). Columns five to nine

present the results of Gurobi applied to the RLT-based model, while columns ten to thirteen give
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Table 5 Comparing the RLT-based model with the OABC algorithm on real-life TAP instances presented in

Duives et al. (2013)

Instance Gurobi + RLT OABC algorithm

|V | nc nuc BSV glp(%) Ub g(%) nodes time(s) Ub g(%) nodes time(s) t(G/O)

20 2 0 20.90 21.5 20.90 0.0 184 0.1 20.90 0.0 117 0.1 1.0
20 2 5 7.95 20.7 7.95 0.0 782 1.8 7.95 0.0 2261 0.5 3.6
20 2 10 1.85 100.0 1.85 0.0 144 0.9 1.85 0.0 1126 0.1 9.0

20 3 0 15.15 30.7 15.15 0.0 1223 1.1 15.15 0.0 1046 0.1 11.0
20 3 5 5.58 25.6 5.58 0.0 2030 4.8 5.58 0.0 2182 0.9 5.3
20 3 10 1.22 100.0 1.22∗ 0.0 147 1.0 1.22∗ 0.0 406 0.1 10.0

20 4 0 11.95 31.3 11.95 0.0 2659 8.1 11.95 0.0 3095 3.0 2.7
20 4 5 3.98 20.8 3.98∗ 0.0 3762 8.5 3.98∗ 0.0 4474 2.5 3.4
20 4 10 0.93 100.0 0.93∗ 0.0 147 1.3 0.93∗ 0.0 1102 0.3 4.3

47 2 0 72.60 24.5 72.60 0.0 382219 335.4 72.60 0.0 67506 30.2 11.1
47 2 10 35.45 27.0 35.45 0.0 49738 1554.4 35.45 0.0 3638811 1294.2 1.2
47 2 20 12.65 54.7 12.65 0.0 63917 1493.1 12.65 0.0 94384 74.6 20.0

47 3 0 53.72 32.7 53.83 26.5 117888 7200.0 53.72∗ 0.0 3106567 1482.1 > 4.9
47 3 10 24.84 31.2 24.85 9.7 35973 7200.0 24.84 3.6 2247011 7200.0 1.0
47 3 20 8.52 60.2 8.55 10.7 40265 7200.0 8.52∗ 0.0 564665 532.9 > 13.5

47 4 0 43.88 37.5 43.98 20.4 36751 7200.0 43.93 13.9 900948 7200.0 1.0
47 4 10 19.05 32.1 19.63 25.8 29888 7200.0 19.37 17.4 1119366 7200.0 1.0
47 4 20 6.38 59.4 6.38 15.5 19707 7200.0 6.33∗ 0.0 1847924 1741.1 > 4.1

* Previously unsolved TAP instances in Duives et al. (2013) proven to be optimal solutions by our
solution approaches.

the results of our OABC algorithm. For each algorithm, we present the best feasible solution value

(Ub), the total number of nodes enumerated in the search tree (nodes), the total required time,

in seconds, to solve the problem (time), and the final percentage optimality gap (g(%)). For the

RLT-based model, and for each instance, we also report the percentage LP relaxation gap (glp(%)).

In the last column, we report the corresponding ratios (t(G/O)) between the running times of

Gurobi applied to the RLT-based model and the OABC algorithm where a value greater than one

means an improvement in terms of computing time. We used the time limit as running time for

non-solved instances.

As we can observe from the table, the OABC algorithm is able to solve 15 out of 18 instances,

whereas Gurobi applied to the RLT-based model can solve 12 instances. When both approaches can

solve an instance to optimality within the time limit, the OABC is about 7 times faster. Instances

marked by asterisks are previously unsolved instances which we could solve to optimality within

the two hours time limit. Note that, the OABC algorithm is the only approach that can solve all
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the six unsolved instances to optimality while, the Gurobi applied to the RLT-based model can

only solve three instances with |V |= 20.

5. Conclusions

In this paper, we have studied a class of binary quadratic programming problems that arise in

many real-life optimization problems. We have proposed a convex mixed-integer nonlinear program

reformulation as well as a mixed-integer linear programming reformulation and analyzed their

relaxation strength. Moreover, we have developed a branch-and-cut algorithm to solve the convex

mixed-integer nonlinear reformulation, where at each node of the search tree, efficiently solvable

subproblems are considered to generate some outer approximation cuts. To evaluate the robust-

ness and efficiency of our solution method, we performed extensive computational experiments on

different types of problems from the literature. In particular, we applied our solution approach on

instances of quadratic semi-assignment problem, single allocation hub location problem, and test

assignment problem and compare our results with the results obtained from commercial solvers

applied to RLT-based models as well as to some well-known MILP formulations from the literature.

The overall results indicate a significant superiority of our solution method.
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