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Abstract—Deep architectures represent the state-of-the-art for
perceiving depth from stereo images. Although these methods
are highly accurate, it is crucial to effectively detect any outlier
through confidence measures since a wrong perception of even
small portions of the sensed scene might lead to catastrophic
consequences, for instance, in autonomous driving. Purposely,
state-of-the-art confidence estimation methods rely on deep-
networks as well. In this paper, arguing that these tasks are two
sides of the same coin, we propose a novel paradigm for their
joint training. Specifically, inspired by the successful deployment
of GANs in other fields, we design two deep architectures: a
generator for disparity estimation and a discriminator for dis-
tinguishing correct assignments from outliers. The two networks
are jointly trained in a new peculiar weakly adversarial manner
pushing the former to fix the errors detected by the discriminator
while keeping the correct prediction unchanged. Experimental
results on standard stereo datasets prove that such joint training
paradigm is beneficial. Moreover, an additional outcome of our
proposal is the ability to detect outliers with better accuracy
compared to the state-of-the-art.

I. INTRODUCTION

Many intelligent systems rely on depth data for autonomous

or assisted navigation, robot control, augmented reality and

so on. Stereo matching is a popular and effective technique

to infer depth from images. It works by finding correspon-

dences between two (or more) synchronized images of the

same scene framed from different viewpoints. The outcome

is the displacement in pixels (i.e., disparity d) between the

same point of the scene in the two images. Then, depth is

inferred through triangulation from d by merely knowing the

distance between cameras b and their focal length f . Due

to its relevance, challenging benchmarks such as KITTI [1],

[2], Middlebury [3] and ETH3D [4] are available. In this

field, end-to-end deep learning frameworks are undisputed

state-of-the-art [5], [6] provided that a sufficient amount of

training samples is available i.e. as evident from the KITTI

online leaderboard. Nonetheless, even a few outliers represent

a source of potentially severe hazards in practical applications.

For instance, estimating the wrong distance to obstacles may

have fatal consequences in autonomous driving. Therefore,

confidence measures [7], [8] are widely used for outlier

detection and other purposes.

Although typically tackled independently, depth estimation

and confidence prediction are two sides of the same coin.

Therefore, in this paper, we propose a novel framework for

joint disparity and confidence estimation by training two
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Fig. 1. Outcome of the proposed Weakly Adversarial Networks. From
top to bottom, reference frame, disparity map (warmer colors encode closer
pixels) and confidence scores (cold colors encode very confident pixels).

networks, one for each task. Purposely, inspired by the re-

cent successes achieved by Generative Adversarial Networks

(GAN) [9] in other fields, we formulate depth and confidence

estimation as a competition between these two tasks although

with some notable differences compared to the conventional

GAN paradigm. One network is in charge of predicting dense

disparity maps, namely the generator, and it will try to fool

the other one, the discriminator, by producing more and

more accurate outputs. The latter will push the generator to

improve its predictions for the detected outliers, maintaining

the correct disparity estimations unchanged. In contrast to

traditional GAN frameworks, we have for each image both real

and fake samples (i.e., inliers and outliers). The latter pixels

gradually decreases as the generator improves its accuracy,

ideally vanishing the adversarial component of the framework

in the end. We refer to this novel training framework as Weakly

Adversarial Networks (WAN). We conducted an exhaustive

evaluation deploying a state-of-the-art deep stereo architecture,

PSMNet [5], for the generator and a novel network inspired by

ConfNet, a component of state-of-the-art confidence estimator

[10], for the discriminator. Figure 1 shows the outcome of our



framework on KITTI, respectively disparity and confidence

maps.

The contribution of this paper is three-fold. i) To the best

of our knowledge, this is the first work proposing adversarial

learning of depth and confidence estimation jointly. Conversely

to conventional GAN, the output of our discriminator is mean-

ingful even at inference time (i.e., it estimates a confidence

measure). ii) We propose a novel formulation for adversarial

learning, where the competition between the two networks is

at the pixel level, thus only on portions of the input sample.

Moreover, such adversarial behavior tends to fade progres-

sively during training. iii) In our evaluation, we compare

the proposed WAN with known confidence measures, either

standalone or learned jointly with stereo matching, achieving

state-of-the-art depth estimation and confidence prediction.

II. RELATED WORK

We review the literature concerning stereo and confidence

measures since both fields are relevant to our work.

Deep learning for stereo. Before the spread of deep learn-

ing, stereo algorithms [11] traditionally consisted of different

steps i) cost computation, ii) cost aggregation, iii) disparity

optimization/computation and iv) disparity refinement. Early

attempts to exploit deep learning for stereo aimed at re-

placing some of the steps mentioned above. For example

learning a matching function by means of CNNs [12], [13],

improving optimization [14] or refining disparity maps [15],

[16]. DispNet [17] was the first successful attempt to tackle

stereo in an end-to-end manner leveraging a 2D correlation

layer, computing similarity scores between features. However,

since a large dataset is mandatory for training this network,

the authors exploited synthetic stereo pairs for this purpose.

In contrast, GC-Net [18] explicitly processes geometric cues

employing 3D convolutions. Both 2D [19], [20], [21], [22],

[23] and 3D architectures [5], [24], [25], [26] architectures

were extensively studied, establishing as state-of-the-art in the

field. Moreover, both have been combined with cues from

external sensors to improve accuracy and generalization [27].

Confidence measures. [8] reviewed traditional confidence

measures for stereo while [28] evaluated their efficiency on

embedded devices. More recently, learning-based methods

have been reviewed and evaluated in [7]. These methods can

be broadly categorized into two classes: random-forest based

[29], [30], [31], [32] and CNN based [33], [34], [35], [36].

Most methods belonging to the first class combine several

confidence scores obtained from the cost volume, while CNN

based measures process raw input and disparity images to infer

confidence estimation. The only exception is [33], designed for

its joint training with a stereo network. It estimates confidence

by processing the matching cost curve processing of a single

pixel, thus not using local information at all. Following a

different strategy, methods to improve confidence using local

information have been proposed in [37], [38], [39] A much

larger image context has been exploited with CNNs to achieve

state-of-the-art results by LGC-Net [10] and LAF-Net [40]. We

also mentions works aimed at estimating uncertainty in deep

networks [41], [42], although not explored in stereo. Finally,

we point out that confidence measures have been deployed to

improve accuracy of disparity maps [30], [31], [35], [14], [32],

combine multiple stereo algorithms [43], [44], depth sensor

fusion [45] self-supervised learning of confidence [46] and

deep stereo adaptation [47].

III. WEAKLY ADVERSARIAL PARADIGM

In a conventional GAN paradigm [9] there is a generator

G and a discriminator D playing a min-max game. Usually

G is trained to learn a mapping function G : X → Y given

training samples {xi}
N
i=1 where xi ∈ X and {yj}

M
i=1 where

yj ∈ Y , with x ∼ pdata(x) and y ∼ pdata(y) being the two

data distribution. In this paradigm, DY takes in input both

generated images G(x) and frames from the target Y and is

has to distinguish between the two. Therefore, the objective

function in a GAN is expressed as

LGAN (G,DY , X, Y ) = Ey∼pdata(y)[logDY (y)]

+ Ex∼pdata(x)[log (1−DY (G(x)))]
(1)

At training time, it aims to solve

G∗ = argmin
G

max
DY

LGAN (G,DY , X, Y ) (2)

Dealing with stereo matching, we aim at modifying this

scheme to fit our purposes better. Being G trained for disparity

estimation, our mapping function G : I → D takes a stereo

pair iL, iR ∈ I as input to generate a disparity map as

similar as possible to ground truth D̂. Thus, G is trained on

samples {iLi , i
R
i }

N
i=1 trying to reproduce perfect disparity maps

{D̂i}
N
i=1, with iL, iR ∼ pdata(i

L, iR) and d ∼ pdata(D) being

the two data distribution. While for traditional tasks tackled

with GANs it is clear which images are fake (i.e., produced

by G) and which are real, such paradigm is too strict for

our purposes. In particular, given a disparity map G(iL, iR),
it will contains both correct predictions (i.e., real disparities)

and outliers (i.e., fake disparities). Given such a map to D, we

want to classify its points into these two categories correctly.

To do so, it outputs per-pixel confidence scores to find out

outliers and then to push G to correct them, while not affecting

the generator on correct predictions. In other words, we set

a loss term that is adversarial only for wrong disparities.

Since during training G becomes increasingly accurate, the

adversarial behavior becomes progressively weaker because

the pixels contributing to it become fewer and fewer, down to

zero in the end (i.e., ideally G will produce perfect disparity

maps and D will classify all pixels as correct). For this

reason, we refer to this new approach as Weakly Adversarial

Networks (WANs). Figure 2 outlines the proposed framework,

highlighting the roles of G and D, the pixel-wise output of

D and the input being the estimated disparity map, as well as

the loss signals that we are going to define.

We define the two subsets of points G0(i
L, iR) ∪

G1(i
L, iR) = G(iL, iR), encoding respectively wrong and

correct assignments as



Generator Discriminator

adversarial loss

disparity loss discriminator loss

Fig. 2. Overview of our framework. Generator G (blue) produces a disparity map given a stereo pair, input to discriminator D (green) which estimates a
confidence map. A traditional binary classification loss (green arrow) supervises D, while an adversarial term (red arrow) supervises G jointly with a disparity
loss from ground truth data (blue arrow).

G0(i
L, iR) = {p ∈ G(iL, iR) : |G(iL, iR)(p)− D̂(p)|1 > τ}

G1(i
L, iR) = {q ∈ G(iL, iR) : |G(iL, iR)(q)− D̂(q)|1 ≤ τ}

(3)

with τ as prefixed error bound. According to these definitions,

we formulate the following objective function

LWAN (G,DD, I,D) =

EiL,iR∼pdata(i
L,iR)

D̂∼pdata(D̂)

[log(1−DD(G0(i
L, iR)))] (4)

With G becoming increasingly accurate during training, the

subset G0(i
L, iR) will shrink progressively, reducing the num-

ber of pixels contributing to the adversarial term and thus

making it weaker. We achieve this behavior by training G

to minimize a weighted sum of a traditional loss L1 on the

disparity domain and the weakly adversarial loss (i.e., the term

pushing G to correct outliers)

LG =α · EiL,iR∼pdata(i
L,iR)

D̂∼pdata(D̂)

[L1(G(iL, iR), D̂)]+

+β · LWAN (G,DD, I,D)

(5)

where α and β are hyper-parameters. D is trained to solve a

classification problem between inliers and outliers

LD = Ed∼pdata(D̂)[logDD(G(iL, iR))] (6)

usually minimizing a binary cross entropy (BCE) loss.

Finally, in Figure 3 we summarise the main strengths

with respect to most common GANs (top). Our framework

(bottom) produces per-pixel scores that can be interpreted as

confidence at test time, unfeasible in case of a single, per-

image prediction by D. Moreover, splitting pixels from D
into inliers and outliers avoids D to process ground truth

maps during training. This is crucial, since most depth ground

truth maps are often sparse (e.g., as in KITTI), driving the

discriminator to distinguish them only by looking at sparsity.
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Fig. 3. Comparison with traditional GANs. Conversely to most GAN
frameworks (top), our discriminator produce per-pixel estimates, allowing for
meaningful confidence estimation at test time.

IV. PROPOSED ARCHITECTURE

In this section, we describe in detail our WAN framework.

Generator model. Any end-to-end model for dense dis-

parity inference would be suited as a generator G within our

framework. We choose PSMNet [5] due to its accuracy, as

recently witnessed by its deployment for more advanced tasks

[48] and the availability of the source code. It contains two

shared unary features extractors, made of stacks of 3 × 3
convolutional filters used to extract high-level features from

the input images. Then, a Spatial Pyramid Pooling layer

[49] further increases the receptive field before building the

cost volume [18]. Specifically, for each disparity hypothesis

d ∈ [0 : Dmax] right features are shifted and combined with

left ones to emulate the cost volume of traditional stereo algo-

rithms [11]. Then, it deploys three stacked hourglass modules

with 3D convolutions/deconvolutions, each one computing

a disparity map through softargmax operation on volumes

upsampled to full resolution. The third hourglass estimates

the final disparity map. At training time, a smooth L1 loss is

minimized, weighted over the three outputs of the hourglasses.

Discriminator model. For the discriminator D, we could

deploy any CNN based architecture available in literature

[35], [34], [36], [10], [40]. Although LGC-Net and LAF-Net

would have been the most promising candidates, they have

severe limitations in term of memory requirements not fitting

in a single GPU together with G. Therefore, we deployed

an improved design of ConfNet [10], enabling to take into

account a large portion of the input image and disparity map

for confidence estimation. Precisely, we deploy two branches

made of two 3× 3 convolutional layers, extracting 16 and 32



features map respectively from the disparity map and input

reference image (weights are not shared, to learn features

specific for the two domains). Then, the two are concatenated

and forwarded to four 3×3 layers, extracting respectively 64,

128, 256 and 512 features. All these layers use a stride of 2,

reducing the original input dimension to 1
64 at this stage, while

the original ConfNet version proposed in [10] only reaches
1
16 . Finally, full resolution is restored by six blocks, made of

bilinear upsampling layers followed by 3×3 convolutions that

gradually halve the amount of extracted features (i.e., 256, 128,

64, 32, 16 and 1 in the final layer). All convolution operations

are followed by ReLU activations, except for the last layer that

uses a Sigmoid to output scores ∈ [0, 1]. Finally, we point out

that the discriminator needs to be fully differentiable, making

confidence estimation based on random forests unsuited for

this purpose.

V. EXPERIMENTAL RESULTS

In this section, we exhaustively assess the effectiveness of

jointly learning disparity map and confidence estimation with

the proposed weakly adversarial paradigm. In particular, with

two standard datasets, we evaluate these aspects:

• The accuracy of estimated disparity maps obtained by our

WAN framework, the baseline PSMNet generator, and

two variants modelling the reflective confidence [33] and

the heteroscedastic uncertainty [41].

• The outlier detection performance of our WAN is com-

pared to state-of-the-art confidence measures CCNN [34],

ConfNet and LGC-Net [10], the reflective confidence and

the heteroscedastic uncertainty.

A. Implementation and training protocol

Our framework is implemented in PyTorch [50], starting

from the original PSMNet source code and implementing

from scratch our discriminator. The datasets involved in our

experiments are:

• Scene Flow [17]: a large scale synthetic dataset made

of 35454 training and 4370 testing images with a fixed

resolution of 540 × 960. Dense ground truth disparity

maps are provided for each stereo pair.

• KITTI [51]: an outdoor dataset acquired from a moving

vehicle. It provides two benchmarks for stereo matching

KITTI 2012 [1] and 2015 [2] containing, respectively, 194

and 200 training stereo image pairs with sparse ground

truth disparities obtained with a LiDAR. The typical

resolution is 376× 1240.

• Middlebury [3]: an indoor dataset with 15 and 13 high-

resolution stereo pairs with dense ground truth labels

acquired with an active system, referred to as training

and additional splits. Images are processed at quarter

resolution (i.e., about 750 × 500) since higher does not

fit into a single high-end GPU.

We initialize G in our WAN framework according to the

guidelines provided in [5], running about 10 epochs with

256×512 crops and batches of 3, the broadest possible fitting

into a single Titan XP GPU available for our purposes. We

use two Adam optimizers for generator and discriminator (β1

= 0.9, β2 = 0.999), with 0.001 learning rate for both. At

each training iteration, both generator and discriminator are

optimized. We set the error bound τ = 1, α to 1 and β to

0.01. Following sections report details concerning sensitivity

to hyper-parameters.

Since the original performance of deep stereo networks

is hard to reproduce1, a comparison on the KITTI online

benchmarks between variants of PSMNet and our framework

is unfeasible within a single submission allowed by the KITTI

benchmark. Moreover, the original paper does not provide

any details about the training protocol for Middlebury dataset.

Therefore, to fairly asses the performance of our proposal, we

conduct experiments on KITTI and Middlebury according to

the following training/testing splits:

• For KITTI, 2012 −→ 2015 splits.

• For Middlebury, trainingQ −→ additionalQ splits.

Concerning fine-tuning, on KITTI we run 300 epochs as

in [5] with the same learning rate schedule. On Middlebury,

we followed the same training protocol, since more extended

training did not yield improvement. These protocols are the

same for all PSMNet variants reported in our experiments. On

average, adding the discriminator increases the single iteration

runtime by 10%, leading to about 1 second per inference.

Due to random noise during training introduced by shuffling,

initialization and other factors, we repeated the experiments 5

times, witnessing consistent results all the times.

PSMNet variants modelling confidence/uncertainty. We

compare our WAN with existing frameworks for joint esti-

mation of the two tasks, respectively modeling reflective con-

fidence and heteroscedastic uncertainty. For both, we extend

PSMNet to estimate an additional output, i.e. a confidence map

γ or uncertainty map σ, and train it according to Eq. 7 and 8

respectively

LR = |G(iL, iR)−D̂|1+BCE(γ, |G(iL, iR)−D̂|1 ≤ τ) (7)

LH =
|G(iL, iR)− D̂|1

eσ
+ σ (8)

To this aim, per-pixel γ or σ are extracted from the final

volume before soft-argmax operator by means of an additional

2D convolutional layer, treating the disparity dimension as

feature channels.

State-of-the-art confidence measures Concerning confi-

dence estimation, we compare our WAN with state-of-the-art

estimators with source code available: CCNN, ConfNet and

LGC-Net. To do so, we train these methods on disparity maps

produced by PSMNet alone processing the training splits on

which they have been tuned, respectively KITTI 2012 and

Middlebury trainingQ, since they are the same disparity maps

deployed for training the discriminator. We trained ConfNet

1PSMNet was trained with batches of 12 requiring 4 Titan GPUs, much
beyond our means.



>2(%) >3(%) >4(%) >5(%) MAE
Model Noc All Noc All Noc All Noc All Noc All

PSMNet [5] 5.850 6.490 2.736 3.131 1.911 2.186 1.561 1.765 1.163 1.203
Heteroscedastic-PSMNet [41] 5.871 6.562 2.903 3.439 2.047 2.487 1.675 2.052 1.087 1.164

Reflective-PSMNet [33] 5.670 6.209 2.736 3.108 1.936 2.216 1.585 1.804 1.325 1.369
WAN-PSMNet (ours) 5.687 6.246 2.681 3.062 1.885 2.176 1.528 1.762 0.972 1.025

TABLE I
EXPERIMENTAL RESULTS CONCERNING DISPARITY ESTIMATION. TRAINING ON KITTI 2012 [1], TESTING ON KITTI 2015 [2].

Estimator AUCopt AUC AUCM

CCNN 0.398 1.265 0.867
ConfNet 0.398 2.282 1.884

LGC-Net 0.398 1.059 0.661

Heteroscedastic 0.395 0.955 0.560
Reflective 0.450 1.250 0.800

WAN 0.358 0.908 0.550

TABLE II
EXPERIMENTAL RESULTS FOR CONFIDENCE ESTIMATION ON KITTI

(TRAINED ON 2012, TESTED ON 2015). AUC SCORES SCALED BY (×10
2)

FOR READABILITY.

for the same iterations of our WAN, while CCNN, ConfNet

and LGC-Net were trained to minimize BCE loss for about

700K steps similarly to [10], trying to ensure a comparison as

fair as possible, although our discriminator is trained alongside

with the stereo network.

B. Evaluation protocols

We conducted experiments aimed at assessing the perfor-

mance of disparity prediction and outlier detection tasks.

Metrics for disparity. We measure the error between

estimated disparity maps and ground-truth labels as percentage

of outliers with a disparity error larger than δ (< δ%), with

δ ∈ [2, 5] for KITTI and δ equal to 0.5, 1, 2 and 4 for

Middlebury, together with Mean Average Error (MAE). On

KITTI we report the metrics mentioned above on the entire

amount of valid points (All) and non-occluded (Noc), while

for Middlebury only on all valid pixels, since occlusion masks

are not available for the additionalQ split.

Metrics for confidence. We assess the performance of con-

fidence measures following the Area under the Curve protocol

(AUC) commonly deployed in this field [8]. Points are sub-

sampled in decreasing order of confidence scores, and >3(%)

and >1(%) are progressively computed, respectively on KITTI

and Middlebury, to plot a curve. The area under it measures

how accurate the confidence measure is at detecting outliers

(the lower, the better). By sorting pixels in ascending order

of absolute error, optimal curve and thus AUCopt score are

obtained. However, since confidence measures were evaluated

on disparity maps with varying amounts of outliers (e.g.,

CCNN, ConfNet and LGC-Net runs over PSMNet outputs,

WAN confidences over WAN disparities), we also report the

AUC Margin (AUCM) as the difference between the AUC

achieved by the confidence and AUCopt.

C. Evaluation on KITTI dataset

We report the experimental results concerning stereo accu-

racy on the KITTI 2015 dataset, fine-tuning all the PSMNet

variants on the 194 stereo pairs with ground truth from the

KITTI 2012 training dataset.

Disparity estimation. Table I shows that the baseline net-

work already yields meager error rates, in particular reporting

a >3(%) score of about 2.7 and 3.1% for Noc and All.

By training variants of PSMNet with reflective confidence

estimation or modeling heteroscedastic uncertainty improves

over the baseline on most metrics. Interestingly, this latter

fails at improving the error rates when considering non-

occluded regions only Our framework outperforms all the

other approaches, except for the lowest threshold (i.e. 2 pixels)

where Reflective-PSMNet achieves slightly better results. This

experiment highlights that the proposed weakly adversarial

approach leads to significant improvements in disparity esti-

mation compared to i) tackling such task alone and ii) existing

approaches exploiting joint learning of confidence.

Confidence estimation. Table II reports the outcome of

outlier detection achieved by our discriminator, reflective con-

fidence, heteroscedastic uncertainty and state-of-the-art con-

fidence measures for stereo CCNN, ConfNet and LGC-Net

trained on disparity maps generated by the baseline PSMNet.

For better readability, we multiply all area scores by a factor

×102. From the table, we can notice how modelling the

heteroscedastic uncertainty according to [41] yields results

very close to AUCopt. Indeed, it effectively models the

uncertainty on data and it turns out particularly accurate when

dealing with test data close to the training domain, as in

the case of KITTI 2012 vs 2015 scenario. In particular, it

outperforms traditional approaches applied to stereo matching

leveraging either local or global cues. Conversely, reflective

confidence estimation performs poorly compared to the other

approaches, highlighting how the local context (not exploited

by this formulation) is crucial to improve outlier detection.

Finally, we can notice how confidence estimated by our WAN

result equivalent to the one by the heteroscedastic modelling,

outperforms all of the previous approaches.

Qualitative results. Figure 4 shows qualitative results con-

cerning disparity and confidence estimation yielded by het-

eroscedastic uncertainty modeling, reflective confidence and

the proposed weakly adversarial paradigm. We report two

examples, i.e. stereo pairs 000124 and 000104, respectively

when dealing with simple and very challenging scenarios. In

the former case, all the variants produce good disparity and

confidence maps, while in the latter we can notice how the

estimated disparity maps are far from being accurate because

of the poor illumination in the scene, rarely observed during

training. Our WAN framework is capable of reducing the error



Fig. 4. Disparity and confidence estimation on frames 000124 and 000104 of the KITTI 2015 dataset. 000104 equalized for visualization only. From
left to right, reference image, disparity and confidence maps respectively by Heteroscedastic-PSMNet, Reflective-PSMNet and WAN-PSMNet.
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PSMNet Oracle No adv. WAN

>3(%) 3.131 3.000 3.072 3.062
AUCM - - 0.584 0.550

TABLE III
ABLATION STUDY ABOUT THE ADVERSARIAL TERM ON KITTI (TRAINED

ON 2012, TESTED ON 2015).

on such a challenging environment whereas perceiving the

high uncertainty as shown by the confidence map. In partic-

ular, by computing the error rate for the original PSMNet,

Heteroscedastic-PSMNet and Reflective-PSMNet variants we

obtain respectively 86.638, 85.533 and 91.454 >3(%), our

WAN makes the error drop to 78.791%. A video is also

available at https://www.youtube.com/watch?v=Zk2lIlWKy78.

D. Ablation studies

Being the competition between two networks often unstable,

in this section, we study how our WANs react to different

configurations of hyper-parameters.

Sensitivity to hyper-parameters. Figure 5 shows two main

plots, concerning respectively with >3(%) (disparity estima-

tion) and AUCM (confidence estimation) metrics obtained on

KITTI 2015 by varying τ and β. α is kept constant to 1,

consistent with the baseline PSMNet. In both cases, the lower

the better. On the left, we can see >3(%) plots: the strongest

G is trained by tuning τ and β to be (1, 1), leading to the

most accurate disparity maps among the studied configuration,

followed by (2, 0.01) and (3, 1). Moving to AUCM plots,

we can see how β = 0.1 yield effective outlier detections

regardless of τ , despite not particularly effective at improving

disparity estimation according to >3(%) plots. Lowering β to

0.01 allows for training D almost equivalently to the former

case, with the curious exception of τ = 2. Finally, β = 1
or 10 makes the discriminator collapse as highlighted by the

very high margin from AUCopt. Indeed, it assigns constant

confidence to all pixels. This makes the three top-performing

configurations in terms of >3(%) ineffective since they will

not provide a reliable confidence estimation, driving us to

choose (1, 0.01) as the best one.

Adversarial contribution. Table III reports experiments

by training two more variants of our WAN, respectively i)

by adopting an Oracle to provide adversarial signals to the

generator and ii) by turning off the adversarial term (No adv.

in the table), to better understand the contribution given by

the competition between G and D. In the first case, the oracle

provides ideal classification, allowing for much stronger ad-

versarial term and thus improving more the disparity accuracy.

On the other hand, no real discriminator is trained in this

case, losing the possibility to estimate confidence scores at

deployment. The second variant, consisting of a joint train

of D and G according to Eq. 7, always improves over the

baseline PSMNet, but not as much as in case of deployment

of the adversarial term. Moreover, the competition between

the two networks is more beneficial for confidence estimation

as well.

E. Evaluation on Middlebury dataset

To further validate the effectiveness of the proposed weakly

adversarial paradigm, we assess its performance on the Mid-

dlebury v3 dataset containing only 15 images for training.

https://www.youtube.com/watch?v=Zk2lIlWKy78


Model >1(%) >2(%) >4(%) MAE

PSMNet [5] 26.121 14.547 8.536 1.920
Heteroscedastic-PSMNet [41] 33.458 18.887 11.722 2.874

Reflective-PSMNet [33] 25.812 14.276 8.626 1.901
WAN-PSMNet (ours) 25.756 14.214 8.325 1.892

TABLE IV
EXPERIMENTAL RESULTS CONCERNING DISPARITY ESTIMATION ON

MIDDLEBURY V3 [3]. TRAINING ON trainingQ, TESTING ON additionalQ.

AUCopt AUC AUCM

CCNN 0.046 0.217 0.176
ConfNet 0.046 0.248 0.207

LGC-Net 0.046 0.194 0.148

Heteroscedastic 0.090 0.363 0.273
Reflective 0.045 0.166 0.191

WAN 0.041 0.194 0.153

TABLE V
EXPERIMENTAL RESULTS FOR CONFIDENCE ESTIMATION ON

MIDDLEBURY. TRAINED ON trainingQ, TESTED ON additionalQ.

Disparity estimation. Table IV collects results concerning

with disparity accuracy. First and foremost, we can notice

a much higher error rates because of the small amount of

fine-tuning images available in Middlebury. While Reflective-

PSMNet variant almost consistently improves over the base-

line, Heteroscedastic-PSMNet is not able to. In particular,

a considerable high amount of outliers is introduced with

any threshold. We ascribe this fact to the meager amount

of training samples available for fine-tuning, not enough to

model the heteroscedastic uncertainty from data. Moreover,

conversely from KITTI experiments, the test samples are much

more heterogeneous with respect to the training set, making

the modeling of such variegated data much more challenging.

Differently, once again WAN consistently improves disparity

accuracy over PSMNet, showing much higher robustness when

dealing with a lower amount of training samples and more

various test data compared to heteroscedastic uncertainty,

outperforming Reflective-PSMNet on all metrics.

Confidence estimation. Table V confirms a substantial

different behavior compared to KITTI. In particular, we can

notice how the heteroscedastic uncertainty performs poorly at

detecting outliers, achieving the worst AUCM compared to

all the proposal from the stereo literature. This fact pairs with

the behavior observed on disparity estimation, conversely from

results on KITTI where the higher availability of training data

with similar context to testing data favors the modeling of such

uncertainty formulation. Our WAN framework outperforms

other PSMNet variants as well as CCNN and ConfNet, while

LGC-Net results slightly better at detecting outliers, with

minor gain over our WAN (0.005) but with much more

complex architecture.

Qualitative results. Figures 6 and 7 reports qualitative

results comparing a disparity map by PSMNet and correspond-

ing confidence maps by CCNN and LGC-Net with results

obtained by Heteroscedastic-PSMNet, Reflective-PSMNet and

our WAN on Middlebury v3. In particular, the heteroscedastic

uncertainty fails when trained on very few images, producing

the uniform confidence map shown in the figure.

Fig. 6. Qualitative results on additionalQ split, Middlebury v3. From
left to right: reference image, disparity by PSMNet and confidence maps by
CCNN and LGC-Net.

Fig. 7. Qualitative results on additionalQ split, Middlebury v3. From
left to right: disparity (top) and confidence (bottom) maps respetively by
Heteroscedastic-PSMNet, Reflective-PSMNet and our WAN.

VI. CONCLUSIONS

In this paper, we proposed a novel framework for joint

disparity and confidence estimation leveraging stereo images.

By training two deep networks for disparity and confidence

estimation in a weakly adversarial manner, we push the former

to improve per-pixel disparity accuracy detected by the latter

as erroneous. Experiments on standard indoor and outdoor

datasets highlight that our weakly adversarial paradigm al-

ways enables us to improve disparity accuracy significantly

compared to the baseline as well as to using reflective con-

fidence or heteroscedastic uncertainty. Moreover, confidence

estimation yielded by our WAN is superior to state-of-the-

art measures provided that enough training data is available

(KITTI) and competitive when this requirement is not met

(Middlebury).
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