
18 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Published Version:

A MAPE-K Approach to Autonomic Microservices

Published:
DOI: http://doi.org/10.1109/ICSA-C54293.2022.00025

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/907438 since: 2022-11-24

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/ICSA-C54293.2022.00025
https://hdl.handle.net/11585/907438

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

A. Bucchiarone, C. Guidi, I. Lanese, N. Bencomo and J. Spillner, "A MAPE-K Approach to Autonomic
Microservices," 2022 IEEE 19th International Conference on Software Architecture Companion (ICSA-C),
Honolulu, HI, USA, 2022, pp. 100-103.

The final published version is available online at: https://dx.doi.org/10.1109/ICSA-

C54293.2022.00025

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's
website.

https://cris.unibo.it/
https://dx.doi.org/10.1109/ICSA-C54293.2022.00025
https://dx.doi.org/10.1109/ICSA-C54293.2022.00025

A MAPE-K Approach to Autonomic Microservices
Antonio Bucchiarone

Fondazione Bruno Kessler
Trento, Italy

bucchiarone@fbk.eu

Claudio Guidi
italianaSoftware s.r.l.

Imola, Italy
cguidi@italianasoftware.com

Ivan Lanese
University of Bologna/INRIA

Bologna, Italy
ivan.lanese@gmail.com

Nelly Bencomo
Durham University

Durham, United Kingdom
nelly.bencomo@durham.ac.uk

Josef Spillner
Zurich University of Applied Sciences

Zurich, Switzerland
josef.spillner@zhaw.ch

Abstract—Microservices are an emerging architectural style
advocating for small loosely-coupled services in order to maxi-
mize scalability and adaptability. In order to help IT personnel,
adaptability can be put (completely or partially) under the
responsibility of the system using autonomic techniques, e.g.,
underpinned by a MAPE-K control loop. This paper discusses
possible trade-offs, challenges and support techniques for soft-
ware architects involved in building autonomic microservice-
based systems.

Index Terms—Autonomic Computing, Microservices, MAPE-K
control loop

I. INTRODUCTION

Software architectures move towards an intelligent no-ops
era with functionality encapsulated in networked contain-
ers [1], [2]. This has severe impact on the way software is
conceived. Since computation is a good that can be obtained
and released on demand, it must be requested only when
needed. For cost reasons, software must thus be designed
to follow the demand-and-load curves. New architectural ap-
proaches emerged for addressing such an issue: microservices
and serverless architectures are today the main approaches for
dealing with it [3]. Continuous integration practices [4] deliver
as fast as possible new versions and new functionalities,
layering upon a smart automatized infrastructure, which is able
to enforce compilations, quality checks, tests and deployment
with minimum human intervention, if at all. The increasing
complexity of modern software demands for new approaches
to architectural design and system modeling. Microservices [3]
is an architectural style originating from Service-Oriented Ar-
chitectures and introduced to provide: (i) high scalability, (ii)
technology and language independence, (iii) simple maintain-
ability and (iv) simple update and redeployment due to loose
coupling. Reasoning in terms of microservices involves finding
at runtime the best architectural configuration to achieve the
desired goals. As such, several areas of software engineering
can underpin microservices [5], such as, service composition
and orchestration, runtime architectural adaptation, versioning,
and Infrastructure as/from Code.

The uncertain and dynamic context of the ecosystems of
microservices calls for adaptation support similar to that
provided by autonomic (a.k.a. self-*) systems [6] to be added
into the architecture. The autonomic approach lets the operator

describe at the high-level of abstraction the desired outcome
and leaves to the system itself the tedious and error-prone work
to find the actual architectural changes needed to reach such an
outcome. A fully autonomic approach is not always possible
or even desirable, hence, in most cases, autonomic capabilities
complement manual interventions or directives from the IT
personnel. Such a perspective raises important issues related
to the interactions between the runtime environment and
the microservices, because some of the autonomic actions
can be provided only by negotiating with the environment.
Consider a microservice that asks for being scaled to address
a load increment. Such an activity is in charge to the runtime
environment (e.g., Kubernetes), thus the microservice must
ask the environment to provide another instance of itself. As
a consequence, the protocols for negotiating these kinds of
actions between the microservices and the environment should
be rationalised.

There are several mechanisms which can be adopted to-
wards autonomicity [6], [7]. They are generally underpinned
by the fundamental ideas of feedback loops [8], which com-
prise the activities of Monitor, Analyse, Plan and Execute
(MAPE). The decision making for adaptation is made ac-
cording to trade-offs between positive and negative effects as
consequences of the adaptation actions. In the general setting
of autonomic systems, two implementation strategies have
been discussed: adding an autonomic manager in charge of it
or embedding the autonomic capabilities within the managed
system. In the context of microservices also the runtime plays
a role, hence more trade-offs emerge and need to be discussed.
In all the cases, the entity in charge of the autonomic behaviour
must acquire sufficient knowledge to take on the activities that
are to be automated. The knowledge to recognize the need
for adaptation and to automatically decide and perform the
actions required needs to be maintained in a knowledge base.
The approach above is known as the MAPE-K loop [9].

The main aim of the present paper is to discuss different
alternative solutions and trade-offs related to the application
of an autonomic approach based on the MAPE-K loop in
microservice scenarios. More in detail, we will present a
vision using a graphical representation to highlight which
entity (microservices, environment or IT personnel) takes

responsibility of each MAPE-K phase, and also discuss the
trade-offs related to different design choices.

II. OUR VISION

We envision scenarios where microservice-based systems
(MBS) are purposefully equipped with autonomic capabili-
ties to manage issues such as self-{protection, healing, op-
timization, reconfiguration} and so on. This complements
the microservice approach which automates aspects such as
deployment and scalability, making a further step towards
NoOps scenarios [10]. As discussed earlier, autonomicity
can be obtained using the classical MAPE-K approach. The
MAPE-K feedback control loop performs MAPE phases over
a shared Knowledge [9]. The Monitoring (M) phase acquires
data from the system and its environment. Analysis (A) of
the monitored data involves activities such as filtering or
transforming data, e.g. to reduce noise. Then, Planning (P)
of future actions is done, keeping into account the result of
the analysis as well as the knowledge of the system held in
the model. Finally, the Execution (E) of the planned actions
should be performed. This consists of changing the values on
the actuators in the system according to the developed plan. A
MAPE-K loop stores the Knowledge (K) required for decision-
making in what is called the Knowledge Base (KB).

When integrating a MAPE-K loop in an MBS there are
various options related to which part of the system performs
the phases involved in the loop. Possibilities include having
phases performed by the infrastructure (e.g., containers, cloud
runtime, etc.), by each microservice in addition to its function-
alities, by ad-hoc microservices, or by groups of microservices.
While different decisions are suitable in different contexts,
they come equipped with constraints and trade-offs. The
contribution of this paper is the analysis and discussion of
such trade-offs, aiming at providing guidelines for designers of
autonomic microservice systems, taking into account benefits
and issues that come with different design choices.

To categorize the possible approaches to introduce auto-
nomic behaviour in MBSs, we introduce a graphical notation
to identify the responsibilities of intervention for the different
phases of the MAPE-K loop. In Figure 1a, we represent the
intervention responsibilities by actor (humans, environment,
and microservices) as concentric circles:
• the external area represents human responsibility, namely

the fact that the IT personnel is in charge of the correspond-
ing activity; of course if all the activities are under human
responsibility then the system is not autonomic at all;

• the inner area represents microservice responsibility: either
dedicated microservices or each microservice as part of its
capability take care of the activity;

• the area in the center represents the responsibility of the
environment. This case may denote that the activity is under
the responsibility of the infrastructure, or more in general
of any automatic entity not part of the considered MBS.
Since the MAPE-K phases form a loop, we represent them

as different sectors of the same circle as reported in Figure
1b. We do not explicitly represent the KB; in many cases
it is under the responsibility of the entity that takes care of

the planning, since planning makes extensive use of the KB.
Other options are also possible, however we think that an
explicit representation of the KB would clutter the simple
graphical representation presented here. We combine the two
diagrams to describe an approach to autonomic microservices
as a scale diagram in Figure 1c. Essentially, each area of
the figure represents whether the actor corresponding to the
circle takes some responsibility for the activity corresponding
to the MAPE sector: if the sector is white then it takes no
responsibility; if it is (arbitrarily) coloured then the actor
has some responsibility. On the one hand, note that for each
MAPE sector at least one segment (i.e., portion of circle
in the sector) needs to be coloured since at least one actor
must take the responsibility for the activity. On the other
hand, more than one segment can be coloured in a sector,
since multiple actors can cooperate in taking responsibility
for the activity. Systems more coloured towards the center are
more autonomic than systems more coloured at the border.
Therefore, we argue that such a diagram helps architects,
developers and sysadmins to grasp at the glance the degree
of autonomicity of a running microservice system, as well
as the main responsibilities involved in the chosen approach.
Further, the same notation can also be used at the level of
system design to highlight requirements.

1) Examples: We introduce examples of our notation and
trade-offs that we will discuss more deeply later on. Figure 1d
highlights 3 special cases about the degree of autonomicity,
with respect to the actors. On the left side, all segments of
the external sector are coloured. Thus, all MAPE-K phases
are performed by human actors, hence there is no autonomic
behaviour. In the center, all the phases are automated by the
environment. In this case the MBS is not really autonomic,
since microservices are oblivious of the self-* behaviour. On
the right side, all phases are managed by the microservices
themselves. This is a fully autonomic MBS. Such an approach
has the positive side of providing maximum flexibility, since
microservices can react to changing conditions autonomously,
and they can also be easily relocated since they do not rely on
the environment for activities. Nevertheless such a scenario is
difficult to obtain, since, microservices may not have access
to useful information such as CPU and memory load, which
is normally under the control of the infrastructure, and which
may be useful to steer reconfiguration in the correct direction.
Similarly, microservices may not have control on the actuators
able to change policies related to infrastructure behaviour.

A solution would be found in a middle ground, represented
by a more realistic scenario related to self-scaling (in Figure
1e). Also called auto-scaling, it is an attractive feature of
microservice architectures, which allow them to autonomously
react to changes according to the working load. To illustrate
the reaction process, we exemplify it with Kubernetes [11],
a widely used industry standard that supports scaling at the
infrastructure level. Referring to a Kubernetes-based scenario,
auto-scaling would be represented in our scale diagram as an
environment-based scenario, where:

• Monitoring is performed by Kubernetes only, which con-
tinuously collects metrics from the deployed pods.

(a) Levels of responsibilities in autonomic microservices.
(b) MAPE phases as sectors.

(c) Autonomic microservice landscape.
(d) Special cases about the degree of autonomicity.

(e) Self-scaling. (f) Proof of concept.

Fig. 1: A MAPE-K concept and notation vision towards Autonomic Microservices.

• Analysis is also performed by Kubernetes, which extracts
statistics from the metrics.

• Planning is performed by Kubernetes as well, depending
on the initial customization provided by the sysadmin. Here
we highlight as well the sector of human responsibility as
planning may require a previous configuration performed
by a human actor. Only when the planning is always
applied without customization, planning can be put in charge
exclusively to the environment.

• Execution is provided by Kubernetes, which autonomously
scales the components and takes care of load balancing.
2) General considerations: Having a system such as the

one described above, where all the phases of the MAPE-K loop
are in charge of the environment would lead to an autonomic
infrastructure managing non-autonomic microservices. This
would offer the disadvantage of increasing platform lock-in,
i.e. it would be difficult to move the MBS across different
platforms since autonomic capabilities would be lost, unless
the new platform offers support for the MAPE-K phases as
well. Another general observation is that if both microservices
and the environment concur to the same or to different
activities of the MAPE-K loop then an interface allowing
the interaction among them is needed. Such an interface
allows them to agree or negotiate about the results of the
various phases of the MAPE-K loop. If such an interface is
not standardized, then platform lock-in will indeed be more
severe. Another aspect to take into account is that communi-

cation among microservices and between microservices and
the environment is frequently asynchronous, hence care is
needed to ensure coherence of their information and behavior.
Finally, when phases are in charge of microservices, different
implementations are possible. Indeed, there could be sidecar
microservices which play some specific roles like monitoring
or planning, or each microservice could take care of all the
aspects. The first possibility will create centralization, which
is against the microservice philosophy, yet the second option
would duplicate efforts and increase the need for coordination.

3) Trade-offs for each phase: We describe in detail each
phase of the MAPE-K loop, discussing the involved trade-offs
as well as possible choices and their consequences. Consider
first the monitoring phase which is in charge of retrieving
information about the microservice(s) and their hosting en-
vironment. We argue that the microservices are in the best
position to monitor themselves, since they have the knowledge
about their structure and internals, while the environment does
not. Microservices can, e.g., inspect useful information such
as the kind and amount of requests they receive, or which
functionalities are used. The infrastructure instead controls the
environment where the microservices run, hence it is in the
best position to monitor global metrics such as the percentage
of CPU used. Only an interaction between the microservices
and the environment can provide a complete view of the status
of the system. Of course, the discussion above calls for a
standardized interface to weaken vendor lock-in.

The analysis phase is in between Monitoring and Planning,
hence it can be done closer to either phase, in between,
or in any combination of the above. A single microservice
monitoring some metric can directly filter the data by taking
averages over time using a sliding window and send the
result to the infrastructure. The infrastructure can take the
average across microservices and update the KB accordingly.
Asynchronous communications should be taken into account,
e.g., analysis filters out values which are obsolete due to delays
in communication or to microservices with excessive load.

The planning phase ideally would be done in a centralized
way, that is by one entity only, i.e. a dedicated component
of the environment or a dedicated system of microservices.
The chosen entity can take all the information available and
establish a suitable plan. This is also the place where the
knowledge base KB, used for planning, should be kept.
However, such a centralized approach may be at odds with
the desired distributed and loosely-coupled nature of MBS. A
main challenge here is how to distribute the planning as well
as the KB (allowing, e.g., for scalability and robustness) while
preserving the quality of the developed plans. Compositional
approaches are possible, where each microservice subsystem
takes care of local planning, and global coordination ensures
compatibility and synergy among local plans. The global plan
could even result as an emergent property of the system.

The execution phase aims at actuating on various settings
and configurations of the system and of its environment. As
before, microservices are in the best position to act internally,
e.g., by changing the used algorithm, while the infrastructure is
in a better position for more global actions, such as replicating
the microservices or changing the resource provision.

III. PROOF OF CONCEPT SUMMARY

A proof of concept about how an autonomic microservice
could work has been reported [12]. A functionality is originally
provided by a single microservice µ. Then, a load increment
and a corresponding slow down in the response time are
simulated on its listening endpoints. The microservice, that
is autonomously able to detect a deterioration of the response
time of its operations, then invokes the environment to scale up
one of its cores µ into the current infrastructure. After some
delay, the load is simulated to decrease, thus improving the
response time, resulting in µ asking for scaling down the extra
instances. In this example, the infrastructure transforms just
the requests from the autonomic microservice into operational
activities on the underlying Docker layer, which is able to
provide new containers inside the infrastructure. This example
neatly highlights, even if in a minimal and raw setting, several
of the points discussed in the previous sections:
• µ implements a simple monitor of its operations, particularly

it collects the response time average. Thus phase M is under
the responsibility of the microservice;

• µ detects a decrease in response time due to high load. Thus
phase A is under the responsibility of the microservice;

• µ decides when to ask for a new instance for scaling
the load. Thus phase P is under the responsibility of the
microservice;

• µ negotiates with the environment the release of a new
instance. Thus, phase E is under shared responsibility of
the microservice and the environment.

• µ holds all the knowledge about the component to be
deployed. The infrastructure is not aware of the new com-
ponent to be deployed neither it is aware of its container
image, which is built at runtime.
Figure 1f depicts the scale diagram of the proof of concept

described above. Here the microservice is close to be fully
autonomic. Indeed, only the execution phase is performed
together with the infrastructure. The proof of concept has
been realized using the Jolie programming language [13],
where microservices can be deployed either together into a
unique monolith or in a distributed manner. The autonomic
microservice can fragment itself and promoting one of its
internal components to become a scalable microservice by
sending its definition to the environment. Such an aspect may
not be easy to implement when using other more mainstream
technologies. In general, building autonomic capabilities into
microservices may not be easy, however the use of dedicated
languages helps [14].

REFERENCES

[1] Q. Zhang, L. Liu, C. Pu, Q. Dou, L. Wu, and W. Zhou, “A comparative
study of containers and virtual machines in big data environment,”
in 11th IEEE Int. Conf. on Cloud Computing, CLOUD 2018, San
Francisco, CA, USA. IEEE Computer Society, 2018, pp. 178–185.

[2] C. Pahl, A. Brogi, J. Soldani, and P. Jamshidi, “Cloud container
technologies: A state-of-the-art review,” IEEE Transactions on Cloud
Computing, vol. 7, no. 3, pp. 677–692, 2019.

[3] A. Bucchiarone, N. Dragoni, S. Dustdar, P. Lago, M. Mazzara, V. Rivera,
and A. Sadovykh, Eds., Microservices, Science and Engineering.
Springer, 2020.

[4] M. Di Penta, “Understanding and improving continuous integration
and delivery practice using data from the wild,” in Proc. of the 13th
Innovations in Software Engineering Conf. on Formerly Known as India
Software Engineering Conference, ser. ISEC 2020. New York, NY,
USA: ACM, 2020.

[5] S. Hassan, R. Bahsoon, and R. Kazman, “Microservice transition and its
granularity problem: A systematic mapping study,” Software: Practice
and Experience, vol. 50, 06 2020.

[6] B. Cheng et al., “Software engineering for self-adaptive systems: A
research roadmap,” in Software Engineering for Self-Adaptive Systems
[outcome of a Dagstuhl Seminar], ser. Lecture Notes in Computer
Science, vol. 5525. Springer, 2009, pp. 1–26.

[7] S.-W. Cheng, A.-C. Huang, D. Garlan, B. Schmerl, and P. Steenkiste,
“Rainbow: Architecture-based self-adaptation with reusable infrastruc-
ture.” vol. 37, 01 2004, pp. 276–277.

[8] Y. Brun, G. Di Marzo Serugendo, C. Gacek, H. Giese, H. Kienle,
M. Litoiu, H. Müller, M. Pezzè, and M. Shaw, Engineering Self-Adaptive
Systems through Feedback Loops. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009, pp. 48–70.

[9] “An architectural blueprint for autonomic computing,” IBM, Tech. Rep.,
Jun. 2005.

[10] L. Leite, C. Rocha, F. Kon, D. Milojicic, and P. Meirelles, “A survey
of devops concepts and challenges,” ACM Computing Surveys (CSUR),
vol. 52, no. 6, pp. 1–35, 2019.

[11] F. Rossi, V. Cardellini, and F. L. Presti, “Hierarchical scaling of mi-
croservices in kubernetes,” in IEEE Int. Conf. on Autonomic Computing
and Self-Organizing Systems, ACSOS 2020, Washington, DC, USA.
IEEE, 2020, pp. 28–37.

[12] C. Guidi, “Towards Autonomic Microservices, Proof of concept,”
https://github.com/jolie-storm/autonomic-microservices, 2020.

[13] “Jolie, the service-oriented programming language,” https://jolie-
lang.org.

[14] C. Guidi, I. Lanese, M. Mazzara, and F. Montesi, “Microservices: A
language-based approach,” in Present and Ulterior Software Engineer-
ing, M. Mazzara and B. Meyer, Eds. Springer, 2017, pp. 217–225.

	Copertina_postprint_IRIS_UNIBO(2)
	ICSA2022_NEMI

