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Abstract 

Lignocellulosic biomasses, ranging from softwood to agriculture and forestry wastes, represent the most 

abundant resource for modern biorefinery. In the course of the last years, we have witnessed the rise of 

“reductive catalytic fractionation” processes of lignocellulosics in which priority attention is given to 

lignin that is “firstly” converted into aromatic feedstocks. This opinion outlines recent advances in the 

reductive valorization of lignocellulosic biomasses via lignin-first biorefinery approach with particular 

emphasis on the fundamental catalytic reactions involved in the extraction and depolymerization of 

lignin as well as in the stabilization of the obtained phenolic units. Finally, a brief overview on the 

further transformations of lignin derived monolignols and phenolics into added value chemicals, fuels, 

polymeric materials and active pharmaceutical ingredients is presented. 
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The global sustainability context of modern biorefinery 

Industrial chemistry is in the midst of changing its fossil nature by using renewable biomasses and 

agro-industrial/urban wastes as feedstocks thus reducing, at the same time, its energy and environmental 

impact [1]. The driving force behind this scenario needs to be found both on new green economy 

strategies launched by several countries in the world [2] as well as thanks to social movements that are 

actually strengthening the public awareness of the environmental crisis [3]. In 2019, the Global Climate 

Stike promoted by the Swedish teenager activist Greta Thunberg has captured the world’s attention on 

the climate change and on the achievement of the Paris goals [4]. In this context, United Nation 

undersigned the 2030 Agenda for Sustainable Development, an action program where 17 ambitious 

goals (SDGs) and 169 targets have been implemented to eradicate poverty, to protect the planet and to 

ensure prosperity for all [5].  

Residual and non-edible lignocellulosic biomasses represent key feedstocks for a modern biorefinery 

for their relative low-price and high quantity availability [6]. Lignocellulosics present a complex 

chemical architecture characterized by three major constituents such as cellulose (35-50%), 

hemicellulose (25-30%) and lignin (15-30%) that allow to obtain different and innovative platform 

molecules [7]. In the course of the years, several biorefinery technologies have been proposed, many of 

which require physico-chemical pretreatments [8] in order to allow the valorization of holocellulosic 

(cellulose+hemicellulose) components of biomasses into fuels and chemicals [9] relegating lignin to the 

role of “ugly duckling”. The native structure of lignin, in fact, was irreparably altered during biorefinery 

processes thus strongly limiting its chemical upgrading into added value chemicals [10]. However, the 

native phenolic constituents of lignin are of particular interest for a lignocellulosic biorefinery aimed to 

the sustainable production of green aromatic compounds. For this reason, the biorefinery approach of 

the Reductive Catalytic Fractionation (RCF) - where a priority attention is given to the depolymerization 

of lignin (the so called “lignin-first” biorefinery) - has raised a lot of attention in the last years [11-14].
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The Revolution of “Lignin-first” approach in the catalytic valorization of lignocellulosics 

The lignin-first approach is a heterogeneous catalyst-dependent process that involves three elementary 

steps: solvolysis, fractionalization/depolymerization and reductive stabilization. The obtained 

monolignol and phenolic units can be subsequently used as feedstocks for the preparation of aromatic 

chemicals, bio-based fuels, polymers and drugs (Figure1). 

 

Figure 1. The revolution of “Lignin-first” approach: from lignocellulosic biomasses to added value 

products. 

 

The first step in the RCF permits the extraction of lignin from the lignocellulose with short chain 

alcohols (C1-C4) or cycle ethers (mainly dioxane) generally used as solvolytic solvents as such or in 

mixture with water (Table 1) [15-22]. The use of organic solvents or their mixture with water takes 

inspiration from the well-known organosolv processes that allow an effective solubilization of lignin 

preserving its native structure [8]. The fractionalization/depolymerization and stabilization steps are 

redox-active catalyst driven. The fragmentation is thermally dependent (200-250°C for 2-6 h) and it is 

generally enhanced by increasing the polarity of the reaction media [18, 20]. The most adopted catalytic 

systems are noble metals on a carbon support or other typical hydrogenation/hydrogenolysis catalysts 

with Pd/C and Ru/C being the most investigated (Table 1) [32].  The redox catalysts activity is foremost 

crucial in the reductive stabilization of the lignin fragments suppressing repolymerization reactions and 

formation of condensed lignin products, thus increasing the overall monomer yield (it was demonstrated 
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that an excessive degree of unsaturation in phenolic units corresponds to a more extensive 

repolymerization with formation of stable C-C bonds). [23] 

 

Table 1. Selected catalytic processes for the reductive upgrading of lignocellulosic biomasses under 

lignin-first conditions (PS: Propyl Syringol; PG: Propyl Guaiacol ; PohS: 4-n-Propanolsyringol; PohG: 

4-n-Propanolguaiacol; PeneS: n-4-Propenylsyringol; PeneG: n-Propenylguaiacol) 

Source Solvent Catalyst Reaction conditions  Products Ref. 

Birch MeOH Ni/C 240°C, Ar, 6 h PS, PG, PeneS, PeneG [15] 

Poplar MeOH Pd/C 250°C, 20 bar H2, 3 h PohS, PohG, PS, PG [16] 

Poplar MeOH Ru/C 250°C, 40 bar H2, 15 h PohS, PohG, PS, PG [17] 

Poplar MeOH/H2O (7:3) Pd/C 200°C, 20 bar H2, 3 h PohS, PohG, PS, PG [18] 

Birch EtOH/H2O (1:1) Pd/C 195°C, Ar, 1h PeneS, PeneG [19] 

Birch 2-PrOH Pd/C 200°C, 30 bar H2, 3 h PohS, PohG [20] 

Poplar 2-PrOH/H2O (7:3) 

RANEY® 

Ni 220°C, N2, 18 h Alkenes and arenes [21] 

Pine Dioxane/H2O (1:1) Pd/C 195°C, 35 bar H2, 24 h PohG, PG [22] 

 

The basic chemistry beyond the lignin biorefinery 

Lignin fractionation/depolimerization involves the cleavage of C-C and C-O bonds in the presence of a 

redox catalyst and a reducing agent. Over the past decades, aromatic ethers have been used in order to 

mimic the 4-O-5, -O-4 and -O-4 lignin linkages [24-28] with the latter being the realistic target for 

the production of phenolics in high yield by means of hydrogenolysis reactions [14]. A direct correlation 

between the amount of -O-4 in the lignocellulosic substrates and the monomer yield that generally 

follows the trend softwoods < herbaceous crops < hardwoods has been demonstrated [29, 30]. It is 

worth to underline that the lignin content and the structure of repeating monomeric-units strongly differ 

on passing from softwoods (21-29% wt, almost entirely characterized by the presence of guaiacyl units) 



 

7 

to hardwoods (18-25% wt, composed by guaiacyl and syringyl units) and herbaceous (15-24% wt, 

containing guaiacyl, syringyl and p-hydroxyphenyl units) [7]. An increasing attention has been payed to 

the use of agro-industrial wastes and residues for their ready and cheap availability as well as 

engineering crops opportunely designed in order to maximize the yield to desired phenolic compounds 

[11]. However, at present, the high cost of pretreatments (in the case of waste and residues) or the 

presence of alterations of the morpho-phisiological plant parameters accompanied by a stunted growth 

(with respect to engineering crops) prevent their direct use for biorefinery purposes. 

Together with classical reductive processes (that imply the use of high-pressure H2), indirect 

hydrogen sources have been used thus allowing, inter alia, milder reaction conditions and increased 

safety processes [31, 32]. For instance, triflic acid [33], formic acid (also generated in-situ) [34] or 

silanes [35] were efficiently adopted as H-donor additives. Since the pioneering studies of Ford and 

coworkers, supercritical methanol was utilized to generate the hydrogen necessary through reforming or 

when used in mixture with H2O via sequential reforming and water gas-shift reactions (liquid-phase 

reforming conditions). [36] Instead, when 2-propanol is used as reaction medium, tandem 

dehydrogenation/hydrogenolysis processes allow the depolymerization of lignin (transfer 

hydrogenolysis conditions) [21, 37].  

Among all alternatives to the use of molecular hydrogen, the possibility to obtain hydrogen directly 

from lignocellulose itself is definitively attractive [38]. Even if recent studies demonstrated the self-

hydrogen transfer hydrogenolysis of β-O-4 linkages in lignin model molecules [28], the hemicellulose 

fraction appears to be the best H-donor substrate for the reductive upgrading of lignocellulose without 

the addition of hydrogen (or H-donor) to the reaction mixture [38]. Hemicellulose was used as internal 

H-donor source in one of the first contribution of the RCF process under flow conditions in the presence 

of the Pd/C catalyst by Samec and co-workers [38]. The reductive upgrading of lignocellulose with 

flow-through systems, if compared with classic batch reactors, offers several advantages including a 

better control of reaction conditions (that can be opportunely tuned in the course of the RCF process) an 
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easier catalyst recover/reuse and a catalyst-free pulp that can be directly valorised into other added value 

products [38-40].   

 

From phenolic units to added value products 

The depolymerization products of lignocellulosics lead to a variety of compounds that can be 

rightfully considered bio-derived building blocks for the sustainable production of added value 

chemicals, fuels, polymers and pharmaceuticals (Figure 2) [41-43].  

 

Figure 2. A schematic overview of potential added value products of lignin biorefinery. 

  

Since the lignin is strongly linked with holocellulosic fractions, the simultaneous partial degradation 

of hemicellulose often takes place leading to RCF processes thus affording a variety of C5 derived 

polyols and furanics. At the same time, once the solid carbohydrate cellulose pulp (intrinsically rich of 

C5-C6 sugars) is separated from the reaction medium it can be either valorised by enzymatic hydrolysis 

[44] or via a heterogeneous catalysed hydrogenation/hydrogenolysis process into biofuels [45-49]. Sels 

and co-workers demonstrated, for the first time, a proof-of-concept valorization of the RFC 

carbohydrate pulp for the enzymatic production of bio-ethanol [23]. Rinaldi and coworkers recently 
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presented a “lignin-centered convergent approach” for the reductive conversion of poplar or spruce 

wood into aliphatic and aromatic bio-hydrocarbons over a phosphidated Ni/SiO2 catalyst [46]. In these 

regards, recent reports proposed the use of lignocellulosics for the direct production of jet fuels [47] or 

bio-derived fuel additives [48].     

The increased importance of the use of bio-based products, arisen in consumer attitudes and 

perceptions, has pushed companies (Avantium, BASF SE, Covestro, DuPont de Nemours, Novamont, 

Neste and many others) to the production of plastics and materials from renewable monomers. 

Furthermore, the central role of lignin - as natural source of aromatics for the modern polymer industry - 

is absolutely clear. Phenolic units obtained as such from lignin deconstruction (e.g. phenylpropanols and 

propylphenols) have, so far, a limited direct market application [10]. They can be further converted into 

bio-BTX aromatics (benzene, toluene and xylene) but final sales costs are still too high if compared 

with those of analogous petrol-derived compounds. However, their impact in the next years can be 

colossal considering, for example, that the combination of the lignin-derived benzene with bio-ethylene 

(obtainable from bio-ethanol) could provide a biorefinery route for the production of styrene (global 

market of $49 billion in 2018 with a forecast CAGR of 4.5% in 2019-2025) [50].  

In a very interesting contribution, it was demonstrated that the lignin oil can be directly used, after 

reaction with epichlorohydrin, in the production of biobased epoxy resins [51]. Several monolignols and 

phenolics have been successfully used for the production of biopolymers [52-57]. P-coumaric acid can 

be used as precursor of polyesters, while epoxy resins can be successfully produced starting either from 

4-propylguaiacol and vanillin [58]. Vanillin is a key intermediate of biobased polymers since it can be 

used, also via its oxidative dimer – divanillin, for the preparation of polyacetals, polyaldimines (Schiff 

base polymers), methacrylates, polyurethans, polybenzoxazines and other conjugated polymers [59]. 

Bisphenols (obtained via coupling of two phenolic units) and their derived precursors can be used as 

starting monomers for polycarbonates, polyesters, epoxy resins as well as liquid crystals and 

optoelectronic conjugated polymers [59]. 
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Phenols and lignans already represent an important class of natural products with pharmacological 

and nutraceutical properties: it has been reported the use of  polyphenols against ischaemic heart disease 

and the potential application of ligno-phenols in the attenuation of vascular oxidative stress and/or 

inflammation as well as the anti-inflammatory and antinociceptive properties of the sinapyl alcohol have 

been reported [60]. 

Aromatic compounds obtainable from the reductive upgrading of lignocellulose have found also 

applications as precursors for the production of active pharmaceutical ingredients (API) and other 

biobased drugs. The research group of Katalin Barta has successfully developed a new synthetic 

strategy, called “cleave and couple”, in which lignocellosic deriving aromatic and aliphatic compounds 

undergo transformation through the formation of C-C and C-N bonds [61]. In particular, the authors 

proposed the use of functionalized phenolic monomers for the preparation of several pharmaceutical 

active compounds and, very recently, they presented a synthetic protocol for the production of a series 

of 2-benzazepine derivatives (commonly used as antidepressants) from phenylpropanol [62] opening 

new frontiers for lignin-biorefinery.  

Future challenges 

The reductive catalytic fractionation of lignocellulosic biomasses breaks a new ground for a green and 

sustainable biorefinery. By now, we have all the necessary background to push the production of 

aromatics from the native lignocellulose under classic batch conditions, however, many scientific and 

technological challenges are ahead of us. In particular, the use of agro-industrial and domestic wastes as 

feedstocks, more sustainable hydrogen sources (e.g. H2O as in-situ hydrogen donor medium or photo-

driven water splitting) and the development of innovative one-pot multistep continuous flow processes 

for the direct conversion of lignin fractions into pharmaceutical drugs will further increase the overall 

efficiency and sustainability of the next generation of biorefineries. 
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