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Quintessence and the Swampland: The Parametrically
Controlled Regime of Moduli Space

Michele Cicoli, Francesc Cunillera,* Antonio Padilla, and Francisco G. Pedro

We provide evidence that slow roll is not possible in any parametrically
controlled regime of the moduli space of string theory. This is proven in full
generality in the asymptotic limit of the moduli space of type II and heterotic
Calabi-Yau compactifications for the dilaton and any number of Kähler moduli.
Our results suggest that in order to build quintessence into string theory one
must work in the interior of moduli space where numerical, even if not
parametric, control could still be achieved.

1. Introduction

Cosmological observations[1–3] suggest that our universe has ex-
perienced at least two phases of accelerated expansion — one
at early times, usually referred to as inflation, and one in the
most recent epoch, known as dark energy. Establishing the mi-
croscopic origin of inflation and/or dark energy, is a significant
challenge for string theory phenomenology. Indeed, it has been
conjectured that the canonical form of accelerated expansion -
that of a de Sitter vacuum driven by a positive cosmological
constant[4] - cannot be obtained from string theory.[5–7] Here our
interest lies in the late time alternative to de Sitter, some times
known as quintessence.[8–10] This is where we have a scalar field,
or fields, in slow roll, yielding a dynamical theory of dark energy
that is almost de Sitter, but not quite. Such a scenario might be
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appealing in string theory, partly be-
cause of the difficulties in modelling
late time de Sitter, and partly because
they offer the possibility of a solu-
tion to the coincidence problem.[11]

However, this short note is the first of
two papers identifying significant chal-
lenges to quintessence model building in
string theory compactifications. Here we
will prove that quintessence is not pos-
sible in the runaway region close to the
boundary of moduli space,

because one cannot satisfy the slow roll constraints. Related con-
clusions were drawn in [12–16]. Here we build on these works
by simultaneously analysing the Kähler-dilaton sectors, by high-
lighting the rôle of supersymmetry and by considering correc-
tions to moduli potentials which at tree-level feature a no-scale
cancellation. Further difficulties with quintessence model build-
ing in string theory were also discussed in [17]. In the following
we discuss the absence of a slow roll region in the runaway of type
II and heterotic supergravities. For a comprehensive review of
the pros-and-cons of the different theories regarding othermodel
building aspects, see [18].
To proceed with our proof, let us approach the boundary of

moduli space in a string theory compactification on some Calabi-
Yau threefold,  . In the strict boundary limit, we should think
of the dilaton or the volume moduli going to infinity. As is well
known, such a limit is expected to bring down an infinite tower
of light states, spoiling the effective field theory description.[19–22]

In particular, the asymptotic limits of the volume moduli bring
down either Kaluza-Klein modes, consistent with a decompacti-
fication of the internal space, or winding modes, consistent with
decompactification of the dual. For the asymptotic limits of the
dilaton, the tower of light states is less clear — it has been sug-
gested that this can introduce a tower of tensionless strings and
domain walls.[23]

Since the physics at the boundary is clearly not phenomeno-
logically viable, let us relax the limit and consider what happens
when the dilaton or some Kähler modulus becomes arbitrarily
large but finite. In this case, the effective theory corresponds to
tree-level supergravity close to the boundary, where the moduli
fields are in a runaway regime. We are interested in theories
that might admit no four-dimensional vacuum, or potentially a
supersymmetric Minkowski or AdS vacuum somewhere in the
bulk of moduli space. The supersymmetric requirement serves
to align our discussion with the usual swampland lore of non-
supersymmetric vacua being unstable.[24] It follows from the ar-
guments given in [7] that de Sitter vacua cannot arise in any
parametrically controlled regime of the moduli space, and our
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only hope to achieve phenomenologically viable models of dark
energy is to consider runaway quintessence. For example, type
IIB flux compactifications feature at tree-level supersymmetric
Minkowski vacua where the Kähler moduli are flat directions due
to the underlying no-scale structure.[25] Leading order 𝛼′ correc-
tions, or a non-supersymmetric stabilisation of the dilaton and
the complex structure moduli, can then generate this type of de
Sitter runaway for large volume.
In the following we will assume that there exists some mech-

anism to fix the complex structure moduli at tree-level in a con-
trolled manner, while the remaining moduli fields correspond to
the axio-dilaton S = s + i𝛼 and the Kähler moduli Ta = 𝜏a + i𝜃a,
which are identified with either two-cycles or four-cycles, depend-
ing on which is most convenient. In the runaway regime, close
to the boundary, the dynamics of these moduli is governed by the
following Kähler potential in its tree-level sum separable form

K = −p ln() − ln(S + S̄) + K0 , (1.1)

and a superpotentialW to be specified for each supergravity. We
have denoted the internal volume by (𝜏a). For any Calabi-Yau
threefold  , the volume is a homogeneous function of degree
3∕2 in the Kähler moduli for four-cycles, or equivalently, of de-
gree 3 in the Kähler moduli for two-cycles. Furthermore, for type
IIB supergravity, we have p = 2, and work with four-cycles, while
for type IIA and heterotic supergravities, we have p = 1, and work
with two-cycles. As already stated, the complex structure contri-
bution to the Kähler potential, K0, is considered to be fixed. For
further details, see [26, 27].
The Lagrangian for the scalar moduli is given by

 = KSS̄dS ∧ ⋆dS̄ + Kab̄dT
a ∧ ⋆dTb̄ − V , (1.2)

where KIJ̄ = 𝜕I𝜕J̄K is the Kähler metric for moduli space, which
given equation (1.1) is block diagonal. The scalar potential is ob-
tained by computing

V = eK (KIJ̄DIWDJ̄W̄ − 3|W|2) , (1.3)

where DIW = 𝜕IW +W𝜕IK is the Kähler covariant derivative,
and I runs over all the moduli of the theory.
At the perturbative level, the axions, 𝜃a = Im (Ta) and 𝛼, do

not contribute to the scalar potential and cannot play the rôle of
runaway quintessence. Focusing instead on the saxions/moduli,
𝜏a = Re (Ta) and s, we find that the relevant part of the Lagrangian
is now given by

 = 1
4s2

(𝜕s)2 + Kab̄𝜕𝜏
a𝜕𝜏b − V(s, 𝜏a) , (1.4)

A necessary condition for phenomenologically viable
quintessence is the existence of a slow roll regime, defined
by the condition 𝜖 := −Ḣ∕H2 < 1 where H is the Hubble pa-
rameter and dot denotes differentiation with respect to proper
cosmological time. For a generic multiscalar theory described by
a Lagrangian  = 1

2
ZIJ𝜕𝜙

I𝜕𝜙J − V(𝜙I) one can show in the limit

of vanishing acceleration, 𝜙̈I = 0, the dynamics of the system is
described by

H2 ≈ 1
3
V and 3H𝜙̇I + ΓI

JK 𝜙̇
J𝜙̇K ≈ −ZIJ𝜕𝜙JV, (1.5)

whereZIJ is the inverse of the field spacemetric andΓI
JK is the cor-

responding metric connection. These equations admit two dis-
tinct classes of slow roll solutions, whose existence and stability
has been analysed in the context of dark energy in [28]. In this
note we will focus on the cases when 3H𝜙̇I ≫ ΓI

JK 𝜙̇
J𝜙̇K → 0, for

which

Ḣ ≈
(
𝜕𝜙IV

)
𝜙̇I

6H
≈ −

(𝜕𝜙IV)ZIJ(𝜕𝜙JV)

18H2
, (1.6)

and so

𝜖 = − Ḣ
H2

≈ 1
2

(
𝜕𝜙I lnV

)
ZIJ

(
𝜕𝜙J lnV

)
. (1.7)

In this regime, the requirement of quasi-de Sitter expansion im-
plies the need for flat (multifield) scalar potentials. The other
class of accelerating solutions, that we will not analyse here,
forego the flatness of the potential in exchange for large field
space curvature, see [28, 30].1 While promising, this avenue is not
without challenges from a string model building perspective.[31]

For the supergravity compactifications under consideration
(1.4), the first slow roll parameter is given by 𝜖 = 𝜖s + 𝜖 , where
the dilaton contribution is

𝜖s = s2
(
𝜕s lnV

)2
, (1.8)

and the Kähler contribution is

𝜖 = 1
4
(𝜕𝜏a lnV)K

ab̄(𝜕𝜏b lnV) , (1.9)

Throughout this paper, we will make regular use of Euler’s theo-
rem and its corollary: if Pn is a homogeneous function of degree
n in 𝜏a, then

𝜏a𝜕𝜏a lnPn = n , 𝜏a𝜕𝜏a𝜕𝜏b lnPn = −𝜕𝜏b lnPn .

In particular, this allows us to infer the following conditions on
the derivatives of the Kähler potential

Kab̄𝜕T̄bK = −2𝜏a , (𝜕TaK)Kab̄(𝜕T̄bK) = 3 , (1.10)

where the indices run over the Kähler moduli only. The latter re-
sult holds as long as we work with four-cycle Kähler moduli in
type IIB supergravity, and two-cycle Kähler moduli in type IIA
and heterotic.
Let us now derive the detailed form of the tree-level scalar po-

tential, and the corresponding slow roll parameter, for the type
II and heterotic supergravities, in turn. We will see that the slow
roll condition 𝜖 < 1 can never be satisfied in the runaway regions
close to the boundary of moduli space.

1 Strictly speaking the requirement is that ΓIJK 𝜙̇
J𝜙̇K ≫ 3H𝜙̇I for one of

the scalars, which can be achieved even in flat field space if, for in-
stance, one uses polar coordinates as in [29].
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2. The Type IIB Runaway

Let us begin with type IIB supergravity (for further details, see
[26]). In this instance, at tree-level, the superpotential is linear
in the dilatonW = h0S + f0, with h0 and f0 set by the three-form
fluxes, respectively H3 and F3, that stabilise the complex struc-
ture moduli supersymmetrically. Furthermore, the Kähler mod-
uli Ta = 𝜏a + i𝜃a that enter the Kähler potential through the vol-
ume will be identified with four-cycles, so that the volume is a
homogeneous function of degree 3

2
in the corresponding saxions,

𝜏a. Using the form of the F-term scalar potential given by equa-
tion (1.3) and the Kählermetric (1.1) with p = 2, we obtain a scalar
potential

V = eK0

2s2
|h0S̄ − f0|2 , (2.1)

where S̄ = s − i𝛼. If h0 ≠ 0, the imaginary part of the axio-dilaton
can be stabilised at the point where 𝜕𝛼V = 0, or equivalently, 𝛼 =
−Im ( f0

h0
), so that the scalar potential becomes

V(s,) = eK0

2s2
|h0|2(s − Re

(
f0
h0

))2

. (2.2)

It follows that

𝜖s =
⎛⎜⎜⎜⎝
s + Re

(
f0
h0

)
s − Re

(
f0
h0

)
⎞⎟⎟⎟⎠
2

, 𝜖 = 3 , (2.3)

definedwheneverV ≠ 0.We immediately infer that 𝜖 = 𝜖s + 𝜖 ≥
3, ruling out slow roll in the runaway regime. Notice that vacua
with h0 = 0 feature exactly 𝜖s = 1 ⇒ 𝜖 = 4.
For type IIB supergravity, if h0 ≠ 0, it is possible to further

stabilise the dilaton at the location of the supersymmetric mini-
mum, s = Re ( f0

h0
), where the leading order potential for the Käh-

ler moduli vanishes. When this happens, we should consider ad-
ditional perturbative and non-perturbative corrections to the po-
tential. In order to be compatible with a robust large volume ex-
pansion, these go as [25, 32, 33]

V = 
2+p +  e−f

2+q + 
2+rgn

… , (2.4)

where ,  and  will in general depend on the stabilised dila-
ton and complex structure moduli, while f > 0 and g > 0 are ho-
mogeneous functions of degree one in the 𝜏a. In particular, f
corresponds to the dominant saxion in the non-perturbative ex-
pansion. In order for us to trust the large volume expansion, we
require each of these terms to scale away more quickly than the
leading order 1∕2 term, which happened to vanish once the
dilaton was stabilised at its supersymmetric minimum. This im-
plies that p > 0, q ≥ 0, and r + 2n

3
> 0, suggesting that the vol-

ume direction is made even steeper and the volume modulus
will not slow roll in this case either. To see this explicitly, we
compute the slow roll parameter in the asymptotic regime where
only one of the terms dominates, in accordance with our defini-

tion of the boundary of moduli space. If V ∼ 

2+p , we find that

𝜖 ∼ 3(1 + p

2
)2 > 3. In contrast, if V ∼  e−f

2+q , we find that

𝜖 = 3
(
1 +

q
2

)2
+ f (2 + q) + 1

4
Kab̄fafb ≥ 3 , (2.5)

where the inequality follows from the fact that f, q ≥ 0 and Kab̄

being a symmetric matrix with all positive eigenvalues. Finally, if
V ∼ 

2+r gn
we find that

𝜖 = 3
(
1 + r

2

)2
+ n(2 + r) + n2

4
Kab̄(ln g)a(ln g)b ≥ 3 . (2.6)

In each case we see that slow roll is impossible in this asymptotic
region, where a single one of the corrections in equation (2.4)
dominates. It is interesting to note that leading order supersym-
metry, imposed for the sake of the stability of the compactifica-
tion, only aggravates the problem, by cancelling off the 1∕2 term
that would otherwise dominate the potential at the boundary of
moduli space and replacing it with a steeper term.
Alternatively, we could consider a non-supersymmetric stabil-

isation of the complex structure sector. This would induce a cor-
rection to (2.2) of the form 𝜆∕s2, where 𝜆 is a positive constant
proportional to the F-terms of the complex structure moduli. The
vacuum expectation value of the dilaton is then shifted to a non-
supersymmetric value leaving a 1∕2 runaway for the volume
mode, which is too steep to give rise to slow roll. Note further
that if we move into the bulk of moduli space, we might hope
to stabilise the volume at some fixed value and achieve slow roll
along some other saxion direction, through the last term in (2.4).
This is indeed possible, although such a scenario runs into fur-
ther difficulties associated with a light gravitino.[34] It is also pos-
sible that interference between two terms in equation (2.4) can
give rise to a (short) field range for the volume where 𝜖 < 1. This
avenue is likely to involve considerable tuning and, by definition,
lies in the bulk ofmoduli space and therefore will not be analysed
in the present paper.

3. The Type IIA Runaway

We now turn our attention to the type IIA runaway (for fur-
ther details, see [26]). The superpotential now contains RR fluxes
(e0, ea, q

a), the (3,0)-component of theH3 flux, h0, and the Romans
mass, m[35]:

W = e0 + eaT
a + 1

2
abcq

aTbTc + m
6
abcT

aTbTc − ih0S . (3.1)

Here the Kähler moduli Ta = va + i𝜃a are identified with two-
cycles and the volume is a homogeneous function of degree 3
in the corresponding saxions, va. In particular,  = 1

6
abcv

avbvc,
whereabc are the triple intersection numbers for the Calabi-Yau.
Without additional fluxes or corrections to the tree-level action,
the complex structure sector remains flat. To continue the discus-
sion on the slow roll regime, wemust therefore assume that some
other mechanism under computational control exists to stabilise
the complex structure sector, so that, at tree-level, it only enters
through some constant in the Kähler potential, K0 = ∫ Ω ∧ Ω̄.
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The tree-level scalar potential for the type IIA theory is then
given by

V = eK0
2s

×
[
4|h0|2s2 + Kab̄𝜌a𝜌̄b + 4sIm (Wh̄0) − 4𝜏aRe (W𝜌̄a) + |W|2],

(3.2)

where

𝜌a = 𝜕TaW = ea +abcq
bTc + m

2
abcT

bTc . (3.3)

We can always absorb the vacuum expectation value of the ax-
ions into a redefinition of the fluxes. Therefore, without loss of
generality, we set the axions to vanish. With the axions gone, the
superpotential can be written as

W = e0 + eav
a + (qa𝜔a +m) − ih0s , (3.4)

and

𝜌a = ea + 
[
qb(𝜔ab + 𝜔a𝜔b) +m𝜔a

]
, (3.5)

where 𝜔a = 𝜕va ln and 𝜔ab = 𝜕va𝜕vb ln . Keeping only the lead-
ing order Kähler terms at large volume, we obtain a scalar poten-
tial that goes as

V = eK0
2s

[|h0|2s2 + 14Im (mh̄0)s + |m|22
]
+⋯ (3.6)

We now compute the slow roll parameter. Since the scalar poten-
tial is a function of∕s to leading order in this asymptotic regime,
we have that 𝜖 = 3𝜖s. Furthermore,

𝜖s =
⎡⎢⎢⎣

|h0|2 − |m|2 2

s2|h0|2 + 14Im (mh̄0)


s
+ |m|2 2

s2

⎤⎥⎥⎦
2

. (3.7)

We remark that, in order to keep 𝛼′ corrections from becoming
important, we require2

S ≫ 1 , (3.8)

where S is the volume of in the string frame. After expressing
the Einstein frame volume in string frame,  = s3∕2S, we see
that ∕s =

√
sS ≫ 1 to be consistent with (3.8) and weak cou-

pling. Thus, in the runaway regime, the ratio ∕s has to be very
large and it follows that 𝜖s ≈ 1, and so 𝜖 = 𝜖s + 𝜖 ≈ 4, ruling out
slow roll.

4. The Heterotic Runaway

We finish with the heterotic runaway, where the tree-level super-
potential does not depend on the dilaton or the Kähler moduli

2 In units of 𝛼′ = 1.

(for further details see [27]), so thatW = Wcs. The complex struc-
ture moduli are assumed to lie in their supersymmetric vacuum
by the vanishing of the corresponding F-terms. As a result, the
scalar potential becomes a runaway in the dilaton and the vol-
ume modulus

V = eK0
||Wcs

||2
2s

. (4.1)

Computing the slow roll parameters, we find that 𝜖s = 1 and
𝜖 = 3, and so 𝜖 = 4. Clearly slow roll cannot be achieved in the
heterotic runaway.

5. Conclusions

We have found that the tree-level type II and heterotic supergrav-
ities cannot contain a slow roll region in a parametrically con-
trolled regime. The result is proven for any number of Kähler
moduli. It is clear that obtaining a slow roll region requires break-
ing the form of the Kähler potential in (1.1). This can be done
by introducing corrections to the tree-level action. In the sequel
to this paper,[34] we will step away from the runaway, by consid-
ering perturbative and non-perturbative corrections to this lead-
ing order behaviour in detail. There we find that phenomenolog-
ically viable quintessence requires non-supersymmetric vacua.
This suggests that proponents of the swampland should now ob-
ject to quintessence as vigorously as they object to de Sitter, plac-
ing them on a collision course with observations.
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