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In one of the first papers on the impact of early-life conditions on individuals’ health
in older age, Barker and Osmond [Lancet, 327, 1077–1081 (1986)] show a strong
positive relationship between infant mortality rates in the 1920s and ischemic heart
disease in the 1970s. We merge historical data on infant mortality rates to 370,000
individual records in the UK Biobank using information on local area and year of
birth. We replicate the association between the early-life infant mortality rate and later-
life ischemic heart disease in our sample. We then go “beyond Barker,” by showing
considerable genetic heterogeneity in this association that is robust to within-area as
well as within-family analyses. We find no association between the polygenic index
and heart disease in areas with the lowest infant mortality rates, but a strong positive
relationship in areas characterized by high infant mortality. These findings suggest that
advantageous environments can cushion one’s genetic disease risk.

Barker hypothesis | developmental origins | gene–environment interplay | ESSGN

Ischemic heart disease is the most common cause of death in the developed world,
accounting for more than 9 million deaths worldwide in 2016 (1). It is well known that
adverse conditions during the prenatal and early childhood period affect cardiovascular
health (2–5), as well as other health and economic outcomes in older age (for reviews,
see, e.g., refs. 6–8). The vast literature on the so-called developmental origins of health
and disease (DOHaD) hypothesis spans both the medical and social sciences (see, e.g.,
refs. 4, 9–14). Its best-known proponent is the British physician and epidemiologist
David Barker. In one of the first of a set of papers, Barker and colleagues showed a strong
positive geographical relationship between the infant mortality rate in the 1920s and
ischemic heart disease mortality in the 1970s (15).

In addition to such “environmental” circumstances affecting the development of heart
disease, genetic factors are known to play an important role. Twin studies have shown
that heart disease is heritable (e.g., ref. 16), with more recent Genome-Wide Association
Studies (GWAS) starting to unravel the specific genetic variants implicated in the disease
(see, e.g., refs. 17–25). These gene-discovery studies have linked dozens of independent
genetic loci to heart disease, facilitated a better understanding of the causal risk factors,
and informed the development of new therapeutics (see, e.g., ref. 26).

Whereas the role of environmental and genetic main effects have been widely
documented, Tiffany et al. (27) argue that the environmental and biological mechanisms
(or G × E) that lead to cardiovascular disease remain understudied and incompletely
understood. Some earlier studies discuss the potential role of G × E interactions for
cardiovascular disease (see, e.g., refs. 28–30), but none of these focus on the long-held
DOHaD hypothesis. This is what we explore here, investigating the extent to which
one’s underlying genetic risk is moderated by the early life environment, or vice versa,
examining to what extent the early life environments moderates one’s genetic risk for
heart disease.

There are multiple reasons why “nature” might interact with “nurture” to shape
individuals’ outcomes. First, there may be a biological channel: genetic variation may
predispose individuals to certain health conditions or behaviors, but the phenotypic effect
can depend on environmental circumstances (31, 32), e.g., through environmentally
induced epigenetic regulation (see, e.g., refs. 27 and 33). The role of epigenetics driven
by environmental circumstances in the development of heart disease has been studied
extensively over the last 15 y (e.g., refs. 34–37). However, even if early life circumstances
cause epigenetic changes (e.g., ref. 34), this does not necessarily imply that they affect later
life outcomes. Indeed, there could be compensatory investments by the individual or her
environment that offset the development of any epigenetic effects. For example, parental
investments in children may differ in response to early life circumstances, potentially
mitigating or reinforcing their effects (e.g., refs. 38–43). In other words, epigenetics in
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response to environmental circumstances is not a sufficient
condition for the existence of G × E interaction effects.

Furthermore, an interaction between nature and nurture
need not be epigenetic; one’s genetic predisposition for certain
health conditions or behaviors may simply reflect the “type”
of individual, with different “types” responding differently to
different environments. For example, variation in the nicotinic
acetylcholine receptor has been shown to moderate the influence
of tobacco taxation on smoking (44, 45). A differential response
to tobacco taxation is unlikely to occur due to epigenetic changes
or compensatory effects and is more likely to indicate that those
with the protective polymorphism can be seen as different types
who respond differently to different environments. In other
words, epigenetics is also not a necessary condition for the
existence of G × E interaction effects.

Our analysis does not distinguish between the different
mechanisms. Nevertheless, it allows us to advance our knowledge
on the interplay between genetic and environmental factors
that drive the world’s major killer. We argue that this is not
just a fundamental scientific advance, but may also inform
governments on how environmental policies can reduce the—
arguably unfair—inequalities in heart disease arising from one’s
genetic variation.

Results
We use the UK Biobank (46) to explore the role of G × E
in heart disease, where we define G as one’s polygenic index
for heart disease and E denotes the local infant mortality rate
that individuals were exposed to during the pregnancy period.
We standardize both to have mean zero and SD one. We
distinguish between the full sample and the sibling sample,
where the latter allows us to estimate direct genetic effects and
reduce confounding by family socioeconomic characteristics.
SI Appendix, section A describes the data in more detail, and
shows the spatial and time variation in infant mortality rates for
the UK Biobank cohorts.

Between-Family Estimates. Column (1) in Table 1 presents the
estimates from a linear regression of the binary indicator of
ischemic heart disease on one’s local infant mortality rate during
the prenatal period as well as its square, controlling for gender and
year×month of birth dummies. This confirms the results in ref.
15, showing a significant relationship between adverse early life
conditions and later life cardiovascular health. Column (2) shows
the predictive power of the polygenic index, corroborating the
findings from existing GWAS and showing a significant positive
relationship between the polygenic index for heart disease and
the individual diagnosis. Including the infant mortality rate and
the polygenic index simultaneously, as in columns (3) and (4),
shows associations of similar magnitude. Column (4) further adds
the interaction term between genetic variation and the prenatal
environment, showing a positive and significant coefficient.
In other words, an increase in the local infant mortality rate
increases the probability of being diagnosed with ischemic heart
disease by more for those with a high polygenic index for heart
disease. Any gene-environment correlations (rGE) complicate
the interpretation of the G×E coefficient; see (e.g., ref. 47). We
explore this in SI Appendix, section B, showing some evidence
of rGE in the full sample, but not within families. This suggests
that the restriction to siblings allows us to identify true G × E
interactions, rather than spurious G × G or E × E interactions.

To explore nonlinearities in the G × E interaction effect, we
plot the relationship between the residualized outcome and the
local infant mortality rate experienced during pregnancy using
local polynomial plots, where the residual is obtained from a
regression of ischemic heart disease on the set of covariates. Fig. 1
shows this for the quintiles of the polygenic index [SI Appendix,
Fig. C.1 shows this using the regression estimates from column
(4) of Table 1], illustrating a diverging pattern as the infant
mortality rate increases. The figure suggests that one’s polygenic
index for heart disease makes little difference in explaining the
probability of developing ischemic heart disease among those
born in advantageous environments, yet plays a major role when
exposed to adverse early life environments.

Table 1. Gene–environment interplay for ischemic heart disease
Ischemic heart disease

(1) (2) (3) (4) (5)

IMR 0.0157*** 0.0130*** 0.0132*** 0.0040***
(0.0016) (0.0013) (0.0013) (0.0011)

IMR2
−0.0010* −0.0006 −0.0007 0.0004
(0.0005) (0.0005) (0.0005) (0.0004)

PGI 0.0315*** 0.0314*** 0.0313*** 0.0310***
(0.0005) (0.0005) (0.0006) (0.0006)

PGI2 0.0042*** 0.0042*** 0.0042*** 0.0042***
(0.0004) (0.0004) (0.0004) (0.0004)

IMR × PGI 0.0098*** 0.0099***
(0.0006) (0.0006)

Covariates Yes Yes Yes Yes Yes
District FEs No No No No Yes
Mean 0.13 0.13 0.13 0.13 0.13
R2 0.07 0.08 0.08 0.08 0.08
No. of obs. 378,785 378,785 378,785 378,785 378,785

Notes: Covariates include gender and all year ×month of birth dummies. “Mean” is the mean of the dependent variable. IMR denotes the infant mortality rate during the prenatal period
and PGI is the polygenic index for heart disease; both are standardized to have mean zero and SD one. Robust SE clustered by district in parentheses. *P < 0.1, **P < 0.05, ***P < 0.01.
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Fig. 1. G× E interplay for ischemic heart disease, local polynomial plots for
the five quintiles of the PGI; full sample.

We next explore the extent to which the estimates in Table 1
are capturing unobserved (socioeconomic) differences across
districts. SI Appendix, section A shows a correlation between
infant mortality and the districts’ socioeconomic composition,
suggesting that part of the raw association may stem from
confounding: lower social class families may experience both
higher infant mortality rates as well as ischemic heart disease
in later life producing a spurious association between infant
mortality rates and later-life heart disease. Column (5) of Table 1
therefore adds district of birth fixed effects. The inclusion of
both time and district fixed effects implies that the identification
is driven by geographical as well as temporal variation. In other
words, the district fixed effects take out average differences across
districts in the IMR, and the year fixed effects take out average
differences over the birth years. The remaining variation we use
stems from variations in the actual experienced infant mortality
rates in a certain district in a certain year that are not explained by
these average differences across years and districts. The estimates
that account for district fixed effects suggest that over half of
initial association is due to time-invariant differences between
districts. A one SD increase in the infant mortality rates is

associated with a 0.4 percentage point (3%) increase in the
probability of being diagnosed with ischemic heart disease (with
its square insignificantly different from zero). The coefficients on
the polygenic index and the interaction remain unchanged.

Within-Family Estimates. Table 2 provides the estimates for the
reduced sibling sample without family fixed effects [columns (1)–
(3)], and with family fixed effects [columns (4)–(6)]. Restricting
to the sibling sample substantially increases all SE, yet only
slightly reduces the coefficients of the infant mortality rate, with
no changes in the polygenic index. Whereas the estimate on
the interaction almost halves, suggesting that the sibling sample
is different from the full UK Biobank, it remains statistically
significant.

Moving to the estimates from the family fixed effects spec-
ifications [columns (4)–(6)], we find a very small reduction in
the parameter estimate on the polygenic index. This suggests
that most of the genetic effect stems from a direct genetic
effect, with little influence of demography and indirect genetic
effects for ischemic heart disease. The inclusion of family fixed
effects attenuates the infant mortality rate coefficient, rendering it
insignificantly different from zero. However, the SE increase even
further, suggesting a strong reduction in the power of our family
fixed effects analysis. Indeed, the confidence intervals on the
infant mortality rate for the analysis with and without family fixed
effects in Table 2 overlap, and we cannot claim a null-result with
certainty. The G × E interaction effect, however, remains very
similar, again suggesting that the infant mortality rate does not
increase the probability of being diagnosed with ischemic heart
disease for those with an average polygenic index, yet that it does
increase this probability for those with a high polygenic index. Or
vice versa, a one SD increase in the polygenic index increases the
probability of being diagnosed with heart disease, and this effect
is larger for those exposed to higher infant mortality rates during
the intrauterine period. SI Appendix, Fig. C.2 confirms this with
nonlinear local polynomial plots using the residualized outcome.

There are three key issues with the family fixed effects
specification: 1) a linearity assumption when studying interaction
effects for binary outcomes (48), 2) the problem of incidental
parameters in a fixed effects regression that cannot be interacted
with IMR and PGI (as in ref. 49), and 3) the fact that the

Table 2. Using the sibling sample and including family fixed effects
Reduced (sibling) sample With family fixed effects

IMR 0.0087** 0.0077** 0.0080** −0.0000 −0.0002 0.0002
(0.0035) (0.0035) (0.0035) (0.0061) (0.0061) (0.0061)

IMR2 0.0008 0.0011 0.0010 0.0063*** 0.0065*** 0.0064***
(0.0017) (0.0016) (0.0016) (0.0023) (0.0023) (0.0023)

PGI 0.0289*** 0.0285*** 0.0201*** 0.0197***
(0.0017) (0.0017) (0.0034) (0.0034)

PGI2 0.0061*** 0.0061*** 0.0066*** 0.0066***
(0.0012) (0.0012) (0.0020) (0.0020)

IMR × PGI 0.0056*** 0.0057**
(0.0019) (0.0028)

Controls Yes Yes Yes Yes Yes Yes
District FE No No No No No No
R2 0.07 0.08 0.08 0.57 0.57 0.57
N 33,054 33,054 33,054 33,054 33,054 33,054

Notes: Columns (1)–(3) show robust SE clustered by district on the sibling sample. Columns (4)–(6) use two-way clustering by family and district on the sibling sample. IMR denotes the
infant mortality rate during the prenatal period and PGI is the polygenic index for heart disease; both are standardized to have mean zero and SD one. *P < 0.1, **P < 0.05, ***P < 0.01.
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interaction effect in a within-family specification may be partially
identified off of between-family variation (50). Since including
fixed effects in a logistic specification is problematic (51–53) and
does not deal with the incidental parameters problem, nor the
identification issue, we explore these issues in two ways. First, we
rerun our main specification, but rather than including family
fixed effects, we control for the family mean infant mortality
rate, the mid-parental (imputed) polygenic index, as well as the
family mean of the G × E interaction. We impute the parental
polygenic index following (54, SNIpar). Interacting these family
means with IMR and PGI (as in ref. 49) deals with issue (2), and
specifying a logistic regression addresses issue (1). An additional
advantage of this approach may be one of increased precision
in the PGI main effect as well as its interaction with the infant
mortality rate. The findings from this specification, reported in
SI Appendix, section D, are consistent with a positive interaction
effect. Furthermore, including the family mean infant mortality
rate instead of family fixed effects leads to a significant positive
infant mortality rate coefficient. Finally, the inclusion of the
mid-parental (imputed) polygenic index leads to more precision
in the main PGI coefficient, but this does not carry over to the
interaction term, which is estimated with less precision compared
to that in Table 2. Apart from reduced precision in the coefficient
of the interaction term, the approach also does not deal with issue
(3): the interaction effect may still be partially identified off of
between-family variation.

Second, therefore, we use so-called “segmented regressions”
stratifying the sample by either the infant mortality rate or
the polygenic index and estimating the coefficient of the other
variable. In our setting, this approach has two main advantages.
First, it allows us to use a logistic (or probit) regression to
model the binary outcome without the need to include fixed
effects and without having to estimate the G × E interaction
term, solving issue (1). Second, using a within-family mean-
deviation specification in the segmented regressions allows us to
effectively estimate a within-family model, but does not require
the inclusion of the interaction term, family fixed effects, nor
interactions between the X ’s or PGI and family fixed effects,
solving issues (2) and (3). The alternative of taking family
deviations of all right-hand side variables does identify their main
effects, but not the interaction term. Indeed, the interaction
between the family deviations is not the same as the family
deviations of the interaction, meaning that the former does not
produce meaningful estimates (50). Finally, the within-family
mean-deviation specification also avoids singleton observations
in the subgroups being dropped from the estimation. Our
results are consistent with the findings from the within-family
specification. However, while the difference between the high
and low polygenic index groups and between those exposed to a
high and low infant mortality rate are salient and relatively large,
so are the SE, implying that the differences across groups do not
reach statistical significance at 5%. Nevertheless, the estimates do
suggest that our results are robust to the nonlinear modeling of
the binary outcome of heart disease, but also that the interaction
term is primarily identified off of within-family variation.

In SI Appendix, section E, we explore potential mechanisms,
investigating whether the main and interaction effects are
associated with specific behaviors and other outcomes that also
associate with heart disease, including BMI, blood pressure,
height, drinking, and smoking. Although we find some significant
effects in the between-family analysis, including family fixed
effects renders most insignificantly different from zero. Only
for diastolic blood pressure do we find a significant negative
G × E effect, suggesting that individuals with a high polygenic

index for heart disease are less sensitive to the effects of adverse
prenatal environments; consistent with e.g., ref. 55. We find
no further evidence that the potential mechanisms mediate the
relationship between polygenic indices and infant mortality rates
in the development of heart disease.

Finally, SI Appendix, section F reports the results of different
heterogeneity analyses and robustness checks. We show that our
estimates are slightly larger for males compared to females (SI
Appendix, Table F.1) and that they are robust to controlling for
additional district-level covariates, alternatively defined polygenic
indices, and nonlinearities in G and E (SI Appendix, Table F.2).
We also find that the timing of the infant mortality rate measure
is important. Consistent with the DOHaD hypothesis, we find
that the estimate for infant mortality rates during pregnancy and
(to a lesser extent) in the first year of life are almost double the size
compared to earlier or later years (SI Appendix, Figs. F.1 and F.2).

Discussion
This paper shows a previously hidden interplay between genes
and early-life environments in the development of ischemic
heart disease. For someone with an average polygenic index
for heart disease, the association between the infant mortality
rate and ischemic heart disease is quantitatively small and not
robust to the inclusion of family fixed effects (Table 2). This
suggests that the infant mortality rate partially proxies for
unobserved characteristics that vary between families, such as
socioeconomic status. The influence of the polygenic index itself
is quantitatively meaningful, with a sibling born into an area with
an average infant mortality rate and one SD higher polygenic
risk than his/her sibling experiencing 2 percentage points (or
15% relative to the mean) higher risk for developing ischemic
heart disease. Interestingly however, we find that in districts with
the lowest infant mortality rates, the relationship between the
polygenic index and heart disease turns insignificantly different
from zero. This suggests that advantageous environments may
cushion the influence of the polygenic index. It is worth
highlighting, however, that this does not necessarily imply that
one’s genetic predisposition for heart disease has no impact in
these environments. For one, the genetic variants that capture
differences in average predisposition for a trait may not affect
its environmental sensitivity (56). Second, the GWAS weights
that are used to construct the polygenic index depend on the
environmental and demographic context of the discovery sample
(57–59). In other words, the polygenic index does not solely
capture genetic predisposition.

We do not claim to estimate the causal impact of infant
mortality rates. Even though our fixed effects specifications
allow us to rule out that infant mortality captures district- or
family-specific time-invariant conditions, we cannot open the
black box of which factors are the driving causal mechanism.
In other words, it is likely that the infant mortality rate proxies
for other early life (socioeconomic) environments. Although the
polygenic index is measured with error and only reflects common
genetic variants, our results are at least suggestive that the infant
mortality rate reflects early-life environmental conditions, since
we find that variation in the infant mortality rate within families is
independent of genetic variation. This is therefore consistent with
the hypothesis that genes and early-life environments interact in
the development of heart disease.

One important issue to take into account in the interpretation
of the results is selection and scarring. First, it is well known that
the UK Biobank is not representative of the UK population (60),
affecting the generalizability of our findings. Second, individuals
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born in districts with high infant mortality rates may not be
observed in the data, as they may not have survived. If this is the
case, our sample is a selected (healthier) sample of individuals,
meaning that our estimates are likely to be a lower bound. Third,
individuals born in districts with high infant mortality rates may
have been “scarred” in early life because of their exposure to
an adverse environment. In fact, this is one of the potential
mechanisms suggested in the literature, and what we may be
capturing in our analysis.

Our findings have at least two implications. First, they reject
the notion of genetic or environmental “determinism,” sug-
gesting a more nuanced understanding of later life health, in
which the effect of one’s genetic predisposition depends on one’s
environment (see, e.g., ref. 61). This suggests that improving the
early life environment not only reduces the mean prevalence in
heart disease but also the variation for those with different genetic
predispositions. This is consistent with findings of Barcellos et al.
(62), who show that an early educational intervention reduces the
obesity-gap between the top and bottom of the BMI polygenic
index. It is an interesting contrast however, with findings for
education and cognition outcomes, where genetic effects are
typically weaker in deprived environments (63–65). This may
suggest that deprived environments strengthen genetic effects on
health, but weaken genetic effects on education and cognition.
Exploring whether this holds more generally would be an
interesting area for future research.

Second, despite the fact that our study explores infant mortality
rates between the 1930s and 1970s, our findings do have
policy relevance. Indeed, they highlight an alternative measure
of inequality in the population, genetic inequality, and show
that there is scope to reduce this. We show the salience of
genetic inequality and highlight its downstream health effects:
a two SD difference in the polygenic index for heart disease
corresponds to an approximately six percentage point difference
in the probability of being diagnosed with heart disease; this
is nonnegligible. We show that this is mainly driven by direct
(causal) genetic effects. Using a very large sample, we show,
however, that these effects are strongly malleable. A substantial
body of research has already shown that early life interventions
mitigate phenotypic inequalities, such as those in education,
income, health, and crime (see, e.g., refs. 66–69). Our results
go further than that; they highlight that early life conditions are
key in mitigating arguably unfair genetic inequalities. Hence, by
focusing on interventions that target the early-life environment,
policy makers can reduce not only phenotypic but also genotypic
inequalities in the population.

Materials and Methods

Using individuals’ eastings and northings of birth in the UK Biobank, we identify
the Local Government District (henceforth: district; n = 1,472) in which
individuals were born and merge in data on individuals’ local environmental
conditions in the year before birth (which we loosely refer to as the year
of pregnancy). To this end, we take the Great Britain Historical Database
(GBHD; 70) as a starting point, which contains district-level birth, death, and
infant mortality counts, as well as population estimates for the years 1930–1957
and 1963–1973. We collect and digitize this information for the remaining years
1958–1962 (71), and systematically quality-control the entirety of the database.
We then link the infant mortality rate during the prenatal period in one’s district
of birth (defined as the total number of local deaths in the first year of life per
1,000 live births) for all UK Biobank participants born in England or Wales.
We use the genetic data to create a polygenic index (PGI) for heart disease,
using GWAS summary statistics (22) that exclude the UK Biobank. The baseline
empirical specification can be written as

Yid = � + �1IMRid,t=−1 + �2IMR
2
id,t=−1 + �3PGIi + �4PGI

2
i

+ �5PGIi × IMRid,t=−1 + Xi + f(IMR, PGI, X)

+ �d + uid , [1]

whereYid is equal to one if individual i, born in districtd, has been diagnosed with
ischemic heart disease (IHD, identified using ICD-10 codes (I20–I25) obtained
from mortality records and primary/secondary diagnoses in individuals’ hospital
inpatient records), and zero otherwise. 13% of our sample has been diagnosed
with IHD. The district-level infant mortality rate in the year before birth (i.e.,
t = −1) and the relevant polygenic index are given by IMRd,t=−1 and PGIi
respectively, both standardized to have mean 0 and SD 1. The gene-environment
interaction is denoted by PGIi × IMRd,t=−1. We follow ref. 47 and include
nonlinear terms of PGIi as well as IMRd,t=−1, though we show the robustness
of our results to linear specifications in SI Appendix, section F.4.

The vector Xi includes gender and dummies for each year-month of birth
(i.e., [(12 mo× 38 y)− 1] separate dummy variables). The latter will account
for the fact that older individuals are more likely to be exposed to higher infant
mortality rates, and are also more likely to have worse health, on average. We
also include the first 10 principal components of the genetic relatedness matrix
to control for any remaining genetic differences across ancestry groups (see, e.g.,
ref. 72). The function f(IMR, PGI, X) denotes interactions between IMRd,t=−1
and Xi and between PGIi and Xi (as in ref. 49), and �d are district fixed effects
(we estimate the model with and without). The error is denoted by uid; we report
heteroskedasticity-robust SE, clustered either by district (in the full sample) or
by family and district (in the family fixed effects analysis).

Whereas district fixed effects go a long way in controlling for socioeconomic
differences across districts, the composition of districts may change over time.
As such, an increase in the infant mortality rate may reflect an increase in
regional poverty. We therefore also exploit the fact that the UK Biobank includes
a sample of siblings, exploring variation within sibling pairs. The family fixed
effects specification is, given by

Yijd = � + �1IMRijd,t=−1 + �2IMR
2
ijd,t=−1

+ �3PGIij + �4PGI
2
ij

+ �5PGIij × IMRijd,t=−1 + Xij
+ f(IMR, PGI, X) + �j + uijd , [2]

where �j are the family fixed effects; the other variables are defined above. As
such, Eq. 2 exploits the fact that some individuals are exposed to low infant
mortality rates during the prenatal period, but their siblings, who largely share
the same family environment, may be exposed to higher or lower rates. Hence,
this specification exploits variation in infant mortality, holding any other time-
invariant (observed or unobserved) family characteristics fixed and as such
accounts for any confounders that differ between households that may bias the
estimates from Eq.1. An additional advantage of including family fixed effects is
that estimation of the genetic effects is purged from concerns relating to genetic
nurture (see, e.g., refs. 73 and 74).

In sum, given the random inheritance of genetic variants within families,
�3 and �4 in Eq. 2 capture the direct (or “causal”) genetic effect. Furthermore,
since our environmental measure is uncorrelated with our polygenic index in the
within-family analysis (SI Appendix, section B), we are able to estimate a genuine
“G × E” interaction, as opposed to spurious “G × G” or “E × E” due to, e.g.,
gene-environment correlations or genetic nurture. To support our interpretation
as genuine G × E interactions, SI Appendix, Fig. G.1), shows that the infant
mortality rate is uncorrelated to a wide range of other polygenic indices, and
similarly, that the polygenic index for heart disease is uncorrelated with a range
of alternative early life environments (SI Appendix, Fig. G.2). Indeed, finding
evidence of systematic rGE between the infant mortality rate and alternative
polygenic indices would suggest that our G× E estimate may in fact be picking
up a gene–gene interaction effect. Vice versa, strong correlations between the
polygenic index for heart disease and alternative early life environments would
suggest that our G × E estimate may instead be capturing an environment–
environment interaction effect. Our analysis shows no strong evidence of rGE in
either case, with a wide range of polygenic indices and early life environments,
reinforcing the argument that we are identifying genuine G× E interactions.
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Finally, whereas the sibling sample is helpful to reduce concerns of residual
confounding, a downside is that it is significantly smaller. This has two (related)
implications, both leading to a loss of power. First, using the smaller sample
directly inflates the SE. Second, including family fixed effects means we are only
exploiting variation within families. As most siblings are born relatively close
together and infant mortality rates do not change dramatically over the course
of a few years within a given district, there is relatively little variation in infant
mortality rates over time within the same family. Hence, for both reasons, the
within-family analysis has much less power than the between-family analysis,
as reflected in the SE.

Data, Materials, and Software Availability. District-level infant mortality
rates for England and Wales between 1935 and 1970 will be made available
through the UK Biobank website, in line with its policy. The UK Biobank data are
only accessible upon payment of a fee. Researchers can apply for data access
directly at https://www.ukbiobank.ac.uk/.
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