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Abstract—Cloud computing has transformed the way IT ser-
vices are provisioned and consumed, shifting the burden of
configuration and management to the cloud provider. A lot of
research has been conducted in the field aimed at optimizing
and/or devise new in-cloud service delivery models. Yet, service
outages are a norm rather than an exception. A natural evolution
for application developers, especially for those applications that
must meet high availability requirements, is to rely on resources
and services provisioned by multiple cloud simultaneously. The
so-called multi-cloud, distributed deployment model coupled with
a monitoring solution spanning multiple domains could help
in a timely identification and isolation of faulty components,
alleviating service impairment issues. To this end, we propose an
extension to NoMISHAP, a Platform as a Service (PaaS) multi-
cloud middleware, introducing a cross layer monitoring solution
for use in distributed cloud environments. Experimental results
show the effectiveness of our approach and its ease of adoption
for management tasks.

Index Terms—PaaS, middleware, Multi-cloud, Monitoring.

I. INTRODUCTION

Nowadays, cloud computing underpins a vast number of IT

services, allowing for an efficient management and scaling of

resources. In this context, the Platform as a Service (PaaS)

computing model and the emerging technological ecosystem

promises to reduce and to facilitate the evolution of business

services. This computing model provides the user with a devel-

opment framework, while shifting the burden of infrastructure

management and control to the cloud provider.

In most cloud platforms, PaaS is juxtaposed to a layer

of services provided in a pay-per-use fashion which belong

to another complementary model of cloud computing com-

monly known as Mobile Backend as a Service or Backend

as a Service (BaaS). This layer is often use by programs

and functions in PaaS to further speed up the development,

leveraging on solid and optimized services [1]. Over the years,

different providers have developed increasingly advanced and

heterogeneous BaaS services, allowing a differentiation be-

tween the vendors potentially causing a lock-in effect for

the customers. This problem is not necessarily intentional

but rather a reflection of the vast design space in building a

cloud solution. Moreover, increasingly the availability of the

workloads hosted on cloud platforms is becoming more and

more relevant for many businesses, and any shortage or service

discontinuity can cause substantial losses.

Addressing the aforementioned challenges, both academia

and industry have devoted a lot of time and effort focusing on

solutions ranging from novel service architectures and deploy-

ment models, programming abstractions, to specific purpose

tools used for service lifecycle management and orchestration.

In this front, academic research has been primarily focused

more on theoretical forefront, investigating areas ranging from

service portability and composition, semantic interoperability,

placement and migration strategies, to software engineering

aspects [2], [3]. On the industry front, instead, cloud providers

have put in place best practices, best exploiting the potential of

their solutions; however, all the proposals are typically limited

to a single cloud provider and are not suitable to address large

scale and multi-region deployment scenarios [4], [5]. Despite

the cloud services market’s steady growth, no cloud solution

provider has really yet proven to be immune from outages and

major episodes of service disruptions are a norm rather than

an exception.

The relevant point of view for cloud-based application de-

velopers, instead, should be a more external perspective where,

to overcome such service outages, they could leverage and

use together multiple services provisioned in multiple cloud

environments. The outcome is a more resilient and lock-in free

multi-cloud ecosystem. Indeed, a promising path that is being

considered is the use of the so-called multi-cloud integration

pattern, a solution that simultaneously exploits multiple cloud

platforms for service delivery [6]. While this approach usually

implies an overhead in terms of orchestration complexity,

the implementation of a practical multi-cloud approach could

facilitate the reach of important business objectives like high

availability, failover and lock-in avoidance. In this context, an

effective and complete monitoring solution spanning different

layers of a service plays a key role in fulfilling the users

requirements, serving as the basis for an (semi)automatic

identification and mitigation of faults [7].

To this end, we set to design and implement a pervasive

monitoring solution for use in the multi-cloud PaaS context.

Without loss of generality, we chose to extend NoMISHAP,

a state-of-the-art multi-cloud middleware solution [8]. Our

proposal aims to provide a complete monitoring suite able

to collect information across all the layers of a multi-cloud

PaaS. The gathered monitoring data can serve as input to

an (semi)automatic failure recovery module and/or cloud op-

erators, aiding to recover and/or prevent potential hazardous

conditions in an efficient way. Finally, it is noteworthy to point

out, that our proposal does not substitute existing ones offered

by cloud providers. On the contrary, it integrates with them



and fills-in eventual gaps, providing additional information

spanning multiple layers.

The structure of the article is as follows: in Sec. II we

discuss some technical challenges toward a multi-PaaS mon-

itoring solution along with a survey of related work in the

context. Next, Sec. III presents the multi-cloud monitoring

solution for high availability based on NoMISHAP while

Sec. IV presents the results of the experimentation assessment

carried out in a realistic multi-PaaS environment. Finally,

Sec. V draws the conclusions.

II. BACKGROUND AND RELATED WORK

We start by discussing some technical challenges in provi-

sioning a multi-PaaS monitoring solution, hinting towards the

adopted proxy-based approach. Next, follows a concise survey

of literature work in the context along with an overview of the

NoMISHAP middleware solution.

A. Toward a Multi-Cloud Monitoring Solution

Most cloud offerings are equipped with complex monitoring

solutions which are usually locked-in to their infrastructures

and often cannot be externalized to span different cloud

environments. Moreover, an integration between the different

solutions is hindered by the heterogeneity and lack of stan-

dardization across vendors.

Considering the PaaS context, one cannot rely on tradi-

tional technologies and approaches such as software defined

networking and cloud federation, since no control over the

infrastructure at an IaaS level can be assumed and taken for

granted [9], [10]. While different cloud providers, provide both

IaaS and PaaS offerings, in a PaaS approach we cannot make

any a-priori assumption or have a knowledge of where the

services will be deployed. The same argument stands for the

BaaS service offerings exploited by the applications.

In order to address the integration aspect while at the same

time hide the complexity of the multi-cloud PaaS, one common

engineering approach is that of exploiting one or multiple

proxies interfacing the individual environments. The proxy, in

fact, is a key element that can exploited to hide the complexity

and offer transparency on the client side. This component

could in its own turn be hosted on a PaaS platform or reside

elsewhere.

In a heterogeneous multi-cloud PaaS infrastructure, the

proxy can act as a layer of adaptation at the PaaS side, while,

at the client side it can be exploited to transparently imple-

ment mechanisms such as load balancing and fault tolerance.

Delegating all this complexity to a proxy agent allows also to

implement some advanced features such as synchronization of

infrastructure state and offered services. In these settings, the

user is presented a unified view of resources and shielded from

the underlying heterogeneity and complexity of the platforms.

B. The Multi-PaaS Ecosystem

We focus on those solutions that provide a cross-cloud

monitoring system as we consider it a key feature for an

effective strategy in the pursuit of high availability in cloud

environments. As a premise, at the moment of this writing,

there is not a comprehensive solution that can effectively deal

with multi-cloud PaaS.

A seminal contribution in the context is presented by the

open source project OpenNebula [11]. The solution offers

a cloud computing toolkit for managing heterogeneous dis-

tributed datacenters. It can orchestrate storage, network, mon-

itoring, and security technologies to deploy multi-tier services

as virtual machines on distributed infrastructures, combin-

ing both datacenter resources and remote cloud resources,

according to allocation policies. This project presents a lot

of interesting features and a powerful toolkit for multi-cloud

environments. However, the proposal targets the integration at

the IaaS layer only.

Pursuing a similar objective, different academic projects

have addressed the challenging task of provisioning software

stacks, libraries for frameworks aimed at the deployment,

monitoring and adaptation of cloud-based systems at the IaaS

and/or PaaS layers.

FraSCAti is a solution which exploits the extended service

component architecture, a technology agnostic standard for

distributed service-oriented applications, to deploy federated

multi-cloud PaaS infrastructures [12]. Its open service model

extends to both the PaaS environment and the SaaS applica-

tions hosted on top of it.

soCloud extends the FraSCAti execution engine inheriting

its capabilities of a multi-cloud PaaS solution [13]. In addition,

it introduces additional features which allow for the manage-

ment of application/service portability, provisioning, resilience

and high availability across multiple clouds.

Cloud4SOA introduces a broker-based architecture, en-

abling a scalable approach to heterogeneous PaaS offerings

of semantic interconnection between different cloud providers

sharing the same technology [14]. The architecture is equipped

with management and monitoring services providing the ap-

propriate flexibility to handle public, private and hybrid de-

ployment models.

Both FraSCAti and Cloud4SOA are elaborated examples

proposing a multi-layer integration approach for the multi-

cloud domain, however, they require the deployment of ad-

ditional physical resources, either on-site or off-site, hosting

the control logic. Moreover, we argue that the integration of

applications and services in the above settings, poses a high

barrier of entry for developers, inhibit the effective usage of

the frameworks.

Addressing heterogeneous environments, mOSAIC focuses

on both IaaS and PaaS layers by allowing applications to

specify their service requirements through an ontology [15].

The proposal relies on a brokering mechanism exploited to

search for the best set of services meeting application require-

ments. The main outcome of the mOSAIC project is a common

communication API for multi-cloud resources.

C. The NoMISHAP Middleware

NoMISHAP aims at providing a transparent support for

high availability exploiting multiple PaaS provider simulta-



Fig. 1. NoMISHAP architecture [8].

neously [8]. This is achieved thanks to a built-in abstraction

and adaption layer of services and functions that simplify and

unify the access to services available by the underlying PaaS.

As a consequence, cloud developers can concentrate only on

essential core business code, developed once and deployed on

multi-PaaS solutions.

In essence, the architecture of NoMISHAP can be summa-

rized in two macro layers as shown in Figure. 1 and concisely

summarized below:

1) The coordination and high availability layer which is

responsible to intercept application invocations, redirect-

ing them to the corresponding service while applying

policies for load balancing and failover management.

2) The service/cloud abstraction and decoupling layer pro-

vides a uniform API for heterogeneous applications,

enabling homogeneous invocations between different

providers. This layer manages interactions with cloud

providers, fetches eventual configuration files and/or

environment variables needed to properly interact with

services and in order to expose a homogeneous REST

API.

NoMISHAP proposes a novel external perspective not lim-

ited to one cloud provider by including all main service

abstraction and adaptation, service brokering functions, and

internal middleware components. This constitutes the basis for

our monitoring proposal.

Compared to prior effort in the domain, this proposal

poses a lower barrier of entry, allowing for the integration

of individual PaaS services spanning multiple environments

through the use of lightweight proxies. Moreover, the proposal

is application and cloud provider-agnostic providing cloud-

based services with both an architectural model and a ready-

made implementation granting cloud-based applications high

availability across cloud vendors.

III. A MULTI-CLOUD MONITORING SOLUTION

We start by first identifying the monitoring data sources and

than discuss the approach and tools adopted constituting the

data processing pipeline.

A. Monitoring Data Sources

Figure 2 depicts a component-oriented approach of our

proposal. Starting from the bottom, in order to maintain a

complete and consistent view of the PaaS layer, we need to

collect metrics pertaining to BaaS service components the

application relies on and the NoMISHAP middleware com-

ponents deployed on the PaaS. Unfortunately, only few PaaS

providers expose state statistics related to the BaaS services.

To this end, filling in this gap, we can consider as a good

representation of performance and state, the historical data

(transparently) collected by the PaaS proxy while satisfying

user requests.

Another source of data is provided by the performance

metrics as perceived by the client proxy tasked with the job of

forwarding user requests to the available PaaS proxies. This

intermediary component collects and computes metrics related

to every call executed over the NoMISHAP middleware. The

gathered data are then periodically sent for digestion to the

data aggregation service.

Finally, another piece of the puzzle in the data gathering

effort is on the client side. Collecting metrics on the client

side enables us to estimate the perceived end-to-end QoS

and can help detect incidents and/or faults. This end-to-end

measurements can be compared with the prior ones, denoting

different logical segments of the communication, and could

help diagnose performance issues.

One should not neglect health data related to the actual

functional components of the architecture. Depending on the

features provisioned by the PaaS vendor, different solutions are

viable for extracting health information concerning the proxy



Fig. 2. The proposed monitoring solution based on the NoMISHAP middleware. From the bottom up, one finds the PaaS proxy component tailored to the
specific PaaS environment. The component is extended to contemplate for monitoring functionalities pertaining to the PaaS component(s) being used by the
application and the proxy itself (gray). Moving up, one finds the client-proxy component, mediating user requests toward the NoMISHAP middleware. Aside,
is the logically centralized data aggregation service consisting of a (distributed) Elasticsearch service instance.

itself. In scenarios where the PaaS solution exposes health

data related to the services, our monitoring engine can tap

to the PaaS monitoring service directly. Otherwise, the proxy

can itself collect metrics about state and performance while

handling requests, measuring their response times.

B. A Component-based Approach

To collect the data at the PaaS level, we rely on an adapter

software component (Figure. 2) which interfaces with the BaaS

service layer and PaaS, capable of acquiring the metrics from

provider monitoring services, successively forwarding them to

the data aggregation service. The data, if needed, might be

subject to preliminary computation and/or filtering.

To collect data pertaining to the proxy itself, the component

was extended to contemplate a data gathering module. This

additional module could also be distributed elsewhere, acting

as a standalone component. To this end, we exploit the Elastic-

search APM module which have the capability of intercepting

REST calls, steered through the proxy and executed against

BaaS services, producing advanced statistics like errors and

response time. All the data gathered are successively sent to

an APM server which is responsible for data aggregation and

forwarding of the latter to a logically centralized aggregation

service.

The available PaaS environments comprising the multi-

cloud solution, notify their presence and register with the

client proxy, acting as an intermediary dispatching user re-

quests. This layer needs an up-to-date view on the underlying

resources, that is the available PaaS environments. To fulfill

this job it relies on a synchronization service embodied by

Consul.io, a service networking solution to connect and secure

services across any runtime platform. The component acts as

an entry point for nearly all operations, and service perfor-

mance is critical for the overall throughput and health of the

multi-cloud environment.

To fetch advanced metrics on nodes hosting the synchro-

nization service, we exploit the Beats component present in

Elasticsearch. Beat services, are additional modules that can be

installed on nodes, allowing to intercept and expose advanced

and complete metrics about the state of a hosting node and

eventual services installed. The extracted metrics are then

reliably sent to the aggregation point.

The proposal is not complete without provisioning an

analytics engine capable of visualizing and/or reacting to

changes in the environment. Moreover, it is desirable that this

engine itself could scale on a per-need basis. To this aim, this

functionality resides and is embedded on the Elasticsearch

analytics. In the proposal, the later component constitutes

the final endpoint responsible for gathering, computation and

storage of the metrics of interest, also enabling the visu-

alization, reporting in a near real time fashion. Thanks to

the adoption of sharding techniques, Elasticsearch is able to

scale, through a policy-based engine, in presence of high

computational burden, replicating functional components even

cross-cluster. At the end of the provisioned pipeline stands

Kibana, a tool capable of aggregating and visualizing data

with advanced infographics. All these services, part of the

Elasticsearch stack, are capable also of monitor the hosting

infrastructure, providing advanced information and alerts on

the status of the clusters.

As a last remark, when dealing with a large amount of

data, it might occur that direct forwarding to the Elasticsearch

service might not be feasible. To alleviate the data burden, we

can act on them by applying transformations and/or filtering

policies. This duty is tasked to the Elasticsearch Logstash

service component which can perform stateless computations



#Nodes Provider Virtualization Technology RAM/Host (GB) #CPU/Host

Locust 3 Garr Cloud Virtual Machine 4 2

Consul 5
2 Azure Public cloud
3 Private Hosting

Virtual Machine 8 2

Elastic Stack 2 Private Hosting Docker Container 16 4

Pivotal 2 Pivotal Web Services Cloud Foundry Container 0.5 1

OpenFaaS on OpenShift 2 Private Hosting Kubernetes Container 1 2

Bluemix 2 IBM Bluemix Cloud Foundry Container 0.25 1

Heroku 1 Heroku Dynos 0.5 1
TABLE I

SYSTEM CHARACTERISTICS FOR EACH CLOUD PROVIDER SOLUTION EMULATED WITHIN OUR TESTBED.

to the ingress streams. This allows to scale and replicate these

service instances independently on a per-need basis. Moreover,

Logstash has the ability to retain metrics and send only when

the analytics service is not overloaded contributing to the

scalability of the monitoring infrastructure when facing load

peaks.

IV. EXPERIMENTAL RESULTS

In the following, we discuss the multi-cloud testbed used to

assess our proposal. The monitoring extensions source code

along with the testbed configuration can be found in [16].

A. Testbed and Configuration

We set up a test infrastructure emulating a real scenario as

shown in Figure. 2. For the purpose of this experimentation,

we consider a PDF conversion service provisioned in each

of the considered cloud environments. Concerning the multi-

cloud PaaS environment, we chose to rely on three top

solutions available in the market: (i) Heroku [17], (ii) Cloud

Foundry [18], and (iii) OpenShift [19]. The characteristics of

the respective testbeds are summarized in Table I.

To simulate a group of concurrent users on the platform, we

exploit Locust; a distributed tool used to execute infrastructure

load tests. To this aim, we set up three Locust nodes and

locally installed our client proxy used to transparently mediate

user requests against the NoMISHAP middleware.

The test lasted 12 hours reaching a peak of 5000 requests/s.

To assess the soundness of our proposal, we simulate a fault-

like behaviour in one subsystem, corresponding to a network

congestion event on the client network whose link capacity

suddenly drops from 1 Gbps to 200 Kbps. The aim is to asses

our proposals both in terms of being capable of identifying

the change in behaviour and in pinpointing the source of this

anomaly. We expect that the metrics gathered from all the

subsystems coupled with the knowledge of the relationship

between the components should enable a fast discovery of the

cause.

B. Performance Assessment

Let us now delve into the behaviour of the monitoring

system and check whether the proposed extension fulfills the

design objective. Figure 3 shows the latency (ms) as perceived

by the client, issuing service requests. In this configuration, the

data pertaining to this metric are gathered as soon as they are

produced. A spike can be observed around 16:10, the time of

the expected anomaly.
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In scenarios where acquiring the client perceived data is not

a feasible option, one can still rely on the data provided by

the other components. Indeed, to investigate the cause of this

increase in latency, one can follow the chain of invocations

through the different components, dark arrows in Figure. 2,

and check whether the monitoring system has registered any

changes in this particular moment in time.

The first component in the chain is comprised by the BaaS

services provisioned in the different PaaS environments. This

layer can contribute to a substantial increase in the total

response time in scenarios when one or more services go down

and also depending on the service resource quota allocation

and sustained load.

Thanks to the monitoring stack added to the PaaS proxy,
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we are able to monitor even the services not under our direct

control and Figure. 4 shows the individual BaaS service load

evolution in time. The client proxy forwards user requests in

a round robin fashion. Overall, every single BaaS service con-

templated in our assessment is present and exhibits periodic

and justifiable behaviour with periodic fluctuations in terms of

received and transmitted data.

Moving upward in the invocation chain, is the PaaS proxy

itself. Zooming in to some of the statistics gathered from

this component, no anomaly emerged except from a lower

the number of requests received around the anomaly time

(Figure. 5). What this result shows, is that the PaaS proxy

itself was not the cause of the increase in the response time

as noticed by clients.

There is an additional and last component in our architecture

capable of providing further insights into diagnosing the

problem. This component is the client proxy whose statistics

cover the communication path with the actual user client. At

the same time it can sense when a service offered by a PaaS

provider is unavailable or even when is the PaaS proxy is

unreachable. In fact, it could happen that the PaaS proxy is not

able to communicate e.g., a fault state, and the above metrics

are our only chance to detect this scenario occurring. Figure 6

shows the number of requests issued against the client proxy,

showing a reduction in their number at around 16:10, the time

frame under scrutiny. From this basis, we can deduce that the

problem, sudden reduction in sustained load, was on the client

side, hence outside the control of the multi-cloud environment.

V. CONCLUSION

We presented a monitoring solution for use in distributed,

multi-cloud environments. To asses and validate the design

rationale, we presented an experimental analysis involving

a realistic testbed consisting of three heterogeneous PaaS

environments. As a future work, we plan to built upon the

solution and extend its architectural principles to those of edge

computing. In this context, an interesting research question is

that of extending the proposal to contemplate for a Function

as a Service (FaaS) layer.
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