
1800 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 28, NO. 8, AUGUST 2020

The Uncontrolled Manifold Theory Could Explain
Part of the Inter-Trial Variability of Knee

Contact Force During Level Walking
Bart C. van Veen , Claudia Mazzà , and Marco Viceconti

Abstract— Accurate predictions of joint contact forces
through computer simulation of musculoskeletal dynamics
can provide insight, in a non-invasive manner, into the joint
loads of patients with osteoarthritis and healthy controls.
The current approach to assume optimal control, in terms of
metabolic energy expenditure, remains a major limitation of
the prediction of muscle activation patterns that determine
joint contact forces. Stochastically optimal muscle control,
in the form of a stochastic component superimposed to
the optimal control, could potentially explain the inter-trial
variability as observed in measured knee contact forces
during level walking. A probabilistic approach was used to
predict sets of possible muscle activation patterns within a
5 and 10% limit from the optimal muscle activation pattern.
The knee contact forces determined by both the optimal
and stochastically optimal muscle activation patterns were
compared to the corresponding knee contact force patterns
measured by an instrumented implant. The range of muscle
control patterns captured the inter-trial variability of knee
contact forces for most of the gait cycle, suggesting that the
probabilistic approach used here is representative of a sto-
chastically optimal control that accounts for co-contraction,
whereas during some time intervals a more explicit repre-
sentation of the motor control strategy is required. These
findings underline the importance of stochastically optimal
muscle control in the prediction of knee forces within a
multi-body dynamics approach.

Index Terms— Knee contact force, level walking, muscle
recruitment, musculoskeletal modelling, stochastically
optimal muscle control.
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I. INTRODUCTION

THE relevance of the forces experienced by the articular
surface of weight-bearing joints during activities of daily

life to the onset and progression of joint degenerative diseases,
such as osteoarthritis, has been discussed extensively in the
literature, e.g. [1]. Experimental data on the forces experienced
by the joints can typically only be obtained from a patient pop-
ulation with end-stage osteoarthritis through force sensors in a
hip or knee implant. Alternatively, accurate predictions of joint
contact forces through computer simulation of musculoskeletal
dynamics can provide insight in the joint loads of early-stage
patients and healthy controls, are relevant to study treatment
effects in a non-invasive manner, and could potentially inform
clinical practice. Open-source datasets from instrumented joint
implants serve as an important validation for these predictive
models [2], [3].

Numerous studies used publicly available experimental
datasets to validate different approaches to simulate muscu-
loskeletal dynamics and predict knee contact forces, such
as the inclusion of complex and subject-specific joint con-
tact models [4]–[8], force-dependent knee kinematics [9] and
patient-specific musculoskeletal geometry in a segment-based
model [10]. Experimental joint forces data has also been used
to argue the importance of the discretization of large muscles
into separate compartments and subject-specific muscle para-
meters in musculoskeletal dynamic simulations when predict-
ing knee contact forces [11], [12]. A limitation to all the above
studies is their assumption of optimal control to predict mus-
cle activation patterns, assuming minimal metabolic energy
expenditure [13]. Whereas this might be a valid assumption
for healthy gait, it does not necessarily hold for pathological
gait: overall metabolic energy expenditure, in fact, has been
shown to increase in pathological gait [14]. Also, the amount
of co-contraction observed during gait has been associated
with painful joints [15], [16] and instability [17], [18], which
logically leads to an increase in metabolic energy expenditure.
However, the assumption of energetically optimal control does
not account for co-contraction. Different approaches, such as
EMG-driven forward dynamics and muscle synergies, success-
fully included experimental data to personalize muscle control
in the estimation of knee contact forces [19]–[22]. However,
the assumptions required for the translation from measure-
ments of electrical activation to units of force, the cross-talking
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between muscles, and the limited information on the activation
levels of deep muscles with surface electromyography remain
a major limitation of such EMG-driven approaches.

One could argue that we aim for ‘good enough’ control
rather than optimal control as “an organism uses trial-and-error
learning to acquire a repertoire of sensorimotor behaviours that
are known to be useful, but not necessarily optimal” [23].
This principle of ‘good enough’, or stochastically optimal
control, partially explains the observed kinematic variability
in repeated tasks, but kinematic variability has been argued to
serve a purpose: variability in directions that are independent
to task performance does not have to be controlled and could
potentially provide stability to sudden changes or pertur-
bations [24]. This theory of an uncontrolled manifold can
equally be applied to muscle control, but only few studies
have investigated the influence of such variability in muscle
control on the loads experienced by the joints. A solution space
of possible muscle activations and knee contact forces was
obtained through a parametric variation of the contribution of
agonist muscle groups and their individual muscles [25], [26].
However, a vectorized approach resulted in a larger possible
variability in muscle activation and consequently a larger
variability in hip contact forces [27]. A probabilistic approach
to sample the solution space of muscle activations showed an
even larger variability in muscle activations [28]. However, this
study focused primarily on the range of possible muscle force
patterns and it lacked a direct comparison to experimental
measurements of joint contact forces. Therefore, the potential
of a stochastically optimal control approach to improve the
accuracy of joint contact force predictions remains unclear.

This study aims to explore the limitations of optimal control
in predictions of knee contact forces by answering the follow-
ing questions: 1) Does at least one muscle activation pattern
exist for which a subject-specific musculoskeletal dynamics
model of level walking predicts the forces at the knee within
measurement precision?; 2) Assuming such a solution exists,
how different is it from an optimal control solution in terms of
knee contact forces, but also in terms of muscle activation?;
3) How well can this difference be explained by a stochastic
component superimposed to the optimal control, consistent
with the uncontrolled manifold theory?

II. METHODS

Experimental data for one elderly participant (male,
age: 83 years, height: 1.72 m, mass: 70 kg) with an
instrumented total knee replacement on the right side was
obtained from the sixth Knee Grand Challenge dataset [2].
This is an open-source dataset that includes knee contact
force data measured with an instrumented implant alongside
motion capture, ground reaction force, EMG, CT and X-ray
data (https://simtk.org/projects/kneeloads). The musculoskele-
tal model, the dynamic simulations and the muscle activation
solution that minimized the sum of muscle activations squared
(Jact ) as described for p02 previously [29], were re-used
for this study. The following section briefly summarizes the
re-used data and methodology and presents the additional data
and methodology in more detail.

A. Experimental Data

Six trials of level walking at a self-selected speed
(1.03 ± 0.02 m/s), defined from right heel strike to right heel
strike, were included. The name and trial numbers from the
original dataset (‘DM_ngait_og’, trial 3, 4, 5, 6, 7 and 9) were
maintained to allow for comparison across studies. Two out
of eight available trials were excluded because the foot strike
was too close to the edge of the force plate. The forces and
moments acting on the right knee joint were available from a
six-axis load cell embedded in the stem of the tibial prosthesis
(eTibia; [30]).

EMG data were available for 15 muscles of the right lower
extremity: The Gluteus Maximus, the Gluteus Medius, the
Adductor Magnus, the Tensor Fasciae Latae, the Sartorius,
the Semimembranosus, the long head of the Biceps Femoris,
the Vastus Medialis and Lateralis, the Rectus Femoris, the Gas-
trocnemius Medialis and Lateralis, the Soleus, the Tibialis
Anterior and the Peroneus Longus muscles. The data for
the Gluteus Medius and the Vastus Medialis muscles were
identified to be of insufficient quality given the signals’
small amplitudes, in accordance with an EMG-driven forward
dynamics simulation study that used the same dataset [20].
Details on how the envelope trajectories and onset times
were computed can be found in the supplementary materials
(https://doi.org/10.0.59.27/shef.data.11370216).

B. Musculoskeletal Model

The subject-specific musculoskeletal model of the right
lower limb included five segments, 11 degrees of freedom and
43 actuators. The bone geometries, segment mass properties
and orientation of joint axes were determined from the avail-
able CT images and point-cloud data of the implant. Further
details on the model identification can be found in [29].
To allow for a direct comparison of the simulated knee contact
force with the measured values from the instrumented knee
implant, a knee contact joint was placed in the tibial tray
aligned with the origin of the reference frame of the implant
(Fig. 1). A massless body linked the articulating knee joint
with the knee contact joint, which was in turn linked distally
to the tibia segment. All six coordinates of the knee contact
joint were locked such that the original orientation of the
massless body and the tibia with respect to each other was
maintained. The knee contact forces as predicted by the model
and reported in the following sections were resolved around
this knee contact joint.

C. Muscle Activation Patterns

Muscle activation patterns were obtained through two dif-
ferent methods: an optimization approach and a probabilistic
approach.

1) Optimization Approach: Muscle activation patterns for
all trials were obtained by solving the optimization problem
defined as [29]:

min J (
�
a)

subject to
�

T (t) = B (q)
�

�
a

T
(t)

�

Fmax

�

0 ≤ �
a(t) ≤ 1 (1)
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Fig. 1. The coordinate system (anterior posterior (AP) axis (red),
mediolateral (ML) axis (yellow) and superior-inferior (SI) axis (green))
fixed in the locked knee contact joint and used to resolve the simulated
joint contact forces and moments.

where
�
a is the vector of activations with its entries defined

as ai (t) = Fi (t)
�

Fmax,i ,
�

Fmax is the vector of m maximum

actuator forces, Fi is the force of actuator i ,
�

T is the n · 1
vector of forces and moments of force acting at the generalized
coordinates and B is the n ·m matrix of muscle moment arms.
The variables required to define the optimization problem were
obtained using the OpenSim API through MATLAB (v2017a,
The MathWorks Inc., Natick, MA, USA).

One muscle activation pattern for each trial was available
from the previously defined Jact solution [29]:
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2 (2)

A second muscle activation pattern was obtained with an
objective function aimed to minimize the difference between
the measured and estimated knee resultant force:

JFmatch(
�
a)=w1

⎛
⎜⎜⎝

				
�

F
K

exp (t)

				−
				

�

F
K �

�
a, t

�				
				

�

F
K

exp (t)

				

⎞
⎟⎟⎠

2

+w2R(
�
a, t)

(3)

where

				
�

F
K

exp(t)

				 is the magnitude of the experimental knee

resultant force, acting on the tibia segment, as measured

by the instrumented knee implant and
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magnitude of the resultant force acting on the tibia in the knee
joint as predicted by the musculoskeletal model, R(

�
a , t) is a

regularization term and w1 and w2 are constant weights that
define the relative contribution of both parts to the objective
function. The regularization term R(

�
a, t) was included to

prevent the optimization problem from being ill posed, as some
muscles do not contribute directly to the first part of the
objective function [29]. MATLAB’s nonlinear programming
fmincon, leveraging on the interior-point algorithm, was used
to solve the problem.

The weight ratio w1 : w2 was set to 10:1, based on the
asymptotic behaviour of the objective function value with an
increasing weight ratio in a preliminary sensitivity analysis.

The initial guesses for the minimizations were set to
�

0 after
a preliminary bootstrap study confirmed the uniqueness of the
solution, regardless of the initial value.

2) Probabilistic Approach: A probabilistic approach was
used to draw two sets of possible muscle activation patterns�
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is the posterior distribution that

represents the probability of a vector of muscle activations that
satisfies the dynamic equilibrium:
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The constraints on the muscle activations were set to a limit
radius r around the Jact solution:

max{�
aact (t) − r,

�

0}≤�
a(t) ≤ min{�

aact (t) + r,
�

1} (6)

where
�
aact (t) is the vector of muscle activations that resulted

from the minimization of Jact . Two sets of 1 × 105 muscle
activation patterns were sampled using Bayesian statistics to
estimate the posterior probability density functions (PDF)
of the unknowns of interest, and then generate samples
from this distribution by means of a Markov Chain Monte
Carlo (MCMC) algorithm (Metabolica, [31]), implemented
in MATLAB and used to sample muscle activation patterns
before [28], [32]. The limit radius of the first set was defined
as 0.05, or 5% of the maximum activation of 1, and the limit
radius of the second set was defined as 0.1, or 10%.

D. Data Analysis

The contact forces at the knee joint were computed, leverag-
ing on the implementation in OpenSim through the MATLAB
API, for each muscle activation pattern that was obtained as an
optimization solution or as a sample from the solution space.
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Fig. 2. Knee contact force trajectories in bodyweight (BW) for all trials; the sampled values from Metabolica, with a limit radius of 0.05, are shown
as a range for which the colour indicates the number of samples that resulted in the corresponding knee force (see colour bar); the values from the
instrumented implant (eTibia; black, solid), the Jact (blue, dashed) and JFmatch (yellow, dashed) solutions are shown as lines. The vertical dashed
line indicates the time instant when toe off occurred.

TABLE I
ROOT-MEAN-SQUARE ERRORS (RMSE; IN BODYWEIGHT (BW)) AND COEFFICIENTS OF DETERMINATION (R2)

FOR EACH TRIAL AND THE MEAN VALUES OVER TRIALS FOR THE JFmatch AND Jact SOLUTIONS

The root-mean-square error (RMSE) and the coefficient of
determination (R2) values were the suggested measures of
comparison for the Knee Grand Challenge, so allowed for
comparison with previous studies [2]. RMSE and R2 values
were obtained for the Jact and JFmatch solutions of each
trial.

III. RESULTS

The magnitude of the knee contact force for the JFmatch

solutions matched the measured values throughout the gait
cycle, except for an overestimation during the loading response
phase (0-10 % of the gait cycle) of trial 3 and 5 and during
the terminal stance phase (30-50 % of the gait cycle) of trial 9
(Fig. 2, Table I).

The Jact solutions underestimated the knee force at initial
contact, during the mid-stance phase (10-30% of the gait
cycle) and during swing phase (except for the final 8%

of the swing phase in trial 4) and overestimated the knee
force during the loading response phase for each trial. The
differences between the predicted and measured values were
less consistent throughout trials for the first peak and during
terminal stance (Fig. 2, Table I).

For a limit radius of 0.05, the measured knee contact
forces were outside of the range of forces estimated by the
sampled muscle activation patterns for larger intervals (Fig. 2).
Therefore, this set of muscle activation patterns was not
analysed any further.

For a limit radius of 0.1, the measured knee contact forces
were within the range of forces estimated by the sampled
muscle activation patterns for most of the gait cycle, except
for a time interval during the loading response phase when
all sampled muscle activation patterns overestimated the mea-
sured knee force. Also, for trial 4, 6 and 9, all sampled muscle
activation patterns overestimated the measured knee contact
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Fig. 3. Knee contact force trajectories in bodyweight (BW) for all trials; the sampled values from Metabolica, with a limit radius of 0.1, are shown
as a range for which the colour indicates the number of samples that resulted in the corresponding knee force (see colour bar); the values from the
instrumented implant (eTibia; black, solid), the Jact (blue, dashed) and JFmatch (yellow, dashed) solutions are shown as lines. The vertical dashed
line indicates the time instant when toe off occurred.

force during a time interval in the terminal stance phase,
whereas for trial 6 all samples underestimated the measured
knee contact force around 30 % of the gait cycle (Fig. 3).

Except for the first 10% of the gait cycle, the muscle
activations as predicted by the JFmatch solutions were within
the range sampled by Metabolica (Fig. 4 for trial 3, figures in
supplementary materials for other trials).

Overall, the agreement between activation patterns from
the JFmatch solutions and EMG onset data for muscles span-
ning the knee changed minimally and non-consistently across
muscles when compared to the Jact solutions for each trial
(Fig. 4 for trial 3, supplementary material for other trials). One
difference between the EMG data and the JFmatch solutions
was consistent across trials: predicted activations did not
capture the EMG activity of muscles that span the knee during
the loading response.

IV. DISCUSSION

This study investigated, firstly, the capability of a subject-
specific musculoskeletal dynamics model of level walking
to match the measured knee contact forces within measure-
ment precision and, secondly, the difference of such a best-
match solution from an optimal control solution in terms of
both muscle activation and knee contact forces. Lastly, this
study assessed the suitability of stochastically optimal control
(a stochastic component superimposed to optimal control)

to explain this difference in muscle activation required to
accurately predict physiological knee contact forces.

The reported results showed that the model, with its idealisa-
tions and methods used to identify its input, is compatible with
the experimental observations over multiple repeated trials.
In fact, for each trial a muscle activation pattern (JFmatch)
existed for which the corresponding knee force tracked the
force measured with an instrumented implant; only during
a brief time interval during terminal stance in one trial a
difference in knee force occurred. The JFmatch solutions, given
their uniqueness, serve as a reference activation pattern for
solutions obtained in a blinded manner.

The mean RMSE and R2 values of the Jact solutions
(0.5 BW and 0.61, respectively) were comparable to the
values reported for blinded predictions of the total knee force
in various studies that assumed optimal control in simula-
tions of different trials (normal and instructed ‘bouncy’ and
‘smooth’ gait) from the same Knee Grand Challenge dataset:
0.4 – 0.8 BW and 0.54 – 0.74, respectively [4], [8], [10], [12].
In each of these studies, the objective functions to obtain
muscle activation patterns included a term comparable to Jact :
the minimization of the sum of muscle activation squared.
It should be noted that some of these studies included some
form of a contact force term in the objective function [4],
[12] and for most studies only one or two trials of smooth
and bouncy gait were included compared to the six trials of
normal, level walking included in this study. Hence, the model
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Fig. 4. Trial 3, the activation patterns of the muscles that span the
knee for which EMG data were available. For each muscle, the top graph
shows the Jact (blue, dashed) and JFmatch (yellow, solid) solutions as
lines and the sampled muscle activation patterns as a range for which
the colour indicates the number of samples (see colour bar); the bottom
graph shows the EMG data: the rectified values in light grey, the envelope
in black and the onset timing as dark grey boxes. The vertical axis of
the bottom graph was normalized to the maximum value in the rectified
EMG data. The vertical dashed lines indicate the time instant when toe
off occurred.

described in this study showed predictive accuracies against
this particular validation experiment comparable to those
achieved by other published models. The agreement of the
predicted muscle activation patterns with the EMG onset
timing did not change notably between the Jact and JFmatch

solutions. This result raises questions on the capability of
EMG-driven approaches to identify the activation patterns that

best match the measured knee forces. We made no quantitative
comparison between the EMG data and predicted muscle
activations because of the evident qualitative differences.

A probabilistic approach explored the solution space of
stochastically optimal muscle activation patterns within a
5 and 10% limit radius from the solution for optimal control.
For all trials, a 5% limit radius did not capture the measured
knee contact forces during large parts of the gait cycle.
However, the probabilistic approach with a 10% limit radius
captured the best-match solutions in terms of both knee
force and muscle activation for most of the gait cycle: only
during limited time intervals during the loading response phase
(all trials) and the terminal stance phase (three out of six trials)
did the low knee contact force not appear in the set of
stochastically optimal solutions. The range of sampled knee
forces was larger compared to a study that explored potential
variability in muscle control with a parametric approach in
a different Knee Grand Challenge dataset [25]. The tendency
of the probabilistic approach to sample higher knee forces
compared to the optimal control solution corresponded to the
range of hip forces found in a previous study that used the
same approach on a different dataset [28]. The wide range of
muscle activations that resulted in accurate predictions of knee
contact forces suggest that the probabilistic approach used here
is representative of a stochastically optimal or ‘good-enough’
control that accounts for co-contraction and captures the inter-
trial variability in knee forces during most of the gait cycle,
whereas in the interval immediately before and after heel strike
a more explicit representation of the motor control strategy is
required. In this specific case, the minimization of the knee
force might provide a more accurate prediction during the
loading response phase.

Other approaches, such as an EMG-driven approach, have
previously underlined the importance of muscle control in the
predictions of joint contact forces. Such an approach could
provide a subject-specific muscle activation pattern represen-
tative of possible pathological muscle control, as opposed to
the assumption of optimal control. The probabilistic approach
would then assume a level of stochastic optimality of mus-
cle control around this muscle activation pattern. The level
of stochastic optimality would, for example, be represen-
tative of the uncertainty in the muscle activation predic-
tion resulting from the EMG-force calibration. However, one
could question the difficulty to validate the model predictions
qualitatively when EMG is already included in the model
definition and measured joint contact forces data are not
available.

This study suffered of three main limitations: firstly,
the study included only one participant and therefore the con-
clusions drawn here are only valid for this specific participant.
However, the measured knee-contact forces show a particularly
high variability between trials. Therefore, the authors believe
that our findings indicate a research direction for this complex
problem despite the single case they are based on. Nonetheless,
current work should be expanded to other datasets that include
measured joint contact forces to confirm the generalizability
of the current approach. Also, it remains an open question
how to validate approaches that predict joint contact forces
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when no experimental data on joint contact forces, through
instrumented implants, is available. Secondly, the force-length-
velocity relationship was not considered when determining the
force producing capacity of the muscles, which ultimately
defined the 5 and 10% limit radius of the solution space.
However, the relationship can in most cases not be mea-
sured for ethical or experimental limitations and no consensus
currently exists on a standardized method to accurately pre-
dict this relationship for each muscle individually. Therefore,
the authors decided not to include the force-length-velocity
relationship to prevent an influence of poorly estimated muscle
parameters on the outcomes of the study. Thirdly, only the
resultant force and not the direction of the forces experi-
enced by the knee were considered. Given the relatively large
contribution of the axial component to the resultant force
and the small mediolateral and anterior-posterior orientation
of the muscle lines of action with respect to the joint during
the stance phase, no difference in the obtained results was
expected if the directional components of the contact force
were included separately. Nonetheless, future work should
study the influence of muscle control on the distribution of
loads over different compartments of the knee joint.

In conclusion, the results presented in this study underline
the importance of stochastically optimal muscle control in
the prediction of knee forces within a multi-body dynamics
approach. A subject-specific musculoskeletal dynamics model,
built according to the current best practice, was compatible
with the experimentally measured knee forces during level
walking. In case of pathological gait, such as studied here,
the assumption of optimal motor control was not representative
of the considerable level of inter-trial variability. A probabilis-
tic approach that assumed an uncontrolled manifold of 10%
around the optimal control solution did capture this variability
for most of the gait cycle. In cases when the motor control
strategy is severely sub-optimal or when a higher level of
accuracy for the predicted joint contact forces is required, the
authors believe the only solution is to include an explicit model
of control. A mechanistic model would for example allow for
the differentiation between hierarchical levels of motor control
such as the involuntary spinal control and the cognition-driven
anticipatory control.
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