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Abstract

Objectives: Recent studies show that Test Positivity Rate (TPR) gains a better correlation than incidence with

the number of hospitalized patients in COVID-19 pandemic. Nevertheless, epidemiologists remain sceptical con-

cerning the widespread use of this metric for surveillance, and indicators based on known cases like incidence

rate are still preferred despite the large number of asymptomatic carriers, which remain unknown. Our aim

is to compare TPR and incidence rate, to determine which of the two has the best characteristics to predict the

trend of hospitalized patients in the COVID-19 pandemic.

Methods: We perform a retrospective study considering 60 outbreak cases, using global and local data from

Italy in different waves of the pandemic, in order to detect peaks in TPR time series, and peaks in incidence rate,

finding which of the two indicators has the best ability to anticipate peaks in patients admitted in hospitals.

Results: On average, the best TPR-based approach anticipates the incidence rate of about 4.6 days (95 % CI

2.8, 6.4), more precisely the average distance between TPR peaks and hospitalized peaks is 17.6 days (95 % CI

15.0, 20.4) with respect to 13.0 days (95 % CI 10.4, 15.8) obtained for incidence. Moreover, the average difference

between TPR and incidence rate increased tomore than 6 days in the Delta outbreak during summer 2021, where

presumably the percentage of asymptomatic carriers was larger.

Conclusions: We conclude that TPR should be used as the primary indicator to enable early intervention, and

for predicting hospital admissions in infectious diseases with asymptomatic carriers.

Keywords: asymptomatic carriers; COVID-19; incidence; infectious diseases; infectious diseases surveillance; test

positivity rate

Introduction

Test Positivity Rate (TPR), e.g., the percentage of positive tests over total tests, is one of the metrics used for

public health surveillance in infectious diseases. Typical applications include estimating the prevalence of

diseases in the population, see Boyce et al. (2016) for malaria disease and Chiu and Ndeffo-Mbah (2021) for

COVID-19, or establishing levels of community transmission from sentinel sites in the COVID-19 pandemic, see

World Health Organization (2021). Over the past two years, thanks to the large amount of data collected in the

COVID-19 pandemic, newapplication domainswere explored to guide epidemiologic policy-making (Fasina et al.

2021; Furuse et al. 2021; Hittner and Fasina 2021) using TPR to assess epidemic dispersal mediated by asymp-

tomatic carriers. Recent studies have highlighted a correlation of TPR with the number of patients admitted

in hospitals (Gaspari 2021; Lopez-Izquierdo, del Campo, and Eiros 2021), which increases with respect to other

indicators like incidence Farrugia and Calleja (2021) or the daily number of positive cases Al Dallal, Al Dallal,

and Al Dallal (2021). This kind of correlation, was exploited to forecast – two weeks in advance – variations
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on the number of patients admitted in hospitals on the basis of TPR variations Fenga and Gaspari (2021), or to

define a severity detection rate, to predict Intensive Care Unit (ICU) admissions Nikoloudis, Kountouras, and

Hiona (2021).

Despite these promising results, the large percentage of asymptomatic carriers in COVID-19 (Yu and Ron-

grong 2020; Zhao et al. 2020), and the risk of hampering control efforts Chisholm et al. (2018), epidemiologists

remain sceptics concerning the widespread use of TPR for surveillance, and other indicators based on known

cases like incidence (7-day incidence rate per 100,000 inhabitants) are generally preferred. One of the motiva-

tions of this choice is that the calculation of TPR is more critical, and there is still little agreement on the method

to be used, see Calculating SARS-CoV-2 Laboratory Test Percent Positivity (2021). For example, whether or not

rapid antigen tests should be considered.

Our first goal is to clarify TPR calculation issues to identify which method behaves better for surveillance

purposes. Namely, which method has the best performance in anticipating the trend of hospitalized patients.

Then, our aim is to compare TPR and incidence rate to determine which of the two has the best characteristics

for the same purpose.

The metric that we use for this comparison is based on the intuition that an optimal indicator for surveil-

lance purposes should be able to track the progress of infection. More precisely, the number of infection cases

occurring day by day in a pandemic: if the number of infection cases increases, an optimal indicator should also

increase, while vice-versa, if the number of infection cases decreases, an optimal indicator should decrease. This

aspect cannot be modelled by Rt (the reproduction number) only, because prevalence levels should be consid-

ered to estimate the volume of infection cases. Indeed, Rt only represents the number of secondary infections

generated daily from a case, and not the total number of infection cases.

Intuitively, the peaks of an indicator that models the trend of infection should precede the peaks in hos-

pitalized patients time series. Indeed, hospital admission always occurs several days after exposure, including

incubation period, symptomonset and patient testing, about 17 days for COVID-19, possiblymore. As an example,

11.5 days on average from exposure to symptoms onset was estimated in Lauer et al. (2020), and 5.6 days on

average from symptoms onset to hospitalization (also including time for diagnosis) was reported in Faes et al.

(2020). Similar considerations hold for admission in intensive care units, which in general occurs a few days

after hospitalization.

By comparing the peaks of TPR and incidence with those of hospitalized and ICU patients time series, we

can estimate howmuch the trend of these indicators anticipates the trend of the occupancy of beds in the health-

care system. Peak comparison is often used as a metric in infectious diseases Dailey, Watkins, and Plant (2007),

for example in the COVID-19 pandemic: to discriminate over time the delay of the infected time series with

respect to emergency calls and twitter trends Rivieccio et al. (2021); to investigate the correlation between excess

mortality in Italy and the occurrence of COVID-19 waves Roccetti (2023); or to investigate the hypothesis for sea-

sonal periodicity Cappi et al. (2022). For the purpose of this study, peaks indicate the days inwhich the healthcare

systemwas particularly stressed, but,most importantly, peaks also represent comparable changepoints in all the

involved times series. For TPR and incidence, which aim to represent the progress of infection, peaks indicate

the days in which the number of infection cases began to drop, followed by peaks in hospitalized and ICU time

series, after which bed occupancy began to fall. Other changepoints could be considered to estimate these time

lags, for example individuating points where a significant increase in a time series can be observed, like in

Casini and Roccetti (2020), where a window sliding search method is used for the infected time series. However,

the comparison of these changepoints in different time series requires more complex calibration strategies, and

may be affected by varying conditions leading to inaccurate results Truong, Oudre, and Vayatis (2020).

Once we have identified an indicator that better models the progress of infection, anticipating the others,

we can use statistical approaches like the one presented in Fenga and Gaspari (2021) for predicting the trend of

hospitalized patients and hospital overloading.

In this paper, we start with a discussion of TPR calculation issues, then, using as ametric the distance in days

from the peaks of hospitalized patients time series, we compare the incidence ratewith different TPR calculation

methods, including standard rolling average with or without antigen tests, and a new proposal based on a two-

level approach. We consider 60 different outbreak cases using global and local data from Italy in four waves of
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the pandemic, starting from the secondwave, where data on antigen tests weremade available for some regions

(Fall 2020), and the successive Alpha, Delta and Omicron waves.

In summary, we aim to answer some key questions concerning COVID-19 and infectious diseases in general:

is the incidence rate the most appropriate indicator to track infection when many asymptomatic carriers are

present? Would TPR have similar or better performance in the same context? Which TPR calculation method

should be used? Should antigen tests be used in TPR calculation?

TPR calculation issues

The main issue concerning TPR calculation is that conducted tests have different goals: they include both diag-

nostic tests administeredwith the goal of discovering new cases, and control tests, addressed to infected individ-

uals, to monitor the course of the disease or to check the healing process. While the positive percentage of the

former can be used for surveillance modelling the progress of the pandemic, the positive control tests should be

used for different purposes, for example to evaluate the length of quarantine Landon et al. (2022). Regretfully,

these different types of tests are not classified in the relevant statistics, and only the total number of administered

tests is reported daily. Due to this lack of information, test positivity is usually computed as the ratio between

new positive cases and the total number of tests done Calculating SARS-CoV-2 Laboratory Test Percent Positivity

(2021), being only an approximation of the actual positivity rate.

Another open issue is whether or not antigen tests should be part of the calculation. For example, CDC

(US Centers for Disease Control and prevention) computes test positivity as the percentage of all SARS-CoV-2

Nucleic Acid Amplification Tests (NAAT) conducted that are positive, while they recommend to collect antigen

tests as separate data, see Calculating SARS-CoV-2 Laboratory Test Percent Positivity (2021). On the contrary, sev-

eral available statistics use both of them as denominators, such as those presented in the Coronavirus Testing

web site Hasell et al. (2020). Moreover, when antigen tests are used in TPR calculation, an additional problem

arises: healthcare guidelines may recommend that positive antigen tests should be confirmed by NAAT tests

because the latest ensure better accuracy. These repeated diagnostic tests done for the same positive individuals

should also be removed by the denominator Gaspari (2021).

Furthermore, there are several problems related to data collection in different regions or countries. For

example, inmost of the Italian regions, the number of tests reported onMonday is lower than the those reported

in other days of the week, and includes a lower ratio of antigen tests. From this it follows that the computed TPR

is in general higher onMondaywith respect to the other days of the week. In other words, in Italy there is a form

of weekly seasonality in TPR time series, and similar problems also arise in other countries.

Finally, a negative correlation between TPR and the number of administered tests was evidenced in some

studies (Fasina et al. 2021; Nikoloudis, Kountouras, and Hiona 2021; Vong and Kakkar 2020). Basically, when the

number of conducted tests increases, test positivity tends to decrease, and thus some variations of TPR may

be linked to an increased volume of testing. This phenomenon is more evident when the number of adminis-

tered tests per million inhabitants is low, and tends to mitigate when a large number of tests are conducted.

For example, in fall 2021, when the “green pass” for workers became mandatory in Italy, and the number of the

tests performed almost doubled in a few days, no significant variation was observed in the TPR time series. To

deal with this issue, an adjusted TPR calculation method was proposed in Vong and Kakkar (2020) to be used in

countries where capacity of testing is limited.

Methods

As in most of the countries Hasell et al. (2020), COVID-19 tests administered for different purposes are not classified in Italian official

data (only NAAT and antigen tests are distinguished, see COVID-19 Italia (2022), in this study we will approximate TPR as the ratio
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between new positive cases and the total number of tests done. This solution is a common approach, also recommended from CDC,

see Calculating SARS-CoV-2 Laboratory Test Percent Positivity (2021).

Starting from this basic calculation method, we compare 7 different versions of TPR, two of them are based on NAAT nasopha-

ryngeal swab only, while the others exploit antigen tests. The first 6 versions are obtained by computing the rolling average of the

last 7 days of the following ratios:

N1: New positive cases /NAAT tests only.

N2: New positive cases detected with NAAT tests only /NAAT tests only.

A1: New positive cases /NAAT + Antigen tests.

A2: New positive cases /NAAT + Antigen tests – Estimated repeated tests.

A3: New positive cases /NAAT + Antigen tests – Number of healed patients.

A4: (New positive cases /NAAT + Antigen tests) ∗ (growth rate of cases /growth rate of tests).

VersionA1 is the usual 7 days rolling average based on all the tests doneHasell et al. (2020), while versions A2 andA3 are attempts

to improve its accuracy by removing those tests that are not devoted to the diagnosis of new cases from the denominator, namely:

A2 removes an estimation of repeated diagnostic tests (NAAT tests conducted to confirm positive Antigen tests) computed using the

approach presented in Fenga and Gaspari (2021).

A3 removes the number of healed people, assuming that at least one test was administered to each of them Fenga and Gaspari (2021).

This data is usually reported daily in most of the countries.

Version A4 is the adjusted TPR presented in Vong and Kakkar (2020) which deals with the negative correlation between TPR and

the number of administered tests.

More formally, let Pd andNd be respectively the new positive cases and cases detectedwith NAAT tests only for each day d; let Td

and Ad be respectively the number of NAAT tests and the number of Antigen tests done for each day d; let Rd and Prd be respectively

the number of healed patients and an estimation of repeated tests for each day d, and let the notation Xd

N
indicate lastN days average

of all these time series at time d, we can define the above TPR versions computed in day d as follows:
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The estimation of the average number of repeated tests presented in Fenga andGaspari (2021) is computed as follows: let
A

Pr
= 𝛼A

be the antigen positivity rate, and
T

P−Pr = 𝛼
T the NAAT positivity rate, given that, in general, 𝛼T = 𝜓 ∗𝛼

A where𝜓 > 1 holds (namely

the positivity rate for antigen tests is lower, see for example the results presented here Turcato et al. 2021); if we set 𝜓 = 2, which is

a reasonable approximation observing data available for Italy, we obtain:

Prd = (Ad ∗ Pd)7 ∗ 2
(Td + Ad)7 ∗ 2

(6)

Finally, the adjusted TPR Vong and Kakkar (2020) is defined bymultiplying observed TPR (A1), with a factor which expresses the

growth rates of cases and tests as follows:

𝜏
d

A4
=

(
Pd∗100
(Td + Ad)

∗ (Cd − Cd−1)∕Cd−1
(𝛶 d − 𝛶 d−1)∕𝛶 d−1

)
7

(7)

where Cd andΥd are the cumulative number of cases and tests (including antigen tests) at time d respectively.

In addition, we also evaluate a new version of TPR (A5) based on a two-level approach which aims to model the progress of

infection with better accuracy, thus generating more stable time series.
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A two-level TPR calculation method

A criticism tomethods based on standard 7 days rolling average, which compute the TPR of a given day as the average of the preceding

7 days, is that they mainly deal with data collection issues, without considering modelling and epidemiological issues. Indeed, from

a knowledge modelling perspective, estimating the TPR of a given day as the average of the preceding and following days will be

more appropriate and correct. Moreover, 7 days are necessary to deal with week seasonality issues, but significant variations in the

progress of infection could be captured with better accuracy by considering less than 7 days. For example, the length in days of the

incubation period, which represents the minimal number of days after which changes due to infection can be observed.

To get through these issues, we have devised a two-level approach for calculating TPR: the first level addressesmodelling issues,

and the second epidemiological issues. Let t1, t2,… , t
n
be the daily TPR time series, TPR at time i, when i > 3 and i < n− 3 can be

modelled by computing the trend as follows:

t
i
= t

i−3 + · · · + t
i+3

7
(8)

Namely, TPR in a given day is modelled by computing the average value of the days preceding and following it. This formula

cannot be computed for the last three days, but it can be approximated by computing averages on the available days only as follows:

t
n−2 =

tn−5+···+tn
6

, t
n−1 =

tn−4+···+tn
5

, t
n
= tn−3+···+tn

4
, where t

n
be the daily TPR of the last day.

However, this simple approach, which assumes that the average TPR value will not have significant changes in the remaining

days, does not work well due to the seasonality of the daily TPR time series. Figure 1(a) illustrates this problem considering the region

of Emilia Romagna: the highest values of daily TPR occur on Monday, while on Tuesday the daily TPR is well below average. Thus, if

the last day were Monday, the TPR would be overestimated, and if it were Tuesday, it would probably be underestimated.

To solve this problem,modelling seasonality, we compute the difference between the TPR trend (computedwith formula (8)) and

daily TPR for each day in the last kweeks. Let (s1, s2, s3, s4, s5, s6, s7), be the list of average values of these differences for each day in the

week (where s7 is themean difference associated to the last element of the trend time series tn−3), the TPR of the last 3 days is obtained

by adding theweighted differences of the days that aremissing to the previous formulas (e.g., the days not used for computing formula

(8); see Figure 1(b)): t
n−2 =

tn−5+···+tn
6

+ s4∕6, tn−1 =
tn−4+···+tn

5
+ s4∕5+ s5∕5, tn =

tn−3+···+tn
4

+ s4∕4+ s5∕4+ s6∕4. The experiments
we did show that this approach avoids the effects of seasonality, thus improving TPR accuracy in the last 3 days. More precisely, when

analysing time series history (more than 16,000 cases), setting k=4 weeks: t
n−2 improves the naive approach on average of 0.0004,

t
n−1 of 0.0022, and tn of 0.0032. Increasing or reducing k worsens these results. It should be noted that this issue does not have any

influence on offline peak detection methods, thus it does not interfere with the metric used in the study.

Starting from the trend time series computed as above, we introduced a second level to compute the final TPR value at day d

considering epidemiological issues. The TPR value is obtained as the average of the last 𝜇 days of the trend time series, where 𝜇 is

the incubation period.

𝜏
d

A5
=

(t
d
+ t

d−1… t
d−𝜇)

𝜇
(9)

Where 𝜇 = 5 on the onset Lauer et al. (2020), and 𝜇 = 3 in the Omicron outbreak (Brandal et al. 2021; Jansen et al. 2021).

We will show how this approach effectively improves predictive properties and regularity of the TPR time series.

Data collection

The data used for this study weremade available by the Italian Department of Civil Protection COVID-19 Italia (2022) for all the Italian

regions, throughout the whole of the pandemic. This site contains all the relevant time series needed for our analysis, namely: new

positive cases; NAAT tests; antigen tests; patients admitted in hospitals and ICUs; recovered patients. However, the structure of the

dataset was changing over time, and data fundamental for our analysis were not always available and/or reliable, therefore, for each

wave of the pandemic, some of the regions were discarded due to lack of data or known reliability issues.

The first wave of the pandemic starting from February 2020was not considered in the study because antigen tests were not used

in Italy. In the secondwave (from the 1st of October 2020 to the 10th of January 2021) antigen tests were used in some regions, but they

still were not available in official data: they were reported by text notes in the dataset, or published in news for five regions Gaspari

(2021). However, since some of these data are uncertain, we only considered Toscana and Piemonte in the second wave, where data

on antigen tests were continuously published starting from October 2021. All the other regions were excluded.

From the 15th of January 2021 onwards, data on antigen tests were made available for all the regions of Italy. In spite of this,

in the successive Alpha wave (from the 10th of February 2021 to the 1st of May 2021) which started right after (February 2021), some

regions were still excluded, because the number of hospitalized patients had started to grow before the beginning of the observed

period, where data on tests were still unreliable. The excluded regions are: Abruzzo, Umbria, Molise, and Basilicata.

As regards the Delta wave (from the 1st of July 2021 to the 10th of October 2021), all italian regions were considered except Lazio,

where data on tests had been corrupted due to a hacker attack.

Successively, in the last Omicron outbreak (from the 24th of December 2021 to the 18th of February 2022): Sardinia was excluded

since the TPR peak was at the end of the observed period (the 16th of February); Valle d’Aosta was excluded due to an error in the
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Figure 1: Dealing with seasonality: (a) Daily TPR seasonality in Emilia Romagna in January/February 2022; (b) computation of the TPR

trend in the last 3 days by adding seasonal corrections: tn−2 example.

reported data concerning positive cases detected with NAAT test only; the province of Bolzano was excluded because a large amount

of antigen tests were not reported in this period.

Finally, global data for Italy in the last 3 waves were also considered as further case studies, obtaining a total of 60 different

outbreak cases: 2 regions in the second wave, 17 regions and whole Italy in the third wave, 20 regions and whole Italy in the Delta

wave, and 18 regions and whole Italy in the Omicron wave.

Although all the data come from a single country, Italy, we believe that the collected sample is sufficiently general and het-

erogeneous in order to draw valid conclusions. Indeed, Italian regions range from little territories with less than 500 thousand

inhabitants to larger regions with over 10 million inhabitants. Moreover, Italian regions have their own health departments and

different organizations, and, as a consequence, heterogeneous data collection policies for the administration of diagnostic tests.

Data analysis

For all the analysed outbreak cases, we compute the number of days that occur between peaks of the above indicators and peaks of

hospitalized people, considering both patients admitted in non critical areas and in intensive care units.



Gaspari: The impact of test positivity on surveillance — 7

Peaks are identified by finding the localmaxima in all the studied time series for all outbreaks. This simplemethod gives reliable

results in this offline study, because each time series in each outbreak has only one peak. Moreover, anomalies are smoothed in health

indicators like TPR and incidence rate, which are not raw data time series, and local maxima in hospitalized time series are actually

the days in which the healthcare system was more stressed.

We analyse the generated samples by computing average values and standard deviation, also studying differences between indi-

cators.We use a simple non-parametric BootstrapmethodHesterberg (2011)withMonte-Carlo simulation performing 5,000 iterations,

to compute confidence intervals for all the obtained average values.

Moreover, we use sample entropy Richman andMoorman (2000) as ameasure of the regularity of these indicators Namdari and

Zhaojun (2019). This is a measure of the probability that two segments of the analysed time series within a given period minimize

discontinuities. Smaller values of sample entropy indicate a greater probability that a set of TPR values will be followed by similar

values, while a larger value indicates major irregularities. We assume 2 as the embedded dimension and the Chebyshev distance as

a metric.

Results and discussion

The results we obtained considering all the selected 60 outbreak cases are summarized in Table 1. An initial

analysis of these results allows us to draw preliminary conclusions about the ability to anticipate hospitalized

peaks of different versions of TPR, specifically: N2, which uses positives cases determined with NAAT tests only

as a numerator, outperforms N1, which uses all the new positives; A1, e.g., the standard 7 days rolling average

including both NAAT and antigen tests, outperforms versions A2, A3 and the adjusted TPR A4. Basically, all the

attempts to improve TPR accuracy by removing tests from the denominator, or considering changes in the num-

ber of administered tests, seem to fail. For example, removing tests used to check the healing process, apparently

provides a better approximation during the growth phase of the curve, but it tends to create artificial peaks,

before the phase of descent, when the number of recovered patients is high.

Last but not least, the new version of TPR (A5) anticipates all the other indicators including incidence and

has a better regularity, considering both standard deviation and sample entropy. Thanks to these properties, a

decrease observed after a growth phase hasmore chance of identifying a peak, rather than an anomalous effect,

and the same principle holds for detecting new pandemic waves. Figure 2(a) presents a comparison between A5

and naive 7 days rolling average (A1) illustrating the benefits of having a better sample entropy.

These considerations for TPR versions N1, A1, and A5 hold in all the analyzed waves, thus we focus the

subsequent discussion on these indicators only comparing them with incidence. Similar results hold for both

patients admitted in non critical areas and in intensive care units. However, considering ICUs it is clear that the

results do not allow to reach meaningful conclusions, because standard deviation is quite high, thus a deeper

analysis is needed for ICUs.

Table 1: This table summarizes the average distances between peaks of the studied indicators with respect to those of patients admitted

in non-critical areas and ICUs, considering all the 60 outbreak cases. We present average values, standard deviation and sample entropy

for each indicator.

Indicator Hospitalized Sample ICU

Avg Dist. Std Dev. Entropy Avg Dist. Std Dev.

Incidence 13.067 10.734 0.305 10.417 13.631

TPR N1 11.7 12.17 0.34 9.05 14.835

TPR N2 13.833 11.649 0.421 11.183 12.614

TPR A1 16.083 11.279 0.324 13.433 15.692

TPR A2 16.033 11.309 0.327 13.383 15.662

TPR A3 13.65 11.828 0.349 11.0 16.813

TPR A4 16.033 11.237 0.334 13.383 15.192

TPR A5 17.633 10.66 0.225 14.983 14.871
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Figure 2: Examples using global Italian data: (a) TPR (A5) compared with standard rolling average (version A1) in the first Omicron

Outbreak (January 2022). (b) TPR (A5) compared with incidence in the last Omicron 5 outbreak (June 2022), the incidence rate thresholds

for red (above 250) and white (below 50) zones are indicated in red and yellow. TPR captures the effect of the new Omicron variant about

6 days before incidence.

If we consider patients admitted in non critical areas instead, it appears that TPR (A5) anticipates incidence.

Indeed, the average distance between TPRpeaks andhospitalized peaks is 17.6 dayswith respect to 13.0 days only,

obtained for incidence. In practice, the best TPR-based approach anticipates incidence of about 4.6 days. These

preliminary observations are certainly strengthened by the fact that we obtained similar results computing

average values of TPR and incidence in all the considered waves, that is, TPR anticipates incidence in all the

analyzed waves, and the results have similar proportions. However, more considerations are needed to draw

definitive conclusions.

Let ΔTPR and ΔI be respectively the sets of distances between TPR (A5) and incidence peaks with respect

to peaks of hospitalized time series, and ΔTPR−I be the set of differences between ΔTPR and ΔI case by case.
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Figure 3(a)–(c) shows how the elements of these sets are distributed. Since, the analysis of single outbreak cases

has shown that extreme cases are always outlier, and that the considered sets do not belong to heavy-tailed dis-

tributions, we use a non-parametric Bootstrap method with Monte-Carlo simulation to estimate the confidence

interval of the averages of the analyzed distribution (Figure 3(d)–(f)). The experiments wemade show that 5,000

iterations are enough to converge generating stable values; the resulting confidence intervals are:ΔTPR: average:

17.6, 95 % CI 15.0, 20.4;ΔI : average 13.0, 95 % CI 10.4, 15.8;ΔTPR−I : average 4.6, 95 % CI 2.8, 6.4.

Given that confidence intervals estimated for TPR and incidence overlap, we analyze all single outbreak

cases where incidence anticipates TPR. As Figure 3(c) shows, incidence anticipates TPR of more than 2 days in

5 out of 60 cases only. Nonetheless, in all these cases which include: Lazio (18 days), Campania (4) and Sardinia

(5) in the 3rd wave, Lombardy (8) in the Delta wave, and Puglia (6) in the Omicron wave, the trends of TPR and

Figure 3: The figure shows how the values in the setsΔTPR, awg: 17.6, sd: 10.7 (a),ΔI , awg: 13.1, sd: 10.7 (b), andΔTPR−I , awg: 4.6, sd: 7.1

(c), are distributed, and the results obtained boostrapping them with 5,000 iterations (d)–(f).
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incidence remain similar, both of them reaching the top of a plateau nearly at the same time, and the delay of

TPR peaks is caused by small variations in the plateau.

On the other hand, when analyzing the relationship of TPR and incidence with hospitalized patients, TPR

peaks follow peaks of hospitalized patients in one case only (Friuli in the Delta wave), while this happens three

times for incidence (Friuli, Valle d’Aosta, and Marche in the Delta wave).

In summary, although there are a few outbreak cases where incidence anticipates TPR, the computed 95 %

confidence intervals are almost disjoint, and it never happens in practice that incidence really anticipates TPR,

with a possible negative impact on surveillance. In other words, in the detected outliers, techniques that exploit

TPR for estimating variations in hospital admissions two weeks in advance, such as those presented in Fenga

and Gaspari (2021), will work anyway. We can therefore conclude that TPR has a better predictive capacity than

incidence for surveillance purposes. This also means that other changepoints can be detected in advance. For

example, Figure 2(b) compares TPR (A5) and incidence in the recent Omicron 5 outbreak at the beginning of

June 2022 using global data from Italy, showing that TPR has allowed detecting the beginning of this new wave

about 6 days in advance. The rise of this new wave has been also confirmed observing the growth of TPR which

occurred at the same time in almost all Italian regions.

The insight of this research is that indicators based on known cases are not able to model the progress of

infections in infectious diseases with asymptomatic carriers with sufficient accuracy, while TPR also accounts

for unknown cases, and thus modelling under-ascertainment Russell et al. (2020) does.

Concerning intensive care units an in-depth analysis of the obtained results shows that theywere negatively

influenced by low values found for the Omicron variant (19 outbreak cases), as presented in Table 2(a). Indeed,

Table 2: TPR and incidence average peaks distances with respect to peaks of patients admitted in non critical areas and ICUs considering

different waves and seasons. For each indicator we present average values, standard deviation and sample entropy.

Indicator Hospitalized Sample ICU

Avg dist. Std dev. Entropy Avg dist. Std dev.

(a) Omicron wave ( cases)

Incidence 12.895 8.687 0.332 2.579 13.019

TPR N2 15.263 12.9 0.524 4.947 15.582

TPR A1 15.474 10.475 0.237 5.158 14.612

TPR A5 18.158 10.137 0.2 7.842 14.091

(b) All the cases excluding Omicron wave ( cases)

Incidence 13.146 11.56 0.292 14.049 12.317

TPR N2 13.171 10.959 0.373 14.073 9.694

TPR A1 16.366 11.622 0.365 17.268 14.662

TPR A5 17.39 10.885 0.236 18.293 14.037

(c) Delta wave, summer  ( cases)

Incidence 14.762 14.573 0.32 16.952 15.37

TPR N2 14.19 13.971 0.372 16.381 11.902

TPR A1 20.048 13.899 0.359 22.238 17.765

TPR A5 21.143 12.631 0.252 23.333 16.915

(d) Cold seasons: non-critical areas ( cases); ICUs excluding the Omicron outbreak ( cases).

Incidence 12.154 7.781 0.296 11.0 6.693

TPR N2 13.641 10.177 0.447 11.65 5.695

TPR A1 13.949 8.869 0.306 12.05 7.493

TPR A5 15.744 8.871 0.21 13.0 6.986
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if we exclude the Omicron wave, and we compute the average distances between peaks for the remaining 41

cases, the results get closer to those obtained for patients in non-critical areas (see Table 2(b)). More precisely,

the best version of TPR anticipates incidence of about 4.2 days, in detail the average distance between TPR and

ICU peaks is about 18.3 and 14 days only for incidence, while the values of standard deviation for ICUs remain

high. On the contrary, for patients hospitalized in non-critical areas in the Omicron outbreak, average values

conform to those obtained in the other waves.

A plausible explanation of the short-anticipation obtained for ICUs in the Omicron outbreak comes from

the concatenation of Delta and Omicron variants. A reasonable hypothesis is that the observed peaks for ICUs,

which occurred in the first half of January, mostly depend on Delta peaks presumably occurring at the end of

December 2021. Subsequently, when Omicron became the dominant variant, there was a significant reduction of

critical cases confirmed by an evident decrease of the ratio between critical cases admitted in ICUs and patients

in non-critical areas, which in Italy globally dropped by half from the end of December (about 13 %) to the first

half of January (about 6 %).

Another aspect which may give further guidance on the relationship of the studied indicators with asymp-

tomatic carriers is whether significant changes can be observed in different seasons of the year, for example

during the summer, when the number of asymptomatic carriers is presumably higher. Table 2(c) presents the

results of the analysis for the Delta outbreak at the beginning of July 2021. If we compare these results with those

obtained in cold seasons presented in Table 2(d), we can observe that the average time lags between TPR (A5)

peaks and hospitalized time series increase from 15.7 to 21.1 days. This effect depends on at least two factors: (1)

the course of the diseases which is presumably longer during the summer, (2) the percentage of asymptomatic

carrierswhich increaseswith hotweather. The first factor is supported by the fact that all the indicators increase,

the second factor most likely depends on loss of accuracy of incidence inmodelling the progress of infection due

to a large proportion of asymptomatic carriers. It is worth noticing that during the winter (Table 2(d) exclud-

ing the Omicron outbreak) the results obtained for ICUs better conform to those obtained in other studies

like (Fenga and Gaspari 2021; Nikoloudis, Kountouras, and Hiona 2021), and standard deviation has acceptable

values.

Conclusions

The results we have discussed allow us to answer the questions asked at the beginning of this study with

sufficiently convincing arguments.

First, there is an evidence that the incidence rate is not the best indicator for surveillance in infectious

diseases when a considerable percentage of asymptomatic carriers is present, as for the COVID-19 pandemic, test

positivity should be used instead. The ability to detect peaks earlier would allow health professionals, by means

of statistical methods, such as in Fenga and Gaspari (2021), to early predict the trend of hospital admissions,

and potential hospital overloads. Similarly, other significant changepoints can be detected in advance, like the

beginning of a newwave. This result holds for patients admitted in non critical areas, while more investigations

are needed for ICUs.

Second, further support is given to the hypothesis that antigen tests should be used in TPR calculation. The

performance of the best PCR-based TPR calculation method is similar to those for incidence: the average value

is slightly higher, but standard deviation gets worse. In other words, TPR outperforms incidence only if antigen

tests are considered in the calculation.

Other key practical implications of this research are the following: data collection procedures should be

improved to make TPR calculation as accurate as possible; TPR-based approaches to compute epidemiological

parameters, like Rt, should be investigated more deeply.
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