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Abstract

The stochastic calibration of low-cost and consumer grade inertial sensors has recently become very important due to their

wide-spread utilization in a multitude of mass-market applications like smartphone and drone navigation. The reason behind

this is because if accurate stochastic modeling about the inertial sensor noise is obtained, then the estimation quality of the

navigation solution may improve significantly. Generally, the mainstream methods for stochastic calibration consider only a

single signal, collected under static conditions, to infer that knowledge. However, it has been observed that even though the

stochastic model structure that characterizes each (static) calibration signal remains the same, its parameter values vary from

one replicate to another. Even though techniques have been recently proposed to address this in a statistically efficient way, a

very important factor has been neglected, namely the influence of outliers on the estimation process. In this paper, a robust

multi-signal framework for the stochastic modeling of inertial sensor errors is proposed, which contains two layers of robustness:

one that reduces the influence of outliers in each observed signal (data corruption) and one that safeguards the estimation

process from the collection of calibration signal replicates with notably different stochastic behaviour compared to the majority

(sample contamination). Furthermore, two estimators are defined from this framework, with each encompassing either one

or both layers of robustness, and their efficiency in different data contamination scenarios is assessed in a simulation setting.

Finally, real data collected from a consumer-grade MEMS-based device are used within a navigation simulator to evaluate the

relationship between the quality of the stochastic models obtained by the two robust estimators in different data collection

scenarios and the navigation solution stability.
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Robust Multi-signal Estimation Framework with
Applications to Inertial Sensor Stochastic

Calibration
Chrysostomos Minaretzis, Davide A. Cucci, Naser El-Sheimy, Michael G. Sideris,

Stéphane Guerrier and Maria-Pia Victoria-Feser

Abstract—The stochastic calibration of low-cost and consumer-
grade inertial sensors has recently become very important due
to their wide-spread utilization in a multitude of mass-market
applications like smartphone and drone navigation. The reason
behind this is because if accurate stochastic modeling about
the inertial sensor noise is obtained, then the estimation quality
of the navigation solution may improve significantly. Generally,
the mainstream methods for stochastic calibration consider only
a single signal, collected under static conditions, to infer that
knowledge. However, it has been observed that even though
the stochastic model structure that characterizes each (static)
calibration signal remains the same, its parameter values vary
from one replicate to another. Even though techniques have been
recently proposed to address this in a statistically efficient way, a
very important factor has been neglected, namely the influence of
outliers on the estimation process. In this paper, a robust multi-
signal framework for the stochastic modeling of inertial sensor
errors is proposed, which contains two layers of robustness: one
that reduces the influence of outliers in each observed signal
(data corruption) and one that safeguards the estimation process
from the collection of calibration signal replicates with notably
different stochastic behaviour compared to the majority (sample
contamination). Furthermore, two estimators are defined from
this framework, with each encompassing either one or both layers
of robustness, and their efficiency in different data contamina-
tion scenarios is assessed in a simulation setting. Finally, real
data collected from a consumer-grade MEMS-based device are
used within a navigation simulator to evaluate the relationship
between the quality of the stochastic models obtained by the two
robust estimators in different data collection scenarios and the
navigation solution stability.

Index Terms—Robust Estimation, Inertial Sensor Stochastic
Calibration, Generalized Method of Wavelet Moments, Average
Wavelet Variance Estimator, Monte-Carlo Simulations, Naviga-
tion

I. INTRODUCTION

A. Calibration Methods

INERTIAL sensors are ubiquitous in modern navigation
systems, with applications ranging from space missions,

aviation and drones, to smartphone navigation. Their function
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is to provide high-frequency and short-term precise informa-
tion on the orientation and velocity change of the platform they
are mounted on. Inertial measurements are typically integrated
with information from auxiliary sources in order to obtain
estimates for the platform position and orientation in 3D
space; examples of such sources are the Global Navigation
Satellite Systems (GNSS), utilized for strap-down inertial
navigation [1] and cameras, used in visual-inertial systems [2].

Like any other sensor, inertial sensors have errors that
are both deterministic and stochastic in nature. Deterministic
errors such as the stable parts of biases, scale factors and
non-orthogonality of the axes can be pre-calibrated and their
effects removed from the measurements directly. The additive
stochastic part of the errors can only be taken into account
“on-flight” within the estimation process in order to serve
two main purposes: (i) estimation of the time-correlated part
of those stochastic errors in order to remove their influence
from the measurements and eventually improve the navigation
accuracy [3] and, (ii) estimation of the uncertainty associated
with the navigation states, such as position and orientation
for the purpose of reliable integrity monitoring. This requires
proper modeling of the inertial sensor stochastic errors, a
process which is often referred to as “stochastic calibration”.
This task is generally performed in a black-box fashion on a
per-device basis by acquiring static measurements for a long
period of time that contain not only the stochastic error itself,
but also constant terms such as gravity and the Earth’s rotation
rate, which can be easily removed. Stochastic calibration of
inertial sensors has been widely studied in the last decades
and various methods are available for implementing it, ranging
from power spectral density analysis [4], [5] to the study of
correlation of filtered sensor outputs [6]. The majority of these
methods aim to decompose these stochastic signals and/or
perform system identification procedures in order to model
their behaviour [7], [8].

Modern calibration techniques rely on estimation meth-
ods based for example on the Maximum-Likelihood Es-
timation (MLE) typically obtained through the Expecta-
tion–Maximization (EM) algorithm [9]–[11] or, more re-
cently, on the Generalized Method of Wavelet Moments
[12] (GMWM). Given a postulated parametric model for the
stochastic error Fθ0 that is characterized by the true (unknown)
defining parameter vector θ0 (θ0 ∈ Θ ⊂ IRp), the MLE
method relies on the likelihood function associated with Fθ0

,
while the GMWM makes use of the classical Wavelet Variance
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(WV) quantity [13] in the context of a moment matching
procedure. The GMWM overcomes several limitations of
the existing approaches in terms of computational efficiency,
numerical stability and statistical consistency (see e.g., [14]).

A major challenge in inertial sensor signal calibration is the
determination of the model Fθ0

that describes the stochastic
error, since possible models are often very complex and
consist of composite processes (i.e., the sum of different latent
underlying processes). A standard approach for identifying
the underlying stochastic processes and estimating their pa-
rameters is by using the log-log plot of the Allan Variance
(AV) quantity [15], [16], which has been evaluated based on
static inertial sensor data so that only the noise is observed.
Specifically, by inspecting the shape of the AV in this plot,
a decision can be made about the structure of the model
Fθ0

, while its corresponding parameters are evaluated via
independent linear regressions. However, [17] showed that
the Allan Variance Linear Regression (AVLR) estimator is
inconsistent and unreliable in many cases.

On another note, it is common for Inertial Measurement
Unit (IMU) calibration procedures to perform several inde-
pendent static experimental runs on the same sensor and under
the same operating conditions, from which a single signal for
calibration is chosen to be used. Therefore, these techniques
(e.g., GMWM and AVLR) implicitly assume that the collected
data are intrinsically stationary and as such, each collected
signal replicate is characterized by the same statistical proper-
ties. However, it should be highlighted that a variability in the
model parameter values that describe the stochastic behavior of
each static run is frequently observed in practice. As a result,
this implies that the aforementioned stationarity assumption
made by stochastic calibration techniques such as the GMWM
and the AVLR is directly compromised.

Given the aforementioned, an alternative calibration method
is required, on that is able to take into account the stochastic
model parameter variability between experimental runs. To
that end, [18], [19] and [20] adopted a mixed-effect modelling
approach where the error signals follow a parametric model
Fθ, where θ is a generic parameter vector of size (p × 1)
such that θ ∈ Θ ⊂ IRp. In addition, the θ values of that
model were considered to be drawn from an unspecified
distribution G for each signal realization, thereby accounting
for the behavioral variations between them. Standard mixed-
effect regression methods aim to estimate the parameters that
characterize the distribution G which, in practice, is usually a
Gaussian distribution with suitable parameters. On the other
hand, [20] proposed a semi-parametric approach tailored to
the problem of inertial sensor stochastic calibration which
avoids specifying the form of the distribution G. This multi-
signal method, called the Average Wavelet Variance (AWV)
estimator [20, Section II.B], is capable of optimally estimating
parameter values in the sense that they best predict the future
behavior of the random parameter θ, and it relies on an
optimization problem that only depends on the WV obtained
from each run.

B. Motivation

As highlighted in [21], the data employed for stochastic
error modeling purposes may contain outliers that can have
adverse effects on the estimation process by impacting both
the computation of the WV (or AV) quantity that is used for
model identification as well as the model parameter estimation.
Specifically, those effects can distort the WV (or AV) curve
shape and lead to wrong decisions in the model structure iden-
tification and to biased parameter estimates. This phenomenon
is especially apparent in the case of low-cost and consumer-
grade MEMS-based inertial sensors, whose measurements are
oftentimes contaminated with outliers, possibly due to the
properties of the IMU (e.g., device integrity, material quality,
ageing) or the condition of the surface where the IMU has
been placed for the calibration data collection (i.e., vibrations).
Moreover, the operating conditions, such as the temperature
and platform dynamics, have also been found to be an influ-
encing factor to the inertial sensor noise characteristics [22],
[23]. Finally, it should be highlighted that the aforementioned
AVLR method, despite its wide-spread use, does not contain
any features in its algorithm that can provide protection against
the influence of outliers.

In [21], a Robust GMWM (RGMWM) framework was
proposed, providing an estimator that is far less influenced
by the potential presence of outliers in the data, and allows
the parameter estimation of stochastic error models in a
computationally efficient way. Hence, the RGMWM, which
is based on the computation of robust WVs, is a useful
alternative to other robust estimators (for a general account
of robust inferential approaches and motivating examples, see
[24], [25]). Nevertheless, the RGMWM is limited to studying
the stochastic error behaviour of an inertial sensor using
single experimental run. Therefore, if its concept is to be
integrated with the multi-signal approach, robustness has to
be extended in order to account for data corruption in each
collected calibration signal replicate and thus, prevent biased
estimations. On top of that, we noticed that in practice, there
is a strong likelihood of sample contamination, which can be
detected through a comparison of the WVs that correspond
to the available signals. As for the signals that constitute this
sample contamination, henceforth, we shall refer to them as
”abnormal”. An example of such an phenomenon is given
in Fig. 1, where the classical and robust WV of 6 static
accelerometer signal replicates, collected under the same con-
ditions, are displayed. Based on that figure and the classical
WVs, replicate no.4 can safely be classified as an abnormal
signal since it deviates considerably from the spread of the
majority for the mid and higher scales. And, even though the
robust WV manages to attenuate that difference for the mid-
scales (strong indication of the existence of outliers), the same
cannot be said for the higher ones, which is a fact that might
create an issue to the stochastic modeling process.

C. Main Contributions

In order to develop a robust multi-signal stochastic analysis
framework that has limited sensitivity to data corruption within
each experimental run, as well as to sample contamination, we
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FIG. 1: Classical (right panel) and robust (left panel) WV (m2/sec4) as a function of the scales τ (sec) in a log-log plot

chose to utilize the AWV estimator. However, its development
is not straightforward. In fact, one might be tempted to believe
that the augmentation of the AWV estimator with such robust
features can be naturally obtained by replacing the classical
WV with its robust analogue proposed for example in [21]
(see also [26]) and by employing the trimmed mean concept
in the evaluation of the characteristic WV used for inference
by the AWV. Unfortunately, it turns out that this simple course
of action does not directly guarantee the robustness properties
of the resulting estimator, which can be shown by means of
the Influence Function (IF) [27] that measures the infinitesimal
robustness property of an estimator.

In this work, we derive the IF (such that IF : IRp 7→ IRp)
for a general class of estimators, which then allows us to pro-
pose a stochastic calibration method that incorporates robust
features while considering multiple signals. Specifically, by
studying that IF, the quantities of the AWV that need to be
bounded in order to ensure the (two-front) robustness of the
resulting estimator can be determined. Moreover, we present
the conditions under which the statistical consistency of the
derived estimator is secured. Finally, we show that its reduced
statistical efficiency compared to the classical AWV is quite
negligible, while the additional computational effort is also
quite small.

From that general framework, we define two estimators:
the Singly Robust AWV (SR-AWV) that contains protection
against data corruption and the Doubly Robust AWV (DR-
AWV), which reinforces robustness against sample contam-
ination as well. In fact, the former can be thought of as a
special case of the latter.

In the multi-signal approach, ideally, we expect the WV
curves to be close to each other, from which a mean WV
can be retrieved that is representative of the sensed behaviour.
However, the possible existence of data corruption and sample
contamination will inevitably lead to a mean WV that does
not realistically describe the available information. Hence,
the innovation of the new method is that it ensures that the
mean WV used for inference expresses a pragmatic image
of the sensed behaviour and thus safeguard not only the
model parameter estimation quality but also the proper model
structure selection. On another note, and as shown in Fig. 1,

it is possible that the robust WV of the outlying replicate to
still present an abnormal behaviour at a certain location of the
spectrum, while being logical and among the majority spread
at another. Therefore, the advantage offered by the DR-AWV
over the SR-AWV in this case is that it manages to simul-
taneously reduce the influence of that outlying signal to the
estimation and consider any useful information that it might
contain for other regions of the error spectrum. Finally, the
prowess of the new robust multi-signal estimators is not only
established in terms of model parameter estimation efficiency,
but also in terms of contribution to the INS/GNSS navigation
solution under different data contamination scenarios, where
the attributes of each estimator can be highlighted compared
to the classical non-robust approach.

To present the proposed approach, confirm its efficiency in
a simulation and a case study setting and discuss the derived
results, this paper is organized as follows. In Section II, the
proposed robust multi-signal stochastic modeling framework
is mathematically defined and proofs about its statistical
properties (i.e., robustness, consistency) are provided. With
these in mind, Section III evaluates via simulation studies, the
benefits of estimators derived by our new robust multi-signal
framework to the model parameter estimation efficiency in
different data contamination (outlier) settings. In turn, Section
IV utilizes real data within a recently proposed navigation
simulator (see [28]) in order to investigate the impact of the
quality of the derived stochastic modeling knowledge about the
inertial sensor random errors to the INS/GNSS navigation per-
formance, when using the new robust multi-signal framework
in different outlier scenarios of the real calibration datasets.
Finally, Section V contains the conclusions derived from the
previous sections.

II. MULTI-SIGNAL ROBUST CALIBRATION

A. Stochastic Framework

We define the i-th discrete-time stochastic signal (i.e.,
random variable) as

(
X

(i)
t

)
∼ Fϑi , for i ∈ {1, . . . ,K}

being the number of observed signals and with t = 1, . . . , Ti

representing the sample size, while ϑi ∈ Θ ⊂ IRp (hereinafter
an alternative notation for θ) is a realization of the random
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variable ϑ with ϑ
iid∼ G. The distribution Fϑi

corresponds to
the data-generating process associated with the i-th signal and
the distribution G is left unspecified but with the condition
supp(G) ⊆ Θ being imposed to ensure that the problem
is well-defined. Furthermore, we assume that the parameter
space Θ is compact, which ensures that the moments of ϑi

(i.e., mean, variance, etc.) are finite. In addition, in order for
the stochastic modeling methodology to be applicable, it is
assumed that Fϑi is such that (X(i)

t ) is strictly an intrinsically
stationary process, while it is highlighted that the model Fϑi

is
semi-parametric in the sense that it fully determines the depen-
dence structure of the process over time (through the unknown
value ϑi) but the distribution of the innovation sequence is left
unspecified. Thus, by letting X(i) :=

[
X

(i)
1 . . . X

(i)
Ti

]
we can

write
X(i)

∣∣ϑi ∼ F {µ,Σ(ϑi)} , (1)

where F denotes a probability distribution, conditional on ϑi,
in IRTi with mean µ and positive definite covariance matrix
Σ(ϑi).

With this setting in mind, we denote by ν̂i ∈ IRJ
+ a

suitable estimator for the WV computed based on
(
X

(i)
t

)
and with the maximum number of scales J being a fixed
integer representing the chosen number of WV scales such
that p ≤ J < mini=1,...,k⌊log2(Ti)⌋. In Sec. II-B, we also
impose restriction of ν̂i to ensure certain properties of the
estimation procedure. Next, we define the expectation of ν̂i

conditionally on ϑi as ν(ϑi) := E
[
ν̂i

∣∣ϑi

]
and thus, we have

ν0 := E [ν̂i] = E
[
E
[
ν̂i

∣∣ϑi

]]
= E [ν(ϑi)] ̸= ν (µ0) , (2)

where µ0 := E[ϑi] and when ν(θ) is a non-linear function
of θ. Considering this stochastic framework, it may not be
optimal to use the parameter vector estimated on the i-th
signal to predict the general measurement error of a future
signal. As proposed in [20], it would be more appropriate
to define a fixed parameter vector that adequately represents
and predicts the behaviour of all possible signals issued from
the stochastic framework, where the parameter values ϑi vary
between replicates. In order to do so, [20] defined θ0 as
follows:

θ0 := argmin
θ∈Θ

Q (θ) ,

where
Q (θ) := E

[
∥ν(ϑi)− ν(θ)∥2Ω

]
, (3)

where ∥x∥2A := xTAx where x ∈ IRk and A ∈ IRk×k and
E[·] denotes the expected value. Furthermore, the vector ν(θ)
of size (J × 1) (just like ν(ϑi)) represents the theoretical
WV implied by the stochastic model Fθ and evaluated at the
fixed parameter vector θ, while Ω denotes a positive definite
weighting matrix defined in IRJ×J .

The criterion in (3) is defined as an expectation under the
distribution G whose form however, as underlined earlier, does
not need to be specified. Regarding the weighting matrix, for
example, one can choose a fixed positive definite matrix for
Ω (denoted as Ω0) or, as discussed in [20], an estimator of
the latter matrix (denoted as Ω̂). As long as this matrix is
positive definite and assuming identifiability of the function

ν(·), the criterion in (3) is uniquely minimized in θ0. With
this in mind, the criterion (or loss/objective function) in (3)
is an extension of the GMWM objective function that takes
into account the internal sensor model G. Therefore, the
logic behind choosing this criterion consists of finding a fixed
parameter vector θ0 that minimizes the expected squared-loss
between the WV implied by the latter parameter vector and the
WV implied by all possible values of the (parameter) random
variable ϑi. In a Bayesian sense, we are finding the optimal
parameter value (according to the GMWM criterion) weighted
by the prior distribution G which although not specified, is
evaluated empirically through the observed “realizations” or
“representations” of the distribution G. In practice, the model
Fθ0

can be interpreted as the noise model associated to the
WV ν(θ0) which is closest (in the sense of norm defined
in (3)) to the expected classical WV ν0 defined in (2). This
interpretation is due to the properties of quadratic forms.
Indeed, we have

Q (θ) = ∥ν0 − ν(θ)∥2Ω + tr [Ω var {ν(ϑi)}] ,

and, thus, we have

θ0 = argmin
θ∈Θ

Q (θ) = argmin
θ∈Θ

∥ν0 − ν(θ)∥2Ω ,

since the term tr [Ω var {ν(ϑi)}] is not a function of θ. Next,
we provide an example that illustrates the difference between
our target θ0 and the expected value of ϑi, i.e., µ0.

EXAMPLE 1: For i ∈ {1, . . . ,K} and 0 < b < 0.5, we
assume that ϑi

iid∼ U(0, b), i.e., a uniform distribution between
0 and b. Let ε

(i)
t be an iid sequence such that E[ε(i)t ] = 0

and var(ε
(i)
t ) = 1. Then, we define the following first-order

moving-average process:

X
(i)
t = ϑiε

(i)
t−1 + ε

(i)
t .

Under standard regularity conditions, the theoretical WV at
the first scale of such process (conditionally on θ) is given by

ν1(θ) =
θ2 − θ + 1

2
,

Thus, we have

µ1 = E [ν1(ϑ)] =
1

2

(
b2

3
− b

2
+ 1

)
.

Considering only the first scale, we have

θ0 = argmin
θ∈[0,0.5]

E
[
{ν1(ϑ)− ν1(θ)}2

]
= argmin

θ∈[0,0.5]

{µ1 − ν1(θ)}2 ,

and we obtain

θ0 =
1

2
−
√

b2

3
− b

2
+

1

4
̸= µ0 = E [ϑ] =

b

2
.
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B. Robust Estimation Procedure

Considering the stochastic framework defined in the previ-
ous section, a doubly robust estimator for θ0 is proposed here.
For this purpose, we define the following estimator

θ̂ := argmin
θ∈Θ

Q̂(θ), (4)

where

Q̂(θ) :=
∥∥∥ K∑

i=1

wiρ (ν̂i,θ)
∥∥∥2
Ω
, (5)

and where the function ρ : IRJ
+ × Θ 7→ IRJ is a suitable

function chosen to ensure the robustness properties of the
estimated parameter vector θ̂ (such that θ̂ ∈ Θ ⊂ IRp). A
simple but arguably non-robust choice of ρ is given by the
formula ρ(ν̂i,θ) = ν̂i−ν(θ) = [ν̂ij − νj(θ)]j=1,...,J . In fact,
this choice was considered in [20] which proposed a non-
robust version of θ̂. The weights wi are defined as

wi := di
Ti∑K
j=1 Tj

,

where di is a signal-specific constant such that
∑K

i=1 wi = 1

and
∑K

i=1 wiρ (ν̂i,θ)
p−→ EG [ρ (ν,θ)]. The constants di are

defined by the user to give more weight to certain signals based
on prior knowledge (one would however commonly choose
di = 1/K for all i). As previously mentioned, the estimator
ν̂i is a consistent and potentially robust estimator of the WV.

The estimator θ̂ defined in (4), specified through the func-
tion Q̂(θ), can be biased if, in particular, the distributional
assumptions for the stochastic signal (X(i)

t ), i.e. (X(i)
t ) ∼ Fϑi

do not hold exactly. Moreover, in our context, outlying points
can also take the form of values for ϑi that can be considered
as “extreme” given the values of the majority of the others. The
fundamental goal of robust statistics is to provide alternative
estimators that have a bounded (asymptotic) bias due to the
presence of an infinitesimal quantity of outlying points in the
available data (see e.g., [29]). An (indirect) measure of the
(maximal) asymptotic bias of potential data contamination is
provided by the IF (see [27] and [30] for the time series
adaptation) which assesses the effect on the estimator of
considering a data generating process in a neighborhood of
the targeted model. A robust estimator is then an estimator
with a (sufficiently) bounded IF1. Intuitively, a bounded IF,
hence robust, estimator can be obtained by considering in (5),
the following function

K∑
i=1

wiρ (ν̂i,θ) =

K∑
i=1

wi

[
ωij(ν̂ij)ν̂ij − νj(θ)

]
j=1,...,J

=

[
K∑
i=1

wiρj (ν̂ij , νj(θ))

]
j=1,...,J

(6)

with ν̂ij a robust estimator of the WV at scale j for series i,
and ωij(ν̂ij) are such that

∑K
i=1 ωij(ν̂ij) = 1,∀j = 1, . . . , J .

1Indeed, if the support of the estimator is compact, the IF is necessarily
bounded, but it can take very large values leading to excessive asymptotic
bias. Hence, bounding somehow influential and arbitrary points, limits the
size of the bias more effectively.

While a robust estimator for the WVs ensures that the effect
of outlying observations in a series is limited, a weighted
mean that downweights the most extreme WV robust estimates
within the same scale, bounds the effect of outlying values for
a few ϑi.

To verify if an estimator has a bounded (asymptotic) bias
due to the presence of an infinitesimal quantity of outlying
points in the available data, one formalizes the data generating
process as a mixture between the hypothetical model (the
targeted model) and an arbitrary data contamination process.
Formally and generally, let us define εX as the contamination
level and let (Xt) be a process generated by a model in a
neighborhood of Fϑ, where, for convenience, we omit the
subscript i, that is

FεX = (1− εX)Fϑ + εX∆z, (7)

with small (scalar) εX > 0. FεX is the standard contam-
ination model with ∆z the Dirac function at an arbitrary
point z = X⋆

t . Similarly, for the distribution G of the
parameters ϑ of the different series, we consider the mixture
distribution Gεϑ = (1 − εϑ)G + εϑ∆z , with small (scalar)
εϑ > 0 and with ∆z the Dirac function at an arbitrary
point (vector) z = ϑ⋆. Our estimator can be made robust
(in the sense that its IF is bounded) through the choices of the
functions ρj (ν̂ij , νj(θ)) in (6) and the estimators ν̂i. For the
functions ρj , j = 1, . . . , J , these requirements are detailed
in Assumption A in Section III-A, and for the estimator ν̂i,
the IF of θ̂ is bounded if the ν̂ij are robust estimators. The
requirements in Assumption A are satisfied, for example, if
one replaces the weighted mean in (6), with a trimmed mean.
Namely, let 2a be the number of symmetrically trimmed series
i for ν̂ij , and let k = 1, . . . ,K be the index of the order
statistics ν̂[k]j < ν̂[k+1]j , then the weights are defined as

ωij =
1

K − 2a

{
1 ∀k ∈ {a+ 1, . . . ,K − (a+ 1)}
0 otherwise. (8)

Indeed, by removing a (small) part of the most extreme values
for the ν̂ij for each scale j over the K series, we ensure the
conditions in Assumption A2. Finally, since the WV estimators
must be robust estimators, we can choose the ones proposed
by [21].

In what follows, we set ωij = 1/J, ∀i, j in (6) for the SR-
AWV and for the DR-AWV, we use the weights given in (8).

III. STATISTICAL PROPERTIES

In this section, we first derive the conditions for the pro-
posed estimator in (6) to have a bounded IF. We then also
develop the conditions under which a bounded IF estimator is
consistent.

2Actually, the partial derivatives of ρj(νj ,θ) are bounded if ρj(νj ,θ) is
differentiable and monotone. When using non continuous weights such as the
ones for a trimmed mean, this introduces non differentiability at some points
νj , of nil measure. We could define a continuous weight function to avoid
this technical problem, but this would have no incidence in practice, almost
surely.
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A. Robustness properties

For convenience, and without loss of generality, we set the
(fixed) weights in (5) to 1, i.e. wi = 1, ∀i. In order to
define a robust estimator with a bounded IF we need to set
the following conditions.

ASSUMPTION A (Robustness): Let denote ρj the jth element
of the function ρ in (5), and suppose it only depends on ν̂ij
and νj(θ) as in (6). Then, there exists a finite positive constant
C such that for all j ∈ {1, . . . , J} and all l ∈ {1, . . . , p}, we
have

1) sup
νj∈IR+, θ∈Θ

{
∥ρj(νj ,θ)∥max

}
< C,

2) sup
νj∈IR+, θ∈Θ

{∥∥∥∥ ∂

∂θl
ρj(νj ,θ)

∥∥∥∥
max

}
< C, and

3) sup
νj∈IR+, θ∈Θ

{∥∥∥∥ ∂

∂νj
ρj(νj ,θ)

∥∥∥∥
max

}
< C.

where ∥A∥max denotes the max of the matrix A ∈ IRn×m,
i.e., ∥A∥max = maxi=1,...,n, j=1,...,m |Ai,j |.

In most instances, 1) implies 2) and 3), as is the case
(almost surely2) with ρj being a weighted average with
weights given in (8). However, we keep 2) and 3) for the
sake of completeness.

ASSUMPTION B (Stationarity): For all i ∈ {1, . . . ,K} and
conditionally on ϑi, we assume that

(
X

(i)
t

)
for j = 1, . . . , Ji

and t = 1, . . . , Ti, is a strictly (intrinsically) stationary
process.

The IF is obtained by taking the Gâteaux derivative of
the estimator seen as a functional of the mixture distributions
(as in (7)) with respect to the contamination level when the
later diverges to 0 from the positive side. Indeed, in the
data contamination case, θ̂ depends on both distributions Gεϑ

and FεX while ν̂i depend only on the distribution FεX , so
that θ̂ can be written as a functional of both contaminated
distributions as θ̂ (Gεϑ , FεX ). The IF of θ̂, is then defined as

IF(ζ∗, θ̂, G, Fϑ) =
∂

∂εϑ

∂

∂εX
θ̂ (Gεϑ , FεX )

∣∣∣∣
εX↓0,εϑ↓0

(9)

where ζ∗ = (X∗
t , (ϑ

∗)T )T with, respectively, X∗
t and ϑ∗ the

(arbitrary) contamination points of, respectively, FεX and Gεϑ .
Eq. (9) can also be decomposed as

IF(ζ∗, θ̂, G, Fϑ)

=

[
∂

∂εϑ

∂

∂εX
θ̂l (Gεϑ , FεX )

∣∣∣∣
εX↓0,εϑ↓0

]
l=1,...,p

=
[
IFl ((X

∗
t , ϑ

∗
l ), G, Fϑ)

]
l=1,...,p

(10)

so that each p elements of the IF need to be bounded for θ̂ to
be a robust estimator. As stated in Proposition 1 below, whose
detailed proof is given in the supplemental material, the IF
of θ̂ defined in (4) and (5), is proportional to the IF of ν̂j ,
so that for θ̂ to be robust in the sense of having a bounded
IF, the WV ν̂ij need to be robust estimators. Moreover, the
bounds on the IF of θ̂ also depend on the functions ρl(ν, θ),

so that the IF provides a convenient way to properly define
the later in order to obtain a robust estimator for θ.

PROPOSITION 1: Under Assumptions A and B, and if the IF
of ν̂ij are bounded ∀i = 1, . . . ,K, j = 1, . . . , J , the IF of θ̂
defined in (4) is bounded.

PROOF: Without loss of generality, and for clarity of exposi-
tion purposes, we consider that the contamination level εX in
the contamination model in (7), is the same for all stochastic
signals. The estimator θ̂ depends on both empirical distribution
associated to G and the Fϑi

while ν̂ depend on the empirical
distribution associated to the Fϑi . In the data contamination
case, it can be written as θ̂ (Gεϑ , FεX ). The later is implicitly
defined through

Q̂
(
θ̂ (Gεϑ , FεX )

)
=

∥∥∥Eεϑ

[
ρ
(
ν̂ (FεX ) , θ̂ (Gεϑ , FεX )

)] ∥∥∥2
Ω

=
∥∥∥Eεϑ

[
ϱ (FεX , Gεϑ)

]∥∥∥2
Ω
,

where Eεϑ is the expectation taken under Gεϑ and

ϱ (FεX , Gεϑ) =
[
ϱj (FεX , Gεϑ)

]
j=1,...,J

=
[
ρj

(
ν̂j (FεX ) , νj

(
θ̂ (Gεϑ , FεX )

))]
j=1,...,J

.

Let also

m
(
θ̂ (Gεϑ , FεX )

)
= Q̂

(
θ̂ (Gεϑ , FεX )

)
,

which is the minimum value of Q̂(θ). The IF is implicitly
defined though the equality between

∂

∂εϑ

∂

∂εX

∥∥∥∥∥
[
Eεϑ

[
ϱj (FεX , Gεϑ)

]]
j=1,...,J

∥∥∥∥∥
2

Ω

∣∣∣∣∣∣
εX↓0,εϑ↓0

(11)
and

∂

∂εϑ

∂

∂εX
m
(
θ̂ (Gεϑ , FεX )

)∣∣∣∣
εX↓0,εϑ↓0

.

We first have that

∂

∂εϑ

∂

∂εX
m
(
θ̂ (Gεϑ , FεX )

)∣∣∣∣
εX↓0,εϑ↓0

=

[
∂

∂θl
m(θ)IFl

(
(X∗

t , ϑ
∗), θ̂l, (G,Fϑ)

)]
l=1,...,p

.(12)

Given that the IF of θ̂ is bounded if all its p elements are
bounded (see (10)), we can derive the IF for each term, i.e.
IFl

(
(X∗

t , ϑ
∗), θ̂l, (G,Fϑ)

)
in (10). For (11), after tedious but
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straightforward derivations (see the supplemental material for
details), and combining with (12), we obtain J∑

j=1

Hj (ν,θ)M4 (νj ,θ) +
∂

∂θl
m(θ)


IFl

(
(X∗

t , ϑ
∗), θ̂l, (G,Fϑ)

)
=

J∑
j=1

Hj (ν,θ)
(
M1 (νj ,θ) +M3

(
νj , θ̂

)
−M4 (νj ,θ)

)
IF (X∗

t , ν̂j , Fϑ)

+

J∑
j=1

Hj (ν,θ)

[(
M2 (νj ,θ) +M5 (νj ,θ)

)
IF (X∗

t , ν̂j , Fϑ)

]
IF
(
ϑ∗, θ̂l, G

)
+

J∑
j=1

Hj (ν,θ)M6

(
νj , θ̂

)
IF
(
X∗

t , θ̂l (ϑ
∗, Fϑ) , Fϑ

)
(13)

where Hj (ν,θ), M1

(
νj , θ̂

)
, M2

(
νj , θ̂

)
, M4

(
νj , θ̂

)
and

M5

(
νj , θ̂

)
are quantities that do not depend on the data,

while

M3

(
νj , θ̂

)
=

∂

∂νj
ρj

(
νj , θ̂ (ϑ∗, Fϑ)

)
M6

(
νj , θ̂

)
=

∂

∂θl
ρj (νj ,θ)

∣∣∣∣
θ=θ̂(ϑ∗,Fϑ)

are data contamination dependent, but are bounded
if conditions 2) and 3) in Assumption A hold.
From (13), one can deduce that the IF of the lth
element of θ̂, IFl

(
(X∗

t , ϑ
∗), θ̂l, (G,Fϑ)

)
, is bounded if

IF (X∗
t , ν̂j , Fϑ) ,∀j = 1, . . . , J , IF

(
X∗

t , θ̂l (ϑ
∗, Fϑ) , Fϑ

)
,

and IF
(
ϑ∗, θ̂l, G

)
are bounded. We have that

IF (X∗
t , ν̂j , Fϑ) ,∀j = 1, . . . , J is bounded by the conditions

in Proposition 1, which implies that IF
(
X∗

t , θ̂l (ϑ
∗, Fϑ) , Fϑ

)
is bounded if IF

(
ϑ∗, θ̂l, G

)
is bounded. For the later, after

tedious but straightforward derivations (see the supplemental
material for details), we obtain that it is bounded if condition
1) in Assumption A is satisfied.

B. Consistency

From (6), we can express θ̂ as

θ̂ = argmin
θ∈Θ

||ν̄ − ν(θ)||2Ω

with

ν̄ =

[
K∑
i=1

wiωij(ν̂ij)ν̂ij

]
j=1,...,J

. (14)

Following [31], for consistency of θ̂, and by using
p−→ to

denote convergence in probability, we need

||ν̄ − ν(θ)||2Ω
p−→ ||E[ν̄]− ν(θ)||2Ω

with E[ν̄] = ν0, which, by the continuous mapping theorem
and for any consistent estimator ν̂ij , is achieved if Assumption
C below is satisfied.

ASSUMPTION C: ν̄ defined in (14) is such that

ν̄
p−→ ν(θ0) = ν0.

Under some technical requirements (see [21] for details),
we have that that the robust ν̂ proposed by [21] is a consistent
estimator of ν(θ0). For ν̄ to be consistent, we need to impose
some additional conditions. Recall that we propose for ν̄ a
trimmed mean (see (8)) with a given trimming proportion a
such that 2(a − 1) is the number of symmetrically trimmed
series. For the trimmed mean to be consistent, the trimming
proportion should vanish as K → ∞, or, in other terms the
number of trimmed series should be fixed ∀K. This type of
requirement has been used for controlling the estimation bias
induced by heavy tail distributions in non parametric settings;
see e.g., [32]. Therefore, admitting that outlying series might
happen in a non systematic fashion, hence not as a constant
proportion, and letting the proportion a → 0 in (8), ν̄ is
a consistent estimator of ν(θ0), which implies that θ̂ is a
consistent estimator of θ0.

IV. SIMULATION STUDY

The purpose of this section is to highlight the effectiveness
of the new robust estimators against their classical version
in targeting the true (unknown) model parameter values
that describe the stochastic error behaviour of low-cost and
consumer-grade inertial sensor measurements. To accomplish
this, a simulation study is conducted for the following data
collection scenarios, based on typical accelerometer measure-
ments:

1) outlier-free (clean setting - Scenario I),
2) various types of outliers (step function, random point

replacement with white noise, vibrations) are introduced
to the replicates (data corruption setting - Scenario II),

3) the signal replicate distribution of the former setting is
modified by including a signal with significantly different
stochastic error behaviour compared to the rest (sample
contamination setting - Scenario III).

In addition, the statistical performance evaluation of the afore-
mentioned estimators in each simulation setting is conducted
by utilizing a robust version of the Root Mean Square Error
(RMSE) given by the following formula [21]:

RMSE =

√√√√med

(
θ̂l − θl,o

θl,o

)2

+ mad

(
θ̂l
θl,o

)2

, (15)

where med(·) is the median operator, mad(·) is median ab-
solute deviation operator, θ̂l, l = 1, . . . , p is the vector of
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estimates obtained by simulations for the l-th element of θ,
and θl,o is the corresponding true parameter value (scalar). As
for the reason why such metric was selected, it is to allow
for a more meaningful comparison between the classical and
robust estimators, since the former’s bias is unbounded in the
presence of outliers.

Assuming K = 8 signal replicates of length T = 524284
samples (approx. 1.5 hrs) apiece and with data interval f =
100 Hz are produced from a composite stochastic model, say
the N1, via Monte-Carlo (MC) simulations. Specifically, N1

consists of one Autoregressive process of order 1 (AR1), one
Random Walk (RW) and one White Noise (WN) process,
while their parameter values that characterize each replicate
are realizations that are randomly drawn from the following
beta (β) distributions:

• AR1(ϕ) with ϕ = 0.9835489 +B1 · 3.4476489 · 10−3,
B1 ∼ β(6, 2)

• AR1(η2) with η2 = 1.286053·10−8+B2·9.019592·10−9,
B2 ∼ β(2.2, 6.1)

• RW (γ2) with γ2 = 2.904098 · 10−11 + B3 · 1.279669 ·
10−11, B3 ∼ β(1.8, 3.5)

• WN(σ2) with σ2 = 5.195192·10−5+B4 ·5.24353·10−6,
B4 ∼ β(3, 4)

The produced “clean replicates”, representing Scenario I,
are utilized to perform the multi-signal stochastic analysis
using the AWV, SR-AWV and DR-AWV estimators and even-
tually estimate the N1 model parameter values. Furthermore,
it is noted that the classical WV (based on the input data) used
by the classical AWV estimator is

ν̄ =

[
K∑
i=1

wiν̂ij

]
j=1,...,J

(16)

and that for the DR-AWV estimator, a 30% trim (4 replicates
are removed in total) is chosen to be used. The aforementioned
steps are repeated for H = 500 times and based on the results,
the RMSE quantity is calculated, with the true parameter
values being determined via parametric bootstrap. In fact, as
shown in (2), the expected values of each parameter taken
separately would not have been suitable.

As for Scenario II, realistic outliers are introduced to each
signal replicate. Specifically, a step function centered in the
middle of the signal with amplitude A = 0.002 m/sec2 is
added to the entirety of each signal, 131 points (0.025% of
the total signal length) are randomly chosen and replaced by
Gaussian WN characterized by σ2 = 0.02 and five small
vibrations (500 data points each) every 90000 samples are
added to three of the available signal replicates. Subsequently,
the three estimators under analysis are used to estimate the
N1 model parameters and evaluate the RMSE value for each
of them.

Regarding Scenario III, it contains the same kind and
magnitude of outliers as Scenario II. In addition, a replicate
to which no vibrations are to be added is chosen and its
RW parameter realization is multiplied by a factor of 4 in
every simulation. In this way, as illustrated in Fig. 1, the case
where an abnormal replicate has been collected is realistically
emulated. Eventually, the classical and robust multi-signal

estimators are employed for the estimation of the N1 defining
parameters and the respective RMSE quantity for each of them
is calculated.

With the RMSE results from the above operations in mind,
Fig. 2, a semi-log plot w.r.t the y-axis is created, where the
behavior of the statistical metric can studied. By inspection,
it is evident that the classical and robust estimators have an
almost equivalent performance in the case where available
data contain no outliers (Scenario I). As a result, the new
robust estimators can be safely used in the clean data setting
instead of the classical AWV without any meaningful loss
in efficiency. In fact, this also means that the conclusions
derived by [33] for the single-signal case can be extended to
the multi-signal approach as well. Moreover, with respect to
Scenario II, the classical estimator appears to be considerably
biased compared to the robust ones, which are not only
equivalent to each other but they also manage to maintain their
efficiency at the same levels as in the clean scenario. Finally,
regarding Scenario III, it is apparent that the existence of the
abnormal replicate has considerably degraded the efficiency
of the AWV and SR-AWV estimators for the RW parameter,
something that is reasonable, given the manner in which it was
constructed. As for the DR-AWV, it seems that it has managed
to successfully avoid its harmful influence.

V. CASE STUDY

In the previous section, we studied the performance of the
two new robust multi-signal estimators in different scenarios
with regards to model parameter estimation statistical effi-
ciency. However, it is not at all clear what the impact of this
stochastic modeling information in each scenario would be to
the final navigation performance, something that has not been
meticulously investigated in the literature.

An insight to that influence could be provided through
the use of the navigation simulator3 proposed in [28]. This
is a framework that it is not only able to reproduce the
perfect INS measurements as well as the GNSS information
(i.e., position and velocity), given a reference trajectory, but
also to realistically simulate their respective noises during the
movement, based on real static inertial data for the INS system
and on the user’s specifications for the GNSS one. In addition,
the simulator performs the INS/GNSS integration by means of
the Extended Kalman Filter (EKF) and provides the capability
to calculate statistical metrics (i.e., navigation state estimation
accuracy, mean position error, mean orientation error, empir-
ical coverage). Through these quantities, as demonstrated in
[28], it is possible to assess the INS performance in terms
of the stochastic model choice for the inertial sensor errors.
Therefore, in this section, we will be utilizing real inertial
sensor calibration signal replicates, perform their stochastic
analysis in different contamination scenarios using the AWV,
SR-AWV and DR-AWV estimators and eventually determine
the nature of the correlation between stochastic calibration
efficiency and INS navigation performance in each of those
scenarios respectively.

3Nav simulator ”R” package: https://github.com/SMAC-Group/navigation

https://github.com/SMAC-Group/navigation


9

FIG. 2: Robust RMSE calculated using (15), for the estimators of the N1 parameters ϕ, η2, γ2, σ2, computed on H = 500 simulated MC
samples under Scenario I (no data contamination), Scenario II (data contamination within each replicate), and Scenario III (contamination
both within and between replicates) of accelerometer data, using the AWV (dots), SR-AWV (squares) and DR-AWV (triangles) estimators.

For the purposes of our study here, the reference trajectory
that is to be inputted into the simulator was chosen to be a 15-
minute land vehicle trajectory derived using NovAtel’s high-
end Synchronous Position, Attitude and Navigation (SPAN)
INS/GNSS integrated system. Specifically, this system is com-
prised by the tactical grade, low-noise iMAR-FSAS IMU and
a GPS/GLONASS high-performance NovAtel receiver, which
by means of loosely-coupled integration, was able to provide
high accuracy position and attitude information for the whole
trajectory shown in Fig. 3 at a 100 Hz rate.
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FIG. 3: Land vehicle reference trajectory on the horizontal (left panel)
and vertical plane (right panel) as it was derived from the SPAN
system

As for the calibration inertial data and for the purposes
of this experiment, the consumer-grade MEMS-based Xsens
MTi-G-710 was chosen to be the source. It was placed on
a levelled surface and multiple 1.5hr static datasets at a 100
Hz rate were collected under the same conditions. Then, a
comparison between the classical and robust ( [21]) WVs
was conducted, as a rough indicator for the selection of free-
from-outliers replicates. Moreover, the behaviour of the WVs
in each of those signals and for each sensor was inspected
and it was determined that all three accelerometers present a

very similar behaviour, with the same also applying for the
gyroscopes. In the end, with these two criteria in mind, 8
accelerometer and 8 gyroscope signal replicates were chosen
as representative for each inertial sensor type (see Fig. 4 for
the selected accelerometer signals as an example) and based
on which, the stochastic error analysis will be conducted.

FIG. 4: Classical (right panel) and Robust empirical WVs (left panel)
in m2/sec4, as a function of the scales τ (sec) in a log-log plot,
computed on the 8 selected clean accelerometer signal replicates

It should also be mentioned that apart from these signals, a
9th accelerometer and gyroscope replicate was chosen based
on the previously mentioned criteria. The reason behind this
choice was to provide the framework with the necessary data
in order to generate realistic INS errors during the simulations
(see [28] for more information on how exactly this is done).
As for the simulated GNSS information that will be used to
aid the INS operation, its rate was set to 1Hz, the horizontal
and vertical position errors were assumed to be defined by
WN with variances equal to 4 and 16m2 respectively, while
the horizontal and vertical velocity errors were characterized
by WN with variances equal to 0.0016 and 0.0036 m/sec2.

The final step, before running the simulations, is to define
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the three different data contamination scenarios, just like we
did in Section IV, and perform the stochastic analysis for
each of them. Therefore, regarding Scenario I, represented
by the previously selected clean signal replicates, it was
identified that the classical WV utilized by the AWV estimator
(henceforth referred to as WV-AWV) and the robust WV
( [21]) utilized by the SR-AWV and DR-AWV estimators
(henceforth referred to as WV-SR-AWV and WV-DR-AWV
respectively), present a very similar behaviour. Moreover, it
was also found that the model N2 comprised by the addition
of two AR1s, one RW, one WN and one Quantization Noise
(QN) process is able to describe both sensor types, the fit of
which is shown in Fig. 5 for the accelerometer data using the
AWV estimator.

FIG. 5: Empirical WV-AWV (16) in m2/sec4, along with associated
95% confidence interval and Implied WV constructed from the
parameters of the fitted N2 model. Also, the individual contribution
of each latent process to the Implied WV is drawn

As for Scenario II, its creation required that both the
accelerometer and gyroscope data to be compromised by three
different types of outliers as shown below:

1) point replacement with WN: 1% of each signal is ran-
domly selected and replaced by WN with mean equal
to the sample mean of the signal and standard deviation
equal to 0.16 m/sec2 for the accelerometer replicates and
0.026 rad/sec for the gyroscope ones

2) 5 vibrations of 500 points length every 90000 samples
were added to both types of signals

3) a step function centered in the middle of each signal
is added to them, with an amplitude Aaccel(1,...,8) =
0.0041, 0.0032, 0.0055, 0.0045, 0.0034, 0.0060, 0.0061,
0.0030 m/sec2 for the accelerometer and Agyro(1,...,8) =
0.00095, 0.00114, 0.00100, 0.00094, 0.00110, 0.00085,
0.00055, 0.00090 rad/sec for the gyroscope replicates.

After these outliers have been included to the available signal
replicates, the WV-AWV, WV-SR-AWV and WV-DR-AWV
were calculated and depicted in the left panels of Fig. 6.
Based on them, the WV-SR-AWV and WV-DR-AWV are
very similar to each other and the WV-AWV appears to have
been significantly affected by the introduction of the artificial
outliers. Furthermore, it is noticed that the WV-SR-AWV and

WV-DR-AWV manage to stay close to the clean scenario in
terms of the lower (WN part) and higher (RW part) scales,
while unfortunately, the same cannot be said for the mid ones.

Finally, regarding Scenario III, it is the same as Scenario
II but with two replicates, for both the accelerometer and the
gyroscope data, presenting a significantly different behaviour
compared to the others. The characteristics of the outliers that
were used to create such abnormal signals are listed below:

1) data substitution with WN: 5242 samples (1% of each
signal’s size) were chosen arbitrarily and replaced by
data, drawn from a WN process with σaccel(3,8) =
0.18 m/sec2 for the accelerometer and σgyro(2,5) =
0.022, 0.026 rad/sec for the gyroscope signals.

2) 5 small vibrations were introduced, with the same char-
acteristics as in Scenario II

3) a step function with its nonzero section starting after
the half-point of the abnormal signals with an amplitude
Aaccel(3,8) = 0.0062, 0.0045 m/sec2 and Agyro(2,5) =
0.00114, 0.00110 rad/sec for each signal type respec-
tively.

4) a time series with the same size as the available signals
was produced based on an AR1 process and added to the
data, the properties of which are listed here:
• AR1accel(3,8)(ϕ = 0.975761, η2 = 3.397832 · 10−7)
• AR1gyro(2)(ϕ = 0.97239103, η2 = 1.074129 · 10−8)
• AR1gyro(5)(ϕ = 0.9766580, η2 = 5.313189 · 10−9)

Following the aforementioned adjustments that created Sce-
nario III, the WV-AWV, WV-SR-AWV and WV-DR-AWV
were calculated and illustrated in the right panels of Fig. 6.
According to them, the WV-DR-AWV estimator remains very
close to its Scenario II behaviour, which means that it manages
to handle the existence of the abnormal replicates. In addition,
we note that the WV-SR-AWV appears to be affected in the
mid scales, something that is very logical since the added AR1
process occupies that specific region of the WV scales (mid-
frequencies of the signal spectrum).

Using the classical WV of the three multi-signal estimators
in each of the three scenarios, the stochastic analysis of the in-
ertial sensor errors is conducted. Having done that, we can now
embed the the estimated quantities into the navigation simu-
lator along with the trajectory information and the INS/GNSS
errors configuration mentioned earlier and perform G = 10000
simulations. Moreover, it should be mentioned that in order to
obtain an insight on the impact of the stochastic modeling
information to the standalone INS navigation performance,
two 90-second outages were introduced, one that includes
straight movement (300-390sec) and one that includes turns
(700-790sec).

Now, since the simulator makes certain simplifications (see
[28] for more details), the derived solutions cannot provide a
realistic representation of a real-life experiment in terms of
absolute navigation. On the other hand, a relative comparison
in terms of any statistical metric (e.g., empirical coverage,
standard estimation error) between the solutions derived when
using a different stochastic modeling estimator and for each
state, can be utilized for the inference of conclusions regarding



11

FIG. 6: WV-AWV, WV-SR-AWV and WV-DR-AWV for the accelerometer data in m2/sec4 (top panels) and for the gyroscope data in rad2/sec2

(bottom panels) of Scenarios II (left panels) and III (right panels)

the contribution to the navigation performance of the INS
sensor noise stochastic analysis in different contamination
scenarios for the calibration data.

Generally, the assessment of any algorithm’s performance in
the navigation-related literature occurs with a limited number
of real-life experiments. However, especially in the case of
comparing one stochastic modeling technique over another,
these tests cannot realistically be enough in number for the
inference of strong statistical conclusions related to their
contribution to the overall navigation performance. This is
actually the reason why the contribution of the navigation
simulator to this study is so important, since it manages
to bring together the concept of experimentation and pure
statistical analysis.

In our experiments here, and for the purpose of assessing the
reliability of the INS standalone navigation performance when
stochastic knowledge from each multi-signal (classical and
robust) estimator is utilized in the 3 different calibration data
contamination scenarios, we chose to investigate the behaviour
of the Standard Estimated Errors (SEEs) for the position and
orientation states. Moreover, in order to consider the multiple
MC realizations produced by the simulator, we average the
SEE over the total number G of simulations and create the
Averaged Standard Estimation Error (ASEE). However, from
an investigation of all the available results, we found that the
SEE for all the position and orientation states presents minimal
variability from one MC run to another, which means that a
smaller number of simulations can be considered for averaging
without affecting the derivation of conclusions. Thus, with this
in mind, as well as to reduce the computational load, we chose

to use the ASEE quantity based on 100 MC simulations to
conduct our study.

What is more, we make a sensible assumption that the
AWV-based solution in Scenario I is the optimal one and
thus, the validity of the reliability information characterizing
other solutions should be evaluated via a comparison with it.
Therefore, ratios are evaluated with respect to this reference
and for the ASEE (based on 100 MC simulations) information
that corresponds to each estimator in the 3 scenarios. For
illustration purposes, Fig. 7 is constructed, where a snippet
of the ASEE ratios for the East position and roll angle
navigation state components are depicted. In addition, the
mean values of the ASEE ratio errors during the two GNSS
outage regions are calculated as the the difference of each ratio
from unity in percentage units and they are provided in Tab. I.
Hence, a quantitative analysis of the inspected quantity can be
conducted in a straightforward manner.

According to Fig. 7 for Scenario I, the solutions based
on the robust estimators for both position and orientation
states are characterized by a very similar reliability to the
reference. Consequently, the equivalence of the robust multi-
signal estimators to the classical one in terms of implied
navigation quality is confirmed for the clean calibration data
scenario.

Before we move on further, it is important to mention
that the goal of robustness in the stochastic modeling of
inertial sensor errors is to provide information to the navigation
filter that helps the INS performance to remain stable under
contamination. Therefore, in the next two scenarios we attempt
to assess this while considering a certain mindset. Specifically,
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FIG. 7: ASEE ratios based on 100 simulations for the estimated east position component (Xe) (upper panels) and Roll Angle (RA) orientation
component (lower panels). The ratios are between the ASEE of the estimates obtained from the AWV, SR-AWV and DR-AWV estimators in
each data scenario relative to the one obtained from the AWV estimator in Scenario I (S1)

East position ASEE Roll angle ASEE

AWV SR-AWV DR-AWV AWV SR-AWV DR-AWV

Scenario I (%)

Outage I - 0.96 1.82 - 0.74 2.09
Outage II - 0.94 1.75 - 0.75 1.97

Scenario II (%)

Outage I 75.07 9.33 17.23 95.46 4.24 13.01
Outage II 74.05 9.65 17.23 91.00 5.36 15.46

Scenario III (%)

Outage I 76.75 28.88 20.24 91.00 25.00 16.06
Outage II 77.19 29.72 21.24 92.45 26.86 18.21

TABLE I: Mean values of the East position and roll angle ASEE
ratio errors for the two GNSS outage regions in each scenario.

we start by making a realistic assumption that the parameter
estimation is stable in the clean scenario. Then, we proceed
to investigate how a more stable modeling parameter solution
provided by the robust estimators under contamination is trans-
lated into the estimation accuracy of the navigation solution
as well as what is its relationship with the stable reference
solution (derived in the clean scenario).

With this in mind and regarding Scenario II, it is evident
from Fig. 7 that the estimations provided by the AWV-driven
solution are considerably undermined during the entirety of
the trajectory and especially during the GNSS outages. On
the contrary, the solutions that encompass the information
provided by the robust estimators appear to remain stable,
with the SR-AWV providing the most realistic estimation of

confidence by an average margin of approximately 10% for
both state types compared to the DR-AWV, according to Tab. I.
Furthermore, it should be mentioned that solutions based on
the robust estimators appear to provide an equivalent estima-
tion quality during the regions where the GNSS information
is available.

Finally, with regard to Scenario III and based on the
information conveyed by Tab. I, the solution based on the
DR-AWV estimator provides the most realistic uncertainty
information. In fact, the ASEE ratio error is only increased by
about 3% compared to its respective one in Scenario II for both
position and orientation components and each GNSS outage.
Inversely, the SR-AWV solution appears to be destabilized
since its ASEE ratio error has risen by a margin of about
20% compared to Scenario II. On top of that, and based
on Fig. 7, it is worth mentioning that the estimation quality
degradation of the SR-AWV solution is present in the entirety
of the trajectory, not only during the GNSS outage regions.
Therefore, based on our analysis here, it can be inferred that
in cases where Scenario II applies, the SR-AWV estimator
should be the one chosen for the stochastic analysis of the
inertial sensor errors, while in occasions where Scenario III is
identified, the DR-AWV is the optimal choice.

VI. CONCLUSIONS

In this paper, we brought forward a robust multi-signal
framework for the low-cost and consumer-grade inertial sensor
stochastic calibration that is based on the well-established
GMWM method and the AWV estimator. Consequently, we
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are now capable of efficiently inferring knowledge about
the random error behaviour while considering the stochastic
parameter variability between replicates and providing safe-
guards to the estimation process from outliers on two fronts.
Moreover, we provided a detailed mathematical reasoning
about the conditions that have to be met in order to ensure
robustness and statistical consistency.

From this new framework, two estimators were defined and
their efficiency in different settings was evaluated and con-
firmed from two separate aspects. The first was in the context
of a simulation setting and in terms of stochastic modeling
parameter estimation efficiency in different contamination sce-
narios. And the latter, was based on stochastically analyzing
real data under different contamination scenarios and in turn,
investigating the correlation between the quality of the derived
knowledge about the inertial sensor errors and the accuracy
and stability of the INS/GNSS navigation performance using
a navigation simulator. Finally, it is highlighted that the gen-
erality of this new method does not limit its application in just
the study of the random drift that is displayed by low-cost and
consumer-grade inertial sensors. Instead, for example, it could
also be used for the random error analysis of GNSS positioning
solutions and by incorporating the derived knowledge into
the GNSS navigation algorithm, improve the accuracy and
stability of its standalone performance.
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funding of Prof. Stéphane Guerrier in part from the SNSF
Professorships Grant #176843 and from the Innosuisse Grants
#37308.1 IP-ENG and #53622.1 IP-ENG. L, as well as by
funding of Prof. Maria-Pia Victoria-Feser in part from the
SNSF Grant #182684.

REFERENCES

[1] D. Titterton, J. L. Weston, and J. Weston. Strapdown inertial navigation
technology, volume 17. IET, 2004.

[2] G. Huang. Visual-inertial navigation: A concise review. In 2019
International Conference on Robotics and Automation (ICRA), pages
9572–9582. IEEE, 2019.

[3] J. H. Wall, D. M Bevly, et al. Characterization of various IMU error
sources and the effect on navigation performance. In Proceedings of
the 18th international technical meeting of the satellite division of the
institute of navigation (ION GNSS 2005), pages 967–978, 2005.

[4] R.O. Allen and D.H. Chang. Performance testing of the systron donner
quartz gyro. Jpl Engineering Memorandum, EM, pages 343–1297, 1993.

[5] I. Board. IEEE standard specification format guide and test procedure
for single-axis interferometric fiber optic gyros. IEEE Std, pages 952–
1997, 1998.

[6] Y. Yuksel, N. El-Sheimy, and A. Noureldin. Error modeling and
characterization of environmental effects for low cost inertial MEMS
units. In Proceedings of IEEE/ION PLANS 2010, pages 598–612, 2010.

[7] B. Claus. Multiscale statistical signal processing: identification of a
multiscale ar process from a sample of an ordinary signal. IEEE
transactions on signal processing, 41(12):3266–3274, 1993.

[8] R. Johansson, M. Verhaegen, and C. T. Chou. Stochastic theory of
continuous-time state-space identification. IEEE Transactions on Signal
Processing, 47(1):41–51, 1999.

[9] R. H. Shumway and D. S. Stoffer. An approach to time series smoothing
and forecasting using the EM algorithm. Journal of Time Series Analysis,
3(4):253–264, 1982.

[10] J. Nikolic, P. Furgale, A. Melzer, and R. Siegwart. Maximum likelihood
identification of inertial sensor noise model parameters. IEEE Sensors
Journal, 16(1):163–176, 2015.

[11] Y. Yuksel and H. B. Kaygisiz. Notes on stochastic errors of
low cost MEMS inertial units. lı́nea]. Available: http://www. instk.
org/web/static/bibliography/Introduction to Sensor Errors. pdf.[Último
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