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Review 

Theta–gamma coupling as a ubiquitous brain 
mechanism: implications for memory, attention, 
dreaming, imagination, and consciousness
Mauro Ursino and Gabriele Pirazzini 

Brain rhythms are known to play a relevant role in many 
cognitive functions. In particular, coupling between theta and 
gamma oscillations was first observed in the hippocampus, 
where it is assumed to implement a code for organizing multiple 
items in memory. More recent advances, however, demonstrate 
that this mechanism is ubiquitously present in the brain and 
plays a role not only in working memory but also in episodic and 
semantic memory, attention, emotion, dreaming, and 
imagination. Furthermore, altered mental states and 
neurological disorders show profound alterations in the 
theta–gamma code. In this review, which summarizes the most 
recent experimental and theoretical evidence, we suggest that 
the substantial capacity to integrate information characteristic 
of the theta–gamma entrainment is fundamental for 
implementing many conscious cognitive processes.
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Introduction
Brain rhythms are periodic fluctuations of the electric fields 
in brain regions due to temporal synchronization among 
groups of neurons. Many studies in the past decades pro-
vide convincing evidence that brain rhythms and their 

interaction (especially between theta and gamma) play a 
fundamental role in different mental processes [1]. The 
first interplay between theta (4–8 Hz) and gamma 
(> 30 Hz) oscillations was observed in the hippocampus, 
where it is assumed to implement a code for organizing 
multiple items in memory. Over the years, long-range 
phase synchronization between these different neural os-
cillations has come into the focus of consciousness research 
as a possible correlate of conscious perception [2–4]. The 
coupling between slow and fast oscillatory signals may, in 
fact, represent a primary mechanism for accessing in-
formation, integrating it on a large scale, and constructing a 
global workspace that, according to some influential the-
ories, is considered essential for consciousness [5]. Con-
sistently, the administration of anesthetic drugs (which 
induce altered states of consciousness) causes impairments 
in responses mediated by cross-frequency coupling (CFC) 
between theta and gamma rhythms [6].

In particular, the relationships between consciousness, 
memory, and endogenous attention are still the subject 
of active research. Some studies argue that working 
memory (WM) and attention are necessary mechanisms 
for supporting consciousness in humans [5], and they 
have also recently been used as markers to identify 
consciousness in animals correctly [7]. However, not all 
current theories of consciousness support this idea (for a 
recent comparison of them, see Refs. [8,9]). Further-
more, episodic and semantic memory is the basis of our 
autobiographical experience and daily behavior; hence, 
understanding how these processes work together and 
are interrelated could be essential for comprehending 
consciousness.

In this review, we summarize recent experimental and 
theoretical evidence linking the theta–gamma code with 
working, episodic, and semantic memory, attention, and 
emotional states. Then, we further analyze the possible 
role of this mechanism in imagination and dreaming and 
its implication in the etiology of neurological diseases or 
altered mental states. Finally, we briefly discuss the 
need for a deeper understanding of its causal neural 
mechanisms, highlighting how computational models 
can play a vital role in this respect.

At present, there are not sufficient hints to sustain that 
theta–gamma integration is a necessary prerequisite for 
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consciousness. However, as documented below, the ca-
pacity to process information typical of the theta–gamma 
entrainments is crucial in many different cognitive pro-
cesses related to consciousness. Accordingly, we suggest 
that a large portion of our conscious mental experience is 
supervised by this ubiquitous integrative mechanism. A 
graphical summary can be found in Figure 1.

General mechanism and working memory 
maintenance
The first idea of the theta–gamma coupling originated 
from studies in the hippocampus, particularly on place 
cell firing when a rat moves on a labyrinth [10]. The 
common idea is that this code provides a mechanism for 
representing and maintaining multiple items in memory. 
During WM maintenance, each gamma cycle encodes the 
elements of an individual memory item, while multiple 
items can be ordered sequentially along the phase of a 
modulating theta wave. The general mechanism is de-
picted in Figure 2. In recent years, new results have been 
gathered showing a relationship between WM capacity 
and the theta–gamma code not only in the hippocampus 
(for the hippocampus, see Ref. [11]) but also in different 
brain regions.

Several electroencephalography (EEG) studies (most of 
them summarized in Ref. [12]) demonstrate a clear as-
sociation between WM and theta–gamma coupling using 

different tasks (pictorial recognition tasks, verbal tasks, 
delayed match-to-sample visual tasks, etc.) involving the 
frontal, parietal, occipital, and posterior cortices. Biel 
et al. [13] stressed that cross-frequency phase synchro-
nization between theta and gamma rhythms in posterior 
regions serves matching processes between mental 
templates (i.e. predictions) and expected sensation. 
Fernandez et al. [14] studied the relationship between 
WM load and CFC between frontal and posterior re-
gions. The results showed maximal increases of theta 
activity in frontal areas and of fast frequencies’ activity in 
posterior regions with the WM load, suggesting a mod-
ulation of inter-regional communications depending on 
the demand. The previous recent papers emphasize that 
frontal theta rhythm subserves a control or a WM func-
tion, while gamma rhythm mainly reflects the sensory 
experience and its memorization.

A way to demonstrate the involvement of theta and 
gamma rhythms in WM consists of modulating the WM 
capacity via rhythmic stimulation. Several recent studies 
address this aspect. For example, Köster et al. [15] en-
hanced memory formation processes via rhythmic visual 
stimulation at theta frequency. In addition, Jones et al. 
[16] modulated the interaction between frontoparietal 
theta oscillation and gamma activity through transcranial 
direct current stimulation and observed improved WM 
performance.

Figure 1  
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The different cognitive functions that are affected by the theta and gamma rhythms. In most cases, conscious experiences are produced during these 
functions. However, consciousness does not necessarily cover all aspects, and some unconscious processes are possible.  

2 Consciousness on the Borders of Life and Death 

www.sciencedirect.com Current Opinion in Behavioral Sciences 2024, 59:101433



Long-term memory
A broader recent perspective proposes that WM and 
long-term memory mutually cooperate to realize com-
plex behavioral patterns [17].

Indeed, much data concerning the hippocampus stresses 
the functional role of gamma and theta oscillations in 
human episodic memory (EM) as well (see Ref. [18] for 
a review). Recent results confirm an increase in the theta 
rhythm and its phase reset during associative memory 
tasks [19,20] and show that encoding and retrieval occur 
at different phases of the theta rhythm [21,22]. A dif-
ferentiation between encoding and retrieval could be 
linked to fluctuations in acetylcholine (Ach) levels. In-
deed, Ach reduces feedback synapse strength in the 
hippocampus and increases feedforward afferent inputs, 
thus favoring the encoding of new information in 
memory [23]. In contrast, low Ach concentration has the 
opposite effect, favoring the replay of previously stored 
items [24]. Some authors suggested that the cholinergic 
tone can regulate the theta rhythm [25], devising a solid 
relationship between Ach, theta–gamma coupling, and 
memory. This result opens broad perspectives, 

indicating that neurotransmitters can regulate mental 
processes by modulating neural oscillation entrainment.

Additional data suggest that theta–gamma coupling can 
affect other types of long-term memory, including se-
mantic and procedural ones. A causal relationship be-
tween theta–gamma coupling and motor acquisition skills 
was demonstrated by Akkad et al. [26] via transcranial 
alternating current stimulation (tACS) and by Diedrich 
et al. [27], who obtained significant improvements in 
nondeclarative visuomotor skills after tACS treatment. 
Other works probe the functional role of theta–gamma 
coupling during verbal long-term memory encoding [28]
and adaptive control of motor commands [29]. Mellem 
et al. [30] analyzed the oscillatory dynamics of lexical- 
semantic processing. They suggested that gamma power 
reflects activation of local functional networks supporting 
semantic representations, while theta coherence indicates 
dynamic coupling of anterior and posterior areas. Marko 
et al. [31], using tACS, suggest that theta band oscillatory 
brain activity supports the binding of semantically linked 
representations via a phase-dependent modulation of se-
mantic activation or maintenance.

Figure 2  
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Qualitative explanation of the mechanism for encoding multiple items in a temporal sequence, exploiting the theta–gamma phase–amplitude coupling. 
Letters A–E represent five different items, each characterized by the activation of an ensemble of neurons (not necessarily distinct). A different 
ensemble of neurons (T), oscillating at a smaller frequency, generates theta rhythm (e.g. neurons encoding items may be located in hippocampal or 
cortical regions, while neurons producing theta rhythm may be located in subcortical structures such as the septum or the amygdala, which then send 
the signal to the hippocampus/cortex). All neurons in the same item are excited in synchronism during a single gamma period but at a different phase 
of the underlying theta rhythm. Different items occupy different phases in the theta period, thus generating a sequence. The sequence is then 
replicated at each new period. The mechanism allows the production of a temporal memory, in which different items unfold in time with an assigned 
order.  
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Attention and emotion
The previous studies underline the pivotal role of the-
ta–gamma coupling in memory. Others enlarge the role 
of brain rhythms to additional problems, particularly at-
tention. The results, summarized by Helfrich et al. [32], 
suggest that the neural bases of attention are funda-
mentally rhythmic and that theta rhythmicity plays a 
central role in the attention network via a top-down 
control directed to goal-reaching. Chen et al. [33] em-
phasize the role of theta–gamma coupling in attention as 
a mechanism to resolve conflict-processing tasks. Pa-
paioannou et al. [34] measured cortical theta–gamma 
coupling in three conditions (a WM task, an attention 
task, and a passive perception condition) and found si-
milar levels of theta–gamma coupling in all of them. 
This result suggests that gamma–theta entrainment has 
greater relevance than expected, being also implicated in 
attentional and perceptual processes, and so may re-
present a more generic mechanism for signal processing 
in the brain. Cansler et al. [35] examined the olfactory 
attention network in rats. They observed an increase in 
the power of gamma oscillations and their coupling with 
theta phase as rats switched their attention to odors. 
Esghaei et al. [36] summarized much previous work on 
the role of CFC in visual attention and formulated two 
interesting hypotheses. First, distinct frequency bands 
could play different roles in visual information handling 

by implementing different submodalities of sensory 
processing: enhancing discrimination or improving 
communication. An example of how the theta–gamma 
code can favor or jeopardize communication between 
two areas is summarized in Figure 3. Second, different 
rhythms would process distinct sensory feature dimen-
sions (for instance, color vs visual motion).

The involvement of theta–gamma coupling has also 
been recently observed during the reorienting of atten-
tion in motor execution [37] and in the auditory cortex, 
where it is related to speech comprehension [38].

Interestingly, a recent paper by Costa et al. [39] points 
out the role of theta–gamma coupling in handling 
emotions. Using intracranial recording on patients, the 
authors observed that memory encoding of aversive 
events depends on the relationship between the amyg-
dala theta phase and hippocampal gamma activity and 
suggested that this represents a general mechanism 
through which the amygdala informs distant brain re-
gions of the emotional valence. Another recent study 
supports this idea using optogenetic stimulation and 
determining a causal role by the amygdala in influencing 
declarative memory by eliciting theta–gamma coupling 
in the hippocampus [40].

Figure 3  
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An example of how theta–gamma coupling can affect information transmission among different brain regions by realizing temporal windows of 
excitability (freely modified from Esghaei et al., 2022). We assume that activity in a first region (represented by the signal at the bottom) is transmitted 
to another region (whose activity is represented by the signal at the top). Information is coded by the gamma rhythm. We further assume that the valley 
of the theta oscillation corresponds to a condition of inhibited activity, and so excitation can occur only during theta peaks. In the left configuration, 
transmission is optimal, and gamma activity in the first region can substantially affect activity in the second region. Conversely, in the right 
configuration, the transmission is impaired since gamma activity in the first region reaches the second region during an inhibition period. Moreover, the 
gamma activity in the second region, during its window of excitability, does not receive substantial information from the other region. Therefore, this 
mechanism can be used to gate information or implement a selective attention mechanism.

4 Consciousness on the Borders of Life and Death 
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Dreaming and imagination
In recent years, the role of brain rhythms and their CFC 
has also been investigated in particular conditions of the 
human mind, such as our ability to dream or imagine.

During sleep, consciousness fades away, but it quickly 
recovers when dreams begin. Interestingly, theta–-
gamma coupling becomes especially prominent during 
rapid eye movement (REM) sleep [41,42], when dreams 
show greater length and narrative organization, also 
being influenced by breathing [43]. Furthermore, the 
theta activity dominating REM sleep (when Ach levels 
are high) has been proposed to support memory con-
solidation, particularly when emotion is involved [44]. 
Also, current psychiatric research, summarized in Scar-
pelli et al. [45], assigns a pivotal role to the theta and 
gamma rhythms during REM sleep, probably related to 
emotional processing.

Unfortunately, there are still few recent studies that 
directly analyze the relationship between brain waves 
and dreaming (however, see Scarpelli et al. [45] for some 
arguments). These authors hypothesize that dreams 
could represent a simulation of reality, providing the 
possibility to create a new scenario for reprocessing and 
assessing emotional mastery elements. We think that 
theta–gamma coupling could play a role in this process of 
simulating temporal events.

Much effort in recent years has been devoted to other 
mental states, such as lucid dreaming [46], medita-
tion [47,48], or mind-wandering [49–51]. Some au-
thors argue that mind-wandering could be triggered 
during quiescent states by the interplay of neuro-
modulators and brain rhythms [52] and be understood 
as a weaker version of dreaming [53] or perception 
[54] with which it could, therefore, share the same 
oscillatory mechanisms. In support of this possibility, 
two recent articles find an increase in long-range 
phase synchronization between prefrontal theta and 
posterior gamma rhythms during mind-wandering 
[55] and imagination tasks [56].

Neurological diseases and altered mental 
states
Recent studies additionally indicate a deep relationship 
between impairments in theta–gamma rhythmicity and 
aging, neurological disturbances, or altered conscious 
states. They link abnormal theta and gamma oscillations 
to several neurological disorders, including Alzheimer’s 
disease (AD), Parkinson’s disease, epilepsy, and schizo-
phrenia [57–59].

Large hippocampal gamma waves are suggested to 
contribute to seizures, while low-amplitude gamma ac-
tivity is found during general anesthesia [60].

Various data in the literature suggest that GABA-ergic 
inhibition is impaired in schizophrenic subjects [61]. 
Since inhibitory GABA signaling between parvalbumin- 
positive GABAergic basket cells and excitatory pyr-
amidal cells is required to generate robust gamma os-
cillations [62], this alteration can affect the gamma–theta 
code and WM. Koshiyama et al. [63] found a distributed 
network of temporal and frontal brain regions exhibiting 
gamma phase synchronization in control subjects and 
demonstrated that this network is disorganized in schi-
zophrenia. Abnormality in gamma and theta oscillations 
in schizophrenia is the subject of a wealth of recent 
studies (see Refs. [64,65] for a few of them).

A direct relationship between altered theta–gamma 
coupling and WM has been suggested for individuals 
with AD and dementia [66,67]. Recently, gamma en-
trainment using 40 Hz stimulation (auditory or visual) 
has been proposed as a potential treatment for AD [68].

Furthermore, a compromised precision in the coupling 
between gamma power and theta phase may be related 
to memory impairment in old age [69]. Accordingly, in-
vasive frequency-tuned stimulation to modulate long- 
range theta synchronization improves WM performance 
in older adults [70].

Finally, many altered mental states are associated with 
modifications in the entrainment of theta and gamma 
rhythms. For example, they have been observed during 
anesthesia-induced loss and recovery of consciousness 
(following administration of ketamine [71] or propofol 
[6]), and after the use of cannabinoids [72]. It is widely 
established that psychedelics act mainly on serotonergic 
receptors in the corticothalamic circuits. Notably, sub-
cortical serotonergic innervations to the hippocampus 
serve a prominent role in the modulation of the hippo-
campal theta and gamma rhythm [73].

These frontier results further emphasize the strict re-
lationship between brain rhythms and consciousness.

Underlying neural mechanisms: a 
neurocomputational approach
A critical aspect that deserves much future study and 
may guide the research in the coming years concerns 
reaching a deeper understanding of the neural circuits at 
the basis of theta–gamma coupling. This achievement 
requires the development of neurobiological models to 
bridge the gap between a purely phenomenological de-
scription, often exploited in today’s neuroscience, and 
the underlying causal mechanisms. Such models should 
be neurobiologically grounded based on the biophysics 
of neurons and synapses and be able to integrate mul-
tiscale data from the molecular aspects to the system or 
cognitive level. Moreover, they must provide testable 
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predictions and anticipate the effect of external man-
euvers, parameter manipulations, or pathological altera-
tions.

At the cellular or molecular level, they can exploit in-
formation from chemogenetic, optogenetic, or advanced 
imaging techniques to elucidate the role of specific cell 
types, microcircuit configurations, and synaptic dy-
namics. In recent years, using exact firing rate models, 

some authors proposed theoretical ideas about the for-
mation of theta and gamma rhythms [74], phase syn-
chronization [75], the role of neuromodulators [76], and 
N-methyl-D-aspartate (NMDA) receptors in the genesis 
of altered perception or hallucinations [77].

A different class of models, acting at the mesoscale or 
system level by making use of neural masses, has been 
employed to mimic the collective dynamics of entire 

Figure 4  
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Example of some simulations obtained from the model by Ursino et al. (2023). Two different sequences of five objects each have been previously 
stored in a temporal order using Hebbian mechanisms. It is worth noting that objects are not orthogonal but exhibit some common features (see 
Ursino et al. for more details). In these simulations, the value 5 signifies that all properties of the object have been restored. Upper row: normal model 
functioning in the retrieval modality. At the instant 0 s, the WM receives a cue belonging to object 1. All objects in the first sequence are correctly 
recovered in memory and oscillate at different phases of the theta rhythm (shown overlaid only in this row for simplicity). At the instant 0.4 s a cue from 
object 6 is given. The WM is reset, and the second sequence is correctly reconstructed starting from this cue. Second and third rows: model behavior 
when some synapses are altered to simulate a pathological condition. In the second row, the network fails to correctly reconstruct all objects, 
simulating a case of dementia; in the third row, the model fails to desynchronize properties of different objects, resulting in superimposed objects, 
hence a scenario of hallucinations or distorted thinking. Bottom rows: the network is now isolated from the external environment and receives only 
internal noise. A list of objects previously memorized is recovered independently of the input, and new lists are recombined, linking different 
sequences together on the basis of partially superimposed objects (imagination or dreaming).  

6 Consciousness on the Borders of Life and Death 

www.sciencedirect.com Current Opinion in Behavioral Sciences 2024, 59:101433



populations of neurons. They have been used to simu-
late how gamma rhythm can emerge from the interaction 
between fast-spiking GABAergic neurons and pyramidal 
neurons [78,79] and how this rhythm in the hippo-
campus can be modulated by a slower rhythm emerging 
from subcortical structures such as the medial septum 
[80]. A large-scale model for consciousness research was 
presented by Bensaid et al. [81], and the implications of 
these models are discussed in Modolo et al. [82] and 
Köster and Gruber [83]. Starting from a previous model 
of place cell precession in the hippocampus [84], we 
recently proposed two different models based on tradi-
tional neural masses, which exploit hippocampal con-
nectivity and Hebbian learning [80,85] to simulate how 
different items can be simultaneously reconstructed and 
maintained in memory (using gamma band desynchro-
nization), or several episodes can be sequentially ordered 
in time (exploiting theta–gamma coupling). The results 
stress the relationship between working and EM, pro-
viding an integrated view of different memory functions. 
Furthermore, the models can simulate a phase of ima-
gination or dreaming when isolated from the external 
world and can mimic hallucinatory and memory impair-
ment scenarios following some synaptic parameter 
changes (see Figure 4 for a summary of the different 
behaviors of the models).

The advancement of these recent models and the sti-
mulating results obtained underscore the emerging need 
for theoretical studies to work in parallel with experi-
mental neuroscience to provide deeper insights into the 
neurobiological basis of CFC. Neurocomputational 
models can formulate hypotheses in rigorous quantita-
tive terms, provide a deeper understanding of the gen-
esis of neural rhythms and their alterations, study how 
oscillatory mechanisms can support cognitive phe-
nomena, and make predictions about pathological con-
ditions.

Conclusions
The previous results underline that theta–gamma code 
plays a relevant role in many brain functions not only in 
working, episodic, and semantic memory but also in 
speech, visual and auditory perception, attention, emo-
tion, imagination, and dreaming. Moreover, several stu-
dies point to an impairment of this mechanism in the 
etiology of different neurocognitive disorders. In all 
these cases, conscious states are produced, or their al-
terations are experienced.

At present, we have no element to indicate that integrating 
gamma and theta rhythms is necessary for consciousness. 
However, we strongly suggest that the capacity to process 
information typical of the theta–gamma code is relevant for 
many conscious cognitive processes.

Among the different possible functions of this me-
chanism, we can mention the remapping of real-time 
events into a faster neural time scale, the maintenance of 
information in WM, the encoding of new information 
and the consolidation of recent memory traces into long- 
term memory, and the replay of previously stored items 
such as during imagination or dreaming. By sequentially 
ordering items, this mechanism can implement a pre-
dictive code to drive behavior not only in spatial navi-
gation but more generally to predict and organize future 
events in our lives. Following Ach or other neuro-
transmitter changes, it can govern attention sampling, 
switching between encoding and retrieval in a flexible 
manner and can control the optimal transmission or 
gating of information, implementing time windows of 
higher or smaller excitability.

Some outstanding questions remain: why is theta–gamma 
coupling so ubiquitously present? Which crucial functions 
does this mechanism play? We can formulate two possible 
hypotheses, both valuable and not contradictory. First, the-
ta–gamma coupling appears as a natural way to implement a 
sequential WM, that is, it implements a buffer representing 
multiple items in a segregated (via gamma synchronization) 
and sequential (via theta phase) fashion. This is essential to 
maintain consistency in our living representation across time 
and space. Hence, a plausible possibility is that such a 
temporal WM is somewhat implicated in the aforemen-
tioned cognitive functions as a necessary substrate for in-
formation processing. Second, CFC is a powerful 
mechanism for transferring information among brain regions, 
favoring coordination, binding, segregation, and Hebbian 
learning. The theta–gamma code can furnish a valuable 
solution to both aspects, which can justify its frequent role in 
conscious cognition.

Hence, it is reasonable to conclude that a large portion of 
our conscious mental life is under the supervision of this 
ubiquitous and powerful processing mechanism.
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