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Abstract: Erwinia amylovora is a Gram-negative bacterium, responsible for the fire blight disease in
Rosaceae plants. Its virulence is correlated with the production of an exopolysaccharide (EPS) called
amylovoran, which protects the bacterium from the surrounding environment and helps its diffusion
inside the host. Amylovoran biosynthesis relies on the expression of twelve genes clustered in the ams
operon. One of these genes, amsI, encodes for a Low Molecular Weight Protein Tyrosine Phosphatase
(LMW-PTP) called EaAmsI, which plays a key role in the regulation of the EPS production pathway.
For this reason, EaAmsI was chosen in this work as a target for the development of new antibacterial
agents against E. amylovora. To achieve this aim, a set of programs (DOCK6, OpenEye FRED) was
selected to perform a virtual screening using a database of ca. 700 molecules. The six best-scoring
compounds identified were tested in in vitro assays. A complete inhibition kinetic characterization
carried out on the most promising molecule (n-Heptyl β-D-glucopyranoside, N7G) showed an
inhibition constant of 7.8 ± 0.6 µM. This study represents an initial step towards the development of
new EaAmsI inhibitors able to act as antibacterial agents against E. amylovora infections.

Keywords: Erwinia amylovora; fire blight; amylovoran; exopolysaccharide; EPS production
regulation; molecular docking; in vitro assays; virtual screening; protein tyrosine phosphatase;
inhibition constant

1. Introduction

Fire blight is a disease affecting plants of the Rosaceae family. Its etiologic agent is
the Gram-negative bacterium Erwinia amylovora, which is considered one of the ten most
dangerous plant pathogens [1]. Among the host plants of this disease, some are of high eco-
nomic interest, such as pears and apples [2]. Nowadays, fire blight is spreading worldwide,
being reported in more than 50 countries [3–7]. Infected plants require pruning and/or
eradication, which in some cases results in the complete destruction of orchards [8]. Within
the E. amylovora genome, the ams operon is necessary for pathogenicity and is responsible
for the biosynthesis of amylovoran [9], which is a complex branched heteropolysaccharide
essential for virulence and pathogenicity. Amylovoran is the major component of the
exopolysaccharide (EPS) capsule of the bacterium together with levan [10–16].

A strain of E. amylovora deficient in amylovoran production loses the ability to in-
fect apple plants. Indeed, amylovoran biosynthesis is fundamental for the host-specific
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pathogenicity of E. amylovora [17] and, as such, it is finely regulated. One regulatory path-
way involves a Low-Molecular Weight Protein Tyrosine Phosphatase (LMW-PTP) called
AmsI (EaAmsI), encoded in the ams operon [9]. A balanced regulation of its expression
is fundamental for the pathogenesis of the bacterium: EaAmsI overproduction hinders
EPS production through the inhibition of EPS biosynthesis, while deletion of the amsI gene
results in an EPS-deficient bacterium [9]. The central role of EaAmsI in EPS synthesis
regulation makes this protein an ideal target to control, in a new and effective way, the
spreading of fire blight outbreaks in the field.

LMW-PTPs are proteins with a molecular weight of about 18 kDa [18] that catalyze
the removal of a phosphate group from phosphorylated tyrosine residues of a cognate
protein [19]. In general, members of the PTP superfamily have extremely limited sequence
similarity, while maintaining a conserved catalytic site [20]. In LMW-PTPs, the catalytic
site is characterized by the typical CX5R(S/T) motif [20]; it is found in the so-called P-loop,
located at the N-terminus of the protein, where Cys9 and Arg15 (EaAmsI numbering) play
an essential role in the catalytic mechanism, together with Asp115, the latter located in the
so-called D-loop at the C-terminal portion of the protein [19]. According to the generally
accepted LMW-PTP reaction mechanism (Scheme 1), Asp115 acts as a general acid by
protonating the phosphoester O atom of the substrate phospho-tyrosine, while the side
chain of Cys9, in its thiolate (S–) form, is responsible for the nucleophilic attack on the
P atom of the substrate and the formation of a phospho-cysteine intermediate, with the
release of the dephosphorylated tyrosine. In the second step of the reaction mechanism,
Asp115 acts as a general base by activating a water molecule, which subsequently carries
out a second nucleophilic attack on the P atom of the phospho-cysteine, thus causing its
hydrolysis and the subsequent release of the phosphate group [21].
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Scheme 1. Proposed reaction mechanism of Protein Tyrosine Phosphatases (PTPs). Residues are
labeled according to EaAmsI numbering [19,22].

In this work, modern computational techniques based on virtual screening procedures
were applied for the identification of new compounds able to interact with the active site of
EaAmsI, for which a high-resolution X-ray crystal structure is available (PDB id: 4D74) [19].
Scheme 2 offers a summary of the workflow used, which is outlined in more detail in
the following sections. In brief, out of ca. 700 candidates, six molecules were selected to
be tested in vitro as EaAmsI inhibitors (Scheme 2) and the most promising one, namely
n-Heptyl β-D-glucopyranoside (N7G), was then kinetically characterized for its inhibition
properties towards the enzyme, revealing a competitive inhibition mechanism with an
inhibition constant of ca. 8 µM (see Section 2 below).

With this work, we found a new inhibitor of the LMW-PTP AmsI from the rosaceous
phytopathogen E. amylovora, thus paving the way for the development of novel EaAmsI
inhibitors based on the N7G scaffold with structure-based design and structure–activity
relationship studies, with potential fallouts for agronomic purposes.
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2. Results and Discussion

To select the best software for the Virtual Ligand Screening (VLS), four different freely
available docking programs (AutoDock [23], AutoDock Vina [24], OpenEye Fred [25,26],
and DOCK6 [27]) were tested in their ability to replicate the ligand pose observed in X-ray
crystal structures of three LMW-PTPs with high structural similarity to EaAmsI: LMWPTP-
1 from Vibrio cholerae bound to 3-(N-morpholino)propanesulfonic acid (MOPS) (PDB id:
4LRQ) [28], LMPTP from Homo sapiens bound to 2-(N-morpholino)ethanesulfonic acid
(MES) (PDB id: 5JNT) [29], and LMPTP from Bos taurus bound to 4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid (HEPES) (PDB id: 5JNV) [29]. The structures were selected
because of the high resolution and good structural alignment with EaAmsI. For each struc-
ture, ligands and solvent molecules were removed from the PDB files (Table S1, Figure S1).
Water molecule removal was justified because they were located only in the periphery
of the binding pocket and in contact with the bulk solvent. The ligands found in the
previous structures have pKa values in the range 6.15–7.55. On the other hand, the pH of
the crystallization experiments ranged between 5.0 and 6.5. To handle this possible issue,
the ligands were tested in both the protonated and unprotonated state (see structures in
Scheme S1 in the Supplementary Information) [19,28–32]. The ability of each program
to pose the ligand back into the original site was tested through the calculation of the
root-mean-square deviation (RMSD) of the non-hydrogen atoms to the experimental pose
(Tables S2–S4 in the Supplementary Information). On average, the RMSD for the re-docking
of the experimental ligands was 1.9, 1.5, 0.9, and 0.6 Å for AutoDock, AutoDock Vina,
OpenEye Fred, and DOCK6, respectively. In the specific case of EaAmsI, AutoDock, and
AutoDock Vina generally failed to correctly reproduce the experimental binding poses.
In only a single case (i.e., unprotonated MOPS), AutoDock was able to achieve a binding
pose with an RMSD below 1.0 Å. AutoDock Vina performed slightly better, but with very
inhomogeneous performance depending on the ligand. On the other hand, OpenEye Fred
and DOCK6 were able to reproduce the largest part of the experimental poses with good
precision, with an RMSD below 1.0 Å. Thus, OpenEye Fred and DOCK6 were selected
as the preferred software for the virtual screening and were further tested with a proto-
nation state of the protein at pH 5.5, 6.5, and 7.4, calculated using the H++ web server
(https://biophysics.cs.vt.edu, accessed on 19 October 2019), to assess the effect of an acidic,
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slightly acidic, and slightly basic pH, respectively (Tables S2 and S4) [33]. The use of a
processed protein structure with a specified pH kept the RMSD values in the same order of
magnitude, with only slight improvements. The greatest differences were observed for the
docking of MES in chain C of V. cholerae LMWPTP-1. In this case, there is a large RMSD
improvement for DOCK6, but, on the other hand, a worsening for the protonated ligand
docked to the protein at pH 5.5.

For the virtual screening, an initial database of 352 molecules was generated from
heterogeneous sources. First, known protein-tyrosine-phosphatase (EC 3.1.3.48) ligands
were extracted from the PDB by performing a search for known ligands and excluding
metal ions, metal-containing anions (such as vanadate or tungstate ions), and ligands with a
molecular weight smaller than 76 g mol−1. The latter was merged with a list of 33 molecules
obtained in a study by He et al. on the inhibition of a human LMW-PTP73 [34]. Finally, an
additional group of simple aromatic compounds with a negatively charged moiety was
added to the database, due to their chemical similarity with phosphotyrosine. The initial
library was docked using DOCK6 and OpenEye FRED on the EaAmsI structure at pH 5.5
(i.e., the pH at which the experimental essays are performed) and screened to obtain a
selection of 40 compounds based on the corresponding GRID and Chemgauss scores of
the two programs, respectively [25,27]. Compounds in this list were then used as queries
in the ZINC15 database to search for analogous structures, thus generating a new set of
369 molecules, used to expand the virtual screening library.

The molecules in the library were protonated at pH 5.5 and compounds were subse-
quently docked to the EaAmsI structure as it was prepared for the initial virtual screening.
For each compound, the best Chemgauss and GRID score was calculated. The virtual
screening returned a list containing a total of 80 high-scoring structures. Half of these
structures were derived from the first database of in-house compounds and known PTP
ligands, while the other half was from the ZINC15 [35] website of commercially available
compounds. We selected a group of molecules among the top-ranking compounds for
further evaluation and conducted preliminary tests alongside commercially available PTP
inhibitors (PTP inhibitor IV, V, and XVIII obtained from Calbiochem), which served as bench-
marks. In the end, six commercially available compounds ready for purchase were selected
for further in vitro studies (Figure 1 and Table 1).
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Figure 1. Two-dimensional diagrams and names of the six selected molecules resulting from the
virtual screening.

The ability of the six compounds identified by virtual screening to inhibit EaAmsI was
preliminarily assessed by the estimation of IC50 values. Among the tested molecules, N7G
and N8G showed detectable inhibition, with IC50 values of 3.6 ± 0.8 µM and 9.5 ± 1.3 mM,
respectively (Figure 2A). In particular, the IC50 value of N7G is comparable to those of other
commercially available PTP inhibitors (PTP IV, V, XVIII, Calbiochem) [29–31] so a full kinetic
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characterization of its inhibition was carried out, while N8G was not further investigated
due to its relatively low inhibitory effect.

Table 1. Names, IUPAC names, DOCK and Fred docking scores, and LogP estimates of the se-
lected compounds.

Name IUPAC Name DOCK6 Score FRED Score LogP

BPA benzylphosphonic acid −26.72 −10.11 0.55
PhoThr (2S,3R)-2-amino-3-phosphonooxybutanoic acid −26.42 −10.97 −1.33
PhoSer (2S)-2-amino-3-(phosphonooxy)propanoic acid −27.38 −9.29 −1.75

N7G (2R,3R,4S,5S,6R)-2-(heptyloxy)-6-
(hydroxymethyl)oxane-3,4,5-triol −33.50 −4.66 0.37

N8G (2R,3S,4S,5R,6R)-2-(hydroxymethyl)-6-
(octyloxy)oxane-3,4,5-triol −33.22 −4.26 0.81

N9G (2R,3S,4S,5R,6R)-2-(hydroxymethyl)-6-
(nonyloxy)oxane-3,4,5-triol −32.81 −4.31 1.26
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Figure 2. (A) Dose–response curves of EaAmsI activity in the presence of N7G (black circles) and
N8G (black triangles). (B) Michaelis–Menten plot of EaAmsI at increasing concentrations of N7G (0,
4, 8, and 16 µM represented as black, blue, green, and red dots, respectively). The lines represent the
results of the data-fitting procedure described in the experimental section.

To kinetically characterize the inhibition of N7G on EaAmsI, the enzymatic rates were
measured as a function of substrate concentration in the absence and in the presence of
increasing concentrations of the inhibitor. The resulting experimental data, successfully
fitted using the competitive inhibition model of the Michaelis–Menten equation (Figure 2B),
resulted in the following kinetic parameters: kcat = 111 ± 3 s−1, KM = 15.1 ± 1.3 mM,
KI = 7.8 ± 0.6 µM. Both the estimated kcat and KM values differ from those previously re-
ported (34.4 s−1 and 1.3 mM in citrate buffer at pH 5.5, respectively) [19]. These differences
can be ascribed to the presence of 200 mM NaCl in the reaction mixture, as the ionic strength
dependence of kcat and KM for the PTP from Yersina enterocolitica was reported to range
from ca. 500 to 1104 s−1 and from ca. 1 to 58 mM, respectively, by increasing the ionic
strength from 20 mM to 1.5 M [29]. Another possible element that could have shifted the
kinetic parameters is the Cl−/pNPP competition, as chloride ions have been previously
reported in the phosphate-binding site of the active-site region in other bacterial PTPs, as in
Mycobacterium tuberculosis (PDB ids: 1U2P and 1U2Q [36]) and Streptococcus pyogenes (PDB
id: 5GOT [37]).

The docking procedure predicted a favorable binding of N7G to the EaAmsI binding
pocket. This interaction is mediated by the glucose portion of N7G, with O6 and O5 atoms
interacting specifically with the catalytically relevant residues Asp115 and Arg15 (Figure 3).
The binding poses of the other compounds short-listed from the virtual screening are
summarized in Figure S2.
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Figure 3. (A) Cartoon and molecular surface representation of EaAmsI bound to N7G as a result of
the DOCK6 molecular docking. EaAmsI cartoons are colored from blue to red going from the N- to
the C-terminal. Residues involved in the reaction or in the binding of N7G are sticks, while N7G is
in ball-and-stick (carbon, light orange; oxygen, red). (B) Detail of N7G binding pose in the EaAmsI
binding site. (C) Scheme of the interactions between the docked N7G molecule and EaAmsI. The
scheme represents H-bonds (dashed lines) and van der Waals interactions (red spiked arcs).

In conclusion, the kinetic characterization demonstrated a competitive inhibition mech-
anism that fully validated the results obtained by the computational work and provided
quantitative evidence of the ligand’s strong affinity for binding to the free enzyme at the
catalytic site.

3. Materials and Methods
3.1. Selection of the Docking Software

Three homologous structures were selected from the PDB databank based on the
jFATcat rigid score [38] of the alignment to EaAmsI. Ligands were redocked to the corre-
sponding enzyme using four different programs, namely OpenEye Fred [25,26], DOCK6
(v. 6.7) [27], Autodock (v. 4.2.6.) [23], and Autodock Vina (v. 1.1.2) [24]. Two different sets
of grid spacing values were tested for AutoDock (0.375 and 0.037 Å) and DOCK6 (0.1 and
0.05 Å).

3.2. OpenEye Fred Docking

Ligand conformers were generated using OpenEye OMEGA (http://www.eyesopen.
com, accessed on 18 October 2023). Conformers with internal clashes and duplicates were
discarded by the software, and the remaining ones were clustered based on the root mean
square deviation (RMSD). For this virtual screening, a maximum of 200 conformers per
compound, clustered with an RMSD of 0.5 Å, was used. Each conformer is docked by

http://www.eyesopen.com
http://www.eyesopen.com
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OpenEye FRED in the negative image of the active site of the target protein. This negative
image was prepared from the structure with PDB id 4D74, using the apopdb2receptor tool
in the OpenEye docking suite v3.2 [25,26].

3.3. DOCK6 Docking

The database of molecules was protonated to a pH of 5.5 using OpenBabel. The
“Anchor and Grow” algorithm in DOCK6 [27] was used, with the following parame-
ters: max_orientations: 1000, min_anchor_size: 5, pruning_use_clustering: yes, prun-
ing_max_orients: 1000, pruning_clustering_cutoff: 100, pruning_conformer_score_cutoff:
100. The parameters for the creation of the grid were compute_grids: yes, grid_spacing 0.05,
energy_cutoff_distance: 9999, atom_model: a, attractive_exponent: 6, repulsive_exponent:
12, distance_dielectric: yes, dielectric_factor: 4, bump_filter: yes, bump_overlap: 0.75. In
this case, the EaAmsI structure was obtained from the PDB entry with id 4D74. The cubic
box was centered to the catalytic cysteine and the side length was set to 14 Å.

3.4. Autodock

Polar hydrogen atoms and Kollman charges were added and assigned to the receptor,
respectively, using UCSF Chimera 17.1 [39]. A total of 400 grid points, with a variable
length of spacing (0.375 and 0.037 Å), were set in each dimension. The center of the
crystallized ligand was set as the center of the grid box and the box side was set to 10.0 Å.
The AutoGrid4.2 default parameters were used in AutoGrid4 to calculate the affinity map of
each atom, the desolvation map, and the electrostatic map. Lamarckian Genetic Algorithm
(LGA) was used to search the conformations. Genetic algorithm (GA) was run for 10 sets
and the maximum number of energy evaluations was set to 2,500,000 in each run. The
maximum number of generations simulated during each GA run was set to 27,000. The
rates of the gene mutation and crossover were set to 0.02 and 0.8, respectively. The mean
Cauchy distribution for gene mutation was set to 0. The variance of Cauchy distribution
for gene mutation was set to 1. The external grid energy was set to 1000. The maximum
allowable initial energy was 0. The maximum number of retries was 10,000.

3.5. AutoDock Vina

The box was defined as in the AutoDock case. The exhaustiveness of the global
search was set to 8. The maximum number of binding modes was 9. The maximum
energy difference between the best binding mode and the worst one displayed was set to
3 kcal mol−1. The scoring function weights and terms were set as default.

3.6. Production of Recombinant EaAmsI

EaAmsI was expressed following the protocol already described in Benini et al. [40].
In brief, the gene was amplified using PCR from E. amylovora strain Ea273 (ATCC 49946),
cloned into a pETM-11 expression vector [41], and transformed into Escherichia coli BL21
(DE3) for protein expression. The purification strategy consisted of an immobilized metal-
affinity (IMAC) chromatographic step conducted using a HisTrap HP 5 mL column (GE
Healthcare, Uppsala, Sweden) previously equilibrated with 50 mM Tris-HCl, 300 mM NaCl,
20 mM imidazole, 1 mM TCEP, and 5% glycerol at pH 8.0. The enzyme was eluted with
50 mM Tris-HCl, 300 mM NaCl, 150 mM imidazole, 1 mM TCEP, and 5% glycerol at pH 8.0,
and further purified by size-exclusion chromatography using a Superdex 75 16/600 GL
column (GE Healthcare, Sweden) equilibrated with 50 mM Tris–HCl, 300 mM NaCl, 5%
glycerol, and 1 mM TCEP at pH 7.8. Fractions of clean and monodisperse EaAmsI were
pooled together, concentrated up to 2 mg mL−1, and stored at −80 ◦C for further studies.

3.7. Kinetic Measurements

All the kinetic measurements reported here were conducted at room temperature and
carried out in triplicates.
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IC50 assays were carried out in 200 µL reaction mixtures containing 200 ng mL−1

EaAmsI and increasing concentrations (in the range 0.1 nM–10 mM) of each compound
listed in Table 1, dissolved in 100 mM citrate buffer, at pH 5.5. After ten minutes of
pre-incubation, the enzymatic reaction was started by adding 4 mM p-nitrophenyl phos-
phate (pNPP, purchased from Sigma–Aldrich) as a substrate. Enzymatic activity was
measured through a spectrophotometric assay, performed using a Tecan Infinite 200
PRO microplate reader and 96-well microplates, by following the overtime change in
absorbance at 405 nm due to the formation of p-nitrophenol (pNP, molar extinction coeffi-
cient at 405 nm = 18,000 M−1cm−1) from the hydrolysis of pNPP. The reaction proceeded
for 15 min prior to quenching with 50 µL of 1M NaOH. The initial reaction rates (vi) for
each set of samples were calculated as the slopes of the linear portions of the absorbance
vs. time curves, and the resulting averaged value was normalized with respect to the
average initial reaction rate in the absence of any compound (v0). The obtained percent-
age residual activity values were plotted as a function of the inhibitor concentration on
a semi-log graph, and the inhibitor concentration values leading to a 50% inactivation
of the enzyme (IC50) were then estimated by fitting the resulting data with the canonical
dose–response curve for the calculation of the IC50 values available in the Prism v. 8.4.3
software (https://www.graphpad.com/, accessed on 18 October 2023).

Michaelis–Menten kinetics describing EaAmsI activity as a function of substrate con-
centration in the absence or in the presence of increasing concentrations of N7G (4, 8,
16 uM) were carried out in 200 µL reaction mixtures containing 200 ng mL−1 EaAmsI in
100 mM citrate buffer and 200 mM NaCl at pH 5.5. Each enzymatic reaction was started
by the addition of pNPP used in a concentration range of 0.5–64 mM and proceeded for
5 min prior to quenching with 50 µL of 1 M NaOH. The pNP production over time was
quantified using a path length of 0.65 cm, corresponding to 250 µL of solution in a well of
3.48 mm radius (following manufacturer data sheet, VWR International). The averaged
initial reaction rate measured at each substrate concentration (vi) was plotted as a function
of substrate concentration, and data analysis was performed by simultaneously fitting all
the available data using the competitive inhibition model of the Michaelis–Menten curve
available in the Prism v. 8.4.3 software, obtaining shared values for kcat, KM, and KI.

3.8. Software for Schemes and Analyses

Scheme 1 and molecular schemes were made using ChemDraw 22.0.0 (https://
revvitysignals.com/products/research/chemdraw, accessed on 18 October 2023). Scheme 2
was prepared by using SankeyMATIC (https://sankeymatic.com/, accessed on 18 October
2023). UCSF Chimera 17.1 was used for the rendering of EaAmsI bound to N7G, while 2D
interaction diagrams were prepared using LigPlot+ v.2.2 [42].

4. Conclusions

In this work, an integrated computational and biochemical study was carried out
with the aim of identifying new molecules potentially acting as inhibitors of AmsI from
E. amylovora, an enzyme involved in the regulation of the amylovoran synthesis pathway
and with a key role in bacterial pathogenesis. A workflow involving a ligand virtual
screening and biochemical assays led to the identification of N7G, a ligand able to inhibit
EaAmsI with a competitive inhibition mechanism and a KI in the low micromolar range.
The results reported in this work indicate that N7G has great potential as a lead compound
toward the discovery of novel chemical treatments against this plant pathogen. Moreover,
this work provides a significant step towards the development of alternative strategies
against E. amylovora infections which do not rely on conventional antibiotics, the latter being
forbidden in many countries because of antibiotic resistance issues. Additional research,
currently ongoing in our laboratory, will be beneficial for full comprehension of the effects
of N7G binding in the active site of EaAmsI, including in vivo testing, as well as further
investigation of its therapeutic potential.

https://www.graphpad.com/
https://revvitysignals.com/products/research/chemdraw
https://revvitysignals.com/products/research/chemdraw
https://sankeymatic.com/
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28237774/s1, Table S1: Selection of structures for re-
docking evaluation, Figure S1: Alignment of structures selected for redocking [43,44], Scheme S1:
Chemical structures of molecules used for redocking, Table S2: OpenEye Fred redocking evaluation,
Table S3: Autodock and Autodock Vina redocking evaluation, Table S4: DOCK6 redocking evalua-
tion, Figure S2: Scheme of the interactions between the docked PhoSer, PhoThr, N8G, N9G, and BPA
molecules and EaAmsI. An additional table in CSV format reporting all the compounds used in the
virtual screening together with the ZINC IDs or the compound IDs for in-house compounds, the
SMILE, and the docking scores for DOCK6 and OpenEye FRED is also available as a separate file.
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38. Prlić, A.; Bliven, S.; Rose, P.W.; Bluhm, W.F.; Bizon, C.; Godzik, A.; Bourne, P.E. Pre-Calculated Protein Structure Alignments at
the RCSB PDB Website. Bioinformatics 2010, 26, 2983–2985. [CrossRef] [PubMed]

39. Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A Visualiza-
tion System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25, 1605–1612. [CrossRef] [PubMed]

40. Benini, S.; Caputi, L.; Cianci, M. Cloning, Purification, Crystallization and 1.57 Å Resolution X-Ray Data Analysis of AmsI, the
Tyrosine Phosphatase Controlling Amylovoran Biosynthesis in the Plant Pathogen Erwinia Amylovora. Acta Crystallogr. Sect. F
Struct. Biol. Commun. 2014, 70, 1693–1696. [CrossRef] [PubMed]

41. Dümmler, A.; Lawrence, A.-M.; de Marco, A. Simplified Screening for the Detection of Soluble Fusion Constructs Expressed in E.
Coli Using a Modular Set of Vectors. Microb. Cell Factories 2005, 4, 34. [CrossRef]

42. Laskowski, R.A.; Swindells, M.B. LigPlot+: Multiple Ligand–Protein Interaction Diagrams for Drug Discovery. J. Chem. Inf. Model.
2011, 51, 2778–2786. [CrossRef]

43. Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J. Generation
of High-quality Protein Multiple Sequence Alignments Using Clustal Omega. Mol. Syst. Biol. 2011, 7, 539. Available online:
https://www.embopress.org/doi/full/10.1038/msb.2011.75 (accessed on 6 July 2023). [CrossRef]

44. Robert, X.; Gouet, P. Deciphering Key Features in Protein Structures with the New ENDscript Server. Nucleic Acids Res. 2014, 42,
W320–W324. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.bbrc.2016.08.097
https://www.ncbi.nlm.nih.gov/pubmed/27545603
https://doi.org/10.1093/bioinformatics/btq572
https://www.ncbi.nlm.nih.gov/pubmed/20937596
https://doi.org/10.1002/jcc.20084
https://www.ncbi.nlm.nih.gov/pubmed/15264254
https://doi.org/10.1107/S2053230X14024947
https://www.ncbi.nlm.nih.gov/pubmed/25484228
https://doi.org/10.1186/1475-2859-4-34
https://doi.org/10.1021/ci200227u
https://www.embopress.org/doi/full/10.1038/msb.2011.75
https://doi.org/10.1038/msb.2011.75
https://doi.org/10.1093/nar/gku316

	Introduction 
	Results and Discussion 
	Materials and Methods 
	Selection of the Docking Software 
	OpenEye Fred Docking 
	DOCK6 Docking 
	Autodock 
	AutoDock Vina 
	Production of Recombinant EaAmsI 
	Kinetic Measurements 
	Software for Schemes and Analyses 

	Conclusions 
	References

