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Abstract. Galaxy surveys are an important probe for superimposed oscillations on
the primordial power spectrum of curvature perturbations, which are predicted in
several theoretical models of inflation and its alternatives. In order to exploit the full
cosmological information in galaxy surveys it is necessary to study the matter power
spectrum to fully non-linear scales. We therefore study the non-linear clustering in
models with superimposed linear and logarithmic oscillations to the primordial power
spectrum by running high-resolution dark-matter-only N-body simulations. We fit
a Gaussian envelope for the non-linear damping of superimposed oscillations in the
matter power spectrum to the results of the N-body simulations for k . 0.6 h/Mpc
at 0 ≤ z ≤ 5 with an accuracy below the percent. We finally use this fitting formula
to forecast the capabilities of future galaxy surveys, such as Euclid and Subaru, to
probe primordial oscillation down to non-linear scales alone and in combination with
the information contained in CMB anisotropies.
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1 Introduction

The study of departures from a simple power-law in the primordial power spectrum
(PPS) of curvature perturbations has been fueled by theoretical advances and obser-
vational progress over many years (see Ref. [1] for a review).

From a theoretical perspective, departures from a simple power-law can be a
signature of the breakdown of any of the assumptions behind standard single field
slow-roll inflation with Bunch-Davies initial conditions for quantum fluctuations [2–6].
In the analogy in which primordial fluctuations can be seen as a cosmological collider
for the physics of the early Universe [7, 8], these features could help in discriminating
between inflation and alternative scenarios, or could provide hints for inflaton dynamics
beyond slow-roll, and new heavy particles.

From the observational side, departures from a simple power-law in the PPS are
of extreme interest, despite the tighter and tighter constraints on their size due to the
increasing precision of cosmological observations. Well motivated theoretical models
with features in the PPS have led to an improvement in the fit to cosmic microwave
background (CMB) anisotropies data with respect to the simplest power-law spectrum
since the WMAP first year data [9] to the final Planck legacy data release [10]. However,
these improvements in the fit come at the expense of having extra parameters and these
models have not been preferred over the simplest power-law spectrum at a statistically
significant level so far, see e.g. [10].
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Next generation of cosmological observations will help in explaining whether the
hints for departures from a power-law spectrum for primordial fluctuations have a
physical origin or are a mere statistical fluctuation. In particular, large-scale structure
(LSS) surveys are very promising [11–23] since they can probe the PPS to smaller
scales and can increase the range of scales which are independently scanned by CMB
anisotropy measurements. It has been already quantified how future LSS surveys could
significantly improve current constraints on theoretical models with features in the PPS
by just using linear scales, i.e. k . 0.1 h/Mpc [12, 15, 16, 21]. On the other hand,
non-linear effects are important on most of the scales which are probed by LSS surveys
and for these models are not accurately described by Halofit. Therefore, the study
of non-linear dynamic is required to have full access to the information for primordial
features contained in the dark matter (DM) power spectrum measurements as already
studied in Refs. [24–26].

In this paper, we study two templates for the PPS which include undamped
oscillations at small scales and therefore need the understanding of the non-linear
gravitational instability at the scales of interest for galaxy surveys. Among the several
models of primordial features, we choose the case of undamped linear or logarithmic
oscillations superimposed on all the scales of interest to a PPS described by a power-
law [27–35]: these are the theoretical models which lead to the largest improvement in
the fit of CMB anisotropies and which need the understanding of non-linear clustering
on scales k & 0.1 h/Mpc, given the presence of oscillations on all the scales. With
these linear and logarithmic oscillations superimposed to the PPS we run a set of high-
resolution DM-only cosmological simulations with 1,0243 DM particles in a comoving
box with side length of 1,024 Mpc/h (see [20] for N-body simulations with different
type of primordial features). We then develop a fitting function calibrated against a
set of N-body simulations with features in the PPS, following the approach previously
used in Halofit [36, 37] or HM-Code [38, 39] for ΛCDM and some of its extensions.

The paper is organized as follows. We begin in Sec. 2 introducing the two tem-
plates for oscillatory features that we study. In Sec. 3.1, we describe the simulations.
In Sec. 3.2, we use a Gaussian envelope for the non-linear damping and we calibrate it
against the N-body simulations; we also compare our findings with the leading-order
theoretical predictions for the damping from Refs. [25, 26]. We discuss in Sec. 4 the
damping of the baryon acoustic oscillations (BAO) features versus the damping of the
primordial linear oscillations. We run a series of forecasts in Sec. 5 with galaxy clus-
tering up to kmax = 0.6 h/Mpc in combination with CMB for a Euclid-like experiment
and Subaru Prime Focus Spectrograph (PFS), and we discuss the results in Sec. 6.
Sec. 7 contains our conclusions.

2 Superimposed oscillations on the primordial power spec-
trum

The type of superimposed oscillatory features on the PPS which we study in this
paper are predicted in several well motivated theoretical models. These features can
be generated by an oscillatory signal in time in the inflationary field potential or in
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the internal field space with a frequency larger than the Hubble parameter H able to
resonate with the curvature modes inside the horizon [27]. They can be realized in
many contexts as in axion inflation [28], small-field models such as brane inflation [29],
large-field models in string theory such as axion monodromy [30], or as oscillations
of massive fields [31, 32]. Superimposed oscillations on the PPS are also generated
when inflaton temporarily deviates from the attractor solution at some point during
its evolution [40, 41] or for non Bunch-Davies initial conditions [33–35].

We study two templates with superimposed oscillations on the PPS [27], the first
with linear oscillations

Pζ(k) = Pζ,0(k)

[
1 +Alin cos

(
ωlin

k

k∗
+ φlin

)]
, (2.1)

and the second with logarithmic oscillations

Pζ(k) = Pζ,0(k)

[
1 +Alog cos

(
ωlog log

k

k∗
+ φlog

)]
, (2.2)

where Pζ,0(k) = As(k/k∗)
ns−1 is the standard power-law PPS with pivot scale k∗ = 0.05

Mpc−1.

3 Accurate fitting formula for the non-linear matter power
spectrum with superimposed primordial oscillations

Galaxies trace the invisible cold dark matter (CDM) distribution and we can esti-
mate their power spectrum to extract information on the underlying power spectrum
of primordial fluctuations. While on linear scales the matter power spectrum can
be computed for any given initial conditions and cosmological model with dedicated
Einstein-Boltzmann solvers like CAMB1 [42, 43] or CLASS2 [44, 45], in the non-linear
regime, one has to rely on cosmological N-body simulations to study the non-linear
gravitational evolution for every extension of the ΛCDM cosmological model.

The halofit model has been successfully used to predict the small-scale non-
linearities for the ΛCDM cosmology and some of its simplest extensions such as mod-
els including massive neutrinos [46] or non-standard dark energy equations of state
(wCDM) [37]. So far, this programme has not yet been pursued for models with pri-
mordial superimposed oscillations, and we aim to start the process with the present
analysis. In particular, we wonder how superimposed oscillations will be damped on
non-linear scales and if there will be any additional effect like a running of the frequency
or a de-phasing of the oscillations due to the non-linear evolution of the perturbations.

3.1 Cosmological simulations

In order to perform our analysis, we have run a set of 10+1 high-resolution DM-
only cosmological simulations corresponding to 6 (4) models with superimposed linear

1https://github.com/cmbant/CAMB
2https://github.com/lesgourg/class public
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Model A log10 ω φ/(2π)

Lin. Osc. 0.03 0.8 0.0

Lin. Osc. 0.03 0.8 0.6

Lin. Osc. 0.03 0.87 0.0

Lin. Osc. 0.03 0.87 0.2

Lin. Osc. 0.03 1.0 0.4

Lin. Osc. 0.03 1.0 0.6

Log. Osc. 0.03 0.8 0.2

Log. Osc. 0.03 0.87 0.4

Log. Osc. 0.03 1.26 0.8

Log. Osc. 0.03 1.5 0.6

Table 1. Here we report the 10 cosmological models that we have considered for our anal-
yses, each of them identified by an amplitude A, a frequency ω, and a phase φ/(2π) (see
Eqs. (2.1) and (2.2)). The first six (last four) models correspond to a superimposed linear
(logarithmic) oscillation pattern.

(logarithmic) oscillations, all of them listed in Tab. 1, plus the standard ΛCDM case.
Each of the simulations follows the non-linear evolution of 1,0243 DM particles in a
comoving box with side length of 1,024 Mpc/h, using a gravitational softening length
of 25 kpc/h, down to redshift z = 0. The cosmological parameters have been fixed to
the following values: Ωm = 0.321, ΩΛ = 0.679, ns = 0.963, H0 = 66.9 km s−1 Mpc−1,
and σ8 = 0.8. To minimise the noise induced by cosmic variance, we also performed
3 more simulations with larger boxes, i.e. 1,0243 DM particles in a 2,048 Mpc/h size
length box, only for the highest-frequency logarithmic models, which are the most
sensitive to the box size, and the ΛCDM case.

All simulations have been run with the N-body code GADGET-3, a modified version
of the publicly available numerical code GADGET-2 [47, 48]. The initial conditions have
been produced by displacing the DM particles from a cubic Cartesian grid according to
second-order Lagrangian Perturbation Theory, with the 2LPTic code [49], at redshift
z = 99. The corresponding input linear matter power spectra were computed with a
modified version of the publicly available code CAMB, with the superimposed oscillations
given by Eq. (2.1) for the linear cases, and by Eq. (2.2) for logarithmic cases. The
values assigned to the amplitude A, the frequency ω, and the normalized phase φ/(2π),
associated with each of the models are reported in Tab. 1. In generating the initial
conditions we turned off the Rayleigh sampling as done in Ref. [50], in order to fix
the mode amplitude to the expected value of the linear power spectrum. We explicitly
check that this aspect does not bias any of our results that are always cast in terms of
ratios between the case including primordial oscillations and the corresponding baseline
power-law case. For a more comprehensive analysis of Rayleigh sampling and paired
fixed field simulation we refer to Ref. [51]. On top of these simulations, we have used
a Friends-of-Friends (FoF) algorithm [52] with the standard linking length b = 0.2,
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Figure 1. Relative differences with respect to the ΛCDM matter power spectrum between
non-linear matter power spectrum with undamped superimposed oscillation (green), non-
linear matter power spectrum obtained from the simulations (blue), and non-linear matter
power spectrum reconstructed with our semi-analytical damping (3.2) (dashed magenta) for
the template with linear oscillation (2.1) at five different redshift z = 0, 1, 2, 3, 4, 5 from the
top to the bottom respectively.

in order to identify particle groups and to extract the statistics of the associated DM
halos.

For all simulations we have extracted the matter and halo power spectra Pm(k, z)
and Ph(k, z) as a function of the Fourier wavemode k and of the redshift z by assigning
the mass of tracer DM particles and individual collapsed halos to a Cartesian grid with
1, 0243 cells through a Cloud-In-Cell mass assignment scheme. The visual inspection
of the ratio of each model’s power spectrum to the reference ΛCDM scenario shows
how the primordial pattern of oscillations can still be clearly observed at low redshifts,
with a significant damping of the small-scale oscillations which we show between z = 5
and z = 0, for both the DM (see Figs. 1 and 2 below) and the halos (see Figs. 3 and 4
below) distributions.

In Fig. 5, we show the relative differences between the non-linear matter power
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Figure 2. Relative differences with respect to the ΛCDM matter power spectrum between
non-linear matter power spectrum with undamped superimposed oscillation (green), non-
linear matter power spectrum obtained from the simulations (blue), and non-linear matter
power spectrum reconstructed with our semi-analytical damping (3.2) (dashed magenta) for
the template with logarithmic oscillation (2.2) at five different redshift z = 0, 1, 2, 3, 4, 5 from
the top to the bottom respectively.

spectrum of one of the logarithmic models (Alog = 0.03, log10 ωlog = 0.8, φlog/(2π) =
0.2) with respect to the ΛCDM case. The solid lines of Fig. 5 refer to spectra ex-
tracted from initial conditions produced through 2LPTic, at different redshifts. For
comparison, we also show one power spectrum extracted from the corresponding N-
body simulation, at z = 5, which is in very good agreement with the corresponding
2LPTic output (dot-dashed line). The relative difference between the linear matter
power spectra is plotted as a gray dotted line.

3.2 Fit model

We use our simulations to calibrate the small-scale damping induced by non-linear
dynamics on the oscillatory features superimposed in the matter power spectrum. To
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Figure 3. Relative differences with respect to the ΛCDM case, for the DM halo power
spectra computed from N-body simulations (red solid lines), for the template with linear
oscillation (2.1) at two different redshift z = 0, 2, from the top to the bottom respectively.
We show on the left the results for Alin = 0.03, log10 ωlin = 0.8, φ/(2π) = 0.6 and on the right
for Alin = 0.03, log10 ωlin = 1.0, φ/(2π) = 0.4. As a reference, we also plot the corresponding
linear (dotted gray lines) and non-linear (blue dashed lines) matter power spectra.

do so, we use a least chi-squared method to find the best-fit solution of

χ2 (Σ) =
∑
i

5∑
z=0

kmax∑
k=kmin

[
Pi,fit(k, z,Σ)− Pi,sim(k, z)

σi(k, z)

]2

(3.1)

with linear loss function, where i runs over the different best-fit for the features pa-
rameters listed in Tab. 1, Pi,fit(k, z) is our semi-analytic template to model non-linear
effects for the superimposed oscillations, and Pi,sim(k, z) is the non-linear matter spec-
trum from the simulations. We set the variance σi(k, z) = Psim(k, z), where Psim(k, z)
is the non-linear matter power spectrum for a ΛCDM cosmology from the simulations.
We consider wavenumbers between kmin = 0.05 h/Mpc and kmax = 0.6 h/Mpc.

We write the semi-analytic template to model non-linear effects as:

Pi,fit(k, z,Σ) = P (k, z) [1 +Ai cos (ωiκX + φi)D(k, z,Σ)] , (3.2)
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Figure 4. Relative differences with respect to the ΛCDM case, for the DM halo power spec-
tra computed from N-body simulations (red solid lines), for the template with logarithmic
oscillation (2.2) at two different redshift z = 0, 2, from the top to the bottom respectively. We
show on the left the results for Alog = 0.03, log10 ωlog = 0.8, φ/(2π) = 0.2 and on the right for
Alog = 0.03, log10 ωlog = 1.26, φ/(2π) = 0.8. As a reference, we also plot the corresponding
linear (dotted gray lines) and non-linear (blue dashed lines) matter power spectra.

where P (k, z) is the non-linear matter power spectrum for a ΛCDM cosmology from the
simulations assuming that the small-scales enhancement of the matter power spectrum
and the BAO feature smoothing due to non-linear effects is the same as in ΛCDM
cosmology for this class of models. κlin ≡ k/k∗ for linear oscillations (2.1) and κlog ≡
log (k/k∗) for logarithmic oscillations (2.2). D(k, z,Σ) is the damping function to model
the damping of superimposed oscillations on the matter power spectrum due to non-
linear effects. Analogously to the damping used for BAO [53], we parameterize the
damping function with a Gaussian damping as:

D(k, z,Σ) = e−k
2Σ2(z)/2 , (3.3)

where Σ is the redshift-dependent parameter that we fit with our simulations.
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Figure 5. We show the relative differences between the non-linear matter power spectrum of
one of the logarithmic models (Alog = 0.03, log10 ωlog = 0.8, φlog/(2π) = 0.2) with respect to
the ΛCDM case, as extracted from initial conditions produced through 2LPTic (solid lines).
We also show one power spectrum extracted from the corresponding N-body simulation, at
z = 5 (dot-dashed line). As a reference, we also report the relative difference between the
linear matter power spectra (gray dotted line).

The 6 best fitting parameters for the linear feature models given in Tab. 1 are:

Σlin(z) = [12.23, 8.00, 5.70, 4.40, 3.59, 3.05] Mpc ,

Σlin(z) = [12.26, 8.02, 5.73, 4.42, 3.61, 3.06] Mpc ,

Σlin(z) = [12.20, 7.96, 5.66, 4.36, 3.55, 3.01] Mpc ,

Σlin(z) = [12.26, 7.99, 5.68, 4.38, 3.57, 3.02] Mpc ,

Σlin(z) = [12.55, 8.23, 5.88, 4.54, 3.72, 3.17] Mpc ,

Σlin(z) = [12.54, 8.21, 5.85, 4.53, 3.71, 3.16] Mpc ,

where different values inside the square brackets refer to different redshift, i.e. z =
0, 1, 2, 3, 4, 5. Fitting simultaneously the 6 best-fit, we find:

Σlin(z) = [12.34, 8.07, 5.75, 4.44, 3.62, 3.08] Mpc . (3.4)

For the 4 best-fit of the logarithmic model (2.2) we obtain:

Σlog(z) = [11.30, 6.68, 4.47, 3.37, 2.71, 2.27] Mpc ,

Σlog(z) = [11.23, 6.35, 4.09, 2.99, 2.34, 1.91] Mpc ,

Σlog(z) = [12.40, 7.78, 5.35, 4.06, 3.29, 2.77] Mpc ,

Σlog(z) = [13.20, 8.32, 5.74, 4.36, 3.53, 2.98] Mpc ,

and fitting simultaneously the 4 best-fit, we find

Σlog(z) = [11.96, 7.26, 4.90, 3.72, 3.02, 2.55] Mpc . (3.5)
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Figure 6. Percentage differences between non-linear matter power spectrum reconstructed
with our semi-analytical template (3.2) and the non-linear matter power spectrum obtained
from the simulations. We show the results from the Gaussian damping function (3.3) on
the left panel for the linear model and on the right panel for the logarithmic model. The
semi-analytical non-linear matter power spectra have been calculated using the simultaneous
best-fit of the damping parameter Σ (3.4)-(3.5).

In Figs. 1-2, we show the comparison between the non-linear matter power spectrum
for ΛCDM obtained from CAMB with undamped superimposed oscillations in green,
the non-linear matter power spectrum obtained from the simulations in blue, and the
non-linear matter power spectrum for ΛCDM obtained from CAMB with superimposed
oscillations obtained with our fit in dashed magenta for the linear and logarithmic mod-
els, respectively with the best-fit (3.4) and (3.5). The fit with the Gaussian envelope
in Eq. (3.3) provides an excellent fit to the simulations with relative differences lower
than 0.2% for the linear model and 0.6% for the logarithmic one, up to k ≤ 0.6 h/Mpc,
see left panels on Fig. 6. Note that the absolute variance on the best-fit estimated for
Σlin and Σlog is smaller then 0.02.

We then want to compare our findings with the analytic results previously ob-
tained in [25, 26]. The redshift behaviour from our simulations is very well reproduced
by the growth factor G(z), i.e. Σ(z) = ΣnlG(z), as analytically studied in [53, 54].
Based on our Eqs. (3.2)-(3.3), we compare our results for Σ(z) with the leading order
from perturbation theory [25, 26]:

Σ2
th(k, z) =

1

3π2

∫ Λ

0

dq [1− j0(qω) + 2j2(qω)]Plin(q, z) , (3.6)

where the separation scale Λ is suggested to be scale dependent Λ = εk with ε ∈
[0.1, 0.7] [26, 55] and jn are the spherical Bessel function. For the linear template we
have ω → ωlin/(0.05 Mpc−1) and for the logarithmic template ω → ωlog/k, as derived
in [25, 26]. Fig. 7 shows how our estimate for Σ(z) is consistent with the analytic
estimates to leading order for the linear and logarithmic wiggles according to [25, 26].
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Figure 7. Comparison of our fit for the non-linear damping parameter Σ for linear (left
panel) and logarithmic (right panel) template of primordial oscillations at redshift z = 1
with theoretical predictions to leading order [25, 26]. We display Σ(z = 1) in magenta
and ΣnlG(z) in orange where Σ(z = 1) and Σnl ≡ Σ(z = 0) have been fitted to the N-body
simulations. The blue band shows the theoretical prediction to leading order [25, 26] when the
separation scale Λ varied in the range (0.1−0.7) k for the same frequencies of our simulations.
We include also the theoretical prediction for the BAO damping with ω ∼ 110 Mpc/h (green
line) and Λ = 0.5 k according to [55].

4 Comparison with the BAO signal

We now want to compare the linear template with the BAO signal. The matter power
spectrum can be modeled by a smooth power spectrum without wiggles (nw) plus the
BAO spectrum like:

P (k, z) ≈ Pnw(k, z) [1 + ABAO(k) sin (krs(z) + φ)] . (4.1)

The BAO signal in Fourier space looks very similar to the oscillatory pattern induced on
the matter power spectrum by the primordial linear oscillations (2.1) with a frequency
log10 (ωlin) ∼ 0.87.

As can be seen in Fig. 8, even with a fine tuned frequency, the linear template is
different from the BAO signal at early times, i.e. z = 4: we can see the footprints of
the Silk damping on the BAO signal [56], but not on the primordial oscillations.

As consistency check, we extract the damping of the BAO from our ΛCDM N-
body simulations. We fit BAO non-linear damping by using the Gaussian envelope
(3.3):

ΣBAO(z) = [13.90, 9.15, 6.82, 5.66, 5.01, 4.62] Mpc . (4.2)

with an absolute variance on the ΣBAO estimated smaller than 0.7, which is consistent
with results in literature (see for instance Ref. [58]). See Fig. 9 for a comparison of the
linear and non-linear BAO signal.

5 Forecast for future galaxy surveys

We describe in this section the Fisher matrix methodology for the galaxy clustering
(GC) and the CMB used for our forecasts. We also describe the specifications for
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Figure 8. Comparison between the BAO signal at z = 0, 2, 4 (green solid line) extracted
from our ΛCDM simulation and our fit for the linear template with Alin = 0.07, log10 (ωlin) =
0.87, φ/(2π) = 0.4 (magenta dashed line). The green curve shows the relative differences
between the non-linear matter power spectrum with and without BAO wiggles for ΛCDM
(both without superimposed oscillations). The dashed magenta curve shows the relative
differences between the non-linear matter power spectrum with and without superimposed
linear oscillations (2.1) (both with BAO). We perform the BAO signal subtraction with a
polynomial method following Ref. [57]. We tune it in order to have a good BAO signal
subtraction and non-distortion of the broadband power spectrum.
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Figure 9. Relative differences between the non-linear matter power spectrum for ΛCDM
with the smooth power spectrum without BAO. The blue dashed curve shows the relative
differences for the linear matter power spectrum, the orange curve shows the relative differ-
ences for the non-linear matter power spectrum obtained with the Gaussian damping (3.3)
with the damping parameter ΣBAO (4.2) fitted to the N-body simulations, and the green
curve shows the relative differences for the non-linear matter power spectrum extracted from
the N-body simulations.

the different experiments considered: Euclid-like, Subaru Prime Focus Spectrograph
(PFS), Planck-like, and a CMB cosmic-variance (CV) experiment.
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5.1 Galaxy power spectrum

We measure galaxy positions in angular and redshift coordinates and not the position
in comoving coordinates, i.e. the true galaxy power spectrum is not a direct observable.
We use a model for the observed galaxy power spectrum based on [59–61]:

Pobs(k
ref
⊥ , k

ref
‖ , z) =

[
Dref

A (z)

DA(z)

]2
H(z)

Href(z)
FFoG(k, z)

Pfit(k, z)

σ2
8(z)

+ Pshot(z) , (5.1)

whereDA = r(z)/(1+z) is the angular diameter distance, r(z) is the comoving distance,
H(z) = ȧ/a is the Hubble parameter, k2 = k2

⊥ + k2
‖, and µ = k‖/k = r̂ · k̂. This is

connected to the true galaxy power spectrum via a coordinate transformation [62]:

kref
⊥ =

DA(z)

Dref
A (z)

k⊥ , kref
‖ =

Href(z)

H(z)
k‖ . (5.2)

In Eq. (5.1), Pshot is the shot noise and we model the redshift-space distortions (RSD)
as:

FFoG(k, z) =
[b(z)σ8(z) + f(z)σ8(z)µ2]

2

1 + k2µ2σ2
r,p/2

e−k
2µ2σ2

r,z , (5.3)

where b(z) is the linear clustering bias, f(k, z) = d lnG(k, z)/d ln a is the growth rate,
and G(k, z) is the growth factor. Here the numerator is the linear RSD [63, 64],
which takes into account the enhancement due to large-scale peculiar velocities. The
Lorentzian denominator models the non-linear damping due to small-scale peculiar
velocities, where σr,p is the distance dispersion:

σr,p(z) =
σp(z)

H(z)a(z)
, (5.4)

corresponding to the physical velocity dispersion σp. We choose a value of σp =
290 km/s as our fiducial [61]. An additional exponential damping factor is added
to account for the error σz in the determination of the redshift of sources, where:

σr,z(z) =
∂r

∂z
σz =

c

H(z)
σz . (5.5)

We model the smearing of the BAO feature according to [53, 61]:

Pdw(k, µ, z) =Pm(k, µ, z)e−Σ2
BAO(z)k2/2

+ Pnw(k, µ, z)
(

1− e−Σ2
BAO(z)k2/2

)
, (5.6)

where ΣBAO(z) ≡ ΣBAOG(z) with ΣBAO(z = 0) = 9.3 Mpc/h. Here Pdw is dressed
with the damped primordial oscillation fitted to the N-body simulations according to
Eq. (3.2).

Finally, the finite size of a galaxy survey and the survey window function introduce
couplings between different modes k and, as a consequence, discrete bandpowers should

– 13 –



be considered in the analysis in order to avoid these correlations. We model the
observed matter power spectrum (5.1) in bandpowers averaged over a bandwidth ∆k
with a top-hat window function as in Refs. [12, 25]:

P̂obs(ki, z) =
1

∆k

∫ ki+∆k/2

ki−∆k/2

dk′Pobs(k
′, z) . (5.7)

5.2 Fisher analysis

We follow the same approach as in Ref. [21] (see also Refs. [59, 65]). The Fisher matrix
for the observed matter power spectrum (5.1), for a i-th redshift bin, is given by:

FGC
αβ (zi) =

∫ 1

−1

dµ

∫ kmax

kmin

k2 dk

8π2

∂ lnPobs(k, µ, zi)

∂α

∂ lnPobs(k, µ, zi)

∂β
Veff(zi) , (5.8)

where k and µ are the ones related to the reference cosmology, ∂Pobs/∂α is the deriva-
tive with respect to the α element in the cosmological parameter vector θ. The effective
volume in the i-th redshift bin, is given by [66]:

Veff(k, µ, zi) ' Vsurv(zi)

[
n(zi)Pobs(k, µ; zi)

n(zi)Pobs(k, µ, zi) + 1

]2

, (5.9)

where Vsurv(zi) is the comoving volume in the i-th redshift bin.
The full set of parameters θ includes the standard shape parameters

{
ωc, ωb, h, ns

}
,

the redshift-depedent parameters
{
H,DA, log (fσ8)

}
zi

, the redshift-depedent nuisance

parameters
{

log (bσ8) , Pshot, σp
}
zi

together with the three extra parameters of the pri-

mordial oscillatory feature model
{
AX , log10(ωX), φ/(2π)

}
(see Sec. 2). After marginal-

izing over the nuisance parameters, we project the redshift-dependent parameters on
the final set of cosmological parameters{

ωc, ωb, h, ns, ln
(
1010As

)
,AX , log10(ωX), φ/(2π)

}
. (5.10)

The Fisher matrix for CMB angular power spectra (temperature and E-mode
polarization) is [67–71]:

FCMB
αβ = fsky

∑
`

2`+ 1

2
tr [C`,αΣ`C`,βΣ`] , (5.11)

where C` is the covariance matrix, C`,α ≡ ∂C`/∂α is the derivative with respect to
the α element in the cosmological parameter vector θ, and Σ` ≡ (C` + N`)

−1 is the
inverse of the total noise matrix with N` the diagonal noise matrix. The effective noise
NX
` is the instrumental noise convolved with the beams of different frequency channels

[16]. We adopt the specifications denoted as CMB-1 in [16] for a Planck-like sensitivity,
which reproduce uncertainties for standard cosmological parameters similar to those
which can be obtained by Planck [72].

We study the predictions for a CV-CMB experiment considering the specifications
of fsky = 0.7, and a multipole range from `min = 2 up to `max = 2500.
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The full set of parameters θ for the CMB includes{
ωc, ωb, h, ns, τ, ln

(
1010As

)
,AX , log10(ωX), φX/(2π)

}
. (5.12)

We marginalize over τ the Fisher matrix of the CMB before combining it with the one
of the GC.

5.3 Galaxy clustering specifications

We focus on two spectroscopic galaxy surveys. First, we consider a Euclid-like spec-
troscopic survey that will probe fsky = 15, 000 deg2 over a redshift range 0.9 ≤ z ≤ 1.8
divided in 9 tomographic redshift bins equally spaced. We adopt the predicted redshift
distribution of the number counts of Hα-emitting galaxies, dN/dz, per square degree
for Euclid-like Hα-selected survey from Ref. [73] with Hα + [NII] blended flux limits
of 2 × 10−16 erg s−1 cm−2 and dust method from [74], and the linear clustering bias
from Ref. [75]. Secondly, we consider the Subaru Prime Focus Spectrograph (PFS)
which will map emission line galaxies spanning a redshift range 0.8 < z < 2.4 over
1,464 deg2 [76]. In this case, we assume a redshift accuracy of σz = 0.001 for both the
two experiments.

6 Results

We now discuss our results for the two oscillatory models considered (see Sec. 2 for
the parameterizations). The marginalized 68% constraints on the amplitude A (for
different values of log10 (ωX) around the best-fit AX = 0.03 and φX/(2π) = 0.2) for a
Euclid-like experiment are shown in Fig. 10 and can be summarized as follows:

• using the linear matter power spectrum in (5.1), we recover uncertainties on the
amplitude consistent with the ones obtained in Ref. [15] for the linear model
(2.1) and in Refs. [15, 16] for the logarithmic model (2.2) for kmax = 0.1 h/Mpc.
We find similar uncertainties using the non-linear matter power spectrum when
kmax = 0.1 h/Mpc. This confirms the validity of using the linear theory when
restricting to these scales;

• when kmax = 0.6 h/Mpc, we find that Euclid-like can decrease the uncertainties
σ (A) by a factor 2 when log10 (ωX) > 1.0 thanks to our modelling of non-linear
effects. Note that incorrectly by discarting non-linear effects one would get much
tighter constraints. We find that a Euclid-like survey can lead to uncertainties
which improve on a CV-CMB for log10 (ωlin) > 1.3 and log10 (ωlog) > 1.6;

• another interesting aspect is that the improvement in term of uncertainties sat-
urates at kmax = 0.3 h/Mpc for the model considered. This trend is due to the
non-linear damping which smooths most of the oscillations for k > 0.3 h/Mpc
for z < 2;

• finally we see that for the linear model the uncertainties for frequencies around
the BAO frequency log10 (ωlin) ' 0.87 are sensitively degraded, as pointed out in
Ref. [25].
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Figure 10. Marginalized uncertainties on AX as function of the frequency ωX for the
linear model (left panel) and the logarithmic model (right model). We show uncertainties
for CMB-1 (magenta) and for Euclid-like (combined with Planck-like information) in the top
(bottom) panels for different maximum wavenumber considered kmax = 0.1, 0.3, 0.6 h/Mpc
(solid, dashed, dotted). Green lines refer to the linear matter power spectrum in (5.1) and the
blue lines to the non-linear matter power spectrum. CMB CV uncertainties are in dashed-
magenta.

Our best forecasted constraint from Euclid-like GC in combining with CMB-1 (Planck-
like) information for both the two models (X = lin, log) corresponds to σ (AX) '
0.0018 for log10 (ωX) = 1.1 and σ (AX) ' 0.0026 for log10 (ωX) = 2.1, respectively.

We then consider PFS. We find also in this case that the improvement in terms of
uncertainties saturates around kmax = 0.3 h/Mpc, even if PFS covers redshifts larger
than z = 2. Despite the smaller sky coverage compared to Euclid (by ∼ 10%), we
find similar uncertainties for PFS when combined with CMB information, 2 times
larger than the uncertainties obtained for the same frequencies for the Euclid-like
specifications.

Finally, we combine the two GC clustering experiments with a future full-sky
CV-CMB experiment inspired by proposed CMB satellites [77–79]. Despite the large
improvement by a factor of 3 in terms of uncertainties when we consider CMB alone
(see Fig. 10), once we combine CMB with GC information the improvement from
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Planck-like to CV is minor and . 10% for log10 (ωX) > 1.
In Fig. 10, we can see that the uncertainties for high frequencies become large.

This is due to the window function (5.7) which progressively damp frequencies ωlin &
0.05/∆k. For ∆k ' 0.005h/Mpc, close to the fundamental mode of BOSS and PFS,
frequencies higher than ωlin ∼ 10 start to be damped. For the spectroscopic survey
expected for Euclid a smaller bandwidth of ∆k ' 0.0025 should guarantee optimal
constraints up to ωlin ∼ 20. For the logarithmic model the oscillations persist on small
scales up to higher frequencies. The addition of the density field reconstruction to the
analysis as done in Ref. [25] can further improve the constraints.

7 Conclusions

Global features in the primordial power spectrum provide a variety of information on
the physics of the early Universe ranging from the detection of new heaviest particles,
of the presence of a fast-roll stage, to fine details in the inflationary dynamics. They
can also be used to discriminate between inflation and alternative scenarios in presence
of signals which are oscillatory in time.

LSS experiments (also in the perspective of the next coming surveys) give the
opportunity to further investigate the presence of any salient features in the matter
power spectrum, complementing the constraints based on CMB anisotropy measure-
ments to smaller scales. In Refs. [14–19, 25], it has been already pointed out the
complementarity between the matter power spectrum from future galaxy surveys and
the angular power spectrum from the measurements of CMB anisotropies in temper-
ature and polarization to help in characterizing primordial features in the primordial
power spectrum. In particular, in Refs. [15, 16] it has been shown how future LSS
surveys will be able to improve current constraints on these oscillatory-features models
just by using linear scales, i.e. k . 0.1 h Mpc−1.

In order to study the imprints of primordial features on all scales probed by
galaxy surveys, we have run a set of high-resolution DM-only cosmological simulations
corresponding to different models with linear and logarithmic superimposed oscillations
with 1,0243 DM particles in a comoving box with side length of 1,024 Mpc/h and 2,048
Mpc/h (see [20, 24] for previous applications of N-body simulations to different models
of primordial features). Our study is important to understand the fully non-linear
regime for the clustering in models with primordial features. Our results complement
analytic approximations based on a perturbative treatment, see Refs. [24–26], and show
a compatible non-linear damping with respect to analytic results to leading order. We
stress that these effects are relevant for current galaxy surveys like BOSS and eBOSS
[80], DESI [81], DES [82], as well as for future experiments such as Euclid and PSF-
Subaru.

After calibrating the damping of the primordial oscillations with a semi-analytical
template (3.3) against the matter power spectrum extracted from the N-body simula-
tions at different redshifts, we have studied the forecasted uncertainties extending our
previous analysis [16] on the capability of GC up to quasi-linear scales k . 0.1 h/Mpc
to improve the uncertainties for such class of primordial models. The uncertainties
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on the amplitude of the linear (logarithmic) primordial oscillations for a wide Euclid-
like experiment covering the redshift range 0.9 ≤ z ≤ 1.8 over a sky patch of 15,000
deg2 around a fiducial value Alin = 0.03 (Alog = 0.03) are σ (AX) ' 0.0025 (0.0034)
for log10 (ωX) = 0.1, σ (AX) ' 0.0017 (0.0018) for log10 (ωX) = 1.1, σ (AX) '
0.0041 (0.0026) for log10 (ωX) = 2.1 and for a deeper experiment as PFS cover-
ing the redshift range 0.8 ≤ z ≤ 2.4 over a sky patch of 1,464 deg2 are σ (AX) '
0.0044 (0.0032) for log10 (ωX) = 0.1, σ (AX) ' 0.0026 (0.0029) for log10 (ωX) = 1.1,
σ (AX) ' 0.0096 (0.0064) for log10 (ωX) = 2.1, in combination with Planck-like CMB
temperature and polarization anisotropies and assuming kmax = 0.6 h/Mpc. We find
an improvement by a factor 2 including non-linear scales from kmax = 0.1 h/Mpc to
kmax = 0.6 h/Mpc.

Oscillatory features in the PPS also generate highly correlated signals in terms
of non-Gaussianities [27, 83–85] and specific features appear also in the bispectrum
(see Ref. [86] for a review), so that primordial features can also be searched for in the
bispectrum [87], or jointly in the power spectrum and bispectrum [88–90]. In addition,
a scale-dependent contribution to the clustering bias is expected in the presence of
primordial non-Gaussianity [91–94]. This last effect has been studied in Ref. [21] for
large-scale features and in Ref. [95] for oscillatory features resulting in a very small
effect that upcoming surveys will be unable to detect. Direct studies of the imprint
from these oscillatory features on the matter bispectrum are still promising in order to
have a tighter and more robust detection of this features. A first investigation of the
matter bispectrum in these models has been presented in Ref. [26] using perturbation
theory, and it will be important to further extend this framework in order to see how
non-linearities affect higher-order statistics.
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