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A B S T R A C T   

Astringency is an essential sensory attribute of red wine closely related to the saliva precipitation upon contact 
with the wine. In this study a data matrix of 52 physico-chemical parameters was used to predict the Saliva 
Precipitation Index (SPI) in 110 Italian mono-varietal red wines using partial least squares regression (PLSr) with 
variable selection by Variable Importance for Projection (VIP) and the significance of regression coefficients. The 
final PLSr model, evaluated using a test data set, had 3 components and yielded an R2

test of 0.630 and an RMSEtest 
of 0.994, with 19 independent variables whose regression coefficients were all significant at p < 0.05. Variables 
selected in the final model according to the decreasing magnitude of their absolute regression coefficient include 
the following: Procyanidin B1, Epicatechin terminal unit, Total aldehydes, Protein content, Vanillin assay, 520 
nm, Polysaccharide content, Epigallocatechin PHL, Tartaric acid, Volatile acidity, Titratable acidity, Catechin 
terminal unit, Proanthocyanidin assay, pH, Tannin-Fe/Anthocyanin, Buffer capacity, Epigallocatechin PHL 
gallate, Catechin + epicatechin PHL, and Tannin-Fe. These results can be used to better understand the physico- 
chemical relationship underlying astringency in red wine.   

1. Introduction 

Astringency is one of the most important sensory characteristics of 
red wine that drives consumer preference (Rinaldi and Moio 2021). 
Thus, a better understanding of astringency and its prediction is 
compulsory to produce wine with high consumer liking. One of the first 
conceptualizations of wine astringency vocabulary defines it as a com
plex mixture of dryness, roughness, and puckery sensations in the mouth 
(Lawless et al., 1994). In general terms astringency is due to the loss of 

lubrication given by saliva, which reduces the friction between oral 
mucosal surfaces. The main mechanism accepted to explain the 
perceived astringency in the case of wine is the loss of lubrication due to 
the precipitation of saliva proteins by wine tannins. The initial molec
ular binding model was further developed and explained by Jöbstl et al. 
(2004) in a three-stage interaction process: (i) simultaneous binding of 
polyphenols to free proteins leading to a compact conformation; (ii) 
dimerization of them as the concentration of polyphenol increase, and 
(iii) precipitation as a consequence of large aggregate particles. 
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Although precipitation of salivary proteins, mainly proline-rich pro
teins, is one of the most accepted mechanisms to explain astringency 
phenomena, further mechanisms were proposed including (i) the acti
vation of the mechanoreceptors, (ii) the interaction with the oral mucosa 
by the tannin-protein precipitates, or (iii) the direct interaction of tan
nins with salivary proteins (Rinaldi and Moio, 2021; González-Muñoz 
et al., 2022). 

Tannins are among the most important polyphenolic compounds in 
red wine and they could be divided into two main groups: (i) condensed 
tannins or proanthocyanidins, which are polymeric flavan-3-ols, con
sisting in varying degrees of polymerization of (+)-catechin and 
(− )-epicatechin monomer units which can, in turn, be esterified with 
gallic acid; (ii) hydrolyzable tannins, which have a central core of 
monosaccharides that are esterified with gallic or ellagic acids or are 
oligomers of them, known as gallotannins and ellagitannins. Although 
the latter has been reported to give a greater sensation of astringency 
than condensed tannins at equal molar concentration, with ellagitannins 
being often more astringent than gallotannins, the hydrolyzable tannins 
usually play a minor role in the perceived astringency due to their low 
concentration in wine (Soares et al., 2017). Concerning condensed 
tannins, it has been reported that their interaction with proteins depends 
on their concentration in the wine, molecular weight/mean degree of 
polymerization (mDP), interflavanic bond type, galloylation (galloyl 
groups), hydroxylation pattern of B-ring, and stereochemistry confor
mation (Strati et al., 2021; González-Muñoz et al., 2022). Nevertheless, 
due to the structural rearrangements due to both the hydrolysis and the 
polymerizations of tannins during wine aging (including their oxida
tion), the enhancement in astringency seems not linear to the increase in 
the number of hydrophobic functional groups (Ma et al., 2014). 

Within flavonoids, in addition to flavan-3-ols, anthocyanins may also 
play an important role in protein precipitation, although their role in the 
perception of wine astringency is not yet fully understood. In a study of 
Paissoni et al. (2018) anthocyanins were observed to react with both 
BSA and salivary proteins in model solution, although the interaction 
with salivary protein was stronger and reacted more actively with cin
namoylated anthocyanins. A further study (Paissoni et al., 2020) showed 
that the presence of anthocyanins can modify the intensity of the 
astringency sensation and its sub-qualities, due to their interaction with 
other polyphenols. It was shown that the addition of anthocyanin 
glycoside to the seed extract was perceived as more astringent with a 
harsher sub-quality. However, the opposite effect occurred when it was 
added to skin extracts, where it was perceived as a lower surface 
smoothness sub-quality, although the intensity of the overall astrin
gency did not vary. Anthocyanins can also modify astringency through 
modification of tannin structure. In this sense, the incorporation of an
thocyanins into proanthocyanidins has shown a greater effect on the 
attenuation of astringency, compared to the intensification of astrin
gency due to the increase in the degree of polymerization (Weilack et al., 
2021). 

Other wine constituents have also been postulated as responsible for 
modulating astringency, among them: ethanol, organic acids, pH, cat
ions, as well as polysaccharides; with a multi-component nature of 
astringency perception, where the correlation between wine parameters 
and perceived astringency is not entirely clear at the moment 
(Sáenz-Navajas et al., 2019; González-Muñoz et al., 2022). Several ef
forts have been made to correlate the physico-chemical parameters of 
wine with its perceived astringency, using different assays, as follows: 
bovine serum albumin (BSA) protein precipitation assay (R2 = 0.82), 
phloroglucinolysis (R2 = 0.73), gel permeation chromatography (R2 =

0.74) (Kennedy et al., 2006); methylcellulose protein precipitation MCP 
(R2 = 0.83) (Mercurio and Smith, 2008); saliva precipitation index (SPI) 
(R2 = 0.97) (Rinaldi et al., 2012), and absorbance at 230 nm (R2 =

0.705) (Boulet et al., 2016). Piombino et al. (2020) tried to correlate 
astringency sub-qualities with the total phenol concentration by 
Folin-Ciocalteu assay and proanthocyanidins concentration by warm 
acid hydrolysis assay with ferrous salt as catalyst. They found a 

significant positive correlation for dryness (r = 0.56 and r = 0.71, 
respectively) and harsh (r = 0.48 and r = 0.47). 

The Saliva Precipitation Index (SPI) is an advanced assay based on 
SDS-PAGE electrophoresis that measures the binding and precipitation 
of salivary proteins towards wine polyphenols with the attempt to pre
dict the perceived astringency of wines (Rinaldi et al., 2010). The 
method involves the selection of bands that best correlate with the 
perceived astringency, and the calibration curve over a wide range of 
concentration (0.1–5.0 g/L) allows the determination of SPI expressed in 
gallic acid equivalent (g/L). Parameters such as saliva-to-wine ratio, 
saliva typology, and temperature of binding reaction have been opti
mized in this methodology to reach a high correlation with perceived 
astringency of R2 = 0.97 (Rinaldi et al. 2012). In an effort to simplify the 
application of the above method, Qi et al. (2023) have used the response 
surface methodology (RSM) to develop an artificial saliva by which to 
perform an artificial saliva precipitation index (ASPI) that optimizes a 
higher coefficient of determination value of prediction (R2

pred) through 
the mixture of different proteins with different concentrations. 

Although several studies have demonstrated the ability to predict 
astringency in wine, the overall relationship between the many physico- 
chemical variables and perceived astringency is still a challenge. Thus, 
multivariate analysis is considered a valuable approach to further model 
the relationship between astringency and chemical parameters. In this 
view, preliminary studies focused either on multiple linear regression 
(R2 = 0.909) (Boulet et al., 2016), or non-linear PLS regression (RMSE =
0.19) (Sáenz-Navajas et al., 2019). The multivariate approach could aid 
winemakers in gaining a holistic understanding of the factors that 
contribute to wine quality and in developing precision practices during 
the various stages of the winemaking process, from vine to wines, the 
latter with desirable sensory qualities. 

The aim of this study is to explore the feasibility of the prediction of 
SPI by using a multivariate approach to unravel the most important 
variables in predicting red wine astringency. This was performed using 
different Italian mono-varietal red wines, using partial least squares 
regression (PLSr) prediction tool to train models with a train data set, 
with randomized and replicate k-fold cross validation, variable selection 
through the Variable Important for Projection (VIP) scores, the signifi
cance of regression coefficients, and a randomized test to generate a 
statistically significant predictive model for SPI, that was finally evalu
ated with a test data set. 

2. Materials and methods 

2.1. Wines 

The study was performed with mono-varietal commercial red wines 
from eleven grape varieties harvested and vinified in the 2016 vintage 
from twelve regions of Italy and collected directly from local wineries in 
early 2017. The wines included: Aglianico from Campania (AGL, n =
10); Cannonau from Sardinia (CAN, n = 9); Corvina from Veneto (COR, 
n = 7); Montepulciano from Abruzzo (MON, n = 9); Nebbiolo from 
Piedmont (NEB, n = 11); Nerello Mascalese from Sicily (NER, n = 3); 
Primitivo from Puglia (PRI, n = 11); Raboso del Piave from Veneto 
(RAB, n = 10); Sagrantino from Umbria (SAG, n = 10); Sangiovese from 
Romagna (SAR, n = 12); Sangiovese from Tuscany (SAT, n = 7) and 
Teroldego from Trentino (TER, n = 11). Overall, the dataset included 
110 red wines analyzed for 52 physico-chemical parameters, and Table 1 
shows the distribution of the number of samples per wine grape variety 
and origin. Specifications for winemaking protocol and sample storage, 
including wine analysis methodologies and the metadata of samples, are 
fully available in the literature from our previous works (Arapitsas et al., 
2021; Giacosa et al., 2021; Marangon et al., 2022), and are listed in 
Supplementary Table S1 together with the article where the method is 
presented. 
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2.2. SPI analysis 

The SPI analysis was carried out in triplicate as already described 
Rinaldi et al. (2014). The commercial Experion Pro260 analysis kit and 
the Experion system were used for the SPI determination. The saliva 
samples were analyzed before and after the binding reaction with wine 
tannins under controlled conditions. The SPI was calculated by the 
percentage reduction of the fluorescence signal of salivary proteins 
compared to control saliva. Results are expressed as gallic acid equiva
lent (mg/L GAE). 

2.3. Statistical procedure and methodology for multivariate prediction of 
SPI 

As shown in Fig. 1, the statistical process began with a random, 
stratified division of the raw data set by wine grape variety and pro
duction region into training (70%) and test (30%) data sets. This means 
that the representative percentage of the original data set for each wine 
grape variety and region was retained as much as possible in the train 
and test data sets. Outliers in the training data set were then detected 
using Cook’s distance (Cook, 1977), and five of them were removed 
from the training data set, leaving the test data set intact until the final 
model evaluation. Then, the “pls” function of the “mdatool” package of 
R-Studio® (Kucheryavskiy, 2020) was used to auto-scale and center the 
training data set and generate PLSr models, which were cross-validated 
using a random 8-fold cross-validation with 10 repetitions on the entire 
training dataset. The selection of folds and replicates was chosen as a 
good trade-off to allow an efficient cross-validation of the model and 
calculate the significance of the regression coefficients for the inde
pendent variables with a sufficient degree of freedom for jack-knifed 
p-value in the t-distribution. However, preliminary evaluations were 
performed (not shown), and the results obtained were the same as with 
4-fold and 10- fold. Therefore 8 folds were chosen for the reason 
mentioned above. From this training procedure, the different statistical 
parameters of the models were RMSEcal (root mean squared errors of 
calibration), RMSEcv (root mean squared errors of cross-validation), 
with their confidence intervals and p-values through Jack-Knife 
method, and the VIP scores for each independent variable of the 
model (physicochemical parameters). Subsequently, an optimized PLSr 
training model was obtained by excluding independent variables with a 
VIP score less than 1.0 and a significant p-value of the regression coef
ficient greater than 0.1. The resulting model had an improved RMSEcv, 
in which the p-value of the regression coefficient for each independent 
variable was re-calculated, and all those with a p-value >0.05 was 
removed. Thus, an improved PLSr model was obtained with 19 inde
pendent variables with significant regression coefficients for all of them. 

The VIP score is an indicator of the combined contribution of the 
independent (Xs) and dependent (Y) variables. Which, by including the 
weights of the PLSr model, is able to express the covariance between the 

independent and dependent variables. Thus, the accuracy of the 
description of the dependent variable and the relevance for the model of 
the independent variables of this information are evaluated similarly 
(Andersen and Bro, 2010). On the other hand, the Jack-Knife method 
consists of calculating the uncertainty of the estimation of a specific 
statistical parameter, generally the regression coefficient, and calcu
lating its p-values and confidence interval for each independent variable 
by cross-validating the model through data resampling and thus 
obtaining results from different conformal models that are used for the 
calculations (Andersen and Bro, 2010). After variable selection, a ran
domized test was performed to evaluate the significance of the opti
mized PLSr model. The optimal number of components was selected to 
generate a significant model in which an overfit check was performed to 
obtain the final significant and not overfitted trained model. 

The randomized test is valuable when data pre-processing has been 
performed, which is used to reject uninformative components for the 
PLSr model, similar to the p-value used in the statistical test. It takes the 
covariance between the dependent (X) and independent (Y) variable 
scores to calculate a t-statistic. This calculation is repeated to obtain a 
histogram of the null distribution, i.e., the distribution of the statistic 
over the randomly permuted values of the independent variable. The 
alpha parameter was then calculated by the number of times an equal or 
higher t-statistic is obtained compared to the unswapped y-values. Thus, 
the non-significant components will have a lower covariance of the 
permuted Y, compared to the non-permuted ones, hence a higher alpha 
value. Which, if greater than the critical value (5–10%), is considered to 
generate non-significant models (Wiklund et al., 2007). 

On the other hand, overfitting control consists of avoiding models 
that violate parsimony. That is, rejecting the use of models with un
necessary terms or more complicated approaches that may lead to not 
achieving the corresponding benefit or to underperforming compared to 
a simpler model (Hawkins, 2004). In this respect, separating the data 
matrix into training and test data sets at the beginning of the statistical 
process is a usual first direct measure to avoid overfitting, as is done in 
this work. But, operations such as the removal of outliers or taking 
different PLS model configurations may result in model overfitting 
(Shmueli et al., 2016). 

Therefore, it is essential to implement additional actions in the final 
model inspection to ensure that the models are not over-fitted. One 
option is the control of the “|R2

cal − R2
cv| vs. R2

cv” plot (R2
cal: the deter

mination coefficient of calibration, and R2
cv: the determination coeffi

cient of cross-validation). Where |R2
cal− R2

cv| should not be more than 
20%, and the optimal Pareto solution (maximal number of components 
for an optimal model) should be placed at the inflection point of the 
outer convex hull in the plot (Mendez et al., 2019). Another interesting 
option is the control of the plot “RMSEcv/RMSEcal ratio vs. RMSEcv” 
(being RMSEcv: the root mean square error of cross-validation, and 
RMSEcal: the root mean square error of calibration), which provides 
complementary information to the previous one, but unlike the co
efficients of determination (R2

cal or R2
cv), the RMSEcal and RMSEcv are 

expressed in the same units as those being predicted for the model 
(Kucheryavskiy, 2020). 

The final step in the process involved the evaluation of the predictive 
ability of the optimized PLSr model using the test data set, which was 
separated and untouched from the beginning of the process. This eval
uation included obtaining the test root mean square error (RMSEtest), the 
test coefficient of determination (R2

test), and the p-value of the regression 
coefficient of the previously selected dependent variables, which helped 
to determine the effectiveness and reliability of the final model. 

3. Results 

3.1. SPI of red wines 

Table 2 shows the minimum, maximum and mean SPI values for each 
mono-varietal Italian red wines. As expected, the range of SPI for each 

Table 1 
Number of samples distribution per wine grape variety and origin.  

Code Original data set Outliers Training data set Test data set 

AGL 10 1 6 3 
CAN 9 – 6 3 
COR 7 1 4 2 
MON 9 1 5 3 
NEB 11 1 7 3 
NER 3 – 2 1 
PRI 11 1 7 3 
RAB 10 – 7 3 
SAG 10 – 7 3 
SAR 12 – 8 4 
SAT 7 – 5 2 
TER 11 – 8 3 

Total 110 5 72 33  
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Fig. 1. Scheme of PLSr model training, cross-validation, and test for SPI.  

C. Galaz Torres et al.                                                                                                                                                                                                                          



Current Research in Food Science 7 (2023) 100626

5

cultivar was large as observed already for astringency among the same 
wines (Piombino et al., 2020). Also, basic wine parameters showed high 
inter-varietal diversity as previously reported (Giacosa et al., 2021). 

3.2. SPI PLSr model 

As can be seen in the summary of Table 3, the raw training data set 
was analyzed with the SPI PLSr model M0 with 77 samples and 1 
component that obtained an R2

cal of 0.298, with an RMSEcal of 1.276, and 
an R2

cv of 0.207 with an RMSEcv of 1.357. Then, five outliers were 
removed (one sample of MON, COR, AGL, PRI and NEB respectively), 
obtaining the SPI PLSr model M1 with 72 samples and 5 components 
that gave an R2

cal of 0.713, with an RMSEcal of 0.808, and an R2
cv of 0.290 

with an RMSEcv of 1.271. 
After removal of outliers, the VIP scores of each independent variable 

and the p-values of their regression coefficients were calculated. Vari
ables with VIP scores >1.0 and p-values <0.1 were eliminated, leaving 
20 independent variables. Next, independent variables with non- 
significant regression coefficients (with a p-value of regression co
efficients >0.05) were removed until only the ones with significant 
regression coefficients remained in the model. In this step, just one in
dependent variable was eliminated, resulting in a final selection of 19 
independent variables. The process was completed by generating a new 
M2-optimized SPI PLSr model with 4 components based on the selected 
variables. This model returned an R2

cal of 0.652 with an RMSEcal of 0.890 
and an R2

cv of 0.452 with an RMSEcv of 1.117, indicating an improvement 
in performance. 

3.3. Evaluation of the PLSr model 

Subsequently, a randomized test was performed on the SPI PLSr 
model M2 to select the optimal number of components that generate a 
significant model, suggesting three components with an alpha-value of 
0.029, as seen in Fig. 2. 

After this process, overfitting was checked, as shown in Fig. 3 to 
confirm that the number of components selected would not generate an 

overfitted model. In this respect, no signs of overfitting were found since 
in the graph "|R2

cal-R2
cv| vs. R2

cv” the three components previously selected 
are below the 20% threshold of |R2

cal-R2
cv| and under the inflection point 

of the outer convex hull (Mendez et al., 2019). Neither are there any 
signs of overfitting when analyzing the graph of the “RMSEcv/RMSEcal 
ratio vs. RMSEcv”. Although, from the point of view of Pareto optimi
zation in both cases 4 components are the optimal number of compo
nents, as also indicated above in the SPI PLSr model M2, after a 
randomized test, it was found that from four components onwards, 
non-significant models are generated. Therefore, although three com
ponents are not the optimum solution, it is the maximum number of 
eligible PLSr components that do not show any presence of overfitting 
but generate a significant PLSr model. Ultimately, it was trained the final 
and significant SPI PLSr model M3 with 72 samples, 19 independent 
variables, and three components that achieved an R2

cal of 0.624 and 
RMSEcal of 0.925. 

Afterward, when the final SPI PLSr model M3 was evaluated with the 
test data set, it obtained an R2

test of 0.630 and an RMSEtest of 0.994. The 
plots of the PLS linear regression and their statistical parameters for 
evaluation results of the SPI PLSr model M3 can be seen and compared 
with the initial starting point of model M0 in Fig. 4, where a substantial 
improvement in the predictive ability of the M3 model evaluation is 
observed. 

Fig. 5 shows the final performance of the SPI PLSr M3 model in terms 
of RMSE prediction error by wine grape variety and region of origin, for 
the training data set and the test data set. It can be observed that the 
lowest prediction error is presented by SAG, COR, SAR, and SAT 
respectively, while the highest errors of prediction correspond to NEB 
and AGL, with a very large dispersion in the case of CAN and PRI. NER 
on the other hand, presented only one sample due to its low number of 
samples in the original data set (3). 

Fig. 6 shows a graph with the regression coefficients of all the 
dependent variables finally selected that were also significant (p-val
ue<0.05), together with their confidence intervals, of the final SPI PLSr 
M3 model. It can be seen that the significant variables found for the 
model are ordered in decreasing order according to their absolute 
magnitude of the regression coefficient as follows: Procyanidin B1 (mg/ 
L), Epicatechin terminal unit (mg/L), Total aldehydes (mg/L), Protein 
content (mg/L), Vanillin assay (mg (+)-catechin/L), absorbance at 520 
nm, Polysaccharide content (mg/L), Epigallocatechin PHL (mg/L), 
Tartaric acid (g/L), Volatile acidity (g acetic acid/L), Titratable acidity 
(g tartaric acid/L), Catechin terminal unit (mg/L), Proanthocyanidin 
assay (mg cyanidin chloride/L), pH, Tannin-Fe/Anthocyanin, Buffer 
capacity (meq/pH unit), Epigallocatechin gallate PHL (mg/L), Catechin 
+ epicatechin PHL (mg/L) and Tannin-Fe (mg/L). 

3.4. Portability of the model 

The next equation (1) is the resulting linear PLS regression function 
for final SPI PLSr M3 model with its raw regression coefficients. 
Therefore, it is possible to directly add the values of the variables 
without scaling or centering.  

Table 2 
SPI (g/L of gallic acid equivalent) after outlier remotion.  

Code SPI Training data set SPI Test data set 

Min Max Mean sd Min Max Mean sd 

AGL 4.7 7.3 5.9 1.0 4.3 7.0 5.9 1.5 
CAN 2.6 4.8 4.0 0.9 2.7 6.7 4.6 2.0 
COR 1.0 2.4 1.7 0.6 1.3 2.4 1.9 0.8 
MON 2.3 4.9 3.6 1.0 2.9 5.4 4.0 1.3 
NEB 2.2 6.7 4.5 1.7 2.4 6.2 4.0 2.0 
NER 1.3 2.1 1.7 0.6 2.1 2.1 2.1 – 
PRI 1.7 4.2 3.2 0.8 1.4 3.1 2.1 0.9 
RAB 3.7 6.2 5.1 1.1 3.7 6.6 4.8 1.6 
SAG 4.3 6.7 5.8 0.9 4.4 5.9 5.4 0.8 
SAR 1.9 5.3 3.5 1.1 2.4 4.0 3.1 0.7 
SAT 3.1 3.8 3.4 0.3 2.4 3.6 3.0 0.8 
TER 1.9 3.4 2.9 0.5 1.9 3.1 2.6 0.6 

Total_mean 2.5 4.8 3.8 0.9 2.7 4.7 3.6 1.2 
Total sd 1.1 1.6 1.3 0.4 1.0 1.7 1.3 0.5  

Table 3 
Summary results of the training and evaluation process for the SPI PLSr model.  

Model Treatmenta Nº samples Nº independent variables PLS components Statistical parameters of training process Statistical parameters for model evaluation 

R2
cal R2

cv RMSEcal RMSEcv R2
test RMSEtest 

m0 Non 77 52 1 0.298 0.207 1.276 1.357 0.175 1.485 
m1 OR 72 52 5 0.713 0.290 0.808 1.271 0.436 1.227 
m2 VS 72 19 4 0.652 0.452 0.890 1.117 0.607 1.025 
m3 PT&OC 72 19 3 0.624 0.444 0.925 1.125 0.630 0.994  

a Treatment codes: Non: without treatment, OR: Outlier removal, VS: Variable selection, and PT&OC: Permutation test and overfitting control. The rest of the codes 
are explained in the text. 
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SPI (g/L GAE) = 2.4385 + a * 1.5492 + b * 0.3903 + c * 0.1844 + d * 0.1102 
+ e * 0.0329 + f * 0.0145 + g * 0.0068 + h * 0.002 + i * 0.0004 + j * 0.0003 
+ k * 0.0002 + l * 0.0001 + m * − 0.0016 + n * − 0.0017 + o * − 0.0101 + p * 
− 0.0101 + q * − 0.0221 + r * − 0.0337 + s * − 0.7919                         (1) 

Where: 
a: Volatile acidity (g acetic acid/L) 
b: Tartaric acid (g/L) 
c: Titratable acidity (g tartaric acid/L) 
d: absorbance at 520 nm 
e: Procyanidin B1 (mg/L) 
f: Buffer capacity (meq/pH unit) 
g: Catechin terminal unit (mg/L) 
h: Epigallocatechin gallate PHL (mg/L) 
i: Vanillin assay (mg (+)-catechin/L) 
j: Catechin + epicatechin PHL (mg/L) 
k: Proanthocyanidins assay (mg cyanidin chloride/L) 
l: Tannins-Fe (mg/l) 
m: Epigallocatechin PHL (mg/L) 
n: Polysaccharide content (mg/L) 
o: Total aldehydes (mg/l) 
p: Protein content (mg/L) 
q: Epicatechin terminal unit (mg/L) 

r: Tannin-Fe/Anthocyanin 
s: pH. 

4. Discussion 

In general terms, procyanidins have been related to some degree to 
human salivary precipitation in different publications according to their 
conformational structure and polymerization. For example, Sun et al. 
(2013), proved that both saliva precipitation and astringency sensation 
depend on the degree of polymerization of procyanidins, being greater 
as it increases (polymers > oligomers), with the best fitting (R2 = 0.98) 
at 0.86–1.2 g/L of procyanidins. Ma et al. (2016) confirmed an increased 
reactivity of salivary proteins with non-galloylated procyanidins from 
wine based on their degree of polymerization (up to five) as follows: 
monomers < dimers < trimers < tetramers, with little effect for the 
monomers, and no pentamers found after the protein reaction. 

Procyanidin B1 concentration in wines remains the most important 
variable for the purposes of the final SPI PLSr model M3, with a rela
tively high significance and positive regression coefficient for the model. 
A tentative explanation for the high positive magnitude of the regression 
coefficient of procyanidin B1, as seen in Fig. 6, lies in the spatial 
configuration of it: epicatechin-(4β→8)-catechin, having a catechin as 

Fig. 2. Statistics of Randomized Test with 1000 permutations for the final SPI trained PLSr model. Legend: (a) Alpha values vs. PLSr components, (b) T-statistic 
permutation histogram, and (C) Correlation between permuted and original Y. 

Fig. 3. SPI PLSr model overfitting inspection. Legend: (a) Determination coefficient of calibration (R2cal) minus determination coefficient of cross-validation (R2cv) 
vs. determination coefficient of cross-validation (R2cv). (b) Root mean square error of cross-validation (RMSECV) divided by root mean square error of calibration 
(RMSEcal) vs. root mean square error of cross-validation (RMSECV). 

C. Galaz Torres et al.                                                                                                                                                                                                                          



Current Research in Food Science 7 (2023) 100626

7

its terminal unit. This is because the colloidal behavior of proantho
cyanidins would change mainly according to their 3D configuration and 
consequently their interaction with saliva proteins (Dufourc 2021). 
However, it is important not to confuse a higher regression coefficient of 
an independent variable with a cause-effect relationship, it only in
dicates that it has a greater influence on the prediction of the dependent 
variable than other independent variables. In this regard, one explana
tion for this result may lie in the importance of the procyanidin B1 
oligomer in grapes and wine as fingerprint tool for a 
compositional-related issue, together with other parameters selected for 
the SPI PLSr model M3. 

Regarding flavan-3-ols, epicatechin was associated with an increase 
in astringency in contrast to catechin at the same concentration 
(Thorngate and Noble, 1995), whereas in another study catechin 
showed higher salivary protein precipitation compared with epicatechin 
at the same concentration (Kallithraka et al., 2001). Sáenz-Navajas et al. 
(2019) hypothesized that different non-linear trends in astringency 
response would be related to the procyanidins content (%PC), calculated 
as the sum of catechin and epicatechin subunits and terminal units 

divided to the total tannin concentration, and the ratio of the structural 
epicatechin/catechin subunit. The astringency prediction showed a 
sharp negative response when the proportion of procyanidins was <68% 
(thus decreasing astringency with increasing epicatechin/catechin 
ratio), being positive between 68 and 76% and null with a PC >76%. 

In our work, the variable positively related to the increase of SPI is 
the sum concentration of structural monomers catechin PHL and epi
catechin PHL. The catechin terminal unit (58%) had a positive influence 
on the prediction of SPI, in contrast to the epicatechin terminal unit 
(29%). The terminal unit of procyanidin B1, which obtained the highest 
positive regression coefficient, is in fact catechin. All this suggests that it 
is not the concentration of free flavan-3-ols, but the concentration and 
overall structure of procyanidins the important one for the prediction of 
SPI, as well as the structure of their structural monomers, as was 
observed with epigallocatechin PHL and epigallocatechin gallate PHL, 
where the concentration of epigallocatechin PHL showed a positive 
relationship with SPI, while the concentration of epigallocatechin PHL 
gallate exhibited a negative influence on the prediction of SPI, reaf
firming the importance of the global and internal structure of 

Fig. 4. PLSr Linear regression plots of: (a) initial PLSr model vs. (b) final PLSr model evaluation.  
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procyanidins for the prediction of SPI. 
It is well known that the vanillin assay measures both the monomeric 

flavanols and the low molecular weight flavan-3-ols polymers, with 
specificity for catechin, and its value is affected by polymerization with 
a strong decrease with wine aging (Sarkar and Howarth, 1976). In 
contrast, the proanthocyanidin assay measures specifically high molec
ular weight flavan-3-ols polymers (more than 5 units) and it is not able 
to measure hydrolysable tannins (Gambuti et al., 2020; Giacosa et al., 
2021). In this regard, the similarity of regression coefficient between 
proanthocyanidins and vanillin assays for the final PLSr M3 model 
suggests that high (proanthocyanidins assay) and low molecular weight 
proanthocyanidins (vanillin assay) play a similar role for prediction of 

SPI. 
In addition to the above, a preliminary sensory study carried out on 

the same sample set of mono-varietal Italian red wines found that total 
proanthocyanidins were significantly correlated with diverse sub- 
qualities of astringency, mainly to the drying sensation (r = 0.708) 
(Piombino et al., 2020). 

Concerning the negative influence of Tannin-Fe/Anthocyanin ratio 
on SPI prediction, it could be explained considering that total antho
cyanins (sum of free and polymeric pigments) are used to determine this 
ratio; thus, lower Tannin-Fe/Anthocyanin values could be related to 
higher values of denominator which included free anthocyanins and 
pigmented polymers. Higher values of total pigments due to the 

Fig. 5. SPI prediction errors (g/L of GAE) of final SPI PLSr model M3. Legend: (a) using the training data set (b) using the test data set.  

Fig. 6. Regression coefficients of independent variables (physicochemical parameters) with its confidence intervals of PLSr model M3. Regression coefficients and 
confidence intervals are auto-scaled and centered. 
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inclusion of anthocyanins in small tannin oligomers could partly explain 
the decrease in astringency that could partly explain the decrease in 
astringency as it occurs as the wine ages, along with tannin cleavage 
reactions (Cheynier et al., 2006). In this sense, this result could be un
derstood by presuming a tannin-Fe/anthocyanin ratio relation with SPP 
(small polymeric pigments) and LPP (large polymeric pigments) and its 
effect on protein precipitation and wine astringency. LPP has been 
shown to correlate with the intensity of astringency in young wines 
(Rinaldi and Moio, 2018; Rinaldi et al., 2020a). However, also a 
decrease in SPI during five years of bottle aging of red wines was already 
observed (Gambuti et al., 2020) and, when wines age, the formation of 
pigmented polymers due to oxidation correlates with the perception of 
velvety sub-quality (Rinaldi et al., 2020b, 2021). Therefore, the higher 
the total anthocyanins value (which included monomeric and polymeric 
anthocyanins), the higher the SPP and LPP values were. However, it is 
important to clarify that these results should be better understood in the 
future, since SPP and LPP were not selected as variables that optimize 
SPI prediction in this study, but they were associated with 
Tannin-Fe/Anthocyanin ratio by PCA analysis (positively related with 
SPP and negatively with LPP) in a previous work with the same data set 
(Giacosa et al., 2021). 

Total aldehydes concentration showed a negative influence on the 
prediction of SPI most probably as indirect consequence of the oxidation 
of alcohols by the hydroxyl radical during the vinification and aging 
process. In this regard, acetaldehyde may have played an important role, 
as it bridges with flavanols in a series of well-documented reactions, 
generating “ethyl-linked” products, ultimately leading to reduction of 
astringency by polymerization or precipitation of flavonoids (Water
house and Laurie, 2006). 

With respect to polysaccharides and protein concentration. It is 
known that grape and yeast polysaccharides tend to inhibit or stabilize 
salivary protein precipitation at the concentration that they can be 
found in wine, depending on the polysaccharide and tannin structure 
(Weilack et al., 2023), as well as the type of saliva and presence of salts 
(Manjón et al., 2021). Which agrees with the work of Pascotto et al. 
(2021) and adds that the molecular weight of polysaccharides is posi
tively related to the astringency sub-quality of smoothness. However, 
the effect of polysaccharides and proteins explained in these studies 
could also be understood through the work of Bindon et al. (2016), who 
studied the size of macromolecular complexes in wine by nanotracking 
analysis (NTA) after microwave maceration. They found that a small 
increase in polysaccharides and proteins allows a further increase in 
tannin concentration without an imbalance in the system of stable 
tannin-polysaccharides (mannoproteins) complexes, increasing their 
concentration but not their size. The negative influence found in this 
work between polysaccharide content and SPI prediction is also in 
agreement with a previous work in which mannoproteins were able to 
reduce the precipitation of salivary proteins estimated by means of the 
SPI assay (Rinaldi et al., 2012). 

In addition, the effect of wine protein content on salivary protein 
precipitation has been little to any studied in red wine. Recently it has 
been found that the proteins are present in greater quantities in red wine 
than previously thought. Different varieties of Vitis vinifera spp. have 
reported a range of 38–58 mg/L and 120–381 mg/L in the case of Vitis 
spp. Hybrids (Kassara et al., 2022). In our study, after outlier removal, 
the wines showed a protein concentration range from 3.9 to 118.2 mg/L, 
with a mean of 43.18 mg/L. Interestingly, there is some evidence of the 
interaction between dimeric procyanidins B1 and B2 with grape pro
teins, however it is not yet clear how it could behave with more poly
merized tannins (Di Gaspero et al., 2020). Thus, if wine proteins interact 
with wine tannins, they could be negatively related to astringency due to 
a possible competition with salivary proteins by the same interaction 
with tannins. 

Further variables investigated includes organic acids, pH and buffer 
capacity. The prediction of SPI increase with the increase of total and 
volatile acidity, and tartaric acid. These results are partly in agreement 

with the work of Kallithraka et al. (1997) whom proposed that acidity by 
itself could have a precipitating action on tannin-protein complexes 
already formed in the mouth, thus increasing their astringency. Actual 
studies in which the effect of pH (Gambuti et al., 2022) and organic acids 
(Picariello et al., 2019) on SPI was determined confirmed this hypoth
esis. In addition, the effect on the astringency of oligomeric tannins (i.e., 
procyanidins) has been tested in model wine by Fontoin et al. (2008), 
obtaining a decrease of astringency with increasing of the pH but with 
no response for tartaric acid at constant pH. On the other hand, it was 
observed that volatile acidity and total acidity concentration showed a 
positive linear relationship with the increase in perceived astringency, 
which became more evident as the concentration of them increased 
(Sáenz-Navajas et al., 2019). 

The general effect and the mechanism of action where the acidity pH 
affects astringency has been recently explained. Zhao et al. (2023a) 
found that pH, and not titratable acidity, showed the best correlation 
with the intensity of astringency (r = − 0.70), its duration (r = − 0.82) 
and the sub-qualities of dryness (r = − 0.69) and pucker (r = − 0.82). 
Regarding the mechanism of action, the same research group (Zhao 
et al., 2023b) proposed that in first instance tartaric acid is able to 
change the hydrogen and hydrophobic bonds in the protein-polyphenol 
compounds, and thus stretch the protein structure due the formation of 
ternary complexes of tartaric acid. Although, this behavior was found up 
to 3 g/L of tartaric acid concentration, but then its effect is masked. The 
second mechanism is through its impact on pH, where it was found that 
a lower in pH increases the fluidity of the saliva layer. This last effect was 
independent of tartaric acid concentration, thus increasing it concen
tration but maintaining the pH does not increment the fluidity of the 
saliva layer, as well as the effect found in the same work for SPI where its 
increase was also related to pH and not to the concentration of tartaric 
acid when pH was constant (Zhao et al., 2023a). 

With respect to the buffering capacity of wine, it is primarily deter
mined by its organic acid content, especially tartaric acid, which is the 
main acid in wine and together with the concentration of other organic 
acids, such as malic, citric, succinic, lactic and acetic acids, as well as the 
ratio between malic and tartaric acid, play an essential role by acting in 
the form of wine salts, which serve as buffers, thus maintaining the pH of 
the wines in the range of 2.8–4.0. It has been reported that the buffering 
capacity is higher in wines with a pH close to the pKa of their main acidic 
components, being also higher in a hydroalcoholic solution (11% V/V) 
than in an aqueous solution (Obreque-Slier et al., 2016). In this sense, its 
positive influence on the prediction of SPI in this study could be mainly 
related to the concentration of different organic acids in the wine and/or 
with the ratio of their concentration. 

Regarding the positive influence between the value at 520 nm and 
SPI prediction, it could be related to the well-known positive relation
ship of the 520 nm absorbance of anthocyanins to pH as a consequence 
of the total acidity of wines, with effects in anthocyanin-tannin poly
merization and color stability (Sims and Morris, 1985). 

In light of all these results, it is clear that the controversial issue of 
polymerization needs to be addressed, since neither the mDP nor the 
normalized mDP were selected in the variable selection step. In this 
regard, one of the possible explanations is that the variability of a large 
data set (real red wines) in concentration values of many parameters and 
their overall structure might obscured the specific effect of minor 
changes in mDP. Normally, as mentioned below, the effect of mDP is 
investigated in theoretical model systems lacking in this diversity, and 
this could be also the reason why alcohol concentration was not a 
selected parameter for the final model. Our model on the other hand, 
seeks for an overall practical investigation of the main factors common 
to most or all of the wine considered. However, it is important to 
mention the discordance found in the literature on the effect of mDP and 
wine astringency. In general terms, it has been stated that with an in
crease in the polymerization, and therefore the molecular weight, pro
cyanidins increment their interaction with salivary proteins and, 
therefore, their precipitation and, consequently, the astringency (Ma 
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et al., 2016). In fact, Pascotto et al. (2021), through asymmetrical flow 
field-flow fractionation coupled with multi-detection, found that only 
the fraction of wine polyphenols with a molecular weight <5 kDa is 
related with astringency sensation. However, there is no consensus on 
the actual effect of the mean degree of polymerization of real wine 
samples on perceived astringency. As procyanidin polymerization in
creases, the perception of astringency increases (Sun et al., 2013), 
whereas no significant correlation between mDP and astringency was 
found as well (Quijada-Morín et al., 2012). Indeed, Quijada-Morín et al. 
(2012) propose that for the conditions of their study, with mDP between 
2.9 and 4.3, the astringency is more related to other factors such as 
procyanidin subunit concentration and composition than the degree of 
polymerization of procyanidins, as this present study may suggest. One 
answer to these contradictory results could lie in a 
magnitude-dependent effect of the mDP value. In this view, Kyraleou 
et al. (2016) found a positive effect of mDP on astringency but only for 
oligomers. Instead, Sáenz-Navajas et al. (2019) found that mDP effect on 
astringency could have a dynamic behavior from a threshold value of 
mDP 1.4 with an inverse correlation, thus decreasing astringency with 
increasing mDP. However, the mDP range for the latter study was only 
0.1 to 2.8, falling outside the mDP values of the present study, which 
ranges (after treatment of outliers) from 8.8 to 29.7 with a mean of 15.6. 
However, Chira et al. (2009) found a positive effect mDP within a range 
between 4.3 and 48.8 and a mean of 21.4, but for skin grape extracts 
only and in one of the two vintages studied. The difficulty in simply 
relating the mDP value to the actual astringency of the wine sample may 
be due to the fact that its effect would be related to the hydrophobicity of 
the tannins. Larger condensed tannins contribute more hydrophobic 
groups that would increase tannin-protein interactions and, conse
quently, astringency. But, during tannin polymerization through wine 
maturation, conformational rearrangements and aggregation are 
thought to establish a non-linear relation between astringency and the 
increase of hydrophobic functional groups (Scollary et al., 2012; 
Sáenz-Navajas et al., 2019). Furthermore, these discordances in the 
literature on the structural effect of tannins on protein precipitation 
and/or astringency may indicate that the mechanism acting on the 
perception of astringency is not just the precipitation of salivary proteins 
by tannins. It could be important not only the amount of precipitated 
proteins and flavanols but also the remaining concentration in the su
pernatant of both proteins and flavanols, as it could also play a role in 
the perception of astringency (Kallithraka et al., 2001). These concepts 
are worth to be added in future works on predicting salivary protein 
precipitation or perceived astringency in order to have more robust 
prediction models and a better understanding of the complete mecha
nism behind astringency. 

Finally, in reference to the robustness and weaknesses of the created 
PLSr model, although powerful statistical tests were used to ensure the 
significance of the model, it is necessary to remember that this is a 
preliminary attempt to predict and understand the phenomenon of 
human saliva precipitation in contact with wine from a real and a quasi- 
large data set. 

5. Conclusions 

The combined use of PLSr, VIP scores and jack-knifed regression 
coefficient p-value with Randomized Test is an effective and reliable 
data-driven model methodology for assessing a significative SPI pre
diction model using wine chemical variables when they are not strongly 
correlated (see Fig. S1). Due to the complex multivariate problem and 
the generation of a significant model for prediction, this approach is 
recommended for further research involving the elucidation of how a 
change in the composition of wine affects the perception of astringency. 
In particular, a big dataset of both samples and parameters (e.g., pro
cyanidins with different structures and polymerization grades such as 
B1-8, C1-2, tetramers to pentamers, and further polymerizations), in 
conjunction with non-linear models and other systems of variable 

selection remains to be investigated to further develop the prediction 
model of astringency in wine. In this sense, some controversial issues 
could be addressed, such as (i) to model the effect of mDP procyanidin 
on salivary protein interaction and astringency as a function of a wide 
range of values; (ii) to elucidate how the structure of procyanidins has an 
effect on astringency dependent on variables such as %PC or mDP of 
them; (iii) to understand why the effect of the same variables on 
astringency changes in different vintages; (iv) to fit a model capable of 
compacting a small set of universal wine analytical variables able to 
predict astringency well in real samples of new wines with a wide 
concentration range of physico-chemical characteristics. 

The results presented in this work are, to our knowledge, the first 
time that a large number of diverse red wines (110 mono-varietal 
samples produced from 11 grape cultivars) are analyzed to attempt to 
predict SPI from their chemical composition. This effort increases the 
understanding of the common physico-chemical variables related to the 
astringency phenomenon, as well as the management of a large database 
to predict future astringency-related issues, and through them, 
improving the ability of winemakers and wine researchers to produce 
wines with higher consumer liking with a holistic understanding of it. 
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