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Abstract Clustering mixed data presents numerous challenges inherent to the
very heterogeneous nature of the variables. A clustering algorithm should be
able, despite of this heterogeneity, to extract discriminant pieces of information
from the variables in order to design groups. In this work we introduce a multi-
layer architecture model-based clustering method called Mixed Deep Gaussian
Mixture Model (MDGMM) that can be viewed as an automatic way to merge
the clustering performed separately on continuous and non-continuous data.
This architecture is flexible and can be adapted to mixed as well as to contin-
uous or non-continuous data. In this sense we generalize Generalized Linear
Latent Variable Models and Deep Gaussian Mixture Models. We also design a
new initialisation strategy and a data driven method that selects the best spec-
ification of the model and the optimal number of clusters for a given dataset.
Besides, our model provides continuous low-dimensional representations of the
data which can be a useful tool to visualize mixed datasets. Finally, we validate
the performance of our approach comparing its results with state-of-the-art
mixed data clustering models over several commonly used datasets.

Keywords Binary and count data · Deep Gaussian Mixture Model ·
Generalized Linear Latent Variable Model · MCEM algorithm · Ordinal and
categorical data · Two-heads architecture

1 Introduction

Mixed data consist of variables of heterogeneous nature that can be divided
into two categories: the continuous data generated by real-valued random vari-
ables, and the non-continuous data which are composed of categorical data,
ordinal data, binary data, and count data. By abuse of notation, these non-
continuous variables will also be referred to as discrete variables in the fol-
lowing. Due to their different natures, mixed variables do not share common
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scales and it is typically hard to measure the similarity between observations.
There has been a significant and long interest in the statistical literature for
mixed and continuous data clustering, which can be framed into four main
categories, as described in Ahmad and Khan (2019): (i) partitional clustering
minimizes the distance between observations and center groups by iterative
optimization, as in K-modes or K-prototypes (Huang, 1997, 1998); (ii) hier-
archical algorithms perform nested clusterings and merge them to create the
final clustering (Philip and Ottaway, 1983; Chiu et al., 2001); (iii) model-based
clustering (McLachlan and Peel, 2000; Fraley and Raftery, 2002; Melnykov
et al., 2010), as their name suggests, rely on probability distributions; (iv)
finally Neural Networks-based algorithms (Kohonen, 1990) design the clusters
thanks to connected neurons that learn complex patterns contained in the
data.

Within the framework of model-based clustering we propose a model for
clustering mixed data, in which the different non-continuous variables are
jointly modeled using a Generalized Linear Latent Variable Model (GLLVM)
(Moustaki, 2003; Moustaki and Knott, 2000). GLLVMs assume that there ex-
ists a link function between the non-continuous observable space (composed
of non-continuous variables) and a latent continuous data space, consisting of
Gaussian latent variables. Recently, Cagnone and Viroli (2014) have extended
this approach by considering latent variables that are no more Gaussian but
follow some mixtures of Gaussians (Fraley and Raftery, 2002) so as the ob-
servations are naturally clustered into groups. Since the latent dimension is
chosen to be strictly lower than the original dimension, the model also per-
forms dimension reduction. For convenience, we will refer to this extended
version when mentioning GLLVMs in the sequel.

Our work generalizes this idea by considering a Deep Gaussian Mixture
Model (DGMM) (Viroli and McLachlan, 2019) in the latent space. DGMMs
can be seen as a series of nested Mixtures of Factor Analyzers (MFA) (Ghahra-
mani et al., 1996; McLachlan et al., 2003). As such, this approach performs
clustering via subsequent dimensionally reduced latent spaces in a very flexible
way. To adapt the GLLVM to mixed data we propose a multilayer architecture
inspired by the idea that composing simple functions enables to capture com-
plex patterns, as in supervised Neural Networks. We design two versions of our
model. In the first one, denoted by M1DGMM, continuous and non-continuous
data goes through the GLLVM model which acts as an embedding layer, i.e.
projects the data into a simpler space before performing the clustering. The
signal is then propagated to the following layers. In the second version, called
M2DGMM, discrete data are still handled by the GLLVM model but contin-
uous data are embedded separately by a DGMM head. The two signals are
then merged by a “common tail”. This second architecture is analogous to
multi-inputs Supervised Deep Learning architectures used for instance when
data are composed of both images and text.

Our model implementation relies on automatic differentiation (Baydin et al.,
2017), as provided by the autograd package (Maclaurin et al., 2015), which
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helps keeping an acceptable running time even when the number of layers
increases.

To summarize, our work has three main contributions: it first extends the
GLLVM and DGMM frameworks to deal with mixed data. Secondly, a new
initialisation method is proposed to provide a suitable starting point for the
MDGMM and more generally for GLLVM-based models. This initialization
step combines Multiple Correspondence Analysis (MCA) or Factor Analysis
of Mixed Data (FAMD) which generalizes it, GMM, MFA and the Partial
Least Squares (PLS) algorithm. As mixed data are plunged into a multilayer
continuous space we call this new initialisation Nested Spaces Embedding Pro-
cedure (NSEP). Thirdly, a model selection procedure is designed to identify
the architecture of the model that best fits a given dataset.

Since the models are quite complex we propose to develop the method
within the article and to reduce some mathematical developments by reporting
them as Supplementary Material.

The paper is organized as follows: Section 2 provides a detailed description
of the proposed model. In Section 3 the EM algorithms used for estimation
are developed. Section 4 deals with the identifiability constraints of the model.
Section 5 presents the initialization procedure NSEP and some practical con-
siderations are given that can serve as a user manual. The performance of the
model is compared to other competitor models in Section 6. In conclusion,
Section 7 analyses the contributions of this work and highlights directions for
future research.

2 Model presentation

2.1 The MDGMM as a generalization of existing models

In the sequel we assume that we observe n random variables y1, · · · ,yn, such
that, ∀i = 1, · · · , n, yi = (yCi ,y

D
i ), where yCi is a pC-dimensional vector

of continuous random variables and yDi is a pD-dimensional vector of non-
continuous random variables. From what precedes, each yi is hence a vector
of mixed variables of dimension p = pC + pD.

The architecture of the MDGMM is based on two models. First, Mix-
tures of Factor Analyzers generalized by the Deep Gaussian Mixture Models
are applied on continuous variables, and second, a Generalized Linear Latent
Variable Model coupled with a DGMM is applied on non-continuous variables.
Mixtures of Factor Analyzers represent the most elementary building block of
our model and can be formulated as follows:

yCi = ηk +Λkzi + uik, with probability πk,

where k ∈ [1,K] identifies the group, ηk is a constant vector of dimension
pC , zi ∼ N(0, Ir) (Ir denoting the identity matrix), uik ∼ N(0,Ψk) and Λk
is the factor loading matrix of dimension pC × r, r being the dimension of
the latent space. The underlying idea is to find a latent representation of the
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data of lower dimension r, with r < pC . For each group k, the loading matrix
is then used to interpret the relationship existing between the data and their
new representation.

The DGMM approach consists in extending the MFA model by assuming
that zi is no more drawn from a multivariate Gaussian but is itself a MFA. By
repeating L times this hypothesis we obtain a L-layers DGMM defined by:



yCi = η
(1)
k1

+Λ
(1)
k1

z
(1)
i + u

(1)
i,k1

, with probability π
(1)
k1

z
(1)
i = η

(2)
k2

+Λ
(2)
k2

z
(2)
i + u

(2)
i,k2

, with probability π
(2)
k2

...

z
(L−1)
i = η

(L)
kL

+Λ
(L)
kL

z
(L)
i + u

(L)
i,kL

, with probability π
(L)
kL

z
(L)
i ∼ N (0, IrL),

(1)

where, for ` = 1, · · · , L, k` ∈ [1,K`], u
(`)
ik`
∼ N(0,Ψ

(`)
k`

), z
(L)
i ∼ N(0, IrL) and

where the factor loading matrices Λ
(`)
k`

have dimension r`−1 × r`, with the
constraint p > r1 > r2 > ... > rL. Identifiability constraints on the parameters

Λ
(`)
k`

and Ψ
(`)
k`

will be discussed in Section 4.

The DGMM described in (1) can only handle continuous data. In order to
apply a DGMM to discrete data we propose to integrate a Generalized Linear
Latent Variable Model (GLLVM) framework within (1). This new integrated
model will be called Discrete DGMM (DDGMM).

A GLLVM assumes that, ∀j ∈ [1, pD], the discrete random variables yDj are
associated to one (or more) continuous latent variable through an exponential
family link (see the illustrations given in Cagnone and Viroli, 2014), under the
so-called conditional independence assumption, according to which variables
are mutually independent conditionally to the latent variables.

Hence, one can combine the previously introduced DGMM architecture
and the GLLVM to deal with mixed data. In order to do so, we propose two
specifications of the MDGMM: a one head version (the M1DGMM) and a two
heads version (the M2DGMM). In the M1DGMM, the continuous variables
pass through the GLLVM layer by defining a link function between yC and
z(1) and one assumes that the conditional independence assumption evoked
earlier holds. On the contrary, for the M2DGMM by specifying a second head
to deal with the continuous data specifically, one can relax this assumption: the
continuous variables are not assumed to be mutually independent with respect
to the latent variables. Instead, each continuous variable is only conditionally
independent from the discrete variables but not from the other continuous
variables. The two-heads architecture is also more flexible than the one-head
specification as its “link function” between the continuous data and the la-
tent variables is a mixture of mixture rather than a probability distribution
belonging to an exponential family. This flexibility comes at the price of ad-
ditional model complexity and computational costs which has to be evaluated
in regard of the performances of each specification.
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2.2 Formal definition

Let y be the n×p matrix of the observed variables. We will denote by i ∈ [1, n]
the observation index and by j ∈ [1, p] the variable index. We can decompose
the data as y = (yC ,yD) where yC is the n×pC matrix of continuous variables
and yD is the n × pD matrix of discrete variables. The global architecture of
the M2DGMM is analogous to (1) with an additional GLLVM step for the
discrete head as follows:

Discrete head :


yDi → z

(1)D
i through GLLVM link via (λ(0),Λ(0))

z
(1)D
i = η

(1)D
k1

+Λ
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z
(2)D
i + u

(1)D
i,k1

with probability π
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k1

...

z
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kLD
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, with probability π
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kLD

Continuous head :


yCi = η
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Common tail :
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(2)

It is assumed that the random variables (u
(`)
k`

)k`,` are all independent. The
two heads only differ from each other by the fact that for the discrete head,
a continuous representation of the data has first to be determined before in-
formation is fed through the layers. The GLLVM layer is parametrized by
(λ0,Λ0). λ0 = (λ0bin, λ0count, λ0ord, λ0categ) contains the intercept coefficients
for each discrete data sub-type. Λ0 is a matrix of size pD × r1, with r1 the
dimension of the first Discrete DGMM layer.

The notation remains the same as in the previous subsection and only a
superscript is added to specify for each variable the head or tail to which it
belongs. For instance zC = (z(1)C , ..., z(LC)C) is the set of latent variables of
the continuous head. This subscript is omitted for the common head. The
`-th layer of the head h contains Kh

` components which is the number of
components of the associated mixture. LD and LC are the number of layers
of the discrete and continuous head, respectively.

Each path from one layer to the next is the realization of a mixture. In this
sense we introduce, s(`)h ∈ [1,Kh

` ] the latent variable associated with the index
of the component kh` of the layer ` of the head h. More generally, the latent
variable associated with a path going from the first layer to the last layer of
one head h is denoted by sh = (s(1)h, ..., s(L0)h). Similarly, the random variable
associated to a path going through all the common tail layers is denoted by
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s(L0+1:) = (s(L0+1), ..., s(L)). By extension, the variable associated with a full
path going from the beginning of head h to the end of the common tail is
s(1h:L) = (sh, sL0+1:). s(1h:L) belongs toΩh the set of all possible paths starting

from one head of cardinal Sh =
∏L
`=1K

h
` . The variable associated with a path

going from layer ` of head h to layer L will be denoted s(`h:L). Finally, by a
slight abuse of notation a full path going through the component kh` of the

`-th layer of head h will be denoted: s(1:k
h
` :L) or more simply s(:k

h
` :). In order

to be as concise as possible, we group the parameters of the model by defining:

ΘD =
(

(λ0,Λ0), (η
(`)D
k`

,Λ
(`)D
k`

,Ψ
(`)D
k`

)k`∈[1,KD
` ],`∈[1,L0]

)
,

ΘC = (η
(`)C
k`

,Λ
(`)C
k`

,Ψ
(`)C
k`

)k`∈[1,KC
` ],`∈[1,L0], ΘL0+1: = (η

(`)
k`
,Λ

(`)
k`
,Ψ

(`)
k`

)k`∈[1,K`],`∈[L0+1,L],

(a) M1DGMM

(b) M2DGMM

Fig. 1 Graphical model of: (a) M1DGMM, (b) M2DGMM

The architecture of the M1DGMM is the same except that there is no “con-
tinuous head” and that the yCi goes through the GLLVM link. Figure 1 presents
the graphical models associated with both specifications. The M2DGMM il-
lustrated here has KC = (5, 4), KD = (4, 3), K = (2, 1), LC = LD = L0 = 2,
SC = 40 and SD = 24. The decreasing size of the (z(`))` illustrates the de-
creasing dimensions of the latent variables.
One can observe that L0 = max(LC , LD), that is, the first layer of the common
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tail is the L0 + 1-th layers of the model. For simplicity of notation, we assume
in the sequel that

LC = LD = L0,

but all the results are easily obtained in the general case.
The intuition behind the M2DGMM architecture is simple. The two heads
extract features from the data and pass them to the common tail. The tail
reconciles both information sources, designs common features and performs
the clustering. As such, any layer on the tail could in principle be used as
clustering layer. As detailed in Section 5.2, one could even use several tail layers
to perform several clustering procedures (with different latent dimensions or
numbers of clusters) in the same model run. The same remarks applies for the
hidden layers of the M1DGMM.

To summarize the different setups that can be handled by DGMM-based
models:

– Use the M1DGMM or the M2DGMM when data are mixed,
– Use the DDGMM when data are non-continuous,
– Use the DGMM when data are continuous.

3 Model estimation

In this section we present the estimation details for the M2DGMM, the M1DGMM
may be handled in much the same way. The complete density of the M2DGMM
is given by:

L(yC ,yD,zC , zD, z(L0+1:), sC , sD, s(L0+1:)|ΘC ,ΘD,ΘL0+1:)

= L(yC |z(1)C , sC , s(L0+1:),ΘC ,ΘL0+1:)L(zC |z(L0+1:), sC , s(L0+1:),ΘC ,ΘL0+1:)

× L(yD|z(1)D, sD, s(L0+1:),ΘD,ΘL0+1:)L(zD|z(L0+1:), sD, s(L0+1:),ΘD,ΘL0+1:)

× L(z(L0+1:)|sC , sD, s(L0+1:),ΘC ,ΘD,ΘL0+1:)L(sC , sD, s(L0+1:)|ΘC ,ΘD,ΘL0+1:),

which comes from the fact that we assume the two heads of the model to be
conditionally independent with respect to the tail layers. Moreover, the layers
of both heads and tail share the Markov property derived from the graphical

model: (z(`)h ⊥⊥ z(`+2)h, ..., z(L)h)
∣∣∣z(l+1)h, ∀h ∈ {C,D, (L0 + 1 :)}.

As the model involves latent variables, one cannot maximise directly the
likelihood of the model to estimate the parameters of the model. Hence, the
expected log-likelihood with respect to these latent variables and given the
observed data is instead maximised using the EM-algorithm:

EzC ,zD,z(L0+1:),sC ,sD,s(L0+1:)|yC ,yD,Θ̂C ,Θ̂D,Θ̂L0+1:
[logL(yC ,yD, zC , zD, z(L0+1:), sC , sD, s(L0+1:)|ΘC ,ΘD,ΘL0+1:)],

As in deep mixture models (Viroli and McLachlan, 2019), some of the terms of
the expected log-likelihood contain intractable expectations and a Monte Carlo
extension of the EM algorithm (MCEM) (Wei and Tanner, 1990) is required
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to overcome this issue. According to the decomposition of the complete log-
likelihood into the sum of different terms, three types of layers are involved in
the estimation process: the GLLVM layer, the regular DGMM layers and the
common tail layers that join the two heads. In the following sections, we will
present the detailed estimation steps for the three types of layers.

3.1 Generalized Linear Latent Variable Model Embedding Layer

In this section we present the canonical framework of GLLVMs for discrete
data based on Moustaki (2003) and Moustaki and Knott (2000).
By the conditional independence assumption between discrete variables, the
likelihood can be written as:

f(yD|ΘD,ΘL0+1:) =

∫
z(1)D

pD∏
j=1

f(yDj |z(1)D,ΘD,ΘL0+1:)f(z(1)D|ΘD,ΘL0+1:)dz
(1)D,

(3)

where yDj is the jth component of yD. The density f(yDj |z(1)D, ΘD, ΘL0+1:) be-
longs to an exponential family and in our empirical study we chose a Bernoulli
distribution for binary variables, a binomial distribution for count variables,
a multinomial distribution for categorical data and an ordered multinomial
distribution for ordinal data. It is worth noting that the categorical variables
are treated as such and not converted into binomial variables beforehand.
The whole expressions of the densities can be found in Cagnone and Viroli
(2014). In order to train the GLLVM layer, we maximize

Ez(1)D,sD,s(L0+1:)|yD,Θ̂D,Θ̂L0+1:
[logL(yD|z(1)D, sD, sL0+1:,ΘD,ΘL0+1:)]

= Ez(1)D|yD,Θ̂D,Θ̂L0+1:
[logL(yD|z(1)D,ΘD,ΘL0+1:)] (4)

=

∫
f(z(1)D|yD, Θ̂D, Θ̂L0+1:) logL(yD|z(1)D,ΘD,ΘL0+1:)dz

(1)D,

the second equality being due to the fact that yD is related to (sD, s(L0+1:))
only through z(1)D.

3.1.1 MC and E Steps

Expectation (4) is not tractable as f(z(1)D|sD, s(L0+1:), Θ̂D, Θ̂L0+1:) involves
terms that are not directly computable. Hence, in order to compute and max-
imise (4), draws f(z(1)D|sD, s(L0+1:), Θ̂D, Θ̂L0+1:) are performed using Monte
Carlo methods. All details are given in the Supplementary Material.
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3.1.2 M step

Even if the distribution of expectation (4) can be approximated, there are no
closed-form solutions for the estimators of (λ0,Λ0) that maximize

Ez(1)D|yD,Θ̂D,Θ̂L0+1:
[logL(yD|z(1)D,ΘD, Θ̂L0+1:)].

Optimisation methods are therefore used to determine the optimal (λ0,Λ0)
as detailed in Supplementary Material.

3.2 Determining the parameters of the DGMM layers

In this section, we omit the subscript h ∈ {C,D} on the zh, yh and sh variables
because the reasoning is the same for both cases. For ` ∈ [1, L0], we aim to
maximize

Ez(`),z(`+1),s|y,Θ̂[logL(z(`)|z(`+1), s,Θ)].

Here the conditional distribution under which the expectation is taken depends
on variables located in 3 different layers.

3.2.1 MC Step

At each layer `, M (`) pseudo-observations are drawn for each of the previ-
ously obtained

∏`−1
j=1M

(j) pseudo-observations. Hence, in order to draw from

f(z(`), z(`+1), s|y, Θ̂) at layer `:

– If ` = 1, reuse the M (1) pseudo-observations drawn from f(z(1)|s, Θ̂),

– otherwise reuse the M (`−1) pseudo-observations from f(z(`−1)|y, s, Θ̂) and

the M (`) pseudo-observations from f(z(`)|z(`−1), s, Θ̂) computed for each
pseudo-observation of the previous DGMM layer.

– DrawM (`+1) observations from f(z(`+1)|z(`), s, Θ̂) for each previously sam-
pled z(`).

3.2.2 E Step

The conditional expectation distribution has the following decomposition:

f(z(`), z(`+1), s|y, Θ̂) = f(z(`), s|y, Θ̂)f(z(`+1)|z(`), s,y, Θ̂)

= f(z(`)|y, s, Θ̂)f(s|y, Θ̂)f(z(`+1)|z(`), s, Θ̂), (5)

and is developed in the Supplementary Material.
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3.2.3 M step

The estimators of the DGMM layer parameters ∀` ∈ [1, L0] are given by:

η̂
(`)
k`

=

∑n
i=1

∑
s̃
(:k`:)

i
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]
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∑
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i
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(:k`:)
i = s̃
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=
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i

f(s
(:k`:)
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i )
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i
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i =s̃
(:k`:)
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,

with s̃
(:k`:)
i = (k̃1, ..., k̃`−1, k`, k̃`+1, ..., k̃L), a path going through the network

and reaching the component k`. The details of the computation are given in
the Supplementary Material.

3.3 Training of the common tail layers

In this section we aim to maximise ∀` ∈ [L0 + 1, L], the following expression:

Ez(`),z(`+1),sC ,sD,s(L0+1:)|yC ,yD,Θ̂C ,Θ̂D,Θ̂L0+1:
[logL(z(`)|z(`+1), sC , sD, s(L0+1:),ΘC ,ΘD,ΘL0+1:)].

3.3.1 MC Step

The MC step remains the same as for regular DGMM layers except that the
conditioning concerns both types of data (yC and yD) and not only discrete
or continuous data as in the heads layers.

3.3.2 E Step and M step

The distribution of the conditional expectation is f(z(`), z(`+1), sC , sD, s(L0+1:)|yC ,yD, Θ̂C , Θ̂D, Θ̂L0+1:)
that we can express as previously (see details in the Supplementary Material).

In addition, the estimators of the junction layers keep the same form as the
regular DGMM layers except once again that the two types of data and paths
exist in the conditional distributions of the expectations.

3.4 Determining the path probabilities

In this section, we determine the path probabilities by optimizing the param-
eters of the following expression derived from the expected log-likelihood:

EsC ,sD,s(L0+1:)|yC ,yD,Θ̂C ,Θ̂D,Θ̂L0+1:
[logL(sC , sD, s(L0+1:)|ΘC ,ΘD,ΘL0+1:)],
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with respect to πhs , for h ∈ {C,D} and π
(L0+1:)
s .

3.4.1 E step and M step

By mutual independence of sC , sD and sL0+1:, estimating the distribution of
the expectation boils down to computing three densities: f(s(`)D = k`|yD, Θ̂D, Θ̂L0+1:),

f(s(`)C = k`|yC , Θ̂C , Θ̂L0+1:), and f(s(`) = k`|yC ,yD, Θ̂C , Θ̂D, Θ̂L0+1:) (de-
tails are given in the Supplementary Material).

Finally, estimators for each head h and for the common tail are given respec-
tively by:

π̂
(`)h
k`

=

∑n
i=1 f(s

(`)h
i = k`|yhi , Θ̂h, Θ̂L0+1:)

n
and π̂

(`)
k`

=

∑n
i=1 f(s

(`)
i = k`|yCi ,yDi , Θ̂C , Θ̂D, Θ̂L0+1:)

n
.

4 Identifiability

In this section, we combine both GLLVM and DGMM identifiability con-
straints proposed in Cagnone and Viroli (2014) and Viroli and McLachlan
(2019), respectively, to make our model identifiable.

4.1 GLLVM identifiability constraints

Both the GLLVM model and the Factor Analysis model assume that the latent
variables are centered and of unit variance. This can be obtained by rescaling
iteratively all the latent layers parameters from the last common layer to the
first head layers as follows:

η
(`)hnew
k`

= (A(`)h)−1T
[
η
(`)h
k`
−
∑
k′`
π
(`)h
k′`
η
(`)h
k′`

]
Λ

(`)hnew
k`

= (A(`)h)−1TΛ
(`)h
k`

Ψ
(`)new
k`

= (A(`)h)−1TΨ
(`)h
k`

(A(`)h)−1,

where A(`)h = V ar(z(`)h) ∀` ∈ [1, L], h ∈ {C,D,L0 + 1 :} and the subscript
“new” denotes the rescaled version of the parameters. In the same way, the
coefficients of Λ(0) of the discrete head are rescaled as follows: Λ(0)new =
Λ(0)A−1T . As in Cagnone and Viroli (2014), some coefficients of Λ(0) are con-
strained to be zero in order to reduce the total number of degrees of freedom of
the model. The details of this section are given in the Supplementary Material.

4.2 DGMM identifiability constraints

We assume first that the latent dimension is decreasing through the layers of
each head and tail i.e. ph > rh1 > ... > rL. Secondly, we make the assump-

tion that Λ
(`)hT
k`

Ψ
(`)−1h
k`

Λ
(`)h
k`

is diagonal with elements in decreasing order
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∀` ∈ [1, L]. Fruehwirth-Schnatter and Lopes (2018) obtained sufficient con-
ditions for MFA identifiability, including the so-called Anderson-Rubin (AR)

condition, which requires that r` ≤ r`−1−1
2 . Enforcing this condition would

prevent from defining a MDGMM for all datasets that present less than 7
variables of each type which is far too restrictive. Then, we implement a
transformation to ensure the diagonality and the ordering of the coefficients

of Λ
(`)hT
k`

Ψ
(`)−1h
k`

Λ
(`)h
k`

as follows:
Once all parameters have been estimated by the MCEM algorithm, the fol-

lowing transformation is applied over Λ
(`)h
k`

:

– Compute B = Λ
(`)hT
k`

Ψ
(`)−1h
k`

Λ
(`)h
k`

.

– Decompose B according to the eigendecomposition B = PDP−1, with D
the matrix of the eigenvalues and P the matrix of eigenvectors.

– Define Λ
(`)hnew
k`

= Λ
(`)h
k`

P .

5 Practical considerations

5.1 Initialisation procedure

EM-based algorithms are known to be very sensitive to their initialisation
values as shown for instance by Biernacki et al. (2003) for Gaussian Mix-
ture models. In our case, using purely random initialization as in Cagnone
and Viroli (2014) made the model diverge most of the time when the la-
tent space was of high dimension. This can be explained by the fact that
the clustering is performed in a projected continuous space of which one
has no prior knowledge about. Initialising at random the latent variables

(η
(`)h
k`

,Λ
(`)h
k`

,Ψ
(`)h
k`

, s(`)h, z(`)h)k`,`,h and the exponential family links parame-

ters (λ(0),Λ(0)) seems not to be a good practice. This problem gets even worse
as the number of DGMM layers grows. To stabilize our algorithm we propose
the NSEP approach which combines MCA, GMM, FA and PLS algorithm in
the M2DGMM case as follows:

– For discrete head initialisation, we perform a Multiple Correspondence
Analysis (MCA) (Nenadic and Greenacre, 2005) to determine a contin-
uous low dimensional representation of the discrete data and use it as a
first approximation of the latent variables z(1)D. The MCA considers all
variables as categorical, thus the more the dataset actually contains this
type of variables the better the initialisation should in theory be. Once
this is done, a Gaussian Mixture Model is fitted in order to determine

groups in the continuous space and to estimate (π
(`)
k`

). For each group a
Factor Analysis Model (FA) is fitted to determine the parameters of the

model (η
(`)
k`
,Λ

(`)
k`
,Ψ

(`)
k`

) and the latent variable of the following layer z(`+1).

Concerning the GLLVM parameters, logistic regressions of yDj over z(1)D

are fitted for each original variable of the discrete head: ordered logistic
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regressions for ordinal variables and unordered logistic regressions for bi-
nary, count and categorical variables.

– For the continuous head and the common tail, the same described GMM
coupled with FA procedure can be applied to determine the coefficients of
the layer. The difficulty concerns the initialisation of the first tail layer with
latent variable z(L0+1). Indeed, z(L0+1) has to be the same for both discrete
and continuous last layers. As Factor Models are unsupervised models, one
cannot enforce such a constraint on the latent variable generated from each
head. To overcome this difficulty, z(L0+1) has been determined by apply-
ing a PCA over the stacked variables (z(L0)C , z(L0)D). Then the DGMM

coefficients (η
(L0)h
kL0

,Λ
(L0)h
kL0

,Ψ
(L0)
kL0

h) of each head have been separately de-

termined using Partial Least Square (Wold et al., 2001) of each head last
latent variable over z(L0+1).

The same ideas are used to initialize the M1DGMM. As the data going through
the unique head of the M1DGMM are mixed, Factor Analysis of Mixed Data
(FAMD) (Pagès, 2014) is employed instead of MCA as it can handle mixed
data.

5.2 Model and number of clusters selection

The selection of the best MDGMM architecture is performed using the pruning
methodology which is widely used in the field of supervised Neural Networks
(Blalock et al., 2020) but also for tree-based methods (Patil et al., 2010).

Classical approaches to model specification based on information criteria,
such as AIC (Akaike, 1998) or BIC (Schwarz et al., 1978), need the estima-
tion of all the possible specifications of the model. In contrast, our approach
needs only one model run to determine the best architecture which is far more
computationally efficient.

In the following, we give a summary of our pruning strategy (extensive de-
tails are provided in the Supplementary Material). The idea is to determine the
best number of components on each layer kh` by deleting the components asso-

ciated with very low probabilities π
(`)h
k`

as they are the least likely to explain

the data. The choice of the latent dimensions of each layer rh` is performed by
looking at the dimensions that carry the most important pieces of informa-
tion about the previous layer. The goal is to ensure the circulation of relevant
information through the layers without transmitting noise information. This
selection is conducted differently for the GLLVM layer compared to the regu-
lar DGMM layers. For the GLLVM layer, we perform logistic regressions of yC

over z(1)C and delete the dimensions that were associated with non-significant
coefficients in a vast majority of paths. Concerning the regular DGMM lay-
ers, information carried by the current layer given the previous layer has been
modeled using a Principal Component Analysis. We compute the contribution
of each original dimension to the first principal component analysis and keep
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only the dimensions that present a high correlation with this first principal
component, so that to drop information of secondary importance carried out
through the layers.

Finally, the choice of the total number of layers is guided by the selected r`.
For instance, if a dimension of two is selected for a head layer (or a dimension
of one for a tail layer), then according to the identifiability constraint ph >
rh1 > ... > rh` > ... > rL, the following head (or tail) layers are deleted.

Given that this procedure also selects the number of components on the tail
layers, it can also be used to automatically find the optimal number of clusters
in the data. The user specifies a high number of components on the clustering
layer and let the automatic selection operate. The optimal number of clusters
is then the number of components remaining on the clustering layer at the
end of the run. This feature of the algorithm is referred to as the “autoclus
mode” of the MDGMM in the following and in the code. An evaluation of
the “autoclus mode” is given for the M1DGMM on simulated data in the
Supplementary Material.

Alternatively, in case of doubt about the number of clusters in the data,
the MDGMM could be used in “multi-clustering mode”. For example, if the
number of clusters in the data is assumed to be two or three, one can define
a MDGMM with three components on the first tail layer and two on the sec-
ond tail layer. The first layer will output a three groups clustering and the
second layer a two groups clustering. The two partitions obtained can then be
compared to chose the best one. This can be done with the silhouette coeffi-
cient (Rousseeuw, 1987) as implemented in our code. In the “multi-clustering
mode”, the architecture selection just described is conducted with the number
of components of the tail layers remaining frozen (as it corresponds to the
number of clusters to look for in the data).

For all the clustering modes of the MDGMM, the architecture selection
procedure is performed at the end of some iterations chosen beforehand by
the user. Note that once the optimal specification has been determined, it is
better to refit the model using the determined specification rather than keeping
the former output. Indeed, changing the architecture “on the fly” (i.e through
the model training), seems to disturb the quality of the final clustering.

Finally, in EM-based algorithms, the iteration which presents the best like-
lihood (the last one in general) is returned as the final output of the model.
The likelihood of the model informs about how good the model is at explain-
ing the data. However, it does not give direct information about the clustering
performance of the model itself. Therefore, in the MDGMM we retain the
iteration presenting the best silhouette coefficient (Rousseeuw, 1987) among
all iterations. To summarize: the likelihood criterion was used as a stopping
criterion to determine the total number of iterations of the algorithm and the
best silhouette score was used to select the iteration returned by the model.



Mixed Deep Gaussian Mixture Model: A clustering model for mixed datasets 15

6 Real Applications

In this section we illustrate the proposed models on real datasets. First, we will
present the continuous low dimensional representations of the data generated
by the Discrete DGMM (DDGMM) and the M2DGMM. Then, the perfor-
mance will be properly evaluated by comparing them to state-of-the-art mixed
data clustering algorithms, the one-head version of the MDGMM (M1DGMM)
provided with a Gaussian link function, the NSEP and the GLLVM. As some
of the clustering models can deal with discrete data only (GLLVM, DDGMM)
and other with mixed data (M1DGMM, MDGMM) we consider both types of
data sets. The code of the introduced models is available on Github under the
name MDGMM suite. The associated DOI is 10.5281/zenodo.4382321.

6.1 Data description

For the discrete data specification, we studied the following three datasets:

– The Breast cancer dataset: a dataset of 286 observations and 9 discrete
variables. Most of the variables are ordinal.

– The Tic Tac Toe dataset: composed of 9 variables corresponding to each
cell of a 3× 3 grid of tic-tac-toe. The dataset presents the grids content at
the end of 958 games. Each cell can be filled with one of the player symbol
(x or o), or left blanked (b) if the play has ended before all cells were filled
in. Hence all the variables are categorical in contrast with the Breast cancer
data. The goal is here to retrieve which game has led to victory of player
1 or of player 2 (no even games are considered here).

– The Mushrooms dataset: a two-class dataset with 22 attributes and 5644
observations once the missing data have been removed. The majority of
the variables are categorical ones.

For mixed datasets, we studied the following three datasets:

– The Heart (Stalog) dataset: composed of 270 observations, five continuous
variables, three categorical variables, three binary variables and two ordinal
variables.

– The Pima Indians Diabetes dataset: it presents several physiological vari-
ables (e.g. the blood pressure, the insulin rate, the age) of 768 Indian indi-
viduals. 267 individuals suffer from diabetes and the goal of classification
tasks over this dataset is to distinguish the sound people from the sick ones.
This dataset counts two discrete variables considered here respectively as
binomial and ordinal and seven continuous variables.

– The Australian credit (Stalog) dataset: a binary classification dataset con-
cerning credit cards. It is composed of 690 observations, 8 discrete cate-
gorical variables and 6 continuous variables.

In the analysis, all the continuous variables have been centered and reduced to
ensure the numeric stability of the algorithms. All the datasets are available
in the UCI repository (Dua and Graff, 2017).
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6.2 Clustering vizualisation

According to their multi-layer structures, the DDGMM and the M2DGMM
perform several dimension reductions of information while the signal goes
through their layers. As such, they provide low dimensional continuous repre-
sentations of complex data than can be discrete, mixed or potentially highly
dimensional. These representations are useful to understand how observations
are clustered through the training process. They could also be reused to train
other algorithms in the same spirit as for supervised Neural Networks (Jogin
et al., 2018).

Figure 2 shows the evolution of the latent representation during the train-
ing of the clustering layer of a DDGMM for the Tic Tac Toe dataset. Four
illustrative iterations have been chosen to highlight the training process. The
clustering layer has a dimension of r` = 2 and tries to distinguish k` = 2
groups in the data. At the beginning of the training at t1, two sets of points
are clearly separated but the latent space is very sparsely covered, denoting
that the latent representation of the data is still preliminary. Through the
next iterations, the latent space coverage is improved and two sets of points
are pushed away from each other by the model. Moreover in t2 and t3 the
frontier between the two clusters can be drawn as a straight line in a two di-
mensional space (represented by a dashed line on the figure). In t4 at the end
of the training, the model seems to have found a simpler frontier to separate
the groups as only a vertical line, i.e. a separation in a one dimensional space is
needed. This highlight the information sorting process occurring through the
layers in order to keep only the simplest and the more discriminating parts of
the signal.

(a) Training at t1 (b) Training at t2 (c) Training at t3 (d) Training at t4

Fig. 2 Continuous 2D-latent representation of the Tic Tac Toe dataset through the training
of a DDGMM. The clusters found are represented by different colors and the dashed line
symbolizes the clusters separation during the last training iterations.

The next two figures illustrate graphical properties of the M2DGMM. Fig-
ure 3 presents two continuous representations of the Pima Diabetes data. These
are obtained during the training of a M2DGMM with two hidden tail layers of
respectively rL0+1 = 3 and rL0+1 = 2 during the same iteration. Two clusters
are looked for in each case (KL0+1 = KL0+2 = 2) and are associated with
green and red colors on the figure. On both layers the clusters are quite well
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(a) 2D representation (b) 3D representation

Fig. 3 Continuous representations of the Pima Diabetes dataset provided by a M2DGMM

separated. The signal carried seems coherent between the two layers with a
very similar structure. For the same computational cost, i.e. one run of the
model, several latent representations of the data in different dimensions can
therefore be obtained.

Finally, the graphical representations produced by the M2DGMM are use-
ful tools to identify the right number of clusters in the data. Three M2DGMM
have been run by setting rL0+1 = 2 and with respectively KL0+1 = 2,KL0+1 =
3 and KL0+1 = 4. The associated latent variables are presented in Figure 4
with a different color for each identified cluster. The representations with three

(a) 2 clusters (b) 3 clusters (c) 4 clusters

Fig. 4 Continuous representations of the Heart dataset at the end of the training of three
M2DGMMs with different numbers of clusters specified

and four clusters present points that are intertwined, with no clear distinctions
between clusters. On the contrary, when the number of clusters searched in
the data is two this separation appears distinctly. Hence, this representation
advocates for a two groups distinction in the data as it is suggested by the
supervised labels of the dataset (absence or presence of heart disease). The
four clusters representation also shows that the three points associated with
the red cluster might be outliers potentially important to study.
As evoked in Subsection 5.2, this visual diagnostic can be completed by using
the “autoclus mode” of the M2DGMM where the model automatically deter-
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mines the best number of clusters in the data.

In addition to the graphical tools provided here, computing the contribu-
tions of the dataset variables to the latent dimensions of the model is also
useful to interpret the clustering results, assess the impact of continuous and
non-continuous variables on the clustering process and to perform variable se-
lection. An example of such a representation is given for the M1DGMM on
the Heart dataset in the Supplementary Material (see Section 9).

6.3 Performance comparison

Metrics Silhouette Micro Macro

Algorithms Breast Cancer

GLLVM (random
init)

0.215 (0.093) 0.673 (0.080) 0.570 (0.113)

GLLVM (with
NSEP)

0.305 (0.023) 0.728 (0.025) 0.671 (0.018)

NSEP 0.303 (0.000) 0.722 (0.000) 0.664 (0.000)
DDGMM 0.268 (0.043) 0.696 (0.074) 0.648 (0.048)
k-Modes 0.174 (0.000) 0.592 (0.000) 0.534 (0.000)
k-Prototypes 0.293 (0.024) 0.729 (0.014) 0.666 (0.011)
Hierarchical 0.303 (0.000) 0.755 (0.000) 0.855 (0.000)
SOM 0.091 (0.088) 0.668 (0.060) 0.593 (0.011)
DBSCAN 0.264 (0.000) 0.726 (0.000) 0.860 (0.000)

Tic Tac Toe dataset

GLLVM (random
init)

0.094 (0.031) 0.591 (0.052) 0.536 (0.100)

GLLVM (with
NSEP)

0.110 (0.005) 0.550 (0.029) 0.545 (0.028)

NSEP 0.137 (0.000) 0.602 (0.021) 0.597 (0.019)
DDGMM 0.118 (0.016) 0.559 (0.028) 0.533 (0.036)
k-Modes 0.104 (0.002) 0.611 (0.000) 0.586 (0.000)
k-Prototypes ∅(∅) ∅(∅) ∅(∅)
Hierarchical 0.078 (0.000) 0.654 (0.000) 0.827 (0.000)
SOM 0.082 (0.010) 0.650 (0.000) 0.560 (0.000)
DBSCAN ∅(∅) 0.653 (0.000) 0.327 (0.000)

Mushrooms dataset

GLLVM (random
init)

0.266 (0.103) 0.685 (0.107) 0.613 (0.255)

GLLVM (with
NSEP)

0.351 (0.107) 0.803 (0.102) 0.854 (0.135)

NSEP 0.354 (0.064) 0.811 (0.101) 0.861 (0.074)
DDGMM 0.317 (0.078) 0.760 (0.131) 0.809 (0.116)
k-Modes 0.395 (0.000) 0.852 (0.000) 0.898 (0.000)
k-Prototypes 0.328 (0.081) 0.742 (0.136) 0.818 (0.086)
Hierarchical 0.395 (0.000) 0.854 (0.000) 0.904 (0.000)
SOM 0.155 (0.015) 0.710 (0.000) 0.814 (0.001)
DBSCAN 0.294 (0.000) 0.624 (0.000) 0.811 (0.000)

Table 1 Average results and standard errors over 30
runs of the best specification for each model over three
discrete datasets

Algorithms Silhouette Micro Macro

Metrics Heart

NSEP 0.165 (0.049) 0.738 (0.068) 0.739 (0.070)
M1DGMM 0.253 (0.003) 0.820 (0.012) 0.820 (0.012)
M2DGMM 0.146 (0.011) 0.710 (0.015) 0.712 (0.014)
k-Modes 0.247 (0.000) 0.811 (0.000) 0.813 (0.000)
k-Prototypes 0.044 (0.000) 0.593 (0.000) 0.585 (0.000)
Hierarchical 0.263 (0.000) 0.811 (0.000) 0.809 (0.000)
SOM 0.257 (0.000) 0.795 (0.000) 0.793 (0.000)
DBSCAN 0.177 (0.000) 0.556 (0.000) 0.724 (0.000)

Pima

NSEP 0.189 (0.013) 0.666 (0.056) 0.651 (0.051)
M1DGMM 0.227 (0.020) 0.633 (0.029) 0.607 (0.029)
M2DGMM 0.195 (0.079) 0.647 (0.019) 0.586 (0.068)
k-Modes 0.049 (0.033) 0.581 (0.000) 0.482 (0.000)
k-Prototypes ∅ (∅) ∅ (∅) ∅ (∅)
Hierarchical 0.391 (0.000) 0.656 (0.000) 0.826 (0.000)
SOM 0.232 (0.000) 0.644 (0.000) 0.610 (0.003)
DBSCAN 0.391 (0.000) 0.654 (0.000) 0.826 (0.000)

Australian Credit

NSEP 0.165 (0.034) 0.754 (0.098) 0.753 (0.110)
M1DGMM 0.170 (0.032) 0.707 (0.112) 0.806 (0.036)
M2DGMM 0.224 (0.080) 0.575 (0.040) 0.680 (0.104)
k-Modes 0.222 (0.007) 0.785 (0.008) 0.784 (0.007)
k-Prototypes 0.163 (0.000) 0.562 (0.000) 0.780 (0.000)
Hierarchical 0.399 (0.000) 0.849 (0.000) 0.847 (0.000)
SOM 0.127 (0.096) 0.649 (0.001) 0.676 (0.002)
DBSCAN 0.201 (0.000) 0.570 (0.000) 0.740 (0.000)

Table 2 Average results and standard errors over 30
runs of the best specification for each model over three
mixed datasets

In order to benchmark the performance of the proposed strategy, we con-
sider alternative algorithms coming from each family of approaches identi-
fied by Ahmad and Khan (2019), namely k-modes, k-Prototypes, Hierarchical
Clustering, Self-Organising Maps (SOM), and DBSCAN (Ester et al., 1996).

For each dataset, we have set the number of unsupervised clusters to the
“ground truth” classification number. In order to present a fair report, several
specifications of the benchmark models have been run. For each specification,
the models have been launched 30 times. The reported results correspond to
the best specification of each benchmark model with respect to each metric on
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average over the 30 runs. The set of specifications evaluated for each bench-
mark model is given in the Supplementary Material. Concerning our models,
the architectures were automatically selected and then fitted 30 times on each
dataset.
One unsupervised metric and two supervised metrics are used to assess the
clustering quality: the silhouette coefficient, the micro precision and the macro
precision. The silhouette coefficient measures how close on average a point is
from the points of the same group with respect to the points of the other
groups. The Euclidian distance cannot be used here due to the mixed feature
space and hence the Gower distance (Gower, 1971) is used instead. The sil-
houette coefficient ranges between 1 (perfect clustering) and -1 (meaningless
clustering). The micro precision corresponds to the overall accuracy, i.e. the
proportion of correctly classified instances. The macro precision computes the
proportion of correctly classified instances per class and then returns a non-
weighted mean of those proportions. These two quantities tend to differ when
the data are not balanced. The formal expressions of the metrics are given
in the Supplementary Material. Note that we cannot use AIC or BIC criteria
here since their values are not available for all methods.

Tables 1-2 present the best average results obtained by the algorithms
and the associated standard error over the 30 runs in parenthesis. The best
algorithm for a given dataset and metric is associated with a green cell and
the worst with a red cell. An empty set symbol means that the metric was
not defined for this algorithm on that dataset. For the special case of the k-
prototypes algorithm, the empty set symbol means that the dataset contained
only one type of discrete data which is a situation that the algorithm is not
designed for.

6.3.1 Results on discrete data

The new initialisation (NSEP) enables the GLLVM to achieve better per-
formances on the Mushrooms dataset and on the Breast dataset where the
GLLVM attains the best silhouette score. It also stabilizes the GLLVM as the
standard errors obtained are divided by at least a factor two for all metrics of
the Breast Cancer and of the Tic Tac Toe datasets.
The NSEP in itself gives good results for all metrics and is often among the best
two performing models. Finally, over the Tic Tac Toe dataset the DDGMM
performs slightly better than the GLLVM, but less on the two other datasets.
Hence, compared to the other methods, the models introduced in this work
represent solid baseline models. On the contrary, some alternative methods
appear to fit some datasets well and to poorly fit other ones. This is the case
for instance of DBSCAN which performs well on the Breast cancer dataset,
but much less on the Mushrooms and the Tic Tac Toe datasets (the algorithm
could find only one group in the Tic Tac Toe data which explains that the
silhouette score is not defined). Another example is k-Modes which obtains
substantial results on the Mushrooms dataset but under-average results for
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the two other datasets. Finally, among all methods, the hierarchical clustering
is the algorithm that performs best on a majority of metrics and datasets.

6.3.2 Results on mixed data

As clear from results in Table 2, the NSEP seems again to be a good start-
ing point for both algorithms and certainly also explains the fact that the
M1DGMM reaches the best micro and macro scores on the Heart dataset.
The M1DGMM achieves better average results than the M2DGMM except for
the silhouette score on the Australian Credit dataset and the micro precision
on the Pima dataset. As in the discrete data results, the models introduced
and especially the M1DGMM, give satisfactory performance on all datasets on
average, whereas other models such as SOM, DBSCAN or k-modes perform
well on some datasets only. Similarly, the hierarchical clustering method seems
to provide the best results on a large set of metrics and datasets.

It is worth noting that the results presented in this section assumed that
the number of clusters was known beforehand. The Supplementary Material
gives additional information when it is not the case. Then, only DBSCAN
and the hierarchical method can be used among the benchmark models and it
appears that the M1DGMM seems to give better information than these two
approaches about the number of classes supported by the data.

7 Conclusion

This work aimed to provide a reliable and flexible model for clustering mixed
data by borrowing ingredients from the GLLVM and the DGMM recent ap-
proaches. Several sub-models have been introduced and could be used on their
own:

– a new initialisation procedure called NSEP for GLLVM-based models,
– a Discrete DGMM (DDGMM) for discrete data,
– a one-head (M1DGMM) and a two-heads (M2DGMM) DGMM for mixed

data.

This suite of models handles the usual clustering issues concerning architecture
selection and the choice of the number of clusters in the data in an automated
manner.
From the experiments carried out on real data, the MDGMM performances are
in line with the other state-of-the-art models. It can be regarded as a baseline
model over a general class of data. Its use of nested Mixtures of Factor Ana-
lyzers enables it to capture a very wide range of distributions and patterns.
Despite of its complexity, the MDGMM remains interpretable. From a practi-
cal viewpoint, the structure of the latent space can be observed through the
model training with the help of the graphical utilities presented in section
6.2. Thus, they allow the user to perform visual diagnostics of the clustering
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process. From a theoretical standpoint, the parameters of the model remain
interpretable as the link between parameters and clustering results is proper
thanks to the identifiability of the model. The set of identifiability constraints
presented here could seem restrictive. However, it forces the model to stay in a
quite well delimited parameter space and to avoid for instance a too significant
explosion of the norm of the parameters values. The implementation of these
constraints can nevertheless be improved by considering a Bayesian re-writing
of our model on variational principles. Indeed, it should make identification re-
quirements easier to meet, as one can keep only the posterior draws that meet
the identifiability requirements. Niku et al. (2019) have rewritten the GLLVM
model in a variational fashion using automatic differentiation and exhibit high
running time and accuracy gains. Following their path, one could adapt the
MDGMM to the variational framework.
Finally considering the training process, the choice of an EM-based algorithm
was motivated by its extensive use in the Gaussian Mixture Model literature.
The EM-related algorithms can however lead to significant variations of the
partitions found from one run to another as pointed out by Selosse et al. (2020)
in the DGMM case. The EM-related algorithms are also very sensitive to the
initialisation, which was in our case particularly tricky given the size of the pa-
rameter space. Combining Multiple Correspondence Analysis with Gaussian
Mixture Models, Factor Analysis and Partial Least Squares into NSEP has
however enabled us to significantly stabilize the estimation process at least
for moderate size architectures as shown in Supplementary Material. Yet, new
initialisation and training processes could be designed to help the model to
better rationalize latent structures in the data within its very highly dimen-
sional space.

Acknowledgements

The authors thank the reviewers for their helpful comments which helped to
improve the manuscript. This work benefited from the support of the Research
Chair DIALog under the aegis of the Risk Foundation, a joint initiative by
CNP Assurances and ISFA, Université Claude Bernard Lyon 1 (UCBL). This
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