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Abstract: We study the phase-space concentration of the so-called generalized meta-
plectic operators whose main examples are Schrödinger equations with bounded pertur-
bations. To reach this goal, we perform a so-called A-Wigner analysis of the previous
equations, as started in Part I, cf. Cordero and Rodino (Appl Comput Harmon Anal
58:85–123, 2022). Namely, the classical Wigner distribution is extended by considering
a class of time–frequency representations constructed as images of metaplectic opera-
tors acting on symplectic matrices A ∈ Sp(2d,R). Sub-classes of these representations,
related to covariant symplectic matrices, reveal to be particularly suited for the time–
frequency study of the Schrödinger evolution. This testifies the effectiveness of this
approach for such equations, highlighted by the development of a related wave front set.
We first study the properties of A-Wigner representations and related pseudodifferential
operators needed for our goal. This approach paves the way to new quantization pro-
cedures. As a byproduct, we introduce new quasi-algebras of generalized metaplectic
operators containing Schrödinger equations with more general potentials, extending the
results contained in the previous works (Cordero et al. in J Math Pures Appl 99(2):219–
233, 2013, J Math Phys 55(8):081506, 2014).

1. Introduction

Cauchy problems for Schrödinger equations have been studied by a variety of authors
in many different frameworks. Limiting attention to the microlocal analysis context, let
us mention as a partial list of contributions [1,16,27,29,30,33–35,47].

As more recent issues, under the influence of the new time–frequency methods, we
may refer to [3,6,8,10–14,20–22,31,38,39,45].

Here we propose a new approach, in terms of phase-space concentration of suitable
time–frequency distributions. The basic idea in terms of Wigner distribution is not new,
though. It goes back to Wigner 1932 [46] (later developed by Cohen and many other
authors, see e.g. [4,5]).
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Definition 1.1. Consider f, g ∈ L2(Rd). The cross-Wigner distribution W ( f, g) is

W ( f, g)(x, ξ) =
∫
Rd

f (x +
t

2
)g(x − t

2
)e−2π i tξ dt. (1)

If f = g we write W f := W ( f, f ), the so-called Wigner distribution of f .

For a given linear operator P acting on L2(Rd) (or a more general functional space),
Wigner considered an operator K on L2(R2d) such that

W (P f ) = KW ( f ) (2)

and its kernel k

W (P f )(x, ξ) =
∫
R2d

k(x, ξ, y, η)W f (y, η) dydη. (3)

We continue the development of a theory started in the Part I [14], addressed to P
pseudodifferential operators with W replaced by the more general τ -Wigner distribu-
tions. Here the main concern is the study of Cauchy propagators for linear Schrödinger
equations ⎧⎨

⎩
i
∂u

∂t
+ Hu = 0

u(0, x) = u0(x),
(4)

with t ∈ R and the initial condition u0 ∈ S(Rd) (Schwartz class) or in some modulation
space as explained below. The Hamiltonian has the form

H = Opw(a) + Opw(σ), (5)

where Opw(a) is the Weyl quantization of a real homogeneous quadratic polynomial on
R

2d and Opw(σ) is a pseudodifferential operator with a symbol σ in suitable modulation
spaces, namely σ ∈ M∞,q

1⊗vs
(R2d), s ≥ 0, 0 < q ≤ 1 (see Sect. 2.2 below for the

definitions) which guarantee that Opw(σ) is bounded on L2(Rd) (and in more general
spaces). This implies that the operator H in (5) is a bounded perturbation of the generator
H0 = Opw(a) of a unitary group (cf. [42] for details).

As special instances of the Hamiltonian above we find the Schrödinger equation
H = � − V (x) and the perturbation of the harmonic oscillator H = � − |x |2 − V (x)
with a potential V ∈ M∞,q(Rd). Observe that V is bounded, but not necessarily smooth.

The unperturbed case σ = 0, was already considered in [12]⎧⎨
⎩
i
∂u

∂t
+ Opw(a)u = 0

u(0, x) = u0(x).
(6)

The solution is given by the metaplectic operators u = μ(χt )u0, for a suitable symplectic
matrix χt , see for example the textbooks [18,21]. Precisely, if a(x, ξ) = 1

2 x Ax + ξ Bx +
1
2ξCξ , with A,C symmetric and B invertible, we can consider the classical evolution,
given by the linear Hamiltonian system

{
2π ẋ = ∇ξa = Bx + Cξ

2πξ̇ = −∇xa = −Ax − BT ξ
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(the factor 2π is due to our normalization of the Fourier transform) with Hamiltonian

matrix D :=
(

B C
−A −BT

)
∈ sp(d,R). Then we have χt = etD ∈ Sp(d,R).

The solution to (6) is the Schrödinger propagator

u(t, x) = eitOpw(a)u0(x) = μ(χt )u0, (7)

and the Wigner transform with respect to the space variable x is given by

Wu(t, z) = Wu0(χ
−1
t z), z = (x, ξ),

as already observed in the works of Wigner [46] and Moyal-Bartlett [37]. Hence (3)
reads in this case

W (eitOpw(a)u0)(z) =
∫
R2d

k(t, z, w)Wu0(w) dw, (8)

with k(t, z, w) given by the delta density δz=χtw.
The aim of [12] was to reconsider (7) and (8) in the functional frame of the modulation

spaces, in terms of the generalA-Wigner transform introduced in [14], see Definition 1.3
below. The propagator of the perturbed problem (4) is a generalized metaplectic operator,
as already exhibited in Theorem 4.1 [9] for symbols in the Sjöstrand class.

Here, to deal with further non-smooth potentials Opw(σ) in (5), σ ∈ M∞,q
1⊗vs

(R2d),
we enlarge the class of generalized metaplectic operators, including quasi-algebras of
operators, which allow better decay at infinity than the original Sjöstrand class. To
quantify the decay we use the Wiener amalgam spaces W (C, L p

vs )(R
2d), which consist

of the continuous functions F on R
2d such that

‖F‖W (C,L p) :=
⎛
⎝∑

k∈Z2d

( sup
z∈[0,1]2d

|F(z + k)|)pvs(k)p
⎞
⎠

1
p

< ∞ (9)

(obvious changes for p = ∞), where vs(k) = (1 + |k|2)1/2.

Definition 1.2. Given χ ∈ Sp(d,R), g ∈ S(Rd), 0 < q ≤ 1, we say that a lin-
ear operator T : S(Rd) → S ′(Rd) is a generalized metaplectic operator in the class
F I O(χ, q, vs) if there exists a function H ∈ W (C, Lq

vs )(R
2d), such that the kernel of

T with respect to time-frequency shifts satisfies the decay condition

|〈Tπ(z)g, π(w)g〉| ≤ H(w − χ z), ∀w, z ∈ R
2d (10)

(where the time–frequency shifts π(z), π(w) are defined in Sect. 2.2).

We infer boundedness, quasi-algebras and spectral properties of the previous opera-
tors, see Sect. 6 below. Moreover, we shall show that they can be represented as

T = Opw(σ1)μ(χ) or T = μ(χ)Opw(σ1),

that is, they can be viewed as composition of metaplectic operators with Weyl operators
with symbols in the modulation spaces M∞,q

1⊗vs
(R2d).

The solution eit Hu0 to (4) is a generalized metaplectic operator of this type for every
t ∈ R, so that it enjoys the phase-space concentration of this class.
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The main work of this paper relies in preparing all the instruments we need to study
the Wigner kernel of eit H , namely k(t, z, w), w, z ∈ R

2d , such that

W (eit Hu0)(z) =
∫

k(t, z, w)Wu0(w) dw

and possible generalizations to A-Wigner distributions, defined as follows.

Definition 1.3. Let A ∈ Sp(2d,R) be a 4d × 4d symplectic matrix. We define the
metaplectic Wigner distribution associated to A by

WA( f, g) = μ(A)( f ⊗ ḡ), f, g ∈ L2(Rd), (11)

and set WA f := WA( f, f ).

When the context requires to stress the symplectic matrix A, that defines the meta-
plectic Wigner distribution WA, we refer to WA as to A-Wigner distribution.

We shall focus on A shift-invertible, covariant symplectic matrices, see Definitions
4.5 and Subsection 4.1 and 4.2 below for definitions and properties. Furthermore we
limit toA shift-invertible, covariant symplectic matrices such that the related metaplectic
Wigner distribution WA is in the Cohen class Q� , namely it can be written as

WA( f, g) = W ( f, g) ∗ �A

where the kernel �A is related to A by (68), (66) below.
Let us define �A,t (z) = �A(χt (z)) and denote by At the covariant matrix such that

WAt = W f ∗ �At ,t .

Then from the results of [12] we have from the unperturbed Eq. (6), as counterpart of
(8)

WA(eitOpw(a)u0)(z) =
∫
R2d

δz=χtw(WAt u0)(w) dw.

So we keep the action of the classical Hamiltonian flow according to the original idea
of Wigner [46], provided the matrix At is defined as before.

We prove that the result does not change so much for the perturbed equation. Namely,
under the stronger assumption σ ∈ S0

0,0(R
2d), we prove (see Proposition 7.4 below)

WA(eit Hu0)(z) =
∫
R2d

kA(t, z, w)(WAt u0)(w) dw

where, for every N ≥ 0,

kA(t, z, w)〈z − χt (w)〉2N

is the kernel of an operator bounded on L2(Rd).
Starting from this, we may obtain the propagation result for the Wigner wave front

set

WFA(eit Hu0) = χt (WFAu0),
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see Definition 7.5 in the sequel. In particular, for WA = W = Wt , defining as in [12,14]
z0 /∈ WF f , z0 �= 0, if there exists a conic neighbourhood �z0 ⊂ R

2d of z0 such that
for all N ≥ 0, ∫

�z0

〈z〉N |W f (z)|2 dz < ∞,

we obtain

WF(eit Hu0) = χt (WFu0).

The outline of this article is as follows. In Sect. 2 we establish some background and
notation. In Sect. 3 we present the main properties of metaplectic Wigner distributions
and introduce their related pseudodifferential operators. Different symplectic matrices
give rise to different quantizations: we show the link between different quantizations
(see Lemma 3.2 below) and generalize the equality in (2) to any A-Wigner distribution
and A-pseudodifferential operator. This is a valuable result of its own, we believe it
could be useful in the framework of operator theory and quantum mechanics. Section 4
is devoted to study subclasses of A-Wigner distributions and pseudodifferential opera-
tors: covariant, totally Wigner-decomposable and Wigner-decomposable. The last ones
provide a new characterization of modulation spaces (cf. Theorem 4.9 below). Next, we
show that covariant matrices belong to the Cohen class (Theorem 4.14) and compute
the related kernel. As for the Wigner case, we are able to give an explicit expression
of the A-Wigner when A is covariant (see Theorem 4.15). Section 5 contains a deep
study of A-pseudodifferential operators on modulation spaces, which will be used in
the applications to Schrödinger equations (Sect. 7). Section 6 introduces new algebras
of generalized metaplectic operators and their main properties. Finally, Sect. 7 exhibits
an application of the theory developed so far to Schrödinger equations.

2. Preliminaries and Notation

2.1. Test functions, tempered distributions, Fourier transform. We denote with S(Rd)

the space of Schwartz functions and with S ′(Rd) the space of the tempered distributions,
with vector topologies given respectively by the topology of the seminorms of S(R) and
the weak-∗ topology.

We write 〈·, ·〉 for the unique extension to S ′(Rd) × S(Rd) of the sesquilinear inner
product of L2(Rd), namely

〈 f, g〉 =
∫
Rd

f (t)g(t)dt f, g ∈ L2(Rd).

For all p ∈ (0, +∞], one has S(Rd) ↪→ L p(Rd) ↪→ S ′(Rd) and if p �= ∞, S(Rd) is
dense in L p(Rd).

If f, g are complex-valued Lebesgue-measurable functions on R
d , we denote with

f ⊗ g the function

( f ⊗ g)(x, y) = f (x)g(y), x, y ∈ R
d .

The linear span of S(Rd) ⊗ S(Rd) := { f ⊗ g f, g ∈ S(Rd)} is dense in S(R2d).
If f, g ∈ S ′(Rd), f ⊗ g is defined as the tempered distribution on R

2d such that

〈 f ⊗ g,�〉 = 〈 f, 〈g,�x 〉〉 = 〈g, 〈 f,�y〉〉, � ∈ S(R2d),
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where �x = �(x, ·), x ∈ R
d , and �y = �(·, y), y ∈ R

d , are the sections of �. Again,
the span of S ′(Rd) ⊗ S ′(Rd) = { f ⊗ g f, g ∈ S ′(Rd)} is dense in S ′(R2d).

The Fourier transform of a function f ∈ S(Rd) is defined as

f̂ (ξ) =
∫
Rd

f (x)e−2π iξ ·t dt t ∈ R
d , (12)

where ξ · t denotes the real canonical inner product of R
d . We name F the Fourier

transform operator, mapping f ∈ S(Rd) into f̂ , which is a surjective isomorphism of
S(Rd) into itself with inverse F−1. It defines a unitary operator on L2(Rd):

〈 f, g〉 = 〈 f̂ , ĝ〉, f, g ∈ L2(Rd)

and, in particular, ‖ f ‖2 = ‖ f̂ ‖2, where ‖ · ‖p denotes the L p (quasi-)norm of L p(Rd),
0 < p ≤ ∞. If f ∈ S ′(Rd), the Fourier transform of f is defined as the tempered
distribution f̂ such that

〈 f̂ , ϕ〉 = 〈 f,F−1ϕ〉, ∀ϕ ∈ S(Rd).

If � ∈ S(R2d), we define the partial Fourier transform F2 of � w.r.t. the second
variable as

F2�(x, ξ) =
∫
Rd

�(x, y)e−2π iξ ·ydy. (13)

The operator F2 on S(R2d) is defined, by density, as

〈F2( f ⊗ g),�〉 = 〈 f ⊗ g,F−1
2 �〉, � ∈ S(R2d).

2.2. Short-time Fourier transform and modulation spaces. In this paper v is a continu-
ous, positive, submultiplicative weight function on R

d , i.e., v(z1 + z2) ≤ v(z1)v(z2), for
all z1, z2 ∈ R

d . A weight function m is in Mv(R
d) if m is a positive, continuous weight

function on R
d and it is v-moderate: m(z1 + z2) � v(z1)m(z2). This notation means that

there exists a universal constantC > 0 such that the inequalitym(z1+z2) ≤ Cv(z1)m(z2)

holds for all z1, z2 ∈ R
d .

In the following, we will work with weights on R
2d of the type

vs(z) = 〈z〉s = (1 + |z|2)s/2, z ∈ R
2d , (14)

For s < 0, vs is v|s|-moderate.
In particular, we shall use the weight functions on R

4d :

(vs ⊗ 1)(z, ζ ) = (1 + |z|2)s/2, (1 ⊗ vs)(z, ζ ) = (1 + |ζ |2)s/2, z, ζ ∈ R
2d . (15)

For a fixed g ∈ S(Rd)\ {0}, the short-time Fourier transform (STFT) of f ∈ L2(Rd)

is defined as

Vg f (x, ξ) =
∫
Rd

f (t)g(t − x)e−2π iξ ·t dt, x, ξ ∈ R
d . (16)
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For x, ξ ∈ R
d , we denote with Tx and Mξ the translation and the modulation operators

respectively, i.e. the unitary operators on L2(Rd) defined as

Txg(t) = g(t − x), Mξ g(t) = e2π iξ ·t g(t), g ∈ L2(Rd).

If z = (x, ξ) ∈ R
2d , the operator π(z) = MξTx is called time–frequency shift. The

definition of STFT can be extended to all tempered distributions: fixed g ∈ S(Rd) \ {0},
f ∈ S ′(Rd)

Vg f (x, ξ) = 〈 f, π(x, ξ)g〉.
The modulation spaces, introduced by Feichtinger in [17] and extended to the quasi-

Banach setting by Galperin and Samarah [19], are now available in many textbooks, see
e.g. [3,13,23]. We recall their definition and main properties.

Fix a non-zero window g in the Schwartz class S(Rd). Consider a weight function
m ∈ Mv(R

2d) and indices 0 < p, q ≤ ∞. The modulation space Mp,q
m (Rd) is the

subspace of tempered distributions f ∈ S ′(Rd) with

‖ f ‖Mp,q
m

= ‖Vg f ‖L p,q
m

=
(∫

Rd

(∫
Rd

|Vg f (x, ξ)|pm(x, ξ)pdx

) q
p

dξ

) 1
q

< ∞ (17)

(natural changes with p = ∞ or q = ∞). We write Mp
m(Rd) for Mp,p

m (Rd) and
Mp,q(Rd) if m ≡ 1. The space Mp,q

m (Rd) is a (quasi-)Banach space whose definition
is independent of the choice of the window g: different non-zero window functions in
S(Rd) yield equivalent (quasi)-norms. For 1 ≤ p, q ≤ ∞, they are Banach spaces
and the window class can be extended to the modulation space M1

v (Rd) (Feichtinger
algebra). The modulation space M∞,1(Rd) coincide with the Sjöstrand’s class in [41],
cf. [24].

We recall their inclusion properties:

S(Rd) ⊆ Mp1,q1
m (Rd) ⊆ Mp2,q2

m (Rd) ⊆ S ′(Rd), p1 ≤ p2, q1 ≤ q2. (18)

If m ∈ Mvs , denoting by Mp,q
m (Rd) the closure of S(Rd) in the Mp,q

m -norm, we
observe

Mp,q
m (Rd) ⊆ Mp,q

m (Rd), 0 < p, q ≤ ∞,

and

Mp,q
m (Rd) = Mp,q

m (Rd), 0 < p, q < ∞.

2.3. The symplectic group Sp(d,R) and themetaplectic operators. We recall definitions
and properties of symplectic matrices and metaplectic operators in a nutshell, referring
to [21] for details.

The standard symplectic matrix J is

J =
(

0d×d Id×d
−Id×d 0d×d

)
(19)
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and the symplectic group can be defined as

Sp(d,R) =
{
A ∈ GL(2d,R) : AT JA = J

}
, (20)

where GL(2d,R) is the group of 2d × 2d real invertible matrices, AT is the transpose
of A and the matrix J is defined in (19).

The symplectic algebra sp(d,R) is the set of 2d × 2d real matrices A such that
etA ∈ Sp(d,R) for all t ∈ R. Recall that the metaplectic representation μ is a unitary
representation of the double cover of Sp(d,R) on L2(Rd) (see, e.g., [21]). For elements
of Sp(d,R) of special form we can compute the metaplectic representation explicitly.
Precisely, for f ∈ L2(Rd), C real symmetric d × d matrix (CT = C) we consider the
symplectic matrix

VC =
(
Id×d 0d×d
C Id×d

)
; (21)

then, up to a phase factor,

μ(VC ) f (t) = eiπCt ·t f (t) (22)

for all f ∈ L2(Rd). Hence the previous operator is a multiplication by the chirp

�C (t) = eiπCt ·t , t ∈ R
d . (23)

For the standard matrix J in (19),

μ(J ) f = F f . (24)

For any L ∈ GL(d,R), we can define the symplectic matrix

DL =
(

L−1 0d×d

0d×d LT

)
∈ Sp(d,R), (25)

and, up to a phase factor,

μ(DL)F(t) = √| det L|F(Lt) = TL F(t), F ∈ L2(Rd). (26)

These operators are also called rescaling operators. The metaplectic operators enjoy a
group structure with respect to the composition.

Proposition 2.1. The metaplectic group is generated by the operatorsμ(J ), μ(DL) and
μ(VC ).

For the previous result we address the reader to [21]. The following issue will be
used in the sequel.

Lemma 2.1. Consider the symplectic matrix VC in (21). Then,

V−T
C = (V−1

C )T =
(
Id×d −C
0d×d Id×d

)
(27)

and, up to a phase factor, the metaplectic operator μ(V−T
C ) is a convolution operator:

μ(V−T
C ) f = F(�C ) ∗ f, f ∈ L2(Rd), (28)

with �C being the chirp function in (23). In particular, if the symmetric matrix C is
invertible, then

μ(V T
C ) f = | det C | (�−C−1 ∗ f ), f ∈ L2(Rd). (29)
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Proof. Formula (27) is an easy computation. For any f ∈ L2(Rd), using the definition
(20) we can write

μ(V−T
C ) f = μ(JVC J

−1) = μ(J )μ(VC )μ(J−1) f

= F(�C · F−1 f ) = F(�C ) ∗ f.

For C invertible, up to a phase factor, F�C = | det C |�−C−1 , see e.g. [18], so that we
obtain formula (29). ��

In particular, observe that V T
C is obtained from V−T

C in (27) by replacing the matrix
C with −C , so that

μ(V T
C ) f = F(�−C ) ∗ f, f ∈ L2(Rd), (30)

and, if C is invertible,

μ(V T
C ) f = | det C | (�C−1 ∗ f ), f ∈ L2(Rd). (31)

This paper deals both with the symplectic group Sp(d,R) of 2d × 2d matrices and
Sp(2d,R) of 4d × 4d ones. To avoid confusions, in what follows the matrix A denotes
a symplectic matrix in Sp(2d,R) whereas χ a matrix in Sp(d,R).

Definition 2.2. A matrix A ∈ Sp(2d,R), with block decomposition

A =
(
A B
C D

)
(32)

is a free symplectic matrix if det B �= 0.

In this work, free symplectic matrices will be important for two main reasons. For
the following Lemma, we refer to [18, Theorem 4.53] and [21, Theorem 60].

Lemma 2.2. Let A ∈ Sp(2d,R). Then,

(i) there exist A1,A2 ∈ Sp(2d,R) free such that A = A1A2;
(ii) if A is free with block decomposition (32) then, for every F ∈ S(R2d),

μ(A)F(x) = (det(B))−1/2e−iπDB−1x ·x
∫
R2d

F(y)e2π i(B−1x ·y− 1
2 B

−1Ay·y)dy. (33)

3. Metaplectic Pseudodifferential Operators

We recall some basic examples and properties of the metaplectic Wigner distribution,
for detail see cf. [14].

Example 3.1. For τ ∈ [0, 1], the matrix of Sp(2d,R)

Aτ,2d :=
⎛
⎜⎝

(1 − τ)Id×d τ Id×d 0d×d 0d×d
0d×d 0d×d τ Id×d −(1 − τ)Id×d
0d×d 0d×d Id×d Id×d

−Id×d Id×d 0d×d 0d×d

⎞
⎟⎠ ,

defines the τ -Wigner distribution on L2(Rd) × L2(Rd), that is

Wτ ( f, g)(x, ξ) =
∫
Rd

f (x + τ y)g(x − (1 − τ)y)e−2π iy·ξdy.

In particular, if τ = 0 and τ = 1 we recover the Rihaczek and the conjugate-Rihaczek
distributions, while for τ = 1/2 we get the classical Wigner distribution (W = W1/2)
in (1).
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Example 3.2. The metaplectic operator associated to the symplectic matrix

AST =
⎛
⎜⎝

Id×d −Id×d 0d×d 0d×d
0d×d 0d×d Id×d Id×d
0d×d 0d×d 0d×d −Id×d

−Id×d 0d×d 0d×d 0d×d

⎞
⎟⎠

defines the STFT, namely WAST( f, g) = Vg f in (16).

The basic continuity properties of WA can be summarized as follows:

Lemma 3.1. If A ∈ Sp(2d,R),

(i) The mapping WA : L2(Rd) × L2(Rd) → L2(R2d) is continuous;
(ii) The mapping WA : S(Rd) × S(Rd) → S(R2d) is continuous;

(iii) The mapping WA : S ′(Rd) × S ′(Rd) → S ′(R2d) is continuous.

If A ∈ Sp(2d,R) is a general symplectic matrix, we can write explicitly WA( f, g)
as a FIO of type II, using Lemma 2.2.

Proposition 3.3. Let A ∈ Sp(2d,R) have factorization A = A1A2 with A j , j = 1, 2,
free with block decomposition

A j =
(
A j B j
C j D j

)
.

Then, up to a unitary factor, for every F ∈ S(R2d),

μ(A)F(x, ξ) =
∣∣∣∣det(B1)

det(B2)

∣∣∣∣
1/2

�−D1B
−1
1

(x, ξ)

×
∫
R4d

F(z, ζ )e−2π i[�A(z,ζ,y,η)−(x,ξ)·(y,η)]τA(z, ζ, y, η)dzdζdydη,

(34)

where

�A(z, ζ, y, η) = 1

2
[B−1

2 A2(z, ζ ) · (z, ζ ) + B1(B
−1
1 A1 + D2B

−1
2 )BT

1 (y, η) · (y, η)]

and

τA(z, ζ, y, η) = e2π i B−1
2 BT

1 (y,η)·(z,ζ ).

In particular, for every f, g ∈ S(Rd),

WA( f, g)(x, ξ) =
∣∣∣∣det(B1)

det(B2)

∣∣∣∣
1/2

�−D1B
−1
1

(x, ξ)

×
∫
R4d

f (z)g(ζ )e−2π i[�A(z,ζ,y,η)−(x,ξ)·(y,η)]τA(z, ζ, y, η)dzdζdydη.

(35)
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Proof. Using the decomposition of Lemma 2.2 (i), we can write, for every F ∈ S(R2d),
and up to a unitary factor,

μ(A)F(x, ξ) = μ(A1)μ(A2)F(x, ξ).

For the rest of the proof, we write

X = (x, ξ), Y = (y, η), Z = (z, ζ ),

while dY = dydη and dZ = dzdζ .
Applying Lemma 2.2 (i i) twice and changing variables, up to a unitary constant,

μ(A)F(X) = | det(B1)|−1/2e−iπD1B
−1
1 X ·X

∫
R2d

(μ(A2)F)(Z)e2π i[B−1
1 X ·Y− 1

2 B−1
1 A1Y ·Y ]dY

= | det(B1B2)|−1/2e−iπD1B
−1
1 X ·X

∫
R2d

e−iπD2B
−1
2 Y ·Y
∫
R2d

F(Z)e2π i[B−1
2 Y ·Z− 1

2 B−1
2 A2Z ·Z ]dZ

× e2π i[B−1
1 X ·Y− 1

2 B−1
1 A1Y ·Y ]dY

=
∣∣∣∣ det(B1)

det(B2)

∣∣∣∣
1/2

�−D1B
−1
1

(X)

∫
R4d

F(Z)e2π i[− 1
2 (B1(B−1

1 A1+D2B
−1
2 )BT

1 Y ·Y+B−1
2 A2Z ·Z)+X ·Y ]

× e2π i B−1
2 BT

1 Y ·Z dYdZ .

(36)

This proves (34) and (35) follows plugging F = f ⊗ ḡ in (34). ��
Moreover, we also have explicit integral formulas for metaplectic Wigner distribu-

tions in terms of their factorization via free symplectic matrices.

Corollary 3.4. Under the same notation of Proposition 3.3, up to a unitary factor and
for every f, g ∈ S(Rd),

WA( f, g)(x, ξ) = | det(B1B2)|−1/2�−D1B
−1
1

(x, ξ)

×
∫
R2d

f (y)g(η)�−B−1
2 A2

(y, η)F−1(�−(B−1
1 A1+D2B

−1
2 )

)(B−1
1 (x, ξ) + B−T

2 (y, η))dydη

= | det(B1B2)|−1/2�−D1B
−1
1

(x, ξ)

× [(( f ⊗ ḡ)�−B−1
2 A2

) ∗ (F−1�−(B−1
1 A1+D2B

−1
2 )

◦ (−B−T
2 ))] ◦ (−BT

2 B−1
1 )(x, ξ),

where the chirp � is defined in (23). In particular, if B−1
1 A1 + D2B

−1
2 is invertible, then,

up to a phase factor,

WA( f, g)(x, ξ) = | det(B1B2)|−1/2| det(B−1
1 A1 + D2B

−1
2 )|−1�−D1B

−1
1

(x, ξ)

×
∫
R2d

f (y)g(η)�−B−1
2 A2

(y, η)

�
(B−1

1 A1+D2B
−1
2 )−1(B

−1
1 (x, ξ) + B−T

2 (y, η))dydη.

Proof. Using (34), we can write, for every F ∈ S(R2d), and up to a unitary factor,

μ(A)F(x, ξ) = μ(A1)μ(A2)F(x, ξ).

Applying Lemma 2.2 (i i) twice, up to a unitary constant,
μ(A)F(x, ξ) = | det(B1B2)|−1/2e−iπD1B

−1
1 (x,ξ)·(x,ξ)

∫
R2d

F(y, η)e−π i B−1
2 A2(y,η)·(y,η)

×
∫
R2d

e2π i[B−1
1 (x,ξ)·(z,ζ )− 1

2 B−1
1 A1(z,ζ )·(z,ζ )− 1

2 D2B
−1
2 (z,ζ )·(z,ζ )+B−1

2 (z,ζ )·(y,η)]dzdζdydη

= | det(B1B2)|−1/2�−D1B
−1
1

(x, ξ)

∫
R2d

F(y, η)�−B−1
2 A2

(y, η)

×
∫
R2d

e2π i[(B−1
1 (x,ξ)+B−T

2 (y,η))·(z,ζ )− 1
2 (B−1

1 A1+D2B
−1
2 )(z,ζ )·(z,ζ )]dzdζ.

(37)
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The inner integral is worked out as

∫
R2d

e2π i[(B−1
1 (x,ξ)+B−T

2 (y,η))·(z,ζ )− 1
2 (B−1

1 A1−D2B
−1
2 )(z,ζ )·(z,ζ )]dzdζ

=
∫
R2d

�−(B−1
1 A1−D2B

−1
2 )

(z, ζ )e2π i[B−1
1 (x,ξ)+B−T

2 (y,η)]·(z,ζ )dzdζ

= F−1(�−(B−1
1 A1+D2B

−1
2 )

)(B−1
1 (x, ξ) + B−T

2 (y, η)).

(38)

Observe that if B−1
1 A1 + D2B

−1
2 is invertible, then

F−1(�−(B−1
1 A1+D2B

−1
2 )

) = 1

| det(B−1
1 A1 + D2B

−1
2 )|�(B−1

1 A1+D2B
−1
2 )−1 .

Plugging (38) into (37) with F = f ⊗ ḡ the assertion follows. ��
The integral expression of WA provided by Corollary 3.4 is useful to establish conti-

nuity properties for WA( f, g). In practice an explicit factorization of A via free matrices
may be unknown.

Definition 3.5. Let a ∈ S ′(R2d). The metaplectic pseudodifferential operator with sym-
bol a and symplectic matrix A is the operator OpA(a) : S(Rd) → S ′(Rd) such that

〈OpA(a) f, g〉 = 〈a,WA(g, f )〉, g ∈ S(Rd).

Observe that this operator is well defined by Proposition 3.1, item (i i i). Moreover,
when the context requires to stress the matrix A that defines OpA, we refer to OpA to
as the A-pseudodifferential operator with symbol a.

Remark 3.6. In principle, the full generality of metaplectic framework provides a wide
variety of unexplored time–frequency representations that fit many different contexts.
Namely, in Definition 3.5, the symplectic matrix A plays the role of a quantization and
the quantization of a pseudodifferential operator is typically chosen depending on the
the properties that must be satisfied in a given setting.

Example 3.7. Definition 3.5 in the case of A1/2,2d ∈ Sp(2d,R) in (3.1), provides the
well-known Weyl quantization for pseudodifferential operators, that we denote with
Opw,2d(a), i.e., for a ∈ S(R2d),

Opw,2d(a) f (x) =
∫
R2d

a
( x + y

2
, ξ
)
f (y)e2π i(x−y)·ξdydξ, f ∈ S(Rd).

When d is clear from the context or irrelevant, we write Opw instead of Opw,2d .

In the following result, we see how the symbols of metaplectic pseudodifferential
operators change when we modify the symplectic matrix.

Lemma 3.2. Consider A,B ∈ Sp(2d,R) and a, b ∈ S ′(R2d). Then,

OpA(a) = OpB(b) ⇐⇒ b = μ(BA−1)(a). (39)
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Proof. Let f, g ∈ S(Rd). Then,

〈OpA(a) f, g〉 = 〈a, μ(A)( f ⊗ ḡ)〉 = 〈μ(A−1)a, f ⊗ ḡ〉,
〈OpB(b) f, g〉 = 〈b, μ(B)( f ⊗ ḡ)〉 = 〈μ(B−1)b, f ⊗ ḡ〉.

Since the span of S(Rd) ⊗ S(Rd) is dense in S(R2d), we deduce that the equality
between the two lines holds if and only if

μ(A−1)a = μ(B−1)b,

which is the same as (39). ��
As a direct consequence of Lemma 3.2 we get two corollaries. The first one provides

the distributional kernel of OpA.

Corollary 3.8. Consider A ∈ Sp(2d,R), a ∈ S ′(R2d). Then, for all f, g ∈ S(Rd),

〈OpA(a) f, g〉 = 〈kA(a), g ⊗ f̄ 〉, (40)

where the kernel is given by kA(a) = μ(A−1)a.

Proof. Plug B = I4d×4d into (39) to get (40). ��
Corollary 3.9 is a generalization of (2) for metaplectic Wigner distributions and

pseudodifferential operators. For its statement, we introduce the following notation: if
a ∈ S ′(R2d), a ⊗ 1 denotes the tempered distribution of S ′(R4d) defined via tensor
product as

(a ⊗ 1)(r, y, ρ, η) := a(r, ρ), r, y, ρ, η ∈ R
d . (41)

Corollary 3.9. Consider A ∈ Sp(4d,R), B ∈ Sp(2d,R) and a ∈ S ′(R2d). Then, for
all B0 ∈ Sp(4d,R), f, g ∈ S(Rd),

WA(OpB(a) f, g) = OpB0(μ(B0A−1
1/2,4d)((μ(A1/2,2dB−1)a) ⊗ 1) ◦ A−1)WA( f, g).

(42)

In particular,

(i) if B0 = A1/2,4d , then

WA(OpB(a) f, g) = Opw,4d(((μ(A1/2,2dB−1)a) ⊗ 1) ◦ A−1)WA( f, g); (43)

(ii) if B0 = A1/2,4d and B = A1/2,2d , then

WA(Opw,2d(a) f, g) = Opw,4d((a ⊗ 1) ◦ A−1)WA( f, g). (44)

Proof. By [14, Lemma 4.1], for all f, g ∈ S(Rd) and a ∈ S ′(R2d),

(Opw,2d(a) f ) ⊗ ḡ = Opw,4d(σ )( f ⊗ ḡ). (45)

Moreover, for all A ∈ Sp(4d,R),

μ(A)Opw,4d(σ )μ(A)−1 = Opw,4d(σ ◦ A−1). (46)
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Therefore, using Lemma 3.2, (45) and (46) respectively,

WA(OpB(a) f, g) = μ(A)(OpB(a) f ⊗ ḡ) = μ(A)(Opw,2d(μ(A1/2,2dB−1)a) f ⊗ ḡ)

= μ(A)(Opw,4d((μ(A1/2,2dB−1)a) ⊗ 1)( f ⊗ ḡ))

= Opw,4d(((μ(A1/2,2dB−1)a) ⊗ 1) ◦ A−1)μ(A)( f ⊗ ḡ)

= Opw,4d(((μ(A1/2,2dB−1)a) ⊗ 1) ◦ A−1)WA( f, g).

Then, by Lemma 3.2,

WA(OpB(a) f, g) = OpB0(μ(B0A−1
1/2,4d)((μ(A1/2,2dB−1)a) ⊗ 1) ◦ A−1)WA( f, g)

and we are done. ��
Remark 3.10. Formula (42) will be used in the form of (44) to deduce boundedness
properties on modulation spaces for metaplectic pseudodifferential operators. However,
the strength of Corollary 3.9 relies on its generality: the matrix B0 in (42) can be chosen
in Sp(4d,R) arbitrarily, depending on the context.

4. Decomposability and Covariance

In this section, we focus on metaplectic Wigner distributions as well as metaplectic
pseudodifferential operators that are defined in terms of symplectic matrices that satisfy
decomposability and covariance properties. Explicit expressions for WA and OpA are
derived from A in terms of its blocks.

4.1. Decomposability and shift-invertibility. We define decomposable metaplectic Wigner
distributions directly in terms of their factorization, as follows. Let A be a symplectic
matrix that factorizes as

A = AFT2DL , (47)

where DL is defined in (25) and

AFT2 =
⎛
⎜⎝
Id×d 0d×d 0d×d 0d×d
0d×d 0d×d 0d×d Id×d
0d×d 0d×d Id×d 0d×d
0d×d −Id×d 0d×d 0d×d

⎞
⎟⎠ . (48)

Up to a phase factor,

μ(AFT2) = F2.

Definition 4.1. We say thatA ∈ Sp(2d,R) is a totally Wigner-decomposable (symplec-
tic) matrix if (47) holds for some L ∈ GL(2d,R). If A is totally Wigner-decomposable,
we say that WA is of the classic type.
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Example 4.2. The matrices of Examples 3.1 and 3.2 are totally Wigner-decomposable
with

Lτ =
(
Id×d τ Id×d
Id×d −(1 − τ)Id×d

)

and

LST =
(

0d×d Id×d
−Id×d Id×d

)

respectively.

Roughly speaking, Wigner distributions of classic type are immediate generalizations
of the classical time–frequency representations, such as the (cross)-Wigner distribution
W and the STFT.

The following result characterizes totally Wigner-decomposable symplectic matrices
in terms of their block decomposition.

Proposition 4.3. Let A ∈ Sp(2d,R) be a totally Wigner-decomposable matrix
having block decomposition

A =
⎛
⎜⎝
A11 A12 A13 A14
A21 A22 A23 A24
A31 A32 A33 A34
A41 A42 A43 A44

⎞
⎟⎠ , (49)

with Ai j ∈ R
d×d (i, j = 1, . . . , 4). Then,

(i) A has the block decomposition

A =
⎛
⎜⎝

A11 A12 0d×d 0d×d
0d×d 0d×d A23 A24
0d×d 0d×d A33 A34
A41 A42 0d×d 0d×d

⎞
⎟⎠ ; (50)

(ii) L and its inverse are related to A by:

L =
(
AT

33 AT
23

AT
34 AT

24

)
, L−1 =

(
A11 A12

−A41 −A42

)
. (51)

Proof. Let

L =
(
L11 L12
L21 L22

)
and L−1 =

(
L ′

11 L ′
12

L ′
21 L ′

22

)
(52)

be the block decompositions of L and L−1 respectively, where Li j , L ′
i j ∈ R

d×d (i, j =
1, 2). Then, the identity (47) reads as

⎛
⎜⎝
A11 A12 A13 A14
A21 A22 A23 A24
A31 A32 A33 A34
A41 A42 A43 A44

⎞
⎟⎠ =

⎛
⎜⎜⎝

L ′
11 L ′

12 0d×d 0d×d

0d×d 0d×d LT
12 LT

22
0d×d 0d×d LT

11 LT
21−L ′

21 −L ′
22 0d×d 0d×d

⎞
⎟⎟⎠ .

Thus the expressions for the matrices in (i) and (i i) easily follow. ��
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Remark 4.4. Under the hypothesis of Proposition 4.3, it is easy to check that the identities
LL−1 = L−1L = I2d×2d read in terms of the blocks of L and L−1 as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

AT
33A11 − AT

23A41 = Id×d ,

AT
33A12 = AT

23A42,

AT
34A11 = AT

24A41,

AT
34A12 − AT

24A42 = Id×d

and

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A11AT
33 + A12AT

34 = Id×d ,

A11AT
23 = −A12AT

24,

A41AT
33 = −A42AT

34,

A41AT
23 + A42AT

24 = −Id×d .

(53)

These are exactly the block relations that A and

A−1 = D−1
L A−1

FT 2 =

⎛
⎜⎜⎝

AT
33 0d×d 0d×d −AT

23
AT

34 0d×d 0d×d −AT
24

0d×d −AT
41 AT

11 0d×d

0d×d −AT
42 AT

12 0d×d

⎞
⎟⎟⎠ (54)

satisfy as symplectic matrices.

Definition 4.5. Given A ∈ Sp(2d,R), we say that WA is shift-invertible if there exists
an invertible matrix EA ∈ GL(2d,R) such that

|WA(π(w) f, g)| = |TEA(w)WA( f, g)|, f, g ∈ L2(Rd), w ∈ R
2d ,

where

TEA(w)WA( f, g)(z) = WA( f, g)(z − EAw), w, z ∈ R
2d .

As pointed out in [12], shift-invertibility of symplectic matrices appears to be the
fundamental property that a metaplectic Wigner distribution shall satisfy in order for
WA(·, g) to replace the STFT in the definition of modulation spaces.

Lemma 4.1. LetA ∈ Sp(2d,R) be a totally Wigner-decomposable as in (47) and (49).
The following statements are equivalent:

(i) L is right-regular;
(ii) the matrix

EA :=
(

A11 0d×d
0d×d A23

)
(55)

is invertible;
(iii) WA is shift-invertible with EA given as in (55).

Proof. The equivalence between (i i) and (i i i) is proved in [12]. We prove that (i) and
(i i) are equivalent.

(i) ⇒ (i i). Assume that L is right-regular. We have to prove that both A23 and A11
are invertible. The right-regularity of L is equivalent to the invertibility of A23 and A24,
hence it remains to check that A11 is invertible.

It is easy to verify that L is right-regular if and only if L−T is left-regular. By
Proposition 4.3 (i i),

L−T =
(
AT

11 −AT
41

AT
12 −AT

42

)
,
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so that L−T is left-regular if and only if A11 and A12 are invertible, which gives the
invertibility of A11.

(i) ⇐ (i i). If EA is invertible, then A11 and A23 are invertible. By the identity
A11AT

23 = −A12AT
24 in (53), we also have the invertibility of A12 and A24. Hence, A23

and A24 are invertible. ��
Corollary 4.6. Let A satisfy (47) with block decomposition as in (50). The following
statements are equivalent:

(i) L is right-regular;
(ii) A11, A12, A23 and A24 are invertible. Moreover, if L is right-regular,

(iii) A33 is invertible if and only if A42 is invertible;
(iv) A34 is invertible if and only if A41 is invertible.

Proof. The equivalence between (i) and (i i) is just a restatement of Lemma 4.1. (i i i)
and (iv) follow directly from (i i) and the equalities in (53). ��
Remark 4.7. Assume that L is right-regular with block decomposition as in (52). Since
L is also invertible by its definition, all the assumptions of Theorem 2.1 (ii) and Theorem
2.2 (i) of [36] are verified. Thus, we can write a Wigner-decomposable matrix A, with
L right-regular, explicitly in terms of the blocks of L both as

A =

⎛
⎜⎜⎝

A11 A12 0d×d 0d×d

0d×d 0d×d LT
12 LT

22
0d×d 0d×d LT

11 LT
21

A41 A42 0d×d 0d×d

⎞
⎟⎟⎠

with

A11 = (L11 − L12L
−1
22 L21)

−1,

A12 = −(L11 − L12L
−1
22 L21)

−1L12L
−1
22 ,

A41 = L−1
22 L21(L11 − L12L

−1
22 L21)

−1,

A42 = −L−1
22 − L−1

22 L21(L11 − L12L
−1
22 L21)

−1L12L
−1
22 ;

or, equivalently, as

A =

⎛
⎜⎜⎝

A11 A12 0d×d 0d×d

0d×d 0d×d LT
12 LT

22
0d×d 0d×d LT

11 LT
21

A41 A42 0d×d 0d×d

⎞
⎟⎟⎠ ,

where

A11 = −(L21 − L22L
−1
12 L11)

−1L22L
−1
12 ,

A12 = (L21 − L22L
−1
12 L11)

−1,

A41 = −L−1
12 − L−1

12 L11(L21 − L22L
−1
12 L11)

−1L22L
−1
12

A42 = −L−1
12 L11(L21 − L22L

−1
12 L11)

−1L22L
−1
12 .
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Theorem 4.8. Let L be right-regular and A be as in (50). Then, for all f, g ∈ L2(Rd)

and for all x, ξ ∈ R
d ,

WA( f, g)(x, ξ) = √| det(L)|| det(A23)|−1e2π i A−1
23 ξ ·AT

33x Vg̃ f (c(x), d(ξ)), (56)

where

g̃(t) := g(AT
24A

−T
23 t), c(x) = (AT

33 − AT
23A

−T
24 AT

34)x and d(ξ) = A−1
23 ξ. (57)

Observe that all the inverses that appear in (56) exist if L is right-regular by Corol-
lary 4.6 (i i) and Theorem 2.1 (i i) of [36].

Proof. The proof is a straightforward consequence of [15, Theorem 3.8]. ��
Theorem 4.9. Let 0 < p, q ≤ ∞, L be right-regular andA be as in (50). Let m ∈ Mv

be such that

m((AT
33 − AT

23A
−T
24 AT

34)·, A−1
23 ·) � m(·, ·). (58)

Then, for all g ∈ S(Rd),

f ∈ Mp,q
m (Rd) ⇐⇒ WA( f, g) ∈ L p,q

m (R2d). (59)

Moreover, if 1 ≤ p, q ≤ ∞ and there exist 0 < C1(L) ≤ C2(L) such that

C1(L)v(x, ξ) ≤ v((AT
23(A

T
24)

−1)x, A−1
23 A24ξ) ≤ C2(L)v(x, ξ), (x, ξ) ∈ R

2d ,(60)

then g can be chosen in the larger class M1
v (Rd).

Proof. The proof is a straightforward consequence of Theorem 4.8. In fact, for g ∈
S(Rd) and L right-regular, the function g̃ defined as in (57) is in S(Rd) and by (56),

‖ f ‖Mp,q
m

� ‖Vg̃ f ‖L p,q
m

� ‖WA( f, g)((AT
33 − AT

23(A
T
24)

−1AT
34)

−1·, A23·)‖L p,q
m

� ‖WA( f, g)‖L p,q
m

,

by assumption (58).
Assume that ϕ ∈ S(Rd). Then,

Vϕ g̃(x, ξ) =
∫
Rd

g(Ct)e−2π iξ ·tϕ(t − x)dt �
∫
Rd

g(s)e−2π i((C−1)T ξ)·sϕ(C−1(s − Cx))ds

= Vϕ̃g(B(x, ξ)),

where

C = AT
24A

−T
23 , B =

(
C 0d×d

0d×d C−T

)
= DA−1

24
DAT

23

and ϕ̃(t) = ϕ(C−1t). Condition (60) implies that g ∈ M1
v if and only if g̃ ∈ M1

v :

‖g̃‖M1
v

� ‖Vϕ g̃‖L1
v

� ‖Vϕ̃g(B·)v(·)‖L1

� ‖Vϕ̃g(·)v(B−1·)‖L1 � ‖Vϕ̃g(·)v(·)‖L1 � ‖g‖M1
v
.

Hence, for 1 ≤ p, q ≤ ∞, we can choose g in M1
v (Rd). ��
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Next, we generalize the metaplectic Wigner distributions associated to Wigner-
decomposable matrices in order to include multiplications by chirps. These Wigner
distributions, along with the right-regularity condition on L , characterize modulation
spaces.

Definition 4.10. We say that a matrix A ∈ Sp(d,R) is Wigner-decomposable if A =
VCAFT2DL , where VC ,AFT 2,DL are defined in (21), (48), and (25), respectively.

Theorem 4.11. Let A ∈ Sp(2d,R) be a Wigner-decomposable matrix with decompo-
sition A = VCAFT2DL , where

C =
(
C11 C12

CT
12 C22,

)

CT
11 = C11 and CT

22 = C22. Then, for all f, g ∈ L2(Rd), up to a phase factor,

WA( f, g)(x, ξ) = �̃C (x, ξ)

∫
Rd

f (x + (Id×d − A11)y)g(x − A11y)e
−2π iξ ·ydy,

(61)

with

�̃C (x, ξ) = e2π iCT
12x ·ξ�C11(x)�C22(ξ)

and the chirp functions �C11 , �C22 are defined in (23). If the matrix L is right-regular,

WA( f, g)(x, ξ) = | det(Id×d − A11)|−1�̃′
C (x, ξ)Vg̃ f (A

−1
11 x, (I − AT

11)
−1ξ), (62)

where

�̃′
C (x, ξ) = �C11(x)�C22(ξ)e2π i(CT

12+(I−A11)
−1)x ·ξ ,

and g̃(t) = g(−A11(Id×d − A11)
−1t).

Proof. Formula (61) is proved using the explicit definitions of the operators associated
to VC , AFT 2 and DL . In fact, up to a phase factor,

μ(AFT 2DL)( f ⊗ ḡ)(x, ξ) = F2TL( f ⊗ ḡ)(x, ξ) =
∫
Rd

( f ⊗ g)(L(x, y))e−2π iξ ·ydy

=
∫
Rd

f (x + (Id×d − A11)y)g(x − A11y)e
−2π iξ ·ydy.

For z = (x, ξ) and VC as in the statement, we have by (22)

μ(VC )F(z) = eπ iCz·z F(z) = eiπ [(C11x+C12ξ)·x+(CT
12x+C22ξ)·ξ ]F(z), F ∈ L2(R2d).

Furthermore, formula (56) applied to the symplectic matrix AFT2DL (L as in the state-
ment, see [12, Theorem 2.27], where the formula was obtained in this particular case)
tells that, up to a unitary constant,

WA( f, g)(z) = eπ i(Cz)·z | det(Id×d − A11)|−1e2π i((Id×d−AT
11)

−1ξ)·x

× Vg̃ f (A
−1
11 x, (Id×d − AT

11)
−1ξ),

for f, g ∈ L2(Rd) and g̃ being as in the statement. ��
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As a consequence, we extend [12, Theorem 2.28] to all Wigner-decomposable ma-
trices.

Corollary 4.12. Under the notation of Theorem 4.15, the following statements are equiv-
alent:

(i) A = VCAFT2DL is shift-invertible,
(ii) A = AFT 2DL is shift-invertible,

(iii) L is right-regular.

Proof. The equivalence (i) ⇔ (i i) is proved in Corollary 4.6. The equivalence (i i) ⇔
(i i i) follows from Theorem 4.11, which gives:

WA( f, g)(x, ξ) = eiπ [(C11x+C12ξ)·x+(CT
12x+C22ξ)·ξ ]WAFT 2DL ( f, g)(x, ξ),

so that:

|WA( f, g)(x, ξ)| = |WAFT 2DL ( f, g)(x, ξ)|. (63)

This gives

|WA(π(w) f, g)| = |WAFT 2DL (π(w) f, g)|, ∀w ∈ R
2d ,

which proves the claim. ��
Corollary 4.13. Let A ∈ Sp(2d,R) be Wigner-decomposable, with matrix L right-
regular. Then, for any g ∈ S(Rd), 0 < p, q ≤ ∞,

f ∈ Mp,q
vs

(Rd) ⇐⇒ WA( f, g) ∈ L p,q
vs

(R2d).

For 1 ≤ p, q ≤ ∞, the window g can be chosen in M1
vs

(Rd).

Proof. With the same notations as Theorem 4.11, write A = VCAFT2DL , with L is
right-invertible. By (63),

WA( f, g) ∈ L p,q
vs

(R2d) ⇐⇒ WAFT 2DL ( f, g) ∈ L p,q
vs

(R2d).

By Corollary 4.12, AFT 2DL is a covariant (see Sect. 4.2 below), shift-invertible matrix.
Then the claim follows from [12, Theorem 2.28]. ��

4.2. Covariance. According to [12, Proposition 2.10], for a given symplectic matrix A,
the metaplectic Wigner distribution WA satisfies

WA(π(z) f, π(z)g) = TzWA( f, g), ( f, g ∈ S(Rd)), z ∈ R
d , (64)

if and only if A has block decomposition

A =
⎛
⎜⎝

A11 Id×d − A11 A13 A13

A21 −A21 Id×d − AT
11 −AT

11
0d×d 0d×d Id×d Id×d

−Id×d Id×d 0d×d 0d×d

⎞
⎟⎠ , (65)

with A13 = AT
13 and A21 = AT

21. We refer to such matrices as to covariant matrices
and to property (64) as to the covariance property of WA. It was proved in [12] that a
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covariant matrix with block decomposition (65) is totally Wigner-decomposable if and
only if A21 = A13 = 0d×d . Moreover, if

BA :=
(

A13
1
2 Id×d − A11

1
2 Id×d −A21

)
, (66)

and W is the classical Wigner distribution, the following result holds:

Theorem 4.14. Let A ∈ Sp(2d,R) be a covariant matrix in the form (65). Then,

WA( f, g) = W ( f, g) ∗ �A, f, g ∈ S(Rd), (67)

where

�A = F−1(e−π iζ ·BAζ ) ∈ S ′(R2d), (68)

and BA defined as in (66).

Recalling our chirp function in (23), the equality in (68) can be rewritten as

�A = F−1�−BA . (69)

If a time–frequency representation Q( f, g) satisfies

Q( f, g) = W ( f, g) ∗ �, f, g ∈ S(Rd),

for some � ∈ S ′(R2d), we say that Q belongs to the Cohen class.
Theorem 4.14 sheds light on the importance of covariant matrices in the context

of time–frequency analysis, stating that A ∈ Sp(2d,R) is covariant if and only if WA
belongs to the Cohen class. The following result shows that covariant matrices are exactly
those that decompose as the product of symplectic matrices V T

C , AFT 2 and DL for some
d × d symmetric matrix C and L ∈ GL(2d,Rd).

Theorem 4.15. Let A ∈ Sp(2d,R) be covariant with block decomposition (65). Then,

A = V T
C AFT2DL , (70)

where

C =
(

A13 0d×d
0d×d −A21

)
and L =

(
Id×d Id×d − A11
Id×d −A11

)
. (71)

As a consequence, up to a phase factor, for all f, g ∈ S(Rd),

WA( f, g)(x, ξ) =
∫
Rd

[F(�−A13) ∗ ( f ⊗ ḡ)(L(·, η))](x)�A21(η)e−2π iξ ·ηdη. (72)

In particular, if A13 = 0d×d , then

WA( f, g)(x, ξ) =
∫
Rd

f (x + (Id×d − A11)η)g(x − A11η)�A21(η)e−2π iξ ·ηdη. (73)
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Proof. Equality (70) is a straightforward computation. Now, using (30),
WA( f, g)(x, ξ) = μ(A)( f ⊗ ḡ)(x, ξ) = μ(V T

C )μ(AFT 2)μ(DL )( f ⊗ ḡ)(x, ξ)

= F(�−C ) ∗
( ∫

Rd
( f ⊗ ḡ)(L(·, η))e−2π iη·(•)dη

)
(x, ξ)

=
∫
R2d

F(�−C )(x − y, ξ − ω)
( ∫

Rd
( f ⊗ ḡ)(L(y, η))e−2π iη·ωdη

)
dydω

=
∫
R2d

( ∫
R2d

e−iπ[A13u·u−A21v·v]e−2π i[(x−y)·u+(ξ−ω)·v]dudv
)

×
( ∫

Rd
( f ⊗ ḡ)(L(y, η))e−2π iη·ωdη

)
dydω.

Observe that∫
R2d

eiπ A21v·ve−2π iξ ·ve2π iω·(v−η)dvdω = eπ i A21η·ηe−2π iξ ·η,

so that

WA( f, g)(x, ξ) =
∫
Rd

( ∫
R2d

e−iπ A13u·ue2π iu·(x−y)( f ⊗ ḡ)(L(y, η))dudy
)
eπ i A21η·ηe−2π iξ ·ηdη.

Next, we apply∫
R2d

ϕ1(u)ϕ2(y)e
2π iu·x e−2π iu·ydudy =

∫
Rd

( ∫
Rd

ϕ2(y)e
−2π iu·ydy

)
ϕ1(u)e2π iu·xdu

=
∫
Rd

ϕ̂2(u)ϕ1(u)e2π i x ·udu = F−1(ϕ1ϕ̂2)(x)

= (F−1(ϕ1) ∗ ϕ2)(x)

to the inner integral, to get (72). ��
Remark 4.16. Theorem 4.15 states that the class of covariant symplectic matrices is
invariant with respect to left-multiplication by matrices V T

C . Equivalently, the class of
metaplectic Wigner distributions associated to covariant matrices is invariant with respect
to convolutions by kernels in the form �C , C d × d real symmetric matrix.

Remark 4.17. Theorem 4.15 clarifies the roles that the blocks A13 and A21 have in
Wigner metaplectic operators associated to covariant matrices. The block A13 appears
in the convolution factorF(�−A13)(·) and acts on ( f ⊗ḡ)◦L(·, η), whereas A21 produces
the phase factor �A21 .

As we pointed out, covariant matrices play a key part in the theory of pseudodif-
ferential operators, as they belong to the Cohen class. In the following result we prove
an explicit integral formula for metaplectic pseudodifferential operators associated to
covariant matrices.

Proposition 4.18. LetA ∈ Sp(2d,R) be a covariant matrix with decomposition in (70).
Then, for every f ∈ S(Rd) and a ∈ S(R2d), up to a phase factor,

OpA(a) f (x) =
∫
R2d

(F(�C ) ∗ a)(A11x + (Id×d − A11)y, ξ) f (y)e2π iξ ·(x−y)dydξ,

(74)

where the chirp function �C is defined in (23).
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Proof. We use the expression ofWA and Theorem 4.15. Namely, for every f, g ∈ S(Rd),
a ∈ S ′(R2d), up to a unitary factor,

〈OpA(a) f, g〉 = 〈a,WA(g, f )〉 = 〈a, μ(V T
C AFT 2DL)(g ⊗ f̄ )〉

= 〈TL−1F−1
2 μ(V−T

C )a, g ⊗ f̄ 〉,
where we used μ(V T

C )∗ = μ(V−T
C ). Since | det(L)| = 1, we can write

〈OpA(a) f, g〉 =
∫
R2d

F−1
2 μ(V−T

C )a(L−1(x, y))g(x) f (y)dxdy

=
∫
Rd

(∫
Rd

F−1
2 μ(V−T

C )a(L−1(x, y)) f (y)dy

)
g(x)dx

=
〈∫

Rd
F−1

2 μ(V−T
C )a(L−1(x, y)) f (y)dy, g

〉
,

where the integrals must be interpreted in the weak sense. Hence,

OpA f (x) =
∫
Rd

((F−1
2 μ(V−T

C ))a)(L−1(x, y)) f (y)dy. (75)

Using

L−1 =
(
A11 Id×d − A11
Id×d −Id×d

)
, (76)

we compute

OpA f (x) =
∫
Rd

(∫
Rd

(μ(V−T
C )a)(A11x + (Id×d − A11)y, ξ)e2π iξ ·(x−y)dξ

)
f (y)dy

=
∫
R2d

(μ(V−T
C )a)(A11x + (Id×d − A11)y, ξ)e2π iξ ·(x−y) f (y)dydξ

=
∫
R2d

(F(�C ) ∗ a)(A11x + (Id×d − A11)y, ξ)e2π iξ ·(x−y) f (y)dydξ

where in the last step we used the expression of μ(V−T
C ) computed in (28). ��

Remark 4.19. As in Remark 4.17, we stress that (74) sheds light on the role of the matrix
V T
C , in the decomposition of a covariant matrix A, on the pseudodifferential operator

with quantization given by A. Basically, it produces the chirp F�C which acts on the
symbol a via convolution.

To study the solution u = u(x, t) to the Schrödinger equation in (6) we need to know
information about his projection χt in (7).

Lemma 4.2. Consider a covariant matrix A ∈ Sp(2d,R) having block decomposition
(65) and related matrix BA in (66). For χt , t ∈ R, in (7), assume that its inverse
χ−1
t ∈ Sp(d,R), has the d × d block decomposition

χ−1
t =

(
Xt Yt
Wt Zt

)
.
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Set BAt = χ−T
t BAχ−1

t and let At ∈ Sp(2d,R) be the symplectic matrix associated to
BAt . Then, At is the covariant matrix having block decomposition

At =

⎛
⎜⎜⎝

At,11 Id×d − At,11 At,13 At,13

At,21 −At,21 Id×d − AT
t,11 −AT

t,11
0d×d 0d×d Id×d Id×d

−Id×d Id×d 0d×d 0d×d

⎞
⎟⎟⎠ , (77)

with

At,11 = −WT
t Yt − XT

t [A13Yt − A11Zt ] + WT
t [AT

11Yt + A21Zt ],
At,13 = XT

t Wt + XT
t [A13Xt − A11Wt ] − WT

t [AT
11Xt + A21Wt ],

At,21 = −ZT
t Yt − Y T

t [A13Yt − A11Zt ] + ZT
t [AT

11Yt + A21Zt ].

Proof. Plugging BAt = χ−T
t BAχ−1

t into the block decomposition (66) for BA and
using the symplectic properties

WT
t Xt =XT

t Wt ,

ZT
t Yt = Y T

t Zt ,

ZT
t Xt − Y T

t Wt = Id×d

of χ−1
t we get

BAt =
(

At,13
1
2 Id×d − At,11

1
2 Id×d − AT

t,11 −At,21

)
, (78)

where At,11, At,13 and At,21 are defined as in the assertion. Since the covariance of A
is inherited by At , we have that these blocks are exactly the ones defining the block
decomposition of At as a covariant matrix. ��

We can now express the phase-space concentration of the solution u(x, t) to the free
particle equation in terms of A-Wigner distribution.

Example 4.20. (The free particle) We shall prove the formula originally announced in
Part I, see Example 4.9 in [14], formula (126) therein (see also formula (108) in [12]).

In Example 4.9 in [14] we computed the τ -Wigner of the solution u(t, x) to the
Cauchy problem of the free particle equation:

{
i∂t u + �u = 0,

u(0, x) = u0(x),
(79)

with (t, x) ∈ R × R
d , d ≥ 1. Namely, we obtained that

Wτu(t, x, ξ) = WAτ,t u0(x − 4π tξ, ξ), (80)

where the representation WAτ,t is of Cohen class:

WAτ,t f = W f ∗ �τ,t , (81)
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with kernel

�τ,t (x, ξ) = �τ (x + 4π tξ, ξ),

where, for τ �= 1/2, the τ -kernel is given by

�τ (x, ξ) = 2d

|2τ − 1|d e
2π iρ(τ)xξ ,

where ρ(τ) = 2
2τ−1 . The matrix BAτ in (66) cab be computed as

BAτ =
(

0d×d (τ − 1
2 )Id×d

(τ − 1
2 )Id×d 0d×d

)
, (82)

and by (78) (see also Proposition 4.4 in [12]),

BAτ,t = χ−T
t BAτ χ

−1
t =

(
0d×d (τ − 1

2 )Id×d

(τ − 1
2 )Id×d (4π t)(1 − 2τ)Id×d

)
.

The representation (81) can be equivalently written as (cf. (69))

WAτ,t f = W f ∗ F−1�Aτ,t .

Hence, the Aτ,t -Wigner representation computed in (73) with

At,13 = 0d×d , At,11 = (1 − τ)Id×d , At,21 = −(4π t)(1 − 2τ)Id×d

becomes

WAτ,t ( f, g)(x, ξ) =
∫
Rd

f (x + τη)g(x − (1 − τ)η)e−2π i(ξ ·η+2π t (1−2τ)η2)dη,

as desired.

5. Continuity on Modulation Spaces

For many quantizations, OpA is an integral superposition of time–frequency shifts.
Stated differently, these fundamental operators of time–frequency analysis represent the
building blocks of pseudodifferential operators. Concretely, the Weyl quantization of a
pseudodifferential operator with symbol a ∈ S ′(R2d) is given by

Opw(a) =
∫
R2d

â(η,−z)e−iπη·zπ(z, η)dzdη.

On the other hand, if f ∈ Mp,q
m for some m ∈ Mvs and 0 < p, q ≤ ∞, then π(z, η) f ∈

Mp,q
m for all z, η ∈ R

d . This turns out to be one of the main reasons why modulation
spaces appear in the theory of pseudodifferential operators.

In this section, we use the results in the first part of this paper to investigate the
continuity properties of metaplectic pseudodifferential operators on modulation spaces.
Since weighted modulation spaces measure the phase-space concentration of signals, as
well as their decay properties, an investigation of their continuity on these spaces reveals
how the time–frequency concentration of signals changes when a pseudodifferential
operator is applied.

The first result we present involves the explicit expression of the symbol b := (a ⊗
1) ◦ A−1, as in the equality (44) above, when A is totally Wigner-decomposable or
covariant.
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Proposition 5.1. Consider A ∈ Sp(2d,R), a ∈ S ′(R2d) and b = σ ◦ A−1, with
σ = a ⊗ 1 as defined in (41). For every x, ξ, u, v ∈ R

d we can state:

(i) ifA is totally Wigner-decomposable with block decomposition as in Proposition 4.3,
then

b(x, ξ, u, v) = a(AT
33x − AT

23v,−AT
41ξ + AT

11u); (83)

(ii) if A is covariant with block decomposition as in (65), then

b(x, ξ, u, v) = a(x − A13u + (A11 − I )v, ξ + AT
11u + A21v). (84)

Proof. The proof follows by the straightforward calculation of

A−1(x, ξ, u, v)T . (85)

Namely, to get (83) one applies (85) with A−1 as in (54), whereas (84) is obtained
applying (85) with

A−1 =

⎛
⎜⎜⎝
Id×d 0d×d −A13 A11 − Id×d
Id×d 0d×d −A13 A11

0d×d Id×d AT
11 A21

0d×d −Id×d Id×d − AT
11 −A21

⎞
⎟⎟⎠ .

��
For a ∈ S(R2d), define σ := a ⊗ 1 as in (41), and

σ̃ (r, y, ρ, η) = 1(r,ρ) ⊗ ā(y,−η).

For A ∈ Sp(2d,R) we set

b(x, ξ, u, v) = (σ ◦ A−1)(x, ξ, u, v), (86)

b̃(x, ξ, u, v) = (σ̃ ⊗ A−1)(x, ξ, u, v), (87)

c(x, ξ, u, v) = b(x, ξ, u, v)b̃(x, ξ, u, v). (88)

The following result extends Lemma 5.1 in [14] to general symplectic matrices.

Lemma 5.1. Let A ∈ Sp(2d,R), a ∈ M∞,q
1⊗vs

(R2d), 0 < q ≤ ∞ and s ≥ 0. Let b, b̃

and c be defined as in (86), (87) and (88), respectively. Then b, b̃, c are in M∞,q
1⊗vs

(R4d).

Proof. The proof that b and b̃ are in M∞,q
1⊗vs

(R2d) is analogous to that of [14, Lemma

5.1]. In fact, observe 1(y,η) is in M∞,q
1⊗vs

(R2d) for every 0 < q ≤ ∞ and s ≥ 0. For

c = bb̃, if q ≥ 1 we use the product properties for modulation spaces in [13, Proposition
2.4.23], the quasi-Banach case 0 < q < 1 is contained in [26]. ��

Recall the following boundedness result for Weyl quantization, see [23, Theorem
14.5.6], [43] and [44, Theorem 3.1].

Proposition 5.2. If 0 < p, q, r ≤ ∞ with r = min{1, p, q}, s ∈ R, σ ∈ M∞,r
1⊗v|s|(R

2d),

then Opw(σ) : S(Rd) → S ′(Rd) extends to a bounded operator on Mp,q
vs (Rd).

We generalize Proposition 5.2 to metaplectic pseudodifferential operators:
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Theorem 5.3. Consider A ∈ Sp(2d,R) a covariant matrix such that BA in (66) is
invertible. For 0 < p, q ≤ ∞, set r = min{1, p, q}. If a ∈ M∞,r

1⊗vs
(R2d), s ≥ 0, then

OpA(a) : S(Rd) → S ′(Rd) extends to a bounded operator on Mp,q
vs (Rd).

Proof. By [12, Proposition 3.3], F−1�BA ∈ Mr,∞
vs⊗1 for every s ≥ 0, 0 < r ≤ ∞. Since

WA belongs to the Cohen class, for every f, g ∈ S(Rd),

〈OpA(a) f, g〉 = 〈a,WA(g, f )〉 = 〈a,W (g, f ) ∗ F−1�−BA〉
= 〈â,F(W (g, f ))e−iπζ ·BAζ 〉 = 〈âeiπζ ·BAζ ,F(W (g, f ))〉
= 〈a ∗ F−1�BA ,W (g, f )〉 = 〈Opw(a ∗ F−1�BA) f, g〉.

By [2, Proposition 3.1]

‖a ∗ F−1�BA‖M∞,r
1⊗vs

� ‖a‖M∞,r
1⊗vs

‖F−1�BA‖Mr,∞
vs⊗1

.

The assertion follows from [44, Theorem 3.1]. ��
We conclude this section by showing the validity of relations (43) on modulation

spaces.

Theorem 5.4. Consider A ∈ Sp(2d,R), 0 < p ≤ ∞, a ∈ M∞,r
1⊗vs

(R2d), s ≥ 0, r =
min{1, p}, and b, b̃, c defined as in (86), (87) and (88), respectively. For f, g ∈ Mp

vs (R
d),

the following identities hold inMp
vs (R

2d):

WA(Opw,2d(a) f, g) = Opw,4d(b)WA( f, g), (89)

WA( f, Opw,2d(a)g) = Opw,4d(b̃)WA( f, g), (90)

WA(Opw,2d(a) f ) = Opw,4d(c)WA( f ). (91)

Proof. If f ∈ Mp
vs (R

d), then Opw(a) f ∈ Mp
vs (R

d) by [44, Theorem 3.1]. Hence, [12,
Theorem 2.15] says that

WA( f ),WA( f, g),WA(Opw(a) f, g),WA( f, Opw(a)g),WA(Opw(a) f )∈Mp
vs

(R2d).

Similarly, by Lemma 5.1, the symbols b, b̃ and c are in M∞,q
1⊗vs

(R4d) and the right-hand

sides of formulas (89), (90) and (91) are in Mp
vs (R

2d). The equalities (89), (90) and
(91) are obtained by using the same pattern as in the proof of [14, Theorem 5.1], namely
replacing the symplectic matrix Aτ with a general A ∈ Sp(2d,R). ��
Remark 5.5. Observe that the previous result extends [14, Theorem 5.1] to the quasi-
Banach setting 0 < p < 1.

6. Algebras of Generalized Metaplectic Operators

In this section we introduce (quasi-)algebras of FIOs which extend the ones in [8,9].
Recall the definition of a Gabor frame. Given a lattice in the phase-space � = AZ2d ,

with A ∈ GL(2d,R), and a non-zero window function g ∈ L2(Rd), a Gabor system is
the sequence:

G(g,�) = {π(λ)g : λ ∈ �}.
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A Gabor system G(g,�) becomes a Gabor frame if there exist constants 0 < A ≤ B
such that

A‖ f ‖2
2 ≤
∑
λ∈�

|〈 f, π(λ)g〉|2 ≤ B‖ f ‖2
2, ∀ f ∈ L2(Rd). (92)

Given a Gabor frame G(g,�), the Gabor matrix of a linear continuous operator T from
S(Rd) to S ′(Rd) is

〈Tπ(z)g, π(u)g〉, z, u ∈ R
2d . (93)

Our goal: controlling the Gabor matrix of a metaplectic operator T (or more general
one) related to the symplectic matrix χ ∈ Sp(d,R) by

h(μ − χλ), λ, μ ∈ �,

where h is a sequence leaving in a suitable (quasi-)algebra with respect to convolution.
The algebras already studied in [8,9] where �1(�) and �∞

vs
(�), s > 2d. Here we

extend to the quasi-algebras �
q
vs (�), 0 < q < 1, s ≥ 0, enjoying the convolution

property:

�qvs (�) ∗ �qvs (�) ↪→ �qvs (�), 0 < q < 1.

Recall that the Wiener amalgam spaces W (C, L p
vs )(R

2d) is defined in (9) and the
class F I O(χ, q, vs) is defined in Definition 1.2.

The union

F I O(Sp(d,R), q, vs) =
⋃

χ∈Sp(d,R)

F I O(χ, q, vs)

is called the class of generalized metaplectic operators. Similarly to [9, Proposition 3.1]
one can show:

Proposition 6.1. The definition of the class F I O(χ, q, vs) is independent of the window
function g ∈ S(Rd).

Remark 6.2. (i) For q = 1 the original definition of F I O(χ, vs) in [9] was formulated
in terms of a function H ∈ L1

vs
(R2d) instead of the more restrictive condition H ∈

W (C, L1
vs

)(R2d). Though, it turns out that the two definitions are equivalent, see [9,
Proposition 3.1].

(ii) Similarly to q = 1, one could consider the algebra of F I O(χ,∞, vs), s > 2d such
that

|〈Tπ(z)g, π(w)g〉| ≤ 〈w − χ z〉−s, ∀w, z ∈ R
2d . (94)

We shall not treat this case explicitly, but we remark that it enjoys similar properties
to those we are going to establish for the cases above.

Theorem 6.3. Consider T acontinuous linear operatorS(Rd ) → S ′(Rd),χ ∈ Sp(d,R),
0 < q ≤ 1, s ≥ 0. Let G(g,�) be a Gabor frame with g ∈ S(Rd). Then the following
properties are equivalent:

(i) there exists a function H ∈ W (C, Lq
vs )(R

2d), such that the kernel of T with respect
to time-frequency shifts satisfies the decay condition (10);

(ii) there exists a sequence h ∈ �
q
vs (�), such that

|〈Tπ(λ)g, π(μ)g〉| ≤ h(μ − χ(λ)), ∀λ,μ ∈ �. (95)
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Proof. It is a straightforward modification of the proof [8, Theorem 3.1]. ��
We list a series of issues which follow by easy modifications of the earlier results

contained in [8,9], for a detailed proof we refer to [7].

Theorem 6.4. (i) Boundedness. Fix χ ∈ Sp(d,R), 0 < q ≤ 1, s ≥ 0, m ∈ Mvs and let
T be generalized metaplectic operator in F I O(χ, q, vs). Then T is bounded from
M p

m(Rd) to M p
m◦χ−1(R

d), q ≤ p ≤ ∞.
(ii) Algebra property. Let χi ∈ Sp(d,R), s ≥ 0 and Ti ∈ F I O(χi , q, vs), i = 1, 2.

Then T1T2 ∈ F I O(χ1χ2, q, vs).

For the invertibility property, the algebra cases corresponding to the spaces of se-
quences �1

vs
where treated in [24] and [25] (see also earlier references therein). We

extend those arguments to the quasi-Banach setting as follows.

Definition 6.5. Consider B = �
q
vs (�), 0 < q ≤ 1, s ≥ 0. Let A be a matrix on � with

entries aλ,μ, for λ,μ ∈ �, and let dA be the sequence with entries dA(μ) defined by

dA(μ) = sup
λ∈�

|aλ,λ−μ|. (96)

We say that the matrix A belongs to CB if dA belongs to B. The (quasi-)norm in CB is
given by

‖A‖CB = ‖d‖B.

The value dA(μ) is the supremum of the entries in the μ− th diagonal of A, thus the
CB-norm describes a form of the off-diagonal decay of a matrix.

Theorem 6.6. Consider the (quasi-)algebraB above. Then the following are equivalent:

(i) B is inverse-closed in B(�2).
(ii) CB is inverse-closed in B(�2).

(iii) The spectrum B̂ � T
d .

Proof. The algebra case is already proved in [25]. The quasi-algebra case follows by a
similar pattern, since, for 0 < q < 1, it is easy to check that �qvs (�) is a solid convolution
quasi-algebra of sequences. ��

As a consequence, we can state:

Theorem 6.7. The class of Weyl operators with symbols in M∞,q
1⊗vs

(R2d), 0 < q ≤ 1,

is inverse-closed in B(L2(Rd)). In other words, if σ ∈ M∞,q
1⊗vs

(R2d) and Opw(σ) is

invertible on L2(Rd), then (Opw(σ))−1 = Opw(b) for some b ∈ M∞,q
1⊗vs

(R2d).

Proof. It follows the pattern of Theorem 5.5 in [25], using Theorem 6.6 in place of the
corresponding Theorem 3.5 in the above-mentioned paper. ��
Theorem 6.8. (Invertibility in the class F I O(χ, q, vs)) Consider T ∈ F I O(χ, q, vs),

such that T is invertible on L2(Rd), then T−1 ∈ F I O(χ−1, q, vs).

Proof. The pattern is similar to Theorem 3.7 in [8]. We detail the differences. We first
show that the adjoint operator T ∗ belongs to the class F I O(χ−1, q, vs). By Defini-
tion 1.2:

|〈T ∗π(z)g, π(w)g〉| = |〈π(z)g, T (π(w)g)〉| = |〈T (π(w)g, π(z)g)〉|
≤ H(z − χ(w)) = I(H ◦ χ)(w − χ−1z).
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It is easy to check that I(H ◦ χ) ∈ W (C, Lq
vs ) for H ∈ W (C, Lq

vs ), since vs ◦ χ−1 �
vs , and the claim follows. Hence, by Theorem 6.4 (i i), the operator P := T ∗T is in
F I O(Id, q, vs) and satisfies the estimate (95), that is:

|〈Pπ(λ)g, π(μ)g〉| ≤ h(λ − μ), ∀λ,μ ∈ �,

and a suitable sequence h ∈ �
q
vs (�). The characterization for pseudodifferential opera-

tors in Theorem 3.2 [2] says that P is a Weyl operator P = Opw(σ) with a symbol σ in
M∞,q

1⊗vs
(R2d). Since T and therefore T ∗ are invertible on L2(Rd), P is also invertible on

L2(Rd). Now we apply Theorem 6.7 and conclude that the inverse P−1 = Opw(τ) is a
Weyl operator with symbol in τ ∈ M∞,q

1⊗vs
(R2d). Hence P−1 is in F I O(Id, q, vs). Even-

tually, using the algebra property of Theorem 6.4 (i i), we obtain that T−1 = P−1T ∗ is
in F I O(χ−1, q, vs). ��
Theorem 6.9. Fix 0 < q ≤ 1, χ ∈ Sp(d,R). A linear continuous operator T :
S(Rd) → S ′(Rd) is in F I O(χ, q, vs) if and only if there exist symbols σ1, σ2 ∈
M∞,q

1⊗vs
(R2d),

such that

T = Opw(σ1)μ(χ) and T = μ(χ)Opw(σ2). (97)

The symbols σ1 and σ2 are related by

σ2 = σ1 ◦ χ. (98)

Proof. It follows the same pattern of the proof of [9, Theorem 3.8]. The main tool is the
characterization in Theorem 3.2 of [2] which extends Theorem 4.6 in [25] to the case
0 < q < 1. We recall the main steps for the benefit of the reader.

Assume T ∈ F I O(χ, q, vs) and fix g ∈ S(Rd). We first prove the factorization
T = σw

1 μ(χ). For every χ ∈ Sp(d,R), the kernel of μ(χ) with respect to time-
frequency shifts can be written as

|〈μ(χ)π(z)g, π(w)g〉| = |Vg
(
μ(χ)g

)(
w − χ z

)|.

Since both g ∈ S(Rd) and μ(χ)g ∈ S(Rd), we have Vg(μ(χ)g) ∈ S(R2d) (see
e.g., [13]). Consequently, we have found a function H = |Vg

(
μ(χ)g

)| ∈ S(R2d) ⊂
W (C, Lq

vs ) such that

|〈μ(χ)π(z)g, π(w)g〉| ≤ H(w − χ z) w, z ∈ R
2d . (99)

Since μ(χ)−1 = μ(χ−1) is in F I O(χ−1, q, vs) by Theorem 6.8, the algebra property
of Theorem 6.4 (i i) implies that Tμ(χ−1) ∈ F I O(Id, q, vs). Now Theorem 3.2 in [2]
implies the existence of a symbol σ1 ∈ M∞,q

1⊗vs
(R2d), such that Tμ(χ)−1 = Opw(σ1),

as claimed. The rest goes exactly as in [9, Theorem 3.8]. ��
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7. Applications to Schrödinger Equations

The theory developed in the previous sections finds a natural application in quantum
mechanics. In particular, we focus on the Cauchy problems for Schrödinger equations
announced in the introduction, cf. (4), with Hamiltonian of the form (5):

H = Opw(a) + Opw(σ),

where Opw(a) is the Weyl quantization of a real homogeneous quadratic polynomial
on R

2d and Opw(σ) is a pseudodifferential operator with a symbol σ ∈ M∞,q
1⊗vs

(R2d).
Proposition 5.2 (see also Theorem 6.4 (i) with χ = I d or [44, Theorem 3.1]) gives

Corollary 7.1. If σ ∈ M∞,q
1⊗vs

(R2d), s ≥ 0, 0 < q ≤ 1, then the operator Opw(σ) is

bounded on all modulation spaces M p
vs (R

d), for q ≤ p ≤ ∞. In particular, Opw(σ) is
bounded on L2(Rd).

This implies that the operator H in (5) is a bounded perturbation of the generator
H0 = Opw(a) of a unitary group (cf. [42]), and H is the generator of a well-defined
(semi-)group.

Theorem 7.2. Let H be the Hamiltonian in (5) with homogeneous polynomial a and
σ ∈ M∞,q

1⊗vs
(R2d), 0 < q ≤ 1, s ≥ 0. Let U (t) = eit H be the corresponding propagator.

Then U (t) is a generalized metaplectic operator for each t ∈ R. Namely, the solution of
the homogenous problem iut + Opw(a)u = 0 is given by a metaplectic operator μ(χt )

in (7), and eit H is of the from

eit H = μ(χt )Opw(bt )

for some symbol bt ∈ M∞,q
1⊗vs

(R2d).

Proof. The proof of the above result was shown for q = 1 in [9] and it easily extends
to any 0 < q < 1. In fact, the main ingredients to use are the invariance of M∞,q

1⊗vs
(R2d)

under metaplectic operators, plus the properties of that symbol class: the boundedness
on modulation spaces and the algebra property of the corresponding Weyl operators. ��
Corollary 7.3. Assume σ ∈ M∞,q

1⊗vs
(R2d), 0 < q ≤ 1, s ≥ 0, m ∈ Mvs . If the initial

condition u0 is in M p
m(Rd), with q ≤ p ≤ ∞, then u(t, ·) ∈ Mp

m◦χ−1(R
d) for every

t ∈ R. In particular, if m ◦ χ−1 � m for every χ ∈ Sp(d,R) (as for vs ) the time
evolution leaves M p

m(Rd) invariant: the Schrödinger evolution preserves the phase space
concentration of the initial condition.

Proof of Corollary 7.3. It follows from Theorem 7.2 and the representation in Theo-
rem 6.9 that eit H ∈ F I O(χ, q, vs), so that the claim is direct consequence of Theo-
rem 6.4 (i). ��

We can now study the Wigner kernel of eit H , namely k(z, w), w, z ∈ R
2d , such that

W (eit Hu0)(z) =
∫

k(t, z, w)Wu0(w) dw,

and possible generalizations to A-Wigner transforms.
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For sake of clarity, we start with a symbol σ in the Hörmander class S0
0,0(R

2d), that

is σ ∈ C∞(R2d) such that for every α ∈ N
d there exists a Cα > 0 for which

|∂ασ (z)| ≤ Cα, ∀z ∈ R
2d .

We recall that S0
0,0(R

2d) can be viewed as the intersection of modulation spaces [2]

S0
0,0(R

2d) =
⋂
s≥0

M∞,q
1⊗〈·〉s (R

2d), 0 < q ≤ ∞.

Let A be a covariant, shift-invertible matrix. Actually, when working in the L2 setting,
the assumption of shift-invertibility will be not essential in the sequel. We may argue in
terms of the Cohen class Q� in Theorem 4.14:

WA( f ) = W ( f ) ∗ � = Q�( f )

where � is related to A by (68), (66).
Let us define �t (z) = �(χt (z)) and denote byAt the corresponding covariant matrix,

such that WAt = Q�t , see Proposition 4.4 in [12] for details. Note that in the case of
the standard Wigner transform we have W = WA = WAt for every t , since � = δ.

The following proposition is the Wigner counterpart for eit H of the
almost-diagonalization in Definition 1.2.

Proposition 7.4. Under the assumptions above, for z ∈ R
2d , t ∈ R,

WA(eit Hu0)(z) =
∫
R2d

kA(t, z, w)(WAt u0)(w) dw, (100)

where for every N ≥ 0,

kA(t, z, w)〈w − χ−1
t (z)〉2N

is the kernel of an operator bounded on L2(R2d).

We need the following preliminary result, cf. Proposition 4.1, formula (96) in [12].
To benefit the reader, we report here the proof.

Lemma 7.1. Under the assumptions above,

WA(μ(χt ) f )(z) = WAt f (χ
−1
t z).

Proof. From [13, Proposition 1.3.7] we have

W (μ(χt ) f )(z) = W f (χ−1
t z), f ∈ S(Rd),

so that for any � ∈ S(R2d), f ∈ S(Rd),

Q�(μ(χt ) f )(z) = [� ∗ W (μ(χt ) f )](z)
=
∫
R2d

W (μ(χt ) f )(u)�(z − u) du

=
∫
R2d

W f (χ−1
t u)�(χt (χ

−1
t z − χ−1

t u)) du

=
∫
R2d

W f (ζ )�(χt (χ
−1
t z − ζ )) dζ

= (W f ∗ �t )(χ
−1
t z) = Q�t f (χ

−1
t z).
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For � ∈ S ′(R2d) we may use standard approximation arguments. Since in our case
Q�(μ(χt ) f ) = WA(μ(χt ) f ) and Q�t f (χ

−1
t z) = WAt f (χ

−1
t z), this concludes the

proof. ��
Proof of Proposition 7.4. From Theorem 7.2 we have

WA(eit Hu0) = WA(μ(χt )Opw(bt )u0).

In view of Lemma 7.1

WA(eit Hu0)(z) = WAt (Opw(bt )u0)(χ
−1
t z).

We now apply formula (91) to obtain

WAt (Opw(bt )u0) = Opw(ct )(WAt u0)

where the symbol ct ∈ S0
0,0(R

4d) is given by (88). Summing up

WA(eit Hu0)(z) = Opw(ct )(WAt u0)(χ
−1
t z). (101)

Writing h(t, z, w) for the kernel of Opw(c),

WA(eit Hu0)(z) =
∫

h(t, χ−1(z), w)(WAt u0)(w) dw,

that is

kA(t, z, w) = h(t, χ−1z, w).

Now, observe that for every N ≥ 0,

hN (t, z, w) = 〈z − w〉2Nh(z, w)

is the kernel of bounded operator on L2(Rd), see [14, Lemma 5.3]. Hence the operator
with kernel

kA(t, z, w)〈χ−1(z) − w〉2N = hN (t, χ−1(z), w)

is bounded as well. ��
Definition 7.5. Fix A ∈ Sp(2d,R) covariant and shift-invertible. For f ∈ L2(Rd) we
defineWFA( f ), theA-Wigner wave front set of f , as follows. A point z0 = (x0, ξ0) �= 0
is not in WFA( f ) if there exists a conic open neighbourhood �z0 ⊂ R

2d of z0 such that
for every integer N ≥ 0

∫
�z0

〈z〉2N |WA f (z)|2dz < ∞.

In the case of the standard Wigner transformWA = W , we write for shortWFA( f ) =
WF( f ). Note that WFA( f ) is a closed cone in R

2d \ {0}. We have WFA( f ) = ∅ if
and only if f ∈ S(Rd), cf. Proposition 4.7 in [12] and the arguments in the sequel.

First, we shall give the following extension of Theorem 1.6 in [14] concerning the
τ -Wigner case.
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Theorem 7.6. Consider a ∈ S0
0,0(R

2d). Then, for every f ∈ L2(Rd),

WFA(Opw(a) f ) ⊂ WFA( f ).

Proof. Arguing exactly as in the proof of Theorem 1.6 in [14] and replacing τ -Wigner
with A-Wigner distributions, we apply the identity

WA(Opw(a) f ) = Opw(c)WA f

with the symbol c as in (88) and using (91) in Theorem 5.4 we obtain the inclusion. ��
Theorem 7.7. For u0 ∈ L2(Rd) we have

WFA(eit Hu0) = χt (WFAt (u0)).

The proof follows the lines of the corresponding one in Theorem 1.6 [14], basing
on the preceding Proposition 7.4, in particular on the identity in (101), see the sketch
below. For the Wigner distribution the previous result reads as follows:

Corollary 7.8. For u0 ∈ L2(Rd),

WF(eit Hu0) = χt (WF(u0)).

Proof of Theorem 7.7. Fix t ∈ R, z0 ∈ R
2d\{0}, �z0 small conic neighbourhood of

z0, ζ0 = χt (z0), �ζ0 = χt (�z0) corresponding conic neighbourhood of ζ0. Assume
ζ0 /∈ WFAt (u0), that is, for every N ≥ 0,

∫
�ζ0

〈ζ 〉2N |WAt u0(ζ )|2dζ < ∞.

We want to prove that z0 /∈ WFA(eit Hu0), that is, for every N ≥ 0,

I :=
∫

�z0

〈z〉2N |WA(eit Hu0)(z)|2dz < ∞.

By applying the basic identity (101) in the proof of Proposition 7.4 we obtain

I =
∫

�z0

〈z〉2N |[Opw(ct )WAt u0](χ−1
t z)|2dz

and after the change of variables z = χtζ , observing that 〈χtζ 〉 � 〈ζ 〉:

I �
∫

�ζ0

〈ζ 〉2N |Opw(ct )WAt u0|2 dζ.

We are therefore reduced to the pseudodifferential case, cf. the preceding Theorem 7.6.
Arguing again as in the proof of Theorem 1.6 in [14] and using the assumption, we obtain
WFA(eit Hu0) ⊂ χt (WFAt (u0)). Similarly, one can prove the opposite inclusion. ��
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8. Appendix. Comparison with the Hörmander Wave Front Set

Corollary 7.8 is similar to other results in the literature, concerning propagation of micro-
singularities for the Schrödinger equation, cf. [6,8–11,13,16,27,29,30,32–35,38,39,45,
47]. They mainly concern the global wave front set WFG( f ) of Hörmander [28]. It is
interesting to compare the different microlocal contents of WFA( f ) and WFG( f ).
We recall the definition of WFG( f ), following the notation and the equivalent time–
frequency setting in [13].

Definition 8.1. Consider f ∈ L2(Rd) and z0 ∈ R
2d \ {0}. We say that z0 /∈ WFG( f ) if

there exists a conic neighbourhood �z0 ⊂ R
2d of z0 such that for every integer N ≥ 0

∫
�z0

〈z〉2N |Vg f (z)|2 dz < ∞, (102)

where we fix g ∈ S(Rd) \ {0} in the definition of the STFT Vg f .

For f ∈ S ′(Rd), g ∈ S(Rd) the STFT in (102) is a continuous function on R
d ,

see for example Corollary 1.2.19 in [13], hence Definition 8.1 extends to f ∈ S ′(Rd).
Though, for f ∈ S ′(Rd) the A-Wigner transform is defined only as a distribution in
S ′(R2d) and a preliminary smoothing of WA( f ) would be needed to adapt Definition 7.5
of WFA( f ). For simplicity, we shall remain here in the L2 framework. As before, we
assume A ∈ Sp(2d,R) covariant and shift-invertible, then:

Theorem 8.2. For all f ∈ L2(Rd) we have

WFG( f ) ⊂ WFA( f ). (103)

The proof requires the following preliminary issue.

Lemma 8.1. Fix g ∈ S(Rd) \ {0} and consider A ∈ Sp(2d,R) covariant and shift-
invertible. There exists �A ∈ S(R2d), depending on A and g such that for every f ∈
L2(Rd)

|Vg f |2 = �A ∗ WA f. (104)

Proof. We start with the well-known identity

|Vg f |2 = IWg ∗ W f, (105)

where IWg(z) = Wg(−z), see for example (156) in [14]. If A is covariant, we have
from (67)

WA f = σA ∗ W f (106)

with σA given by (68) σA(z) = F−1(e−π iζ ·BAζ ). If we define

τA(z) = F−1(eπ iζ ·BAζ )

we then have, for all h ∈ L2(R2d),

τA ∗ σA ∗ h = h,

hence from (105)

|Vg f |2 = IWg ∗ τA ∗ σA ∗ W f = �A ∗ W f,
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with �A = IWg ∗ τA.
To prove that �A ∈ S(R2d), we observe IWg ∈ S(R2d), in view of the regularity

property of the Wigner distribution, and τ∗ : S(R2d) → S(R2d), since for every
h ∈ S(R2d) we have

eπ iζ ·BAζ h(ζ ) ∈ S(R2d).

This concludes the proof. ��
Proof of Theorem 8.2. The pattern is similar to the the proof of Theorem 5.5 in [14],
after replacing Lemma 5.4 in [14] with our present Lemma 8.1. ��
Corollary 8.3. Let A ∈ Sp(2d,R) as before and f ∈ L2(Rd). We have f ∈ S(Rd) if
and only ifWFA( f ) = ∅.
Proof. If f ∈ S(Rd), then WA( f ) ∈ S(R2d) in view of Proposition 3.1 (i i). The esti-
mates in Definition 7.5 are obviously satisfied for any z0 ∈ R

2d\{0}, hence WFA( f ) =
∅. In the opposite direction, assume WFA( f ) = ∅. Theorem 8.2 yields WFG( f ) = ∅
and this implies f ∈ S(R2d), cf. [13]. Alternatively, one can follow the pattern of
Theorem 5.4 in [14], using again Lemma 8.1. ��

Comparing now WFG( f ) and WFA( f ), we first observe that the definition of
WFG( f ) can be extended to f ∈ S ′(Rd), cf. [13], whereas Definition 7.5 refers to
f ∈ L2(Rd). With some more technicalities the definition of WFA( f ) can be extended
to f ∈ S ′(Rd) as well. The substantial difference between WFG( f ) and WFA( f )
is that the inclusion in (103) is strict in general, since WFA( f ) includes a ghost part
depending on A, as already observed in [14].

To better understand this issue, we will use the Shubin class of symbols Hm , m ∈ R,
defined by the estimates

|∂αa(z)| ≤ cα〈z〉m−α, z = (x, ξ) ∈ R
2d . (107)

Further, assume a ∈ Hm
cl , that is a(z) has the homogeneous principal part am(z):

am(λz) = λmam(z), λ > 0,

such that, cutting off am(z) for small |z|, we have for some ε > 0, a − am ∈ Hm−ε .
Define the characteristic manifold

� = {z ∈ R
2d , am(z) = 0, z �= 0}.

Theorem 8.4. Assume that a ∈ Hm
cl is globally elliptic, i.e. � = ∅. Then for all f ∈

L2(Rd),

WFA(Opw(a) f ) = WFA( f ).

Proof. The inclusion WFA(Opw(a) f ) ⊂ WFA( f ) follows from the easy variant of
Theorem 7.6 for the class Hm . To obtain the opposite inclusion under the assumption of
global ellipticity, we construct as in [40] a parametrix of Opw(a). Namely, there exists
a b ∈ H−m

cl such that

Opw(b)Opw(a) = I + Opw(r),
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where I is the identity operator and the symbol r is inS(R2d), hence Opw(r) : S ′(Rd) →
S(Rd) is a regularizing operator. Therefore,

f = Opw(b)Opw(a) f − Opw(r) f, ∀ f ∈ L2(Rd),

with Opw(r) f ∈ S(Rd). Invoking Theorem 7.6

WFA( f ) = WFA(Opw(b)Opw(a) f ) ⊂ WFA(Opw(a) f ).

This completes the proof. ��
Theorem 8.4 shows a similarity of WFA( f ) with WFG( f ). Though, in the non-

elliptic case the classical microlocal inclusion

WFG(u) ⊂ WFG(Opw(a)u) ∪ �, u ∈ S ′(Rd),

fails for WFA(u). Consider for simplicity the case v = Opw(a)u ∈ S(Rd), so that for
the solutions of Opw(a)u = v we have

WFG(u) ⊂ � (108)

and test the same inclusion for WFA(u), u ∈ L2(Rd), as follows. For simplicity, we
will consider only the Wigner wave front WF(u) and consider in dimension d = 1 the
operator

Pu = xD2xu = Opw(a)u

where the homogeneous principal part of a ∈ H4
cl is given by

a4(x, ξ) = x2ξ2

so that � is the union of the x and ξ axes

� = {(x, ξ) ∈ R
2, x = 0 or ξ = 0, (x, ξ) �= (0, 0)}. (109)

We now address to the example at the end of [14], where f, g ∈ L2(Rd) are defined
such that

Df = iδ − i f ′ (110)

xg = −i − ih, (111)

with f ′ ∈ S(R), h ∈ S(R) and

WF f = WFG f = {(x, ξ) ∈ R
2, x = 0, ξ �= 0},

WFg = WFGg = {(x, ξ) ∈ R
2, ξ = 0, x �= 0}.

By using (110), (111), a simple calculation shows that P f ∈ S(R), Pg ∈ S(R) and
therefore for u = f + g we have Pu ∈ S(R). Then for � as in (109) we obtain
WFGu = � as expected from (108). Instead, the non-linearity of the Wigner transform
(see [14]) gives

WFu = R
2 \ {0}.

To sum up, the appearance of ghost frequencies in the Wigner wave front is natural in
Quantum Mechanics, but it contradicts Hörmander’s result for micro-ellipticity.
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