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Abstract

We investigate how much can be learnt about four types of primordial non-Gaussianity (PNG) from small-scale
measurements of the halo field. Using the QUIJOTE-PNG simulations, we quantify the information content
accessible with measurements of the halo power spectrum monopole and quadrupole, the matter power spectrum,
the halo–matter cross spectrum, and the halo bispectrum monopole. This analysis is the first to include small,
nonlinear scales, up to k 0.5 h Mpcmax

1= - , and to explore whether these scales can break degeneracies with
cosmological and nuisance parameters making use of thousands of N-body simulations. We perform all the halo
measurements in redshift space with a single sample comprised of all halos with mass >3.2× 1013 h−1 Me. For
local PNG, measurements of the scale-dependent bias effect from the power spectrum using sample variance
cancellation provide significantly tighter constraints than measurements of the halo bispectrum. In this case
measurements of the small scales add minimal additional constraining power. In contrast, the information on
equilateral and orthogonal PNG is primarily accessible through the bispectrum. For these shapes, small-scale
measurements increase the constraining power of the halo bispectrum by up to 4×, though the addition of scales
beyond k≈ 0.3 hMpc−1 improves constraints largely through reducing degeneracies between PNG and the other
parameters. These degeneracies are even more powerfully mitigated through combining power spectrum and
bispectrum measurements. However, even with combined measurements and small-scale information, equilateral
non-Gaussianity remains highly degenerate with σ8 and our bias model.

Unified Astronomy Thesaurus concepts: Cosmology (343); Non-Gaussianity (1116); Observational cosmology
(1146); Large-scale structure of the universe (902)

1. Introduction

In the coming decade, a range of deep and wide photometric
and spectroscopic galaxy surveys, e.g., the Rubin Observatory,
DESI, SPHEREX, Euclid, and Roman (LSST Science
Collaboration et al. 2009; Laureijs et al. 2011; Doré et al.
2014; Spergel et al. 2015; DESI Collaboration et al. 2016), will
produce catalogs detailing the properties of tens of billions of
galaxies. Through analyzing the spatial distribution of these
galaxies, and how this distribution evolves over time, we will
advance our understanding in many areas of physics, from
constraining the properties of neutrinos to characterizing dark
energy to clarifying a range of tensions hinted at in current
cosmological observations (see, e.g., Dvorkin et al. 2019;
Green et al. 2019; Slosar et al. 2019; Di Valentino et al. 2021,
for overviews).

A particularly exciting prospect is what can be learnt about
the primordial universe. Information on the primordial physics

can be extracted by studying the statistical properties of the
primordial perturbations. An especially powerful avenue is
through primordial non-Gaussianity (PNG), which charac-
terizes how the distribution of the primordial perturbations
deviates from Gaussianity. Through constraining PNG we help
characterize the physics of the early universe, for example by
learning about the field content, strength of interactions, and
more (Maldacena 2003; Alishahiha et al. 2004; Creminelli &
Zaldarriaga 2004; Senatore et al. 2010); see, e.g., Chen et al.
(2007) and Meerburg et al. (2019) for overviews. This paper is
the third in a series of papers (Coulton et al. 2023; Jung et al.
2022) focused on examining what we can learn about PNG
from measurements of the large-scale structure of the universe
(LSS) from nonlinear scales. This work focuses on an
examination of assessing how much information is gained by
combining binned bispectrum measurements of the halo field
with power spectrum measurements. In our companion paper,
G. Jung et al. (2022, in preparation), we complement this work
with a modal bispectrum analysis at higher redshift, demon-
strating our conclusions apply more broadly, and we develop a
quasi-maximum-likelihood estimator, demonstrating near-opti-
mal and unbiased compression of the bispectrum. These pair of
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papers bring our analysis one step closer to modeling
observations.

As cosmic microwave background (CMB) measurements
(Komatsu & Spergel 2001; Hinshaw et al. 2013; Planck
Collaboration IX 2020) have limited the primordial universe to
be weakly non-Gaussian, it is instructive to search for
primordial bispectra, the harmonic equivalent of three-point
functions. The bispectrum is the lowest-order deviation from a
Gaussian distribution (Taylor & Watts 2001; Babich 2005), and
for many classes of theoretical models the bispectrum will be
the most sensitive probe of PNG. Searches for primordial
bispectra typically focus on searching for theoretically
motivated bispectra, known as templates or shapes, as this
allows for the most statistically powerful and physically
informative inferences (Babich 2005; Komatsu et al. 2005;
Yadav et al. 2007). In this work, we focus on four shapes of the
primordial bispectrum: local, equilateral, orthogonal-LSS and
orthogonal-CMB (the last two are two approximations for a
bispectrum that arises in the effective field theory of inflation;
Cheung et al. 2008a, 2008b; Senatore et al. 2010). We refer the
reader to Achúcarro et al. (2022) for a recent overview of the
theoretical and observational status of PNG.

Biased tracers of the LSS, such as galaxies or halos, are
potentially very powerful probes of PNG as they exhibit a
novel signature of PNG, a large-scale scale dependence in the
bias, that is neither seen in the matter field nor generated by
many other physical processes.13 Specifically, Dalal et al.
(2008) found that in the presence of local PNG the bias of halos
on large scales, which otherwise is expected to be approxi-
mately constant, scales as ∼1/k2. These results were subse-
quently expanded to show that other types of PNG can also
induce scale-dependent biases, with the degree of the power-
law behavior determined by the squeezed limit of the
primordial bispectrum, B(k1, k, k), with k? k1 (Matarrese &
Verde 2008; Schmidt & Kamionkowski 2010). This feature
provides new observational avenues for constraining PNG as
measurements of the power spectrum can now be used to
constrain PNG. The power of this can be dramatically
enhanced through the use of sample variance cancellation
techniques, which in principle allow types of PNG with scale-
dependent biases to be measured to a level limited only by the
shot-noise level (Seljak 2009; Castorina et al. 2018; Chan et al.
2019).

Given the prominent ∼1/k2 feature of local non-Gaussian-
ity, several groups have attempted to measure this using
measurements of quasars and from spectroscopic galaxy
surveys, such as the Baryon Oscillation Spectroscopic Survey
(BOSS; Slosar et al. 2008; Ross et al. 2013; Leistedt et al.
2014; Mueller et al. 2021; Cabass et al. 2022a; D’Amico et al.
2022b).14 While the best of these constraints (Cabass et al.
2022a; D’Amico et al. 2022b) is not yet competitive with
CMB-based constraints (Planck Collaboration IX 2020), con-
straints from a broad range of surveys are forecast to provide
significantly tighter constraints on local PNG that should
surpass CMB-based constraints (see Figure 5 of Achúcarro
et al. 2022, for a compendium of forecasts). For local PNG,
future possible detections will likely not be limited by sample

variance but rather the shot noise of the samples and the
difficulty of understanding large-scale systematic effects (Ross
et al. 2011; Pullen & Hirata 2013; Rezaie et al. 2021). Note,
however, that as has been highlighted in Barreira (2020,
2022a, 2022b), converting any detection of PNG to a specific
amplitude of the primordial bispectrum may be challenging
without advances in our understanding of galaxy formation.
The importance of this in ruling out single field inflationary
models depends on the exact value predicted by single field
inflation; whether it is zero or slow-roll suppressed continues to
be subject to a theoretical discussion (Pajer et al. 2013;
Matarrese et al. 2021).
On the other hand, measuring other interesting shapes of

PNG, such as equilateral or orthogonal, which do not generate
strong scale-dependent biases, is generally significantly more
challenging for LSS measurements than equivalent CMB
measurements. These constraints are driven by measurements
of the LSS bispectrum and are highly challenging as the late-
time nonlinear evolution generates similar bispectra to the
primordial ones (see, e.g., Gil-Marín et al. 2015a, 2015b, 2017;
Slepian et al. 2017a, 2017b, for details of the measurements of
nonlinear bispectrum with BOSS). Recently there have been
several new developments. First Cabass et al. (2022b) and
D’Amico et al. (2022b) have used effective field theory
methods to robustly produce constraints on these types of PNG
from measurements of the BOSS bispectrum. However, just
applying these methods to larger volumes will likely be
insufficient to vastly improve upon CMB constraints and, as is
discussed in Philcox et al. (2022), pushing these theoretical
models deeper into the nonlinear regime is highly complex. A
second avenue, presented in Baumann & Green (2022), notes
that, given the inherently different physics of the processes
generating these effects, it may be possible to use field-level
analyses or higher-order correlation functions to overcome
these degeneracies.
Our work seeks to address two questions. First, we aim to

quantify how much information on local, equilateral, and
orthogonal non-Gaussianity can be gained by extending
redshift-space measurements of the halo power spectrum and
bispectrum to small, nonlinear scales. To do this we use the
suite of QUIJOTE-PNG simulations presented in Coulton et al.
(2023). By using simulations instead of perturbative methods
we have an accurate (dark-matter-only) theoretical model for
the nonlinear regime, and so can estimate the information
content available in smaller scales. While our approach
imposes several assumptions, for example on the form of the
halo bias, it allows us to assess an upper limit on the
information content to guide future works. Second, we are
interested in assessing whether there is more information about
local PNG beyond that accessible to power spectrum measure-
ments of the scale-dependent bias. de Putter (2018) first
investigated this question analytically, finding that for samples
with moderate or low sample number densities there is minimal
extra information beyond scale-dependent bias. Our simula-
tions allow us to test this result and relax the perturbative
modeling assumptions. This work builds on the first papers in
this series (Coulton et al. 2023; Jung et al. 2022), where we
generated a large suite of simulations containing PNG,
developed and validated optimal compressed estimators, and
used a range of methods to assess the information accessible
with power spectrum and bispectrum measurements of the
matter field. Our work is part of a large community interest in

13 Neutrinos also lead to a scale-dependent bias, e.g., Chiang et al. (2018).
However, this can be distinguished due to the different k scaling.
14 Note that other complementary methods that use the mass function (Lucchin
& Matarrese 1988; Matarrese et al. 2000; Scoccimarro et al. 2004; Shandera
et al. 2013; Sabti et al. 2021) have also been used to constrain local PNG.
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using small scales to constrain PNG (e.g., Uhlemann et al.
2018; Friedrich et al. 2020; Biagetti et al. 2021, 2022; Andrews
et al. 2022; Giri et al. 2022).

This paper is structured as follows. In Section 2 we outline the
primordial bispectra considered in this work and briefly review
scale-dependent bias effect, and in Section 3 we describe the
simulations used in this work. Then, in Section 4 we overview the
implementations of our power spectrum and bispectrum measure-
ments, presenting the resulting measurements subsequently in
Section 5. Next, in Section 6 we describe the details of our Fisher
forecast setup, including two methods we use to enhance the
robustness of our results. Finally, we explore the information
content of our measurements in Section 7, before presenting our
conclusions in Section 8. In Appendix A we examine the stability
of the derivatives estimates and, finding the standard methods to
be unconverged, implement two methods that mitigate this issue,
thereby allowing robust constraints. In Appendix B we examine
the stability of our results with respect to variations in the number
of simulations used to estimate the covariance matrix.

2. Primordial Non-Gaussianity and Scale-dependent Bias

The focus of this paper is primordial bispectra, defined as

k k k

k k k B k k k2 , , , 1
1 2 3

3 3
1 2 3 1 2 3p d

áF F F ñ

= + + F
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where Φ(k) is the primordial potential. In this work we consider
the same four types of primordial bispectrum simulated and
discussed in Coulton et al. (2023). In the following, we define
the relevant primordial bispectra and refer the reader to Chen’s
(2010), Meerburg et al.’s (2019), and Achúcarro et al.’s (2022)
reviews on the physics of PNG and to Coulton et al. (2023) for
more details on the bispectra considered here.
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where PΦ(k1) is the primordial power spectrum and f X
NL is the

amplitude of non-Gaussianity for shape X. The orthogonal-LSS
bispectrum is the more physically motivated shape, and so we
primarily discuss this orthogonal shape; see Senatore et al.
(2010) for a detailed discussion. However, the orthogonal-
CMB shape exhibits interesting novel features that we also
discuss.
Here we briefly give an overview of the scale-dependent bias

effect; we refer the reader to Slosar et al. (2008), Matarrese &
Verde (2008), Desjacques et al. (2011), and Schmidt &
Kamionkowski (2010) for more detailed descriptions. The halo
density contrast, δh(k|M, z), is defined as

x
x
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where nh(x|M, z) is the halo counts of halos with mass M at
redshift z and n M z,h¯ ( ) is its mean. In the absence of PNG and
on the largest scales, the halo overdensity is related to the
matter overdensity, δm(k), by
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h

h
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d
¶
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characterizes the response of the halo counts

to the large-scale matter fluctuation and ò(z) is a shot-noise term
from the discrete nature of the halos.
PNG can introduce a coupling between large- and small-

scale modes. The most well-known example is local PNG, in
which small-scale modes, ks, of the primordial potential, are
modulated by long-wavelength modes, kl as (e.g., Komatsu &
Spergel 2001):

k k kf1 . 9s s lNL
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This coupling means that the halo overdensity is no longer just
a function of the large-scale matter overdensity, but also the
primordial potential at that point. Hence,
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having used in the second line the relation between the late-time
matter overdensity and the primordial potential, δm(k, z)=α(k, z)
Φ(k), where α(k, z) is the matter transfer function. (Note the
transfer function in the first line is to simplify the definition of bf.)
Unlike b1, the new bias term, bf, depends on scale.
For halos we can use the peak-background split method,

assuming a universal mass function (Press & Schechter 1974;
Sheth et al. 2001) to compute the relation between bΦ, b1, and
the primordial bispectrum BΦ(k1, k2, k3). In Schmidt &
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Kamionkowski (2010) this was found to be
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where δc≈ 1.686 is the spherical collapse threshold, and M
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the variance of the top-hat smooth matter field:
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2s is the smoothed variance in the presence of PNG:
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In these last equations, WM(k) is the Fourier transform of the
top hat, the radius of which is set by the halo mass such that
R M3 3

4
= r

p
¯ and Pδ(k) is the matter power spectrum.

For the case of local PNG kW
2s ~( ) constant and, given that

on large scales α(k, z)∼ k2, this means that bΦ∝ 1/k2. For
orthogonal-CMB k kW

2s ~( ) , which leads to bΦ∝ 1/k, while
for equilateral and orthogonal-LSS we have k kW

2 2s ~( ) and
so bΦ∝ 1. Note that as the fNL

local correction to the power
spectrum, on currently observable scales, is constrained to be
small, the dominant fNL

local correction to the halo power
spectrum is the bΦ (i.e., the 1/k2 term) and not the b 2

F (1/k4)
term. In fact, the b 2

F term only becomes important once a
detection of fNL

local is made.
A particularly powerful technique to boost the constraints

using the scale-dependent bias effect is sample variance
cancellation (Seljak 2009). The intuition underpinning this
method is as follows: measurements of scale-dependent bias
are most powerful on the largest scales, however on these
scales only a very small number of modes are measurable. This
means that the sample variance on such measurements is very
large and limits the constraining power on PNG. However, one
can utilize the fact that the bias coefficient relating the halo/
galaxy field, δh, to the underlying matter field, δm, is
deterministic, i.e., mode-by-mode δh(k)= b(k)δm(k)+ n(k) (as
in Equation (10)). Thus, if we can access the information
contained in the ratio of halo and matter fields, we can perform
a measurement in which the stochasticity from the matter field
cancels: this is powerful as this means the sample variance
terms cancel, leaving only the shot-noise terms n(k). In the
idealized zero shot-noise case, this means that the bias
coefficient could be measured arbitrarily well and thus PNG
could be detected with arbitrarily high significance. In practice
this technique will likely be performed using multiple tracers
with different biases (e.g., Seljak 2009) as the three-dimen-
sional (3D) matter field is not directly observable. However, a
range of works have proposed using CMB lensing (Schmittfull
& Seljak 2018), kinetic Sunyaev–Zel’dovich measurements

(Münchmeyer et al. 2019), and other probes to perform sample
variance cancellation with proxies for the 3D matter field.
There is one complication with using measurements of scale-

dependent bias to constrain PNG: the analytic form for the
scale-dependent bias coefficient, bf in Equation (11), is only
valid for biased tracers with universal mass functions. This is
not true for observables such as quasars or galaxies, as has been
explicitly explored in, e.g., Slosar et al. (2008), Reid et al.
(2010), and Barreira (2020, 2022b). A conservative approach to
this issue would be to marginalize over this parameter, as is
discussed in Cabass et al. (2022a) and Barreira (2022b),
however the prior is very important and is currently poorly
understood. Note this marginalization is necessary as breaking
this degeneracy from the data itself is very challenging, as is
discussed in, e.g., Barreira (2022b). In applying a simulation-
based approach in a self-consistent way, we implicitly assume
that we know the bias relation, Equation (11), perfectly. Our
results should therefore be understood as theoretical limits. The
multiplicative uncertainty in the bias relation for realistic
tracers can be folded in after the fact. We discuss this further in
the conclusions, but leave this extension to follow-up studies.

3. Simulations

In this work we use the QUIJOTE-PNG N-body simulations
presented in Villaescusa-Navarro et al. (2020) and Coulton
et al. (2023), and refer the reader to these papers for a detailed
description. The simulations were run with GADGET-III
(Springel 2005) and the halos were identified using the
friends-of-friends algorithm (Davis et al. 1985). In our analysis
we consider a single population of halos that is comprised of all
halos with M> 3.2× 1013 h−1 Me, which corresponds to a
mean tracer density n z 0 1.55 10 h Mpc4 3 3= = ´ - -¯ ( ) . We
use the 15,000 simulations run at the fiducial cosmology, with
the parameters summarized in Table 1, and the simulations
designed for estimating derivatives, summarized in Table 2,
with each parameter perturbed above and below its fiducial
value. There are 500 simulations per parameter for the positive
perturbation and 500 for the negative perturbation. Note that in
this work we restrict our analysis to the parameters in Table 2,
rather than including all the parameters varied in the QUIJOTE
suite, which include w, Ωb, ∑mν, due to the convergence
challenges discussed in Section 6. This does not significantly
limit our results as the other parameters are, with the exception
of Ωb, extensions to Lambda cold dark matter (ΛCDM) that
would likely be constrained separately, while Ωb would be far
better measured by the CMB (Planck Collaboration VI 2020).
The statistical probes, described in Section 4, are all Fourier

space statistics, and so to measure these we need to preprocess
the particle data and halo catalogs. First we assign them to a
grid with 5123 voxels using the “cloud-in-cell” (CIC) mass-
assignment scheme (Hockney & Eastwood 1981). To compute
the overdensity field (δm and δh for the matter and halos,

Table 1
The Key Properties of the 15,000 Simulations Used to Compute Our Covariance Matrices

Ωm ΩΛ Ωb σ8 h ns Box Size Nparticles

1
3 ICs Mass Resolution

(Mpc h−1) (Me h−1)

0.3175 0.6825 0.049 0.834 0.6711 0.9624 1000 512 2LPTPNG 6.56 × 1011

Note. Note these simulations have Gaussian primordial initial conditions, i.e., f 0X
NL = for all shapes, X. See Villaescusa-Navarro et al. (2020) for more details on the

simulations.
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respectively) we subtract the mean value from the field and
then normalize by the mean. Note this mean is computed for
each realization, an important subtlety for the halo field. The
Nyquist frequency of the grid is 1.61 hMpc−1, which is much
larger than the maximum scale used in our analysis,
k= 0.5 hMpc−1, and thus dramatically reduces the effects of
aliasing; see, e.g., Sefusatti et al. (2016) or Appendix A of
Foreman et al. (2020), for a discussion of aliasing effects on the
bispectrum.

For the halo field we move from real space to redshift space
by displacing the halo positions using the line-of-sight
component of the halo velocity, which is computed as a mass
weighting of the halo’s particles. We are free to choose the
direction of the line of sight and we make three grids by
projecting along the x, y, and z axes. While these three grids
share the same real-space configuration, they are not perfectly
correlated in redshift space, especially on small scales, and so
we can use them to further reduce the Monte Carlo uncertainty.
We then Fourier transform the grid and deconvolve the CIC
window function (see Jing 2005; Sefusatti et al. 2016) and then
measure our statistical probes.

The halo catalogs used in this work will be available at
https://quijote-simulations.readthedocs.io/en/latest/png.html
on acceptance of the paper.

4. Statistical Probes

In this work we combine four statistics: the matter power
spectrum, the halo power spectrum monopole and quadrupole,
the halo–matter cross power spectrum and the bispectrum
monopole. The combined analysis of the matter, halo–matter,
and halo power spectrum will allow us to exploit the sample
variance cancellation method described in Section 3. In this
section we describe how we compute these statistics. The
matter field statistics are computed as in Coulton et al. (2023)
and so here we described the computation of the halo and the
halo–matter cross terms.

4.1. Halo and Matter Power Spectrum

The halo redshift-space power spectrum depends both on the
magnitude of the wavevector and the angle to the line of sight,

μ= k · n, hence Phh(k, μ). To extract information available in
redshift space we compute the power spectrum monopole,
P khh

0 ( ), and quadurople, P khh
2 ( ), defined as
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where Ni¢ is the estimator normalization and we use the same
binning as for the matter power spectrum. We use the public
Pylians3 code15 to compute these quantities. Additionally, we
subtract the shot-noise term, n1 ¯, from the halo power
spectrum monopole.
Likewise, we estimate the matter–halo cross power spectrum

monopole as
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As is discussed in Section 6, we limit the wavenumbers of
the matter power spectrum and matter–halo cross power
spectrum to k< 0.1 hMpc−1.

4.2. Halo Bispectrum

The halo bispectrum is defined as
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The redshift-space distortions mean that, like the halo power
spectrum, the halo bispectrum also depends on the orientation
of the modes relative to the line of sight. In this work we
consider only the bispectrum monopole, which is defined
simply averaging over all angles. Thus we use the same
estimator as for the matter bispectrum:
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The halo bispectrum monopole contains a contribution from
the discrete nature of the halo field. This term is known as the
shot-noise term, and in this work we remove it. The shot-noise
term is computed as
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where the implicit limits are the same as for the bispectrum
estimator and n̄ is the mean halo number density. We use the
halo power spectrum and mean halo number density as

Table 2
The Parameter Values of the Simulations Used to Compute the Numerical

Derivatives

Parameter Lower Value Upper Value

Ωm,0 0.3075 3275
h 0.6511 0.6911
ns 0.9424 0.9824
σ8 0.819 0.849
fNL

Local −100 +100

fNL
Equil −100 +100

fNL
Orth LSS‐ −100 +100

fNL
Orth CMB‐ −100 +100

δb −0.035 0.035
M M hmin

1-( ) 3.1 × 1013 3.3 × 1013

Note. For each desired derivative, we use 500 simulations with the parameter
perturbed above and 500 perturbed below its fiducial value. Note δb is used to
compute the super sample covariance and Mmin is used to compute the
derivative with respect to the halo bias.

15 https://github.com/franciscovillaescusa/Pylians3
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measured on that realization to compute this term. This
removes the sample variance arising from the Poisson term;
note, however, it does not remove the shot-noise contribution
to the bispectrum variance.

5. Power Spectrum and Bispectrum Measurements

In this section, we explore how the power spectrum and
bispectrum statistics are impacted by PNG using the simula-
tions summarized in Table 2.

5.1. Power Spectrum

In Figure 1 we plot the derivative of the halo power spectrum
with respect to the four shapes of PNG. For local, the scale-
dependent bias effect, discussed Section 2, leads to an
enhancement of the large-scale power spectrum, as
expected on these scales as k−2 (see, e.g., Schmidt &
Kamionkowski 2010, for an analytical description of this
behavior). No scale-dependent bias effect is observed for the
other shapes of PNG. For equilateral and orthogonal-LSS this
is expected and is consistent with previous works and theory
(e.g., Scoccimarro et al. 2012; Sefusatti et al. 2012; Wagner &
Verde 2012). However, the orthogonal-CMB PNG is expected
to exhibit a scale-dependent bias that scales as k−1.

This apparent inconsistency with expectations for the
orthogonal-CMB case arises as, for the halo sample used in
this work, the coefficient for the scale-dependent bias term,
Equation (11), is very small. When considering other samples
the coefficient can be much larger and then the scale-dependent
bias can be seen. In Figure 2, we show the ratio of the
halo–matter power spectrum to the matter power spectrum

for our original sample, with a minimum mass Mmin =
M h3.2 1013 1´ -
 , and a second sample with M 1min = ´

M h1014 1-
 . On large scales this ratio isolates the linear bias

term. For the second sample we see a scale-dependent PNG
bias contribution for both the local and orthogonal-CMB cases.
The small correction seen for our original sample is in fact
consistent with previous work: Schmidt & Kamionkowski
(2010) found that for a sample of halos at z = 0.0 and
M= 1× 1013 Me h−1 the scale-dependent bias for orthogonal-
CMB PNG is ∼1% of the linear halo bias and more than an
order of magnitude smaller than the equivalent local shape bias.
For such small values of bf the scale-dependent bias, on the
scales considered here, is swamped by the changes to b1
induced by PNG.

5.2. Halo Bispectrum

In Figure 3 we investigate the signatures of PNG in the
bispectrum at z = 0.0. On the largest scales the bispectra are all
very well measured, and we have tested that these are well
described by a simple linear bias times the PNG contribution to
the matter bispectrum; see Coulton et al. (2023) and Jung et al.
(2022) for more details of the matter bispectrum. Moving to
smaller scales we see that the halo bispectrum derivatives tend
to scale as ∼k−3; interestingly, this scaling is significantly
weaker than the one of the matter bispectrum, which scales as
∼k−4. These results are qualitatively consistent with the
theoretical models investigated in, e.g., Sefusatti (2009) and
Baldauf et al. (2011), as well as previous simulations (Sefusatti
et al. 2012; Tellarini et al. 2016), though we push to smaller
scales in this work. Second, we notice that the bispectra are
very noisy, much more so than the matter bispectra. The high

Figure 1. The derivatives of the halo monopole, halo quadrupole, and halo–matter monopole power spectra with respect to the amplitudes of the four types of
primordial non-Gaussianity. These are computed at z = 0.0 and the halo field contains all halos with M > 3.2 × 1013 Me h−1. The error bars denote the error on the
mean. The large response of local non-Gaussainity arises due to the well-known, scale-dependent bias effect (see Section 2). The response of the power spectra to
other types of non-Gaussianity is significantly weaker and largely featureless.
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levels of noise in the bispectrum derivatives, even after
averaging over 500 simulations, leads to challenges when
performing a Fisher forecast, and we explore the details of this
in Section 6 and Appendix A.

To further understand the source of noise we investigate the
properties of the bispectrum at the fiducial cosmology of
QUIJOTE. In Figure 4 we compare the squeezed slice of the halo
bispectrum with and without shot-noise subtraction to the
matter bispectrum, scaled by the linear bias. Note that the linear
bias was estimated by computing the ratio of the halo–matter
cross power spectrum to the matter auto power spectrum. We
see that on all scales the halo bispectrum without the shot-noise
correction is significantly larger than the other bispectra,
reaching a factor of ∼10 on the smallest scales. This large shot
noise acts as a source of effective noise in our analysis. When
computing the derivatives shown in Figure 3 we use
simulations with matched initial conditions: the amplitudes
and phases of the initial conditions are identical and the only

difference is the sign of the PNG correction term; see Section
IIIA in Coulton et al. (2023) for more details. For the matter
field, using matched simulations means the effective noise
terms cancel very effectively, leading to highly accurate, low-
noise derivative measurements (note that this is further aided as
noise in the matter field is inherently small on these scales).
The halo field is more complicated as the slightly different
evolution of the two simulations used to estimate the derivative
( fNL=+100 and fNL=−100) leads to slight differences in the
number and positions of the halos. These slight differences
mean that the cancellation of the shot noise is not perfect and
some of the large noise leaks in and masks the small
bispectrum signals.
Note that once the shot noise has been subtracted, we find a

good agreement between the scaled-matter bispectrum and the
halo bispectrum on the largest scales. This is in agreement with
perturbation theory results for the largest scales (Baldauf et al.
2011). On smaller scales we see large differences between the
scaled-matter and shot-noise-subtracted bispectra: this is also
expected, as moving to smaller scales higher-order bias terms
become important, and beyond the nonlinear scale,
k∼ 0.08Mpc h−1, the perturbative description breaks down.

6. Fisher Forecasting and the Challenges of Convergence

The basic Fisher forecast methodology is very similar to
Coulton et al. (2023) and so we outline the key steps and refer
the reader to that work for more details.
We assume that the power spectra and bispectra likelihood

can be approximated by a Gaussian distribution. Thus the
Fisher information is given by

F
O k

C
O k

, 20IJ
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where O is the data vector (composed of all or subsets of the
power spectra and bispectrum measurements), θI are the
parameters of interest, and C is the covariance matrix. The
derivatives are estimated using central finite differences with a
two-point stencil and the covariance matrix is estimated from
the simulations.
We focus our analysis on the four PNG bispectrum

amplitudes, fNL
Local, fNL

Equil., fNL
Orth. LSS‐ , and f ;NL

Orth. CMB‐ four
cosmological parameters, Ωm, ns, σ8, and h; and one parameter
controlling the halo bias, Mmin. The bias parameter, Mmin,
corresponds to variations in the halo catalog mass threshold,
and to compute derivatives of this we generate and process in
an identical manner catalogs with a minimum halo mass
3.1× 1013 Me h−1 and 3.3× 1013 Me h−1 (see, e.g., Hahn
et al. 2020, for a discussion of this parameterization). This bias
parameter is in our setup roughly equivalent to the standard
linear bias model. While the bias model presented here is
overly simplistic it is still useful as a first estimate of the
importance of the bias terms and for estimating the total
accessible information. A more thorough analysis of the impact
of bias parameters, which could be implemented in our
simulations by populating the halos with a halo occupation
distribution (HOD) and investigating the constraints on the
HOD parameters, is left to future work. It is expected that
including more bias parameters will lead to further degradation
of the constraints, as is discussed in D’Amico et al. (2022a) and
Philcox et al. (2022).

Figure 2. The average ratio of the halo–matter power spectrum to the matter–
matter power spectrum for two halo mass limited samples at z = 0.0. The scale-
dependent bias terms can be isolated through measurements of this ratio on
large scales. These results show how the amplitude of the scale-dependent bias
terms responds to changes in the halo sample. Interestingly, we only see
evidence of the expected scale dependence in the orthogonal-CMB shape for
the higher-mass sample; see the text for a detailed discussion.
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We use 14,500 simulations at the QUIJOTE fiducial
cosmology to compute the covariance (the remaining 500 are
used to compute the super sample covariance, SSC, terms).
Unlike for the computation of the derivatives, we only include

projections along one line of sight in the simulations used to
estimate the covariance matrix. This is to avoid biasing the
covariance matrix with correlations between the correlated
lines of sight. In Section 7.3 we investigate the importance of
the different contributions to the covariance matrix, which is
composed of Gaussian contributions, non-Gaussian terms from
the connected three-, four-, and six-point functions, and the
SSC (see, e.g., Kayo et al. 2013; Chan & Blot 2017; Gualdi
et al. 2018; Sugiyama et al. 2020).
In this work our primary focus is to investigate the

information of the halo field. As a consequence, we limit the
information included in the matter field to only the largest scale
modes k< 0.1 hMpc−1. Through this choice we can assess the
benefits of sample variance cancellation (through the matter
field on the largest scales) as will be used in future surveys
through multitracer analyses (Slosar 2009), with CMB lensing
(Schmittfull & Seljak 2018) or with the kinetic Sunyaev–
Zel’dovich effect (Münchmeyer et al. 2019). The k cut used
here is larger than would be accessible through some of these
methods, however this compensates for the small size of our
box. While using multiple tracers is a powerful method to
employ sample variance cancellation, we do not use that here
as, given our mass resolution, it is difficult to construct a
second tracer field from our halo catalog with an observation-
ally relevant tracer density.
An important part of Fisher forecasts with numerically

estimated covariance matrices and derivatives is that the Monte
Carlo noise in these components is sufficiently small so that it
does not bias the forecasts. In Appendix A we examine the
stability of derivative estimates and in Appendix B we
investigate the stability of the covariance matrix. We find that
our derivatives are not converged, leading to biased forecasts
when using the standard way to compute the Fisher matrix. To
mitigate this issue we implement two complementary methods

Figure 3. The response of the halo equilateral (top), folded (middle), and
squeezed (bottom) bispectrum slices to the four different types of primordial
non-Gaussianity at z = 0. The dotted lines denote regions where the bispectrum
is negative and the error bars are the error on the mean of our simulations,
which is equivalent to the error that would be measured with a volume of ∼500
Gpc3 h−3. At small scales, especially for the equilateral slice, the measurements
are significantly impacted by noise, despite using 500 simulations with
matched seeds. This large noise can bias our Fisher estimates, and in
Appendix A we demonstrate two methods to mitigate this bias. The method
used in the rest of the paper mitigates the noise by fitting a smooth function, via
a Gaussian process, to the measurements. The thick shaded contour shows the
resulting smoothed derivatives.

Figure 4. The squeezed bispectrum computed at the fiducial cosmology
(Table 1). We compare the halo bispectrum to the matter bispectrum rescaled
by the linear bias, b1, and to the halo bispectrum once we have removed the
shot-noise contribution. The large shot-noise contribution to the bispectrum
leads to the large noise seen in our bispectrum derivatives; see Figure 3.
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to obtain stable and robust results. This is an important, though
technical, aspect of our forecast, and we provide a detailed
description in Appendix A. The bispectrum results presented in
the remainder of the paper use the “smoothed” (Gaussian
process) method to ensure robust forecasts.

7. Constraining Power of the Halo Field

In this section we explore the importance of degeneracies,
small-scale information, and the different contributions to the
covariance matrix when quantifying the amount of information
on PNG embedded into the halo power spectrum and
bispectrum. Our analysis is performed at z = 0.0 and uses
modes up to k 0.5 h Mpcmax

1= - except for quantities invol-
ving the matter field, for which we use k 0.1 h Mpcmax

1= - . As
discussed in Section 6, we use low kmax measurements of the
matter field to emulate observations that use the sample
variance cancellation method and assess how much information
they contain. The results in this section primarily focus on the
local, equilateral, and orthogonal-LSS shapes as these most
closely approximate physically generated bispectra.

7.1. Parameter Degeneracies

In Figure 5 we explore the parameter constraints obtainable
from the bispectrum and power spectrum measurements. First,
focusing on the power spectrum constraints, we see that,
compared to the information available in measurements of the
matter field power spectrum discussed in Coulton et al. (2023)
and Jung et al. (2022), the halo power spectrum contains much
more information on PNG. This is largely due to the scale-
dependent bias effects. The information in scale-dependent bias
can be more efficiently extracted with sample variance
cancellation techniques, as originally proposed in Seljak
(2009). In our analysis, we attempt to incorporate this effect
by using both the monopole, matter monopole, and halo–matter
cross power spectra. It can be seen that including these other
power spectrum measurements vastly improves the constraints
on PNG, particularly for local non-Gaussianity.

Moving to the bispectrum constraints, we see that the
constraints on local PNG are worse for the bispectrum than for
the power spectrum, highlighting the importance of scale-
dependent bias measurements. As expected, for the equilateral
and orthogonal shapes the bispectrum measurements are
significantly more informative than the power spectrum
measurements. We see that there are strong parameter
degeneracies for the bispectrum measurements of PNG,
especially with the effective bias parameter, Mmin, and the
amplitude of clustering, σ8. The degradation of the constraints
due to marginalization can be seen more clearly in Figure 6(b),
where it can be seen that the bispectrum marginalization
increases the constraints by more than 100%.

Finally, we see that combining the power spectrum and
bispectrum measurements provides significant improvements
for all the parameters except local PNG, where the gains are
more modest. These improvements come from two related
effects: the power spectrum and bispectrum exhibit different
degeneracies between the PNG parameters and the ΛCDM
parameters; and, second, through the complementary nature of
the two probes the subsets of the parameters are better
constrained by different probes, and when combined this
improved constraining power propagates to the other para-
meters due to the strong degeneracies.

7.2. Are Small-scale Measurements Informative?

To further understand the information content, it is useful to
examine which scales contribute to the constraining power. In
Figure 6(a) we explore the constraining power in measurements
of the halo field only as a function of scale. For the
unmarginalized constraints, those obtained when measuring
only the amplitude of one type of PNG, the information in the
power spectrum changes very slowly with the inclusion of new
modes, whereas the bispectrum constraints improve rapidly
with kmax up to k 0.3 h Mpcmax

1~ - , after which the gains are
more modest. This shows that, like the matter field (Coulton
et al. 2023; Jung et al. 2022), there are minimal gains from
pushing to very small scales—at least up to the maximum
scale considered here. When considering marginalized
constraints the situation is somewhat different: the power
spectrum and bispectrum constraints both show significant
improvements up to k 0.4 h Mpcmax

1~ - . This improvement
arises as the inclusion of these scales reduces the degen-
eracies and improves the constraints on the degenerate
parameters. Thus, when we consider the joint analysis of the
power spectrum and bispectrum, we see that the comple-
mentarity of the probes helps reduce the degradation
of the constraints from marginalization. Interestingly, we
find the joint marginalized constraints for local and
orthogonal-LSS show minimal degradation from margin-
alization, and thus the joint case mirrors the unmarginalized
case where there is minimal information in the small-scale
modes k 0.3 h Mpc−1.
Next we repeat this analysis for the case where we include

large-scale (k< 0.1 hMpc−1) measurements of the matter auto
and matter–halo cross power spectra. By comparing with
Figure 6(a), we see the power of sample variance cancellation
(which occurs on large scales through the inclusion of the
matter field) as the constraints improve by a factor of ∼5. Note
that, in the unmarginalized case, sample variance cancellation
improves the power spectrum constraint for equilateral, despite
the absence of a scale-dependent bias feature. This occurs as
equilateral non-Gaussianity leads to a small shift in the linear
bias on large scales; see Figure 2. As we cannot predict the
linear bias coefficient, this information cannot be accessed in
practice. This effect is completely degenerate with halo bias so
when we marginalize over the bias model the constraints
dramatically degrade. The evolution with kmax otherwise
mirrors the halo-only analysis: the unmarginalized power
spectrum constraints improve weakly with the inclusion of
small-scale modes, while the marginalized case shows
significant improvements as the small-scale modes, up to
k 0.3 h Mpcmax

1~ - , are included. Likewise, the joint analysis
of both probes also shows only modest improvements with
kmax.
To contextualize these results, in Figure 7 we compare the

information available in the joint power spectrum and
bispectrum analysis to the information available in the
primordial fields. There are several interesting features. First
the constraints on local PNG on the largest scales are better in
the late-time than in the primordial universe. This result is
easily explained as the information encoded in the scale-
dependent bias, which drives the constraints on the largest
scales, actually encodes information from small scales: the
formation of a halo is inherently controlled by these modes and
the information of these small-scale modes is transferred to the
halo bias. Note that we discuss the challenging issue of
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marginalizing over bf in our concluding remarks (Section 8).
Next, we can see a quantification of the saturation of the
constraints: in the primordial space these improve at least as

fast as kmax
3
2 (Kalaja et al. 2021), whereas the late-time

improvement is drastically reduced. This saturation was also
seen in the matter field (Coulton et al. 2023) and in a similar
manner arises as the signal-to-noise ratio of the probes, shown
in Figure 8, improves slowly. We discuss the origin of this
saturation in the next section.

7.3. Sensitivity to Modeling of the Covariance Matrix

The covariance matrix of our probes can be written as

C C C C , 21ij ij ij ij
Gaus. non Gaus. SSC= + + ( )‐

where the three terms are the Gaussian (or disconnected), the
non-Gaussian (or connected), and super sample covariance
(SSC) contributions. While the contribution of the Gaussian
term (see Appendix B in Coulton et al. 2023, for explicit

Figure 5. A comparison of the constraining power in the halo power spectrum monopole and quadrupole, the matter power spectrum, the halo–matter power spectrum
monopole, and the halo bispectrum. This analysis is performed at z = 0.0 with a maximum scale of k 0.5 h Mpcmax

1= - , except for the matter field, for which we only
include modes up to k 0.1 h Mpcmax

1= - . These results are for a 1 Gpc3 h−3 volume at z = 0.0 for tracers with a number density 1.55 × 10−4 h3 Mpc−3. The contours
show the 2σ constraints. These results demonstrate the sensitivities and different degeneracies’ directions for each of the probes.
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expressions) is straightforward to calculate analytically, the
remaining two terms are complex and typically need to be
estimated from simulations (see, e.g., Kayo et al. 2013; Chan &
Blot 2017; Gualdi et al. 2018; Sugiyama et al. 2020). Given the
large size of our data vector, with 2370 elements for the joint
bispectrum and halo–matter power spectrum analysis, we

require at least 2370 simulations in order for the estimated
covariance matrix to be invertible. From Appendix B we see
that we in fact need at least 3000 for our forecast constraints to
be converged at the 10% level.
Generating thousands of simulations is computationally very

expensive, and hence we investigate the necessity of including

Figure 6. An examination of how the constraining power for power spectrum and bispectrum measurements vary as a function of the maximum scale used in the
analysis. (a) Halo field only. (b) The halo field statistics combined with measurements of the large-scale (k−1) matter power spectrum and halo–matter cross power
spectrum. The solid lines correspond to the 1σ constraining power when no marginalization is performed, the dashed–dotted line includes marginalization of the
cosmological and bias parameters, and the dotted line corresponds to marginalization of cosmological and bias parameters and the other PNG shapes. These are
computed at z = 0, with the same tracer as in Figure 5. These results demonstrate the value of including scales beyond the perturbative regime, k  0.1 h Mpc−1. The
inclusion of the large-scale matter field, Figure 6(b), to the halo-field-only results, Figure 6(a), highlights the power of sample variance cancellation methods.
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the non-Gaussian and SSC terms. We compute the SSC terms
using the separate-universe method described in Li et al.
(2014). We use 1000 simulations (500 with a large-scale
overdensity mode and 500 with a large-scale underdensity
mode; see Appendix B in Coulton et al. 2023 for explicit

formulae). This work builds on the results from many previous
works (Chan & Blot 2017; Chan et al. 2018; Barreira 2019;
Biagetti et al. 2022), which have found that the non-Gaussian
and SSC terms can be the dominant contribution to the
covariance matrix, by propagating the impact of these terms
into the parameter constraints.
The parameter constraints obtained when only considering

subsets of the covariance matrix are shown in Figure 9. As is
expected given the large contribution of the non-Gaussian terms
shown in Chan & Blot (2017) and Biagetti et al. (2022), we see
that only accounting for the Gaussian terms can lead to a ∼100%
error on the resulting parameter constraints. Interestingly, our
results are qualitatively similar to those reported in de Putter
(2018) and Flöss et al. (2022), where a perturbative treatment of
the leading non-Gaussian terms was performed. Note that this
factor is significantly smaller than the equivalent factor for power
spectrum and bispectrum measurements of the matter field
(Coulton et al. 2023): this is because the shot-noise contribution
to the halo field covariance matrix dominates on small scales and
reduces the significance of the non-Gaussian terms. It can also be
seen that the off-diagonal terms play an equally important role to
the diagonal terms and lead to reductions, as well as increases, in
the parameter constraints. These reductions occur as the power
spectrum measurements act as an ancillary statistic and can
remove effective noise in the bispectrum; see Biagetti et al. (2022)
and Jung et al. (2022) for a more detailed description.

Figure 7. A comparison of the information in the primordial fields (dashed) to
that accessible with joint measurements of the matter and halo power spectra
and the halo bispectrum monopole (solid lines denote the unmarginalized
constraints and the dotted are the marginalized constraints). The margin-
alization includes the marginalization of the ΛCDM parameters, the bias
parameter, and the other PNG templates. Note, however, that we only
marginalize over one of the orthogonal templates rather than both as these are
two different approximations of the same physical bispectrum.

Figure 8. The cumulative signal-to-noise ratio (S/N) of the combined halo and
matter power spectra, the bispectrum, and the combination of all the probes. At
small scales the modes become increasingly correlated, meaning that the

increase in S/N is significantly less than the naive scaling of k
3
2 .

Figure 9. The impact of various components of the covariance matrix to the
joint power spectrum and bispectrum parameter constraints. The constraints are
normalized by the error obtained by the full covariance matrix (i.e., including
all three terms in Equation (21)). While the non-Gaussian contributions to the
covariance matrix are very important for parameter constraints, the super
sample covariance terms are not; this is seen as the red and green symbols
overlap entirely for most parameters (for clarity we have enlarged the green
symbols).
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Finally, we see that, similar to the matter field, the SSC terms
generally only lead to small changes in the parameter
constraints. This arises as squeezed bispectrum configurations,
which are important for our parameter constraints, are
minimally impacted by the SSC terms (Chan et al. 2018;
Barreira 2019). Given the scalings of the SSC term with
volume (see, e.g., Li et al. 2014, for a discussion), the relative
contribution of this term is not expected to become more
important for larger volumes.

8. Conclusions

In this paper we have used numerical simulations to quantify
the information on PNG accessible with measurements of the
halo power spectrum, matter power spectrum, halo–matter
cross spectrum, and halo bispectrum. For the first time we
explore the information content of the halo field including
nonlinear scales and the full, non-Gaussian covariance matrix.

First, for the sample considered here, we find that the scale-
dependent bias feature contains almost all of the information on local
PNG accessible with power spectrum and bispectrummeasurements.
Thus, when using sample variance cancellation techniques, only
measurements of the large-scale power spectrum are needed—
especially as there is minimal degeneracy with the other parameters
considered here. These results reinforce the analytical results of de
Putter (2018), who found that, for tracer number densities below
n few 10 h Mpc3 3 3~ ´ - -¯ , the bispectrum and trispectrum con-
tains minimal additional information. Interestingly, when compared
to the primordial field, the scale-dependent bias feature only contains
information equivalent to k≈ 0.15 hMpc−1, indicating that alter-
native late-time statistical probes (such as those discussed in, e.g.,
Uhlemann et al. 2018, Friedrich et al. 2020, Biagetti et al.
2021, 2022, Andrews et al. 2022, and Giri et al. 2022) may be able
to provide additional information.

Second, for equilateral and orthogonal-LSS PNG, which have
very weak scale-dependent bias features, we find that bispectrum
measurements provide more constraining power than the power
spectrum. However, both shapes exhibit strong degeneracies with
the cosmological and bias parameters, especially equilateral. For the
orthogonal-LSS shape, these degeneracies are largely broken as
smaller scale information is included or through combining the
bispectrum measurements with the power spectrum measurements.
Yet this is not the case for the equilateral shape, highlighting the
challenge of measuring this shape with bispectrum measurements.

Similar to the results found for the matter bispectrum
(Coulton et al. 2023; Jung et al. 2022), we find that for the local
and orthogonal-LSS shapes the information in the bispectrum
seems to saturate at k 0.35 h Mpcmax

1» - . For the matter
bispectrum this occurred due the large non-Gaussian contribu-
tions to the covariance matrix. For the halo bispectrum it occurs
due to the contribution from shot noise, which dominates on
small scales. This suggests that more information may be
accessible in the halo field, and therefore the galaxy field, if the
shot noise were suppressed (e.g., for a higher density tracer).
Additionally, we find that the SSC contribution to the
covariance is negligible, generalizing the results of the
squeezed limit bispectrum found in Barreira (2019).

The key limitation of our local PNG analysis is that we did not
consider the impact of marginalizing over bf (Equation (10)),
which is important as the constraints from scale-dependent bias are
sensitive only to the product bffNL. Our constraints are entirely
driven by the scale-dependent bias effect and we would not be able
to break the degeneracy between bf and fNL with the bispectrum

measurements. Thus it would be conservative to interpret our
results as constraints for bffNL. While this degeneracy would not
impact our ability to detect the existence of local PNG, it would
complicate any interpretation of the specific value. The specific
value would rely on the assumptions used in modeling or
maginalizing bf, which depend upon the properties of the specific
tracer. A trivial demonstration of this point was seen for orthogonal-
CMB PNG: this type of PNG produces a 1/k scale-dependent bias
but for the tracer considered here the associated bias coefficient is
close to zero. This is a trivial case as for our halos the bias
parameter can be computed with reasonable accuracy; however, it
highlights how small bias coefficients can mask the PNG signals.
Moradinezhad Dizgah et al. (2021) explored how the choice of
priors in marginalizing over bf impact constraints and how the
addition of bispectrum measurements affect this degeneracy.
Informative bf priors allow strong fNL inferences, but care must
be taken to avoid biased results (Moradinezhad Dizgah et al. 2021).
This issue is discussed in more depth in Barreira (2022b). In this
work, we have also neglected relativistic effects, which can
introduce similar features (Bruni et al. 2012; Jeong et al. 2012;
Camera et al. 2015; Castorina & Dio 2022), though these can be
differentiated via the different redshift evolution.
Similarly, an important and substantial limitation of our

equilateral and orthogonal analysis is our bias model. Our bias
model effectively only includes the leading bias term and
neglects all higher-order biases, which is a gross simplification.
We also investigated two variations on our bias models. First
we considered replacing the halo mass cutoff, Mmin, with a
linear bias parameter b1. We found that using b1 leads to very
similar constraints to using the halo bias parameter, which
arises as the two impact our statistics, in the ranges relevant for
our bispectrum constraint, in a similar manner. The second test
involved fitting constraints without any bias modeling. When
we fit all the parameters jointly the contours only marginally
widened when including the bias parameters, largely due to the
large degeneracies with cosmological parameters discussed
above. However, if we fix the cosmological parameters,
including the bias parameter, it doubles the equilateral
constraint, while leaving the local constraint largely
unchanged. The constraints presented here would likely be
further degraded when marginalizing over a set of realistic bias
uncertainties, especially tidal biases; thus, we view our results
as a “best case” estimate. In future work we will analyze this in
more detail, by for example using a HOD to marginalize over
more realistic biases, as was considered in Hahn & Villaescusa-
Navarro (2021). Further, it would be highly interesting to
consider different halo mass samples. Unfortunately, the small
number of objects present in our simulations means that we
cannot further divide our halo catalog without increasing the
convergence issues faced in this analysis.
A technical challenge of this work arose due to the large shot

noise found in the halo bispectrum, which makes it difficult to
accurately measure the bispectrum derivatives. This issue is
examined in detail in Appendix A, where we ensure that our
results were robust by implementing two methods to mitigate
the impact of this noise: first through removing the noise by
smoothing with a Gaussian process, and second by using a
newly developed method to estimate the Fisher information
(W. Coulton & B. Wandelt 2022, in preparation). Without
including these mitigation methods our forecast constraints
would be biased too small by a factor of >2! This difficulty
highlights the challenges that shot noise from halos (and
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galaxies) poses for analyses exploiting small-scale information
and, more generally, the need to carefully examine the
convergence of numerical derivatives.
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Appendix A
Derivative Convergence Analysis

One method of verifying the convergence is to investigate
whether the resulting Fisher information, and estimated
parameter constraints, Fi ii

2 1s = - , are stable to variations in
the number of simulations used. In Figure 10 we explore the
stability of the bispectrum constraints. We find that the
constraints show large variations as the number of simulations
is varied and the constraints scale roughly like the square root
of the number of derivative simulations. This implies that the
resulting constraints are not converged and not reliable.

The reason for this lack of convergence is the large noise in
the derivatives, visible in Figure 3. We can understand this
behavior by computing the expectation of the standard Fisher
information estimator:
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where we have ignored any noise in the covariance matrix. We
see that the Fisher information is biased high due to the
covariance of the mean of the derivatives. Hence the parameter
constraints, which depend on the inverse, are biased low. The
covariance in the derivatives decreases as we utilize more
simulations, and hence the bias decreases monotonically as the
number of simulations increases.

To generate robust constraints we need to mitigate this noise,
and in the following sections we discuss two such methods.

A.1. Smoothed Derivatives

One method of removing the impact of noise would be to fit a
function through the derivatives and use this in the Fisher forecast.
By eye it is suggestive that, for most of the configurations and

PNG shapes seen in Figure 3, the measured derivatives could be
described by a smooth function. Unfortunately, it is challenging to
write down a function that captures the full shape over all the
scales (perturbative models are not able to capture the range of
scales considered here).
As an alternative approach we explored using a Gaussian

process (GP) to perform a nonparametric estimation of the
underlying function; see Rasmussen & Williams (2006) for a
review of GPs. In this approach we treat the measured
derivatives as coming from a stochastic process, in this case
a zero-mean GP, where we additionally use the measured
variance of each point to assign a measurement uncertainty to
each point. The intuition with this approach is the following:
instead of specifying a full functional form, as in parametric
approaches, we ask, given a set of data points, what can be
inferred about the value of the function at another value. In this
stochastic process framework the relation of the data at one
point to any other point (observed or not) is given by the
correlation structure of the process; thus, information is
contained in the structure of the GP covariance matrix, i.e.,
the structure of the function is implicitly determined by the data
points and the correlations among them. Given our data points
(the derivatives from the simulations) and their noise, we fit for
the properties of this Gaussian covariance matrix. The noise
assigned to each point is vital as it allows the GP to smooth out
the noise: it estimates what smooth functions are consistent
with the data points, given their measurement noise. Note that
we could have fit the GP directly to the simulations at θ, θ+ δθ
and θ− δθ including dependence on the parameters in the GP.
Then, we can use the GP to estimate the derivatives.
Empirically it was found that fitting the GPs to the derivatives
directly worked better. We attribute this difference to sample
variance cancellation: our simulations have matched initial
seeds so when we compute the derivatives by central
differencing the majority of the sample variance cancels. By
fitting the GP directly to the simulations at θ, θ+ δθ and θ− δθ
it is difficult to incorporate this sample variance cancellation
information, and without it we found the GP was not able to
accurately model the derivatives.
We use the implementation provided in the scikit-learn

library (Pedregosa et al. 2011). We use an isotropic radial basis
function kernel, i.e., a Gaussian kernel, to describe the
correlations between data points. The parameters characterizing
the GP are estimated by maximizing the log-marginal like-
lihood from the derivatives. Before fitting the GP to the
derivatives we divide the data by a smooth function to reduce
the dynamic range of the problem. This provided significantly
better performance. For the ΛCDM parameters we divide the
derivatives by the mean of the covariance matrix simulations.
For the PNG derivatives, we use a linear combination of the
tree-level PNG bispectra and the mean of the covariance matrix
(this combination helps capture the general behavior on both
the large and small scales). The measurement error assigned to
each point when fitting the GP is the error on the mean of our
simulated derivatives. Once the derivatives have been
smoothed by our GP we multiply back by the same base
functions.
In Figure 3 we compare the resulting smoothed bispectra to

the measurements. There are several notable features. First,
where the bispectra are well measured the GP matches the
measurements very well. In the highly noisy region the GP is a
significantly smoother function, producing a curve that is
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consistent with the simulation points, given their errors. In a
few places the GP shows statistically significant deviations
from the data points; this demonstrates the limitations of this
method. These points typically occur when there is a steep
gradient in one direction of the bispectrum, and thus these
points represent an oversmoothing. Despite this caveat, the
smoothed derivatives generally provide a good, smoothed
approximation of the simulations.

Given this smoothing method, we can investigate how our
constraining power changes as the number of simulations used
to compute the smoothed derivatives is varied. This test allows
us to assess the effectiveness of our smoothing procedure: if the
derivatives are not sufficiently smoothed we expect to see
constraints that increase as more simulations are added; on the
other hand, if the smoothing process is too aggressive, and is
removing important physical features, we may see constraints
that decrease as the number of simulations are varied. As is
seen in Figure 10, our constraints are now stable to variations in
the number of simulations, thus providing a useful validation of
our smoothing method.

A.2. Compressed Fisher Forecast

Given the potential caveats of the smoothed approach, it is
worthwhile to explore alternative methods of validating our
Fisher forecast. Recent work by W. Coulton & B. Wandelt
(2022, in preparation) has demonstrated an alternative method
of performing Fisher forecasts that, under certain conditions,
leads to conservative forecast constraints. Thus this method
allows another test of our smoothed derivatives and can be
combined with the standard Fisher method to provide bounds
on the constraints. Here we briefly give an overview of the
method, hereafter referred to as the compressed Fisher forecast;

we refer the reader to W. Coulton & B. Wandelt (2022, in
preparation) for more details.
In this approach instead of computing the Fisher information

of the power spectrum and bispectrum, we compute the Fisher
information of a set of compressed summary statistics. In
principle, the information in the power spectrum and
bispectrum can be losslessly compressed to a set of statistics
with the same dimension as the number of parameters (this
includes both cosmological parameters and nuisance para-
meters). One method of achieving this is to compress the data
via (Alsing & Wandelt 2018)

t d, , A2q=  ( ) ( )

where t are the summary statistics,  d, q( ) is the likelihood for
data, d, given parameters, θ, and the derivative is with respect
to the parameters of interest. In this compressed space, the
Fisher information is
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where μ t and Σtt are the mean and covariance of the
compressed statistics. Performing the Fisher analysis in the
compressed space has two advantages: first, the dimension of
the data vectors are drastically reduced, so a smaller dimension
covariance matrix is needed; second, the noise on the
derivatives of the compressed statistic, which is required for
the Fisher forecast, is expected to be lower as it is a weighted
sum of all the data points and thereby averages down the noise
in the uncompressed derivatives.
For the case of a Gaussian likelihood with parameter-

independent covariance, as is used here and motivated by
Scoccimarro (2000) and Carron (2013), the lossless

Figure 10. A examination of the stability of the Fisher forecast to changes in the number of simulations. In the left plot we plot the results of the standard Fisher
forecast. In the center plot we show the results when we use a Gaussian process (GP) to mitigate noise in the derivatives. In the right plot we show an alternative Fisher
forecast method using data compression. This last method, for Nderiv  250, provides an approximate upper bound on the Fisher information. To easily compare across
the different parameters, the Fisher estimates are normalized by the GP estimate for each parameter.
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compression is (Tegmark et al. 1997; Heavens et al. 2000)

t dC , A41m m
q

=
¶
¶

-- ( ) ( )

where μ and C are the data mean and covariance. Compression
has already been considered for bispectrum analysis (e.g.,
Gualdi et al. 2019; Philcox et al. 2021; Byun & Krause 2022)
to aid working with very-high-dimensional data vectors, but
here we are using it to improve the accuracy of the Fisher
forecast (and we use a simulation-based rather than perturbative
model). An issue that is immediately clear is that performing
the optimal compression requires the same ingredients as
performing the standard Fisher forecast. This issue can resolved
by splitting the simulations into two parts: the first part is used
to estimate the compression and the second part is then
compressed and used to estimate the quantities needed for the
compressed Fisher forecast, i.e., Equation (A3). This splitting is
necessary as reusing simulations will lead to biased Fisher
estimates. In this work we use 75% of the data to estimate the
compression and 25% to compute the compressed Fisher
information. The use of estimated quantities in the compression
results in a suboptimal compression, and so the resulting Fisher
forecast errors will be larger than the truth (see, e.g., Lehmann
& Casella 1998). Thus we have traded forecast errors that were
biased too small for a set of conservative errors that are bias to
be too large. In the limit of a sufficient number of simulations
the standard Fisher and compressed Fisher estimates tend to the
same values. Note that when the noise in the compressed

derivatives is large, which occurs for small numbers of
simulations, this estimator will be biased low in the same
manner as the standard estimator.
In Figure 10 we investigate the stability of our compressed

analysis to the number of simulations used to compute the
derivatives. Unlike the standard estimate, the compressed forecast
reaches a regime where it is stable to changes in the number of
simulations used: for most of the parameters the forecast errors are
largely unchanged or they decrease as more than 250 simulations
are used. The decrease occurs as, once convergence is reached,
using more simulations only improves the effectiveness of the
compression. Note that for very small numbers of simulations,
250, the forecast errors based on the compressed Fisher method
is biased low due to noisy estimates of the derivatives, in an
identical effect to the standard forecast; see W. Coulton & B.
Wandelt (2022, in preparation) for a detailed discussion of this
estimator, as well as an improved estimator that accelerates
convergence to the exact Fisher forecast.
Given that our compressed Fisher forecast is converged, we can

compare these forecast constraints to those of the other methods.
In Figure 10 we see that, as expected, the forecast constraints are
larger than the GP constraints and the standard (and unconverged)
forecast. This hierarchy provides a conservative estimate of the
information available and validation that our smoothing method
does not wash out the important features.

Appendix B
Convergence of the Covariance Matrix

In Figure 11 we demonstrate that our forecast constraints
only exhibit a �2% variation as the number of simulations is

Figure 11. The stability of our joint constraints to variations in the number of simulations used to compute the covariance matrix. The small variations seen
demonstrate that the covariance matrix used in our full analysis, computed with 14,500 simulations, is converged.
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changed from 7000 to 14,500, and thus demonstrates that our
analysis is likely converged with respect to the number of
covariance matrix simulations.
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