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Abstract

Primordial non-Gaussianity (PNG) is one of the most powerful probes of the early universe, and measurements of
the large-scale structure of the universe have the potential to transform our understanding of this area. However,
relating measurements of the late-time universe to the primordial perturbations is challenging due to the nonlinear
processes that govern the evolution of the universe. To help address this issue, we release a large suite of N-body
simulations containing four types of PNG: QUIJOTE-PNG. These simulations were designed to augment the
QUIJOTE suite of simulations that explored the impact of various cosmological parameters on large-scale structure
observables. Using these simulations, we investigate how much information on PNG can be extracted by extending
power spectrum and bispectrum measurements beyond the perturbative regime at z= 0.0. This is the first joint
analysis of the PNG and cosmological information content accessible with power spectrum and bispectrum
measurements of the nonlinear scales. We find that the constraining power improves significantly up to
k h0.3 Mpcmax

1» - , with diminishing returns beyond as the statistical probes signal-to-noise ratios saturate. This
saturation emphasizes the importance of accurately modeling all the contributions to the covariance matrix.
Further, we find that combining the two probes is a powerful method of breaking the degeneracies with the ΛCDM
parameters.

Unified Astronomy Thesaurus concepts: Non-Gaussianity (1116); Cosmology (343); Large-scale structure of the
universe (902); Cosmological parameters from large-scale structure (340); Cosmological parameters (339)

1. Introduction

Measurements of the cosmic microwave background (CMB;
Fixsen et al. 1997; Bennett et al. 2013; Planck Collaboration
I 2020) and of the large-scale structure (LSS; Alam et al. 2017;
d’Amico et al. 2020; Ivanov et al. 2020; Kobayashi et al. 2022)
have revolutionized our understanding of the primordial
universe, demonstrating that it was nearly homogeneous and
isotropic with small, almost scale-invariant perturbations.
However, wide classes of theoretical models, ranging from
inflationary to ekpyrotic models (Lehners 2010; Martin 2016;
Meerburg et al. 2019), can explain these observations. There
are two proposed observational channels that have great power
at discriminating between these theories: measurements of
primordial gravitational waves and measurements of primordial
non-Gaussianity (PNG; see, e.g., Achúcarro et al. 2022, for a
recent overview of prospects for learning about inflation).

Primordial non-Gaussianity is interesting due to its strong
sensitivity to the early universe physics: PNG can reveal

information about the field content of the universe, the strength
of interactions, and particle content (Chen et al. 2007). Work
by Green & Porto (2020) suggests that PNG measurements
offer a method to verify the quantum nature of the primordial
perturbations. The information encoded in PNG is comple-
mentary to other probes, such as primordial gravitational waves
and the slope and running of the primordial power spectrum,
that contain information about the duration and energy scale of
inflation (see, e.g., Lyth & Riotto 1999, for a review).
Given the strong theoretical motivation, there have been

many searches for primordial non-Gaussianity (Ferreira &
Magueijo 1998; Komatsu et al. 2002, 2003; Creminelli et al.
2006; Slosar et al. 2008; Leistedt et al. 2014), with the leading
constraints from measurements of the CMB by the Planck
satellite (Planck Collaboration IX 2020). The CMB is an ideal
probe for studying PNG, as CMB anisotropies are linearly
related to the primordial perturbations and so CMB measure-
ments can be straightforwardly related to the primordial
universe. While upcoming CMB experiments will improve
upon existing constraints (Abazajian et al. 2016; Ade et al.
2019), the challenges from foregrounds and the limitations
imposed by silk-damping and the 2D nature of the CMB mean
that improvements needed to reach the most interesting
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theoretical levels will be highly challenging (Hill 2018; Jung
et al. 2018; Coulton et al. 2020; Kalaja et al. 2021; Coulton
et al. 2022a).

Constraints on PNG from measurements of the LSS promise,
in principle, to far surpass existing constraints (Meerburg et al.
2017; Slosar et al. 2019). However, to date, the important
measurements of PNG from LSS (Slosar et al. 2008; Ross et al.
2013; Giannantonio et al. 2014; Leistedt et al. 2014; Ho et al.
2015; Castorina et al. 2019; Mueller et al. 2021; Cabass et al.
2022a, 2022b; D’Amico et al. 2022) have not reached the level
of the CMB.

This is due to complexities of large-scale foregrounds
(Pullen & Hirata 2013; Rezaie et al. 2021), understanding the
optimal statistics to use, and the challenge of modeling the
LSS. Unlike the CMB, measurements of the late-time LSS are
nonlinearly related to the primordial perturbations, which
complicates inferences about the primordial universe. For the
largest scales, powerful perturbation theory models have been
developed and recently applied to data (Baldauf et al. 2011;
Cabass et al. 2022a, 2022b; D’Amico et al. 2022). However,
these methods will not be able to probe arbitrarily small scales,
and thus it is unclear whether alternative approaches may be
better suited to the problem. This is particularly interesting
because recent work has suggested that information of PNG
could be separated out from other small-scale effects by
exploiting the locality of gravitational and baryonic processes
(Baumann & Green 2022).

To aid our understanding of the relation between the
primordial non-Gaussianity and late-time observables, we have
run an extensive suite of simulations with PNG. This work
builds on the results of numerous previous investigations: Dalal
et al. (2008) and Desjacques et al. (2009) generated simulations
containing local PNG and used these to discover and
understand the impact of PNG on scale-dependent bias. These
works were followed by those of Wagner et al. (2010) and
Scoccimarro et al. (2012), who developed and implemented
methods to generate simulations with PNG beyond the local. In
this work, we use the methods developed in Scoccimarro et al.
(2012) to generate a large ensemble of simulations with four
different PNG shapes.

These simulations were designed to fit within the QUIJOTE
suite of simulations (Villaescusa-Navarro et al. 2020); a large
suite of simulations designed to quantify the information
content on generic summary statistics and to provide enough
training data for machine-learning algorithms. By making this
choice, our PNG simulations can be used within a consistent
framework to study how uncertainties in the standard
cosmological parameters impact inferences of PNG. For
example, while previous work has shown that the halo mass
function (Lucchin & Matarrese 1988; LoVerde & Smith 2011),
the matter probability density function (Valageas 2002;
Uhlemann et al. 2018; Friedrich et al. 2020), topological
measures (Biagetti et al. 2021, 2022), and field level analyses
(Andrews et al. 2022) are potentially powerful probes of PNG,
simulations are required to validate theoretical predictions or
model these novel probes. An aim of this work is to help
facilitate such analyses.

As both a validation of our simulations and a first
application, we explore the properties of the matter power
spectrum and bispectrum in these simulations. On the largest
scales, the impact of PNG on the matter power spectrum and
bispectrum is well-understood (e.g., Desjacques et al. 2009;

Baldauf et al. 2011; Karagiannis et al. 2018), and so these
measurements can be used to validate our simulations.
However, our simulations also allow us to push beyond the
perturbative regime (k≈ 0.1 hMpc−1 at z= 0) and explore the
information content available on smaller scales. Recent work
by Hahn et al. (2020) has shown that, for other cosmological
parameters, small-scale bispectrum measurements of the halo
and galaxy field potentially contain large amounts of informa-
tion. Through the use of a simulation-based covariance matrix,
we are able to assess the importance of all the contributions,
including the supersample covariance, for parameter
constraints.
This paper and our companion paper, Jung et al. (2022), are

the first two in a series dedicated to investigating how we can
learn more about primordial non-Gaussianity from upcoming
measurements of the LSS.
In our companion paper, Jung et al. (2022), we explore the

properties of matter power spectrum and bispectrum from a
different and complementary perspective: we use the modal
bispectrum (Fergusson et al. 2012; Schmittfull et al. 2013) to
measure the matter bispectrum and then develop and validate a
set of optimal compressed statistics, which enable the
information in the matter power spectrum and bispectrum to
be captured within a data vector of length the number of
parameters. Additionally, the Jung et al. (2022) analysis
focuses on measurements at z= 1.0, the redshift range relevant
for upcoming surveys such as Euclid (Amendola et al. 2018),
whereas here we examine z= 0.0. Through this complemen-
tarity, we can better understand the importance of small-scale
information across redshifts. We stress that both of these works
consider an idealized setup—the 3D matter field is not directly
observable and we neglect all observational effects and their
associated challenges, which will likely limit future analyses—
and thus it is difficult to directly relate constraints reported here
to future surveys. Further the unique scale-dependent bias
feature that PNG introduces to biased tracers means that the
measurements of biased tracers could contain more information
than the matter field, on the same scales. However, the aim of
these works is not to generate specific predictions but rather to
assess the value of pushing to smaller scales and provide
simulations that can be used as a sandbox to develop intuition
into new estimators in a simplified environment. This
represents a first step—and motivation—toward more complex
and realistic analyses.
These two papers represent the first comprehensive invest-

igation into what can be learned about PNG from small-scale
measurements of the matter bispectrum and power spectrum.
These papers are accompanied by the release the simulation
data and our power spectrum and bispectrum measurements. In
the next papers, we will consider the information content in the
halos (Coulton et al. 2022b) and the information accessible
from analyses of the field.
Our paper is structured as follows: in Section 2, we briefly

overview the shapes of non-Gaussianity considered in this
work. In Section 3, we describe our simulations of PNG. We
describe our power spectrum and bispectrum estimators in
Section 4, and then present our measurements in Section 5. In
Section 6, we describe the details of how we compute our
Fisher forecasts, and then we explore the constraining power of
the bispectrum and power spectrum measurements in Section 7.
We then summarize our key results in Section 8. In the three
appendices, we describe the details of the generation of
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non-Gaussian initial conditions (Appendix A), the details of the
computation of the power spectrum and bispectrum covariance
matrices (Appendix B), joints constraints of PNG and ΛCDM
extensions, and finally the impact of a prior on the power
spectrum convergence (Appendix D).

2. Primordial Non-Gaussianity

While primordial non-Gaussianity refers to any deviation
from Gaussian initial conditions, in this work we restrict our
analysis to the primordial bispectra, BΦ(k1, k2, k3), defined as

( ) ( ) ( )
( ) ( ) ( ) ( )( )

k k k

k k k B k k k2 , , , 1
1 2 3

3 3
1 2 3 1 2 3p d

áF F F ñ

= + + F

where Φ(k) is the primordial potential. We further restrict our
analysis to four different primordial bispectra shapes, detailed
below. These shapes are studied because they accurately
approximate theoretically well-motivated shapes, provide
insight into the primordial physics, and can be generated by
a range of generic methods (see, e.g., Chen 2010; Achúcarro
et al. 2022, for reviews of PNG).

The first shape we consider is the local shape, which has the
primordial bispectrum

( ) ( ) ( ) ( )B k k k f P k P k, , 2 2 perm, 2local
1 2 3 NL

local
1 2= +F F F

where PΦ(k1) is the primordial power spectrum and fNL
local is the

amplitude of this type of non-Gaussianity. Local non-
Gaussianity is of observational interest because it is a powerful
probe of the primordial field content. Maldacena (2003) and
Creminelli & Zaldarriaga (2004) showed that, in single-field
slow-roll inflation, the amplitude of the local bispectrum is <O
(η, ò), where ò and η are the slow-roll parameters, and thus a
measurement of larger local non-Gaussianity would present
difficulties for slow-roll, single-field inflation. On the other
hand, observable levels of local non-Gaussianity can be
generated in multifield inflationary models, such as the
curvaton or modulated reheating models (Lyth & Wands 2002;
Dvali et al. 2004), and alternatives to inflation models
(Lehners 2010). It should be noted that, while there is ongoing
discussion (Pajer et al. 2013; Matarrese et al. 2021) as to
whether the squeezed-limit bispectrum exactly vanishes for
single-field models, this does not impact the power of a
detection of local >>O(ò, η) to rule out these models.

The second shape we consider is the equilateral non-
Gaussianity, which has the following primordial bispectrum:

( ) [ ( ) ( )

( ( ) ( ) ( )) ( ) ( ) ( )
] ( )

B k k k f P k P k

P k P k P k P k P k P k

, , 6 2 perm.

2
5 perm. . 3

equil.
1 2 3 NL

equil.
1 2

1 2 3 1 2 3
2
3

1
3

2
3

= - +

- +
+

F F F

F F F F F F

Equilateral non-Gaussianity well-approximates non-Gaussia-
nities generated in Dirac—Born—Infeld inflation (Alishahiha
et al. 2004) and ghost inflation (Arkani-Hamed et al. 2004), as
well as generically in models with local, derivative interactions
(Cheung et al. 2008a, 2008b).

The final shape that we consider is the orthogonal shape. The
orthogonal bispectrum, along with the equilateral bispectrum, is
used to span the types of non-Gaussianity within the effective field
theory of inflation (EFTi; Cheung et al. 2008a, 2008b). Measure-
ments of the equilateral and orthogonal bispectra can be used to

constrain the parameters of EFTi, including constraining the
sound speed of primordial perturbations (Senatore et al. 2010;
Planck Collaboration XXIV 2014). The full shape of the
orthogonal bispectrum in EFTi is not separable (i.e., expressible
as F(k1)G(k2)H(k3)+ perms. ), and so it is challenging to simulate
and analyze. Two approximations have been developed by
Senatore et al. (2010). The first approximation was performed to
approximate the orthogonal bispectrum in the CMB, and hence
we refer to this as orthogonal-CMB. It has the bispectrum

( ) [ ( ) ( )

( ( ) ( ) ( ))
( ) ( ) ( ) ] ( )

B k k k f P k P k

P k P k P k

P k P k P k

, , 6 3

2 perm. 8

3 5 perm. . 4

ortho CMB
1 2 3 NL

ortho CMB
1 2

1 2 3

1 2 3

2
3

1
3

2
3

= -

+ -

+ +

F
- -

F F

F F F

F F F

While this functional form is a good approximation for the CMB,
which is a 2D projection of the primordial bispectrum, it is less
accurate for measurements of the LSS (Senatore et al. 2010;
Creminelli et al. 2011). In particular, its squeezed-limit diver-
gence, which is suppressed for the 2D CMB, differs from the
EFTi orthogonal shape. This different squeezed limit has
important consequences for scale-dependent bias measurements
and for the detectability. Despite these issues, we include it in our
suite of simulations because the resulting scale-dependent bias
(∼1/k) is different from the local case (∼1/k2) and the
orthogonal-LSS (see below) and equilateral shapes (∼1), so the
simulations help span possible PNG signatures (Schmidt &
Kamionkowski 2010). Further folded bispectra, which can arise if
the assumption of the Bunch–Davies vacuum is violated, is well-
approximated by a linear sum of this shape with the equilateral
shape (Chen et al. 2007; Meerburg et al. 2010). The impact of
these subtleties on the halo field, where scale-dependent bias is
important, is further explored in Coulton et al. (2022b).
The second approximation, also developed by Senatore et al.

(2010) and hereafter referred to as orthogonal-LSS, has a
bispectrum given by

( )
( ( ) ( ) ( ))
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( )
( )

p
27

21
. 6

743

7 20 1932

=
- +

p -

This shape is a better approximation to the EFTi orthogonal
shape for the matter field and exhibits the correct squeezed-
limit scaling. Note—as is discussed in Appendix A—that the
orthogonal-LSS shape we consider is slightly modified to
account for the fact that our simulations are not scale-invariant,
i.e., ns≠ 1.
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3. Simulations

In this work, we extend the QUIJOTE simulations by running
a set of simulations at the QUIJOTE fiducial cosmology with
primordial non-Gaussianity: QUIJOTE-PNG. These simulations
have been run with the same settings (i.e., PM grid size, force
resolution, etc.) as the original QUIJOTE simulations. Addition-
ally, QUIJOTE-PNG uses simulations with matching random
seeds to compute partial derivatives. Thus, these simulations
are ideal for investigating the information in PNG jointly with
other cosmological parameters. In Tables 1 and 2, we
summarize the properties of the new simulations. In this
section, we describe the details of the PNG initial conditions
and the simulations. We refer the reader to Villaescusa-Navarro
et al. (2020) for full details on the QUIJOTE simulations. All the
PNG simulations are run with the ΛCDM cosmological
parameters shown in Table 1. They follow the evolution of
5123 dark matter particles from z= 127 down to z= 0. The
following simulation products are publicly available: particle
data at z= 0.0, 0.5, 1.0, 2.0, and 3.0, and the power spectrum
and bispectrum measurements. See https://quijote-simulations.
readthedocs.io/en/latest/png.html for more details.

3.1. Non-Gaussian Initial Conditions

To run non-Gaussian simulations, we use the method
developed in Scoccimarro et al. (2012) to generate initial
conditions that have primordial non-Gaussianity, and we
implement several small changes to the public code released
by Scoccimarro et al. (2012). Our updated code is available at
https://github.com/dsjamieson/2LPTPNG. Here, we briefly
review this method and refer the reader to Scoccimarro et al.
(2012) for more details.

Generating initial conditions with local non-Gaussianity is
straightforward. First, the modes of a Gaussian primordial
potential field, Φ(k), are generated in Fourier space from the
input power spectrum. This field is then inverse Fourier
transformed to real space. The real space field is squared,
mean-subtracted, scaled by the desired amplitude, fNL

local, and
then added back to the original potential. The resulting field is
real Fourier transformed to obtain the modes of the primordial
potential with local PnG.

In Fourier space, this corresponds to a convolution, so the
process can be summarized as

( ) ( )

( ) ( )
( ) ( )( ) ( )

( )
( ) ( )

( )

( )

k k

k k k k k

k k

f
k k

f
k

d

2

d

2
2

d

2
,

7

local

NL
local
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3

3
2
3 1 2

3 3
1 2

NL
local

3

3

ò

ò

p p
p d

p

F = F

+ F F + +

- F F*

where the second term removes the contribution from the
mean, 〈Φ2〉, which otherwise would contribute to background
expansion.
Generating other types of primordial bispectra corresponds

to adding a kernel to the convolution

( ) ( )
( ) ( )

( ) ( ) ( )( ) ( ) ( )( )

k k

k k k k k k k k

f
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d

2

d

2

, , 2 . 8

X
NL
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3
1
3

3
2
3

1 2 1 2
3 3

1 2

ò p p
p d

F = F +

´ F F + +

It should be noted that we impose K(k1, k2, 0)= 0, as this
automatically accounts for the removal of the mean.
Crucially, for the orthogonal-CMB, orthogonal-LSS, and

equilateral shapes, the kernels required can be written as a
linear combination of separable terms, i.e., they can be written
as sums over terms with the form K(k1, k2, k)=
G(k1)H(k2)M(k). These can thus be generated in a similar
manner to the local, with two modifications: first, the Gaussian
potential modes are filtered before the inverse Fourier trans-
form, and then they are filtered again after the final Fourier
transform operation. The specific kernels we used and their
coefficients are given in Appendix A.
The initial conditions are generated as follows: we generate

the primordial anisotropies from a primordial power-law
spectrum characterized by the amplitude, As, and tilt, ns. These
anisotropies are generated on a grid of size 10243 to minimize
the impact of aliasing effects. We add non-Gaussianity via
Equation (8). The perturbations are evolved to redshift z= 0.0
using linear transfer function, T(k) from CAMB (Lewis et al.
2000). We then scale back its amplitude to z= 127 using the
traditional growth factor, D(z): P(k, z= 127)=D2(z= 127)/
D2(z= 0)P(k, z= 0).13 The gridded field at z= 127 is then used
with 2LPT to create the initial displacements of particles for our
simulation. We note that we made a small change to the public
code to generate initial conditions with ns≠ 1 and with
orthogonal-LSS non-Gaussianity.

Table 1
A Summary of the Key Properties of Our New Simulations

Ωm ΩΛ Ωb σ8 h ns ∑mν w Box size Nparticles

1
3 # Realizations ICs Mass resolution

(eV) (Mpc h−1) (Me h−1)

0.3175 0.6825 0.049 0.834 0.6711 0.9624 0.0 −1 1000 512 500 2LPTPNG 6.56 × 1011

Note. The choices of cosmological parameters, random seeds, and simulation settings are otherwise chosen to match those used in Villaescusa-Navarro et al. (2020).

Table 2
The Name Convention and fNL Parameters Used for Each Simulation

Name fNL
local fNL

equil. fNL
ortho CMB- fNL

ortho LSS-

LC_p 100 0 0 0
LC_m −100 0 0 0
EQ_p 0 100 0 0
EQ_m 0 −100 0 0
OR_p 0 0 100 0
OR_m 0 0 −100 0
OR_LSS_p 0 0 0 100
OR_LSS_m 0 0 0 −100

13 Note that, in this work, the growth factor does not include relativistic
species, and therefore the simulations are run without including radiation in the
background. In Jung et al. (2022), we ran a suite of simulations including this
effect and found that it makes a negligible difference to the observables
considered here
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3.2. N-body Evolution

After generating the initial conditions, we follow their
gravitational evolution down to z= 0 using the TreePM code
GADGET-3 (Springel 2005). As stated above, we use the same
parameter settings as the original QUIJOTE simulations. Halos are
identified through the Friends-of-Friends (FoF) algorithm (Davis
et al. 1985) with a value of the linking length equal to b= 0.2.

3.3. Grid Assignment

To measure our statistics, we construct a mesh with Nside= 512
voxels for each simulation at the considered redshift. We use the
Cloud-in-Cell (Hockney & Eastwood 1981) assignment scheme
to distribute the particle positions to the grid. We account for this
when computing the power spectra and bispectra by deconvolving
the Cloud-in-Cell window function (Jing 2005). It should be noted
that the large Nside used in our analysis means the effects of the
window function and aliasing are negligible on the scales of
interest: k� 0.5 hMpc−1. This was verified by comparing our
measurements to a set of grids generated using a fourth-order
interpolation scheme with interlacing (see, e.g., Sefusatti et al.
2016, for a detailed discussion of these effects).

4. Statistical Probes

In this work, we examine two statistics of the field: the
matter power spectrum and matter bispectrum.

4.1. Matter Power Spectrum

The matter power spectrum is defined as

( ) ( ) ( ) ( ) ( ) ( )( )k k k k P k2 . 9m m mm3 3d d p dá ¢ ñ = - ¢*

We estimate the binned power spectrum, ˆ ( )P ki from simula-
tions by computing


( )ˆ ( ) ( ) ( )
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where we sum over all modes that lay within a k-space bin of
width Δk and Ni is the normalization that effectively counts the
number of modes within our bin. We use the public Pylians314

code with bins of width equal to the fundamental mode, kF,
from kF to k h0.5 Mpcmax

1= - .

4.2. Matter Bispectrum

The matter bispectrum is defined as
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( ) ( ) ( ) ( )( )

k k k

k k k k k kB2 , , . 11

m m m
1 2 3

3 3
1 2 3 1 2 3

d d d
p d

á ñ

= + +

We estimate the bispectrum using the binned bispectrum
estimator, in accordance with the implementation details given
in Foreman et al. (2020)15 and using the methods developed in
Scoccimarro (2000) and Tomlinson et al. (2019). The binned
bispectrum estimator computes
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which sums over all bispectra configurations that have
wavenumbers that fall within three bins and is normalized by
Nijk, which counts the number of configurations in each bin. It
should be noted that, as we sum over the discretized modes on
the grid, the Dirac Delta function is really a Kronecker Delta
for each of the three directions. The estimator is efficiently
implemented by Kronecker delta

( ) ( ) ( )( ) ·( )k k k V e2 , 13
x

x k k ki3 3
1 2 3 1 2 3åp d + + = + +

where the summation is over the grid points with a volume
factor, V, and then exchanging the order of the summations.
The resulting expression can be rapidly evaluated by fast
Fourier transforms. In this work, we use the same bins as in
Hahn et al. (2020): we use bins of width 3kF starting from half
the fundamental to k h0.5 Mpcmax

1= - .

5. Power Spectrum and Bispectrum Measurements

We start by exploring the initial conditions used in our
simulations. To do so, we generate 500 realizations of the
Gaussian primordial potential field and 500 realizations for each
of the primordial bispectra. In Figure 1(a), we show the impact of
PNG on the primordial potential power spectrum. As is discussed
in Wagner et al. (2010) and Scoccimarro et al. (2012), care needs
to be taken that the kernels to generate the bispectrum do not
generate unphysical corrections to the power spectrum. We see
that there are no divergent corrections to the power spectrum
introduced by our method. However, we do see that there are
small corrections, 1× 10−5fNL, to the power spectrum for the
orthogonal-CMB non-Gaussianity. These corrections arise due to
the loop correction to the power spectrum, some of which give k-
dependent corrections while others are equivalent to an amplitude
renormalization (see the Appendix of Wagner et al. (2010), for a
detailed discussion). In principle, the scale-dependent contribu-
tions could be further minimized by different kernel choices;
however, there is limited theoretical motivation to chose one
parameterization over another, and hence we opted for the
simplest implementation.
In Figure 2(a), we plot three slices showing how the

bispectrum of the primordial initial conditions is affected by
PNG. In addition, we plot the theoretically computed
bispectrum. First, we note that the simulated initial conditions
are in excellent agreement with the theoretical bispectrum,
validating that our initial fields do contain the intended
bispectrum shape. The deviations seen in the squeezed limit
of the equilateral shape are statistical fluctuations that reduce
when more simulations are considered. They are most visible in
the squeezed limit of the equilateral shape, as the signal is
smallest there. Second, it can clearly be seen that there are
strong differences between the orthogonal-LSS and orthogo-
nal-CMB templates. The differences are particularly large in the
squeezed limit, as is expected, and will be very important for
accurate modeling of effects such as scale-dependent bias
(Dalal et al. 2008; Desjacques et al. 2009).
It is interesting to compare the primordial measurements to

those at late times; in Figure 1(b), we show the matter power
spectrum derivative with respect to PNG at z= 0.0. We see that
the impact of PNG on the power spectrum for the local and
equilateral shapes is similar in structure. Our results for local and
equilateral are consistent with the results found in Wagner et al.
(2010), which is a nontrivial check because Wagner et al. (2010)

14 https://github.com/franciscovillaescusa/Pylians3
15 We do not use nbodykit, but rather a second code that was cross-validated
during the work of Foreman et al. (2020).
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use a different approach to generating the equilateral shape initial
conditions. We also show the one-loop power spectrum
prediction from EFT of LSS (Cabass et al. 2022a, 2022b;
D’Amico et al. 2022); as expected, we find excellent agreement
on the largest scales and significant differences on small, non-
perturbative scales, where the one-loop term is inaccurate. It
should be noted that a subtlety of the theory model is that the
counter-term, required for the EFT of LSS to be a consistent
theory, has an implicit dependence on fNL that needs to be
accounted for. The level of agreement is consistent with past
work, e.g., that of Wagner et al. (2010), who compared simulated
power spectra with PNG at z= 0 to the time renormalization
group prediction.

Finally, in Figure 2(b), we explore how the z= 0.0
bispectrum is affected by PNG. We can see that, at z= 0.0,
the tree-level prediction for the bispectrum agrees on the largest
scales, providing a simple validation of our simulations.
However, as we move toward smaller scales, we find
significant deviations from the tree-level prediction and the
simulations—as is expected. Our results are in agreement with
previous investigations of the matter bispectrum in Sefusatti
et al. (2010), who measured the bispectrum in simulations with
local non-Gaussianity up to k h0.3 Mpcmax

1» - . While our
simulations are based off the same codes, this check is an
important validation of the robustness to choices of the
simulation parameters, e.g., resolution and force softening.
Our results for the local case are also in agreement with the
results of Enríquez et al. (2022), who investigated
the similarities between local PNG and relativistic effects on
the matter bispectrum. Note that the tree-level approximation is
the leading method for most analyses and forecasts (Karagian-
nis et al. 2018; Slosar et al. 2019; Karagiannis et al. 2020;
Cabass et al. 2022a, 2022b) to date. One-loop perturbative
methods (e.g., Sefusatti 2009) have very recently been applied
to galaxy survey measurements (D’Amico et al. 2022) and have
been used to extend range of scales that can be accurately

modeled. These extract significantly more information about
the primordial universe than the tree-level calculations, but it is
impossible to use such methods on the maximum scales
considered here, as they are non-perturbative. In this work, we
investigate whether we can utilize the visible small-scale
information.

6. Fisher Methodology

To estimate the information contained in the power spectrum
and bispectrum, we use the Fisher formalism (Fisher 1935;
Tegmark et al. 1997). The Fisher information, FIJ, on
parameters, θ, is defined as the variance of the score

( ∣ ) ( ∣ ) ( )X X
F

log log
, 14IJ

I J

q q
q q

=
¶

¶
¶

¶
 

where ( ∣ )X q is the likelihood. The Fisher information is
useful, as the minimum variance of an unbiased estimator, q̂,
for θ is given by Frechet & Frechet (1943), Aitken &
Silverstone (1942), and Darmois (1945):

[ ˆ ] ( )FVar , 15II
1q = -

with no summation over the repeated indices. Thus, by
computing the inverse of the Fisher information, we can infer
the maximum information that we can learn about θ from
measurements of an observable, X.
In this work, we assume that our observables, the matter

power spectrum, and the bispectrum are well-approximated by
a normal distribution. Thus,

( )

( ∣ ) ( ( ) ¯ ( )) ( ( ) ¯ ( ))

16

X O k O k O k O klog
1

2
,

ij
i i ij j j

1åq = - - S --

where O(ki) denotes either the power spectrum or bispectrum,
Ō is the observable mean, and Σ is the covariance matrix. We

Figure 1. The derivative of the power spectrum with respect to the four different shapes of primordial non-Gaussianity. In Figure 1(a), we plot the derivatives of the
initial conditions, whereas Figure 1(b) shows the derivatives obtained from the simulations at z = 0.0. The error bars denote the error on the mean. The thick lines
show the one-loop EFT prediction.
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also consider the information available from joint measure-
ments of the power spectrum and bispectrum, in which case
O(ki) is then the vector of both the power spectrum and
bispectrum measurements. While the Gaussian likelihood
assumption is not perfectly accurate (see, e.g., Scoccimarro
2000; Sellentin & Heavens 2018), it is sufficiently accurate to
get an estimate of the information available.

For a Gaussian distribution, whose covariance is indepen-
dent of the parameters of interest, the Fisher Information can be
rewritten as

¯ ( ) ¯ ( )
( )F

O k O k
. 17IJ

i

I
ij

j

J

1

q q
=

¶
¶

S
¶

¶
-

Figure 2. The equilateral (top), folded (middle), and squeezed bispectrum slices of the bispectrum derivative with respect to the four different shapes of primordial
non-Gaussianity. In Figure 2(a), we plot the derivatives of the initial conditions, whereas Figure 2(b) shows the derivatives obtained from the simulations at z = 0.0.
The dotted lines denote regions where the bispectrum is negative, the error bars are the error on the mean of our simulations, and the thick shaded line is the tree-level
bispectrum prediction (the thickness of the theory curve was chosen solely to aid the visualization of overlapping lines).
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In practice, the covariance matrix of the power spectrum and
bispectrum will likely have some cosmological dependence;
however, as was shown in Carron (2013), neglecting this
dependence gives a better approximation for the true informa-
tion of statistics like the power spectrum, whose true
distribution is close to but not exactly Gaussian.

Thus, to assess the information content in the bispectrum and
power spectrum, we require two ingredients: the derivative of
our statistics of interest with respect to the parameters, and the
covariance of the statistics.

The derivatives are computed numerically by central
differencing: we compute mean power spectra and bispectra
signal at θ+ δθ and θ− δθ and estimate the derivative as

¯ ( ) ¯ ( )∣ ¯ ( )∣ ( )
O k O k O k

2
. 18i

I

i i

q dq
¶
¶

»
-q q dq q q dq= + = -

For the PNG derivatives, we use our new simulations, which
were run with δfNL=± 100, and for the other cosmological
parameters considered (Ωm, ΩΛ, Ωb, σ8, and h), we use the
simulations summarized in Table 1 in Villaescusa-Navarro
et al. (2020).

The covariance matrix is the second important part of our
analysis. The contributions to the covariance matrix can be
broken down into three terms:

( )C C C . 19ij ij
Gaussian connected SSCS = + +

The Gaussian contribution, Cij
Gaussian, is straightforward to

compute, whereas the connected, i.e., non-Gaussian, Cconnected,
and supersample covariance terms CSSC are generally difficult
to compute (see, e.g., Kayo et al. 2013; Chan & Blot 2017;
Gualdi et al. 2018; Sugiyama et al. 2020). We compute the first
two terms by measuring the covariance of the observables
using 12,500 simulations in the fiducial cosmology (given the
highly converged covariance matrix, we did not need to use all
15000 simulation available in the QUIJOTE suite). The super-
sample covariance term is computed as in Li et al. (2014a) and
Chan et al. (2018); the details are summarized in Appendix B.
Our base analysis does not include the supersample covariance
term, but in Section 7.3 we assess the relative importance of it
compared to the other terms. When inverting purely numeri-
cally estimated covariance matrices, we include a correction,
the Hartlap/Anderson factor, to unbias our estimate of the
inverse covariance matrix or precision matrix (Hartlap et al.
2007).

We validate the accuracy of our results by verifying that the
derivatives and covariance matrix are converged. In Figures 3
and 4, we examine how our Fisher forecasts change as we vary
the number of simulations used to estimate the two components
of our forecast. We see that the forecast is highly stable against
variations in the number of simulations used in the calculation.
We also see that the bispectrum and the combined power
spectrum and bispectrum—hereafter joint—forecasts are also
stable to changes in the number of simulations used to estimate
the derivatives. However, we see that constraints from the
power spectrum are not converged. This means that constraints
from these statistics are likely to be overly optimistic,
indicating that actual constraints derived from power spectrum
measurements will be reduced compared to the results reported
below.

Typically, one expects the power spectrum to converge more
rapidly than higher-order statistics, so the convergence results
in Figure 4 are at first surprising. In the case of primordial non-
Gaussianity, however, the power spectrum is only sensitive to
PNG through one-loop and higher-order terms, whereas the
bispectrum is sensitive at the tree level. The power spectrum is
thus only weakly sensitive to variations in the PNG parameters.
Further, as will be seen in Section 7, the effect of PNG on the
power spectrum is highly degenerate with other parameters.
The strong degeneracies mean that the Fisher information
needs to be estimated to a very high precision to be stable.
While the inferences can be regularized, e.g., by the use of a
prior as is explored in Appendix D, in the main text we prefer
to present these unconverged forecasts. Alternatively, we could
consider reparameterizations—for example, those of the form

f8 NLs a , which characterize the information probed by the power
spectrum. However, we find that the bispectrum both measures
different combinations and allows inferences on the physical
parameters, e.g., fNL. Thus, we retain the original parameter-
ization. It is straightforward to see that the unconverged
forecast is biased toward being overly constraining (see, e.g.,

Figure 3. Variation in the marginalized parameter constraints as a function of
number simulations used to compute the covariance matrix. The small
fractional change suggests that the results are stable to the number of
covariance simulations.

Figure 4. Variation in the marginalized parameter constraints as function of
number simulations used to compute the Fisher derivatives. While the
bispectrum and joint statistics are converged, the power spectrum shows large
changes and is likely unconverged. For more details, see the discussion in
Section 6.
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W. Coulton & Wandelt 2022, in preparation), and it is
interesting to compare how broad even these optimistic power
spectrum constraints are when compared to the bispectrum
ones. It should be noted that, if we exclude the PNG parameters
from the Fisher forecast, then the power spectrum forecasts are
highly stable to variations in the number of derivative
simulations used.

7. Cosmological Constraints

Next, we explore the constraining power from measurements
at scales beyond the perturbation regime. Our constraints are
obtained for a forecast experiment at z= 0.0 and using
modes from the fundamental mode, kF= 6.3× 10−3 hMpc−1,
to k h0.5 Mpcmax

1= - .

7.1. Degeneracies

In Figure 5, we plot the constraints obtainable with
measurements of the matter power spectrum and bispectrum
including modes up to k h0.5 Mpcmax

1= - . Focusing first on
the constraints from only power spectrum measurements, we
find that they have negligible information on primordial non-
Gaussianity when jointly measuring the different templates and
marginalizing over cosmological parameters. This is expected,
given the small impact of PNG on the power spectrum and the
similarity of the induced changes to other cosmological
parameters (e.g., ns and s8). Quantitatively, the impact of
marginalization, as seen in Figure 6, can widen constraints by
up to a factor of ∼100! Note that this marginalization also
significantly degrades the cosmological parameter constraints

Figure 5. Joint constraints on the standard cosmological parameters and three shapes of primordial non-Gaussianity.
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—especially σ8. The σ8− fNL degeneracy is very strong, as the
PNG contributions to the matter power spectrum are very
featureless—unlike, for example, h, which impacts the BAO
and can be largely captured by a rescaling of the amplitude.

Focusing now on the bispectrum, we see that it offers vastly
improved constraints. However, the bispectrum constraints also
exhibit strong degeneracies with cosmological parameters. This
indicates the challenge of separating the gravitationally sourced
non-Gaussianity from PNG. When considering the joint power
spectrum and bispectrum constraints, we see significant
improvements that are largely driven by the improved
constraining power on the standard, ΛCDM cosmological
parameters. The joint analysis partially breaks the strong
degeneracies (e.g., with Ωm and σ8) between the ΛCDM
parameters, leading to better PNG constraints.

In Appendix C, we explore the degeneracies present when
including two parameters beyond ΛCDM: w and ∑mν.

7.2. The Value of Small Scales

Given the large information content available in the
bispectrum, it is interesting to assess how much has been
gained from the smaller scales. To answer this, we plot the
constraining power of our probes as a function of the maximum
included scale in Figure 6. We perform this investigation for
three cases: (1) when constraining just one PNG shape, (2)
when jointly constraining one PNG shape and the cosmological
parameters, and (3) when we jointly fit the three PNG shapes
and the cosmological parameters.

Focusing initially on case (1), we see that all probes yield
significant gains by pushing the maximum scale up to
k h0.3 Mpcmax

1» - . However, the rate of improvement slows
significantly beyond this scale. This arises due to the
increasingly strong non-Gaussian contributions to covariance
matrix, which we explore further in Section 7.3. Importantly,
the combined power spectrum and bispectrum analysis leads to

significant improvements over analyses of either probe alone.
This is explored more in Jung et al. (2022).
By considering cases (2) and (3), when we include the

effects of marginalization, we can see the strength of the
degeneracies. For the power spectrum, the constraints degrade
by up to two orders of magnitude. While the bispectrum
constraints are less affected, we still find degradations of
∼100%, reflecting the correlations seen earlier in Figure 5. In
this scenario, there is more benefit to pushing to smaller scales,
as the extra information helps resolve the parameter degen-
eracies. The joint constraint panel shows that combining the
probes mitigates the impact of marginalization, and again the
constraints generally improve only modestly beyond
k h0.3 Mpcmax

1= - . We also find minimal improvement for
the equilateral shape, further underlying the degeneracy
between the primordial shape and gravitational bispectra.
To contextualize the expected improvement with scale, we

investigate the information available in the initial conditions.
Given that the primordial universe is nearly Gaussian, we can
compute the constraining power of an optimal estimator as

( )
( ) ( ) ( )

( )
B k k k

P k P k P k

1

6

, ,
, 20

ijk

i j k

i j k

2
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F F F

where the sum counts the discrete Fourier modes in our
simulation box. In Figure 7, we compare our constraints to the
information available in the primordial bispectrum as a function
of scale. As expected, the primordial constraints are tighter on
all scales. Further, we see that pushing to increasingly small
scales produces a far faster improvement on the constraining
power (see Kalaja et al. 2021, for a more detailed discussion).
As a cross-check, we have compared the primordial informa-
tion that would be captured if we were to use our suboptimal,
binned estimator. We find that the constraints degrade by 20%–

30%. This could be reduced by optimizing the binning choice

Figure 6. The constraining power of the power spectrum, bispectrum, and their combination as a function of scale for three shapes of non-Gaussianity. In solid lines,
we show the unmarginalized constraints. In dotted–dashed lines, we show the constraints when marginalizing over the cosmological parameters. In dotted lines, we
show the results from marginalizing over the cosmological parameters and the other shapes of primordial non-Gaussianity.
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further (e.g., using a smaller bin width or having more bins for
configurations where the bispectrum varies rapidly) or using an
alternative estimator such as the modal estimator.

In this analysis, we also consider the information available to
constrain the orthogonal-CMB PNG, but in our joint fits we
only include either the orthogonal-CMB or -LSS shapes, not
both. We do not include both simultaneously, as they are both
approximations to the same EFTi bispectrum and thus are
expected to be highly degenerate. We see similar behavior in
the constraints for the orthogonal-CMB bispectrum.

7.3. The Importance of Covariance Matrix Modelling

The flattening of the information content arises as the
bispectrum and power spectrum signal-to-noise (S/N) ratios
flatten beyond k≈ 0.3 h/Mpc as is seen in Figure 8. These
results are consistent with those reported by Chan & Blot
(2017), who found that the bispectrum S/N is degraded by a
factor of ∼10 at k h0.5 Mpcmax

1= - at z= 0.0 and that the
S/N flattens above k h0.3 Mpcmax

1» - . This flattening arises
as the nonlinear evolution of structure formation leads to strong
correlations between the small-scale modes, reducing the
available primordial information.

To further understand the flattening of our constraints, we
explore how the different contributions to the covariance
matrix propagate to parameter constraints. In Figure 9, we
compared the bispectrum-only constraints obtained with the
full covariance matrix to the constraints obtained when only a
subset of the contributions are included. We find that including
the non-Gaussian contributions, both the diagonal and off-
diagonal elements, has a significant impact on the constraining
power and leads to a degradation of the constraints by a factor
of ∼4. This supports our assertion that the non-Gaussian terms
cause the flattening of the S/N. These results agree with those
seen in Barreira 2020, Gualdi 2020) and Biagetti et al. (2022).

These works show that the off-diagonal covariance matrix
terms are highly important for constraints on local PNG and,
when included, lead to significantly degraded constraints. Our
work extends these results, highlighting their importance for
other types of PNG.
Note that, at smaller kmax, the size of the non-Gaussian

diagonal and off-diagonal terms is reduced but not negligible.
At k h0.1 Mpcmax

1= - , there is still a degradation of some
constraints by ∼2. It is interesting to note that the supersample
covariance matrix terms have minimal impact on our parameter
constraints despite being a nontrivial contribution to the
covariance matrix, as was found in, e.g., Hamilton et al.
(2006), Rimes & Hamilton (2006), Takahashi et al. (2009), and
Chan et al. (2018). When we examine the unmarginalized
constraints we find, for the power spectrum, that these
supersample covariance terms are important. This is similar
to the results found by Li et al. (2014b). Thus, for the power
spectrum, the large increase in constraints due to margin-
alization swamps the impact of the supersample covariance
terms, at least for the setup considered here. For the bispectrum,
the limited degradation to the constraints arises because the
strongly affected configurations are small-scale equilateral
shapes (Chan et al. 2018; Barreira 2019) that contribute
minimally to the constraining power, due to the large non-
Gaussian covariance.

8. Conclusions

In this work, we have presented and validated a suite of N-
body simulations that contain primordial non-Gaussianity:
QUIJOTE-PNG. These augment the extensive QUIJOTE suite,
matching the random seeds, configurations, and data formats of
the previously run QUIJOTE simulations. This allows for
consistent and seamless joint analyses of available information
from the primordial universe and cosmological parameters.
The simulation data, including particle data at z= 0.0, 0.5,

1.0, 2.0, and 3.0, along with the power spectrum and
bispectrum measurements at z= 0, are publicly available.

Figure 7. The constraining power of the bispectrum as a function of scale
compared to the information available in the primordial field. The dashed lines
denote the constraining power in the primordial potential (without any
marginalization), the solid lines denote the constraining power at z = 0.0
without marginalization, and the dotted lines are the constraints at z = 0.0 with
marginalization.

Figure 8. The cumulative signal-to-noise ratio for the power spectrum,
bispectrum, and joint analysis.
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Please refer to the documentation at https://quijote-simulations.
readthedocs.io/en/latest/png.html.

As a first use case, we investigated the information content
accessible via measurements of the matter power spectrum and
bispectrum. Our simulations allow us to extend the range of
scales used in our analysis beyond the perturbative scales used
in most advanced forecasts and analyses (e.g., Karagiannis
et al. 2018; Cabass et al. 2022a; D’Amico et al. 2022). This
analysis, along with our companion paper (Jung et al. 2022),
are the first investigations of this kind. Our results show that
significant gains can be made by including modes up to

k h0.3 Mpcmax
1~ » - ; after this, the improvements are less

dramatic.
Beyond these scales, the large non-Gaussian covariance of

our statistical probes limits improvements, despite large signals
from PNG on these scales, by saturating the S/N of our probes.
This saturation is not captured when Gaussian approximations
are used to model the covariance matrix, thus highlighting the
importance of accurately including the non-Gaussian terms.
Similar saturation has been observed in the power spectrum
(Rimes & Hamilton 2005; Neyrinck & Szapudi 2007);
however, these authors suggest that, when pushing to even
smaller scales, k> 1hMpc−1, the information content again
improves rapidly with scale. The resolution limitations of our
simulations prevent us from investigating this, though we note
that robustly exploiting such scales would be challenging to
due the impact of baryonic processes (see, e.g., Chisari et al.
2018). Interestingly, we find that, on the scales considered here,
the supersample contributions to the covariance matrix are
unimportant. In our companion paper, Jung et al. (2022), we

examine the detailed features of the joint power spectrum–

bispectrum covariance, which is an important component.
The challenge of modeling the large bispectrum covariance

provides a large motivation to consider more efficient
representations of the bispectrum information. Two such
representation are explored in detail Jung et al. (2022). First,
we measure the modal bispectrum, which—by means of a
judicious choice of basis functions—allows the information in
the bispectrum to be fully captured in O(100) modal
coefficients instead of the 1800 bispectrum bins used here.
Second, we then implement a further compressed estimator that
compresses the information down to just eight numbers.
We chose to work at z= 0.0, despite the limited volume of

our universe that is observable at z= 0.0. This was done to
allow a comparison to the information content in the halo field
(Coulton et al. 2022b), where resolution limitations mean we
need to work at z= 0.0 to obtain observationally relevant tracer
densities. Measurements at higher redshifts will demonstrate
similar features to those seen in our analysis, with the
modification that the nonlinear scale will be moved to smaller
scales—this is explicitly seen in our companion paper, Jung
et al. (2022), where we investigate the information at z= 1. A
second important choice is the size of box, and therefore kmin,
which is small compared to the volumes probed by upcoming
experiments (e.g., Doré et al. 2014; DESI Collaboration et al.
2016). PNG constraints are highly sensitive to the minimum
scale used in the analysis; see Kalaja et al. (2021) for an
extended discussion. Thus, the constraints on PNG obtainable
from larger surveys will not just scale as Vol. compared with
those presented here. It is also expected that the degeneracies
seen with cosmological parameters will be somewhat reduced,
as the shapes of the gravitationally induced and the primordial
bispectra will be more easily differentiated over a larger
domain. Running larger simulations, while maintaining the
small-scale resolution is computationally too expensive for this
work; however, our results demonstrate the importance of
small-scale measurements that will only be enhanced for larger-
volume surveys.
A comparison between the information captured by our

bispectrum measurements and the information available in the
primordial field, which bounds how much we could possibly
know about PNG, shows that the matter power spectrum and
bispectrum estimators only capture ∼10% of the total available
information. This highlights the need to explore alternative
approaches, such as topological measures (Biagetti et al. 2021),
the matter pdf (Friedrich et al. 2020), machine-learning
approaches (Giusarma et al. 2019; Villaescusa-Navarro et al.
2020), or field level approaches (Andrews et al. 2022), to fully
capture the information available in the matter field. The
simulations presented here are designed to facilitate future
investigations along these lines.
Finally, it is important to emphasize that the 3D matter field

considered in this work is not directly accessible. Observa-
tionally, we can access the 2D integrated matter field through
gravitational lensing, and these observations will be impacted
by observational systematics and baryonic processes, which are
neglected here. Both of these effects will likely impact the
observationally attainable information. We can also make
biased estimates of the matter field from surveys of biased
tracers, such as galaxy positions and velocities, and signatures
of the neutral hydrogen distribution through 21 cm mapping.
Thus, we stress the results of this work are not forecast

Figure 9. A comparison of the marginalized cosmological constraints from
bispectrum-only measurements when using only a subset of the contributions
to the covariance matrix. The result is normalized by the errors obtained using
all the terms listed in Equation (19).
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constraints for upcoming surveys, but they do provide a way to
assess the value of smaller-scale bispectrum measurements and
provide a suite of simulations for the community to use to
develop and test new analysis tools for PNG. This work
represents an important first step toward these more sophisti-
cated probes. In a follow-up work, we will explore more direct
observables, such as the halo and galaxy fields.
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Appendix A
Initial Condition Generation

The kernels used to generate initial conditions with local,
equilateral, and orthogonal-CMB non-Gaussianity are identical
to those used in Scoccimarro et al. (2012). We use the notation

( ) ( )
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and the set of kernels defined in Table 3 As in Scoccimarro
et al. (2012), we generate local non-Gaussianity using

( )f K A2A
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equilateral with
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A.1. Orthogonal-LSS

In this section, we derive the kernels used in Equation (8) to
generate initial conditions with the orthogonal-LSS non-
Gaussianity. This derivation mirrors the derivation and choices
made for the other shapes in Scoccimarro et al. (2012). The

bispectrum in Equation (5) is separable, and the first three terms
are of the same form as the equilateral and f terms used in
Scoccimarro et al. (2012). The next step is to enumerate the
possible kernels associated with each term, and these are listed
in Table 3.
Using this, we can show that the orthogonal-LSS bispectrum

can be generated by the following operations:
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There is a large family of fields with the correct bispectrum
with differing N≠ 3-point functions. Our approach to choosing
the terms is to impose the constraint that the largest corrections
to the power spectrum should scale as k−2, and for simplicity,
to set as many of the remaining coefficients as possible to zero.
For two kernels, ( )K k k k k k k, ,A a b c

1 2 3 1 2 3= and ( )K k k K, ,B
1 2 3 =

k k k1 2 3
a b g, the leading correction to the power spectrum is given

as
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Thus, to satisfy our constraints we require
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Bringing these terms together, we have
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These operators have been derived assuming a scale-invariant
spectrum (ns= 1) for simplicity. It is simple to adapt to a non-
scale-invariant spectrum by replacing k with ( )P k

1
3- . While this

replacement alters the primordial bispectrum, the distortion is
small, as ns∼ 1, and it allows us to simply use non-scale-
invariant simulations in our analysis (i.e., ns≠ 1), as is required
to be consistent with observations (Planck Collaboration
VI 2020).

Appendix B
Covariance Matrix Computation

The covariance matrix given in Equation (19) is composed
of several terms: the Gaussian, connected, and supersample
covariance terms.

B.1. Gaussian Covariance Matrix

The computation of the Gaussian covariance matrix for
the power spectrum estimator, Equation (10), is given by

Feldman et al. (1994):
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where Nmodes is the number of modes in the power spectrum
binned. For the binned bispectrum estimator, the equivalent
expression is
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where Ntriplets is the number of bispectrum configurations in the
bin, the sum is over all bispectrum triplets, and g IJK

ijk selects
only the diagonal elements of the covariance matrix and is 1, 2,
or 6 depending on whether there are 3, 2, or 1 unique values
in {ijk}.

B.2. Supersample Covariance

Generally, the supersample covariance contribution to the
covariance matrix is given by
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We use follow Li et al. (2014a) and use separate universe
simulations to compute the responses to a long-wavelength
mode (the derivative terms in Equation (B3)). For the power
spectrum of global mean observables, this is given by
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and for local power spectra observables we have an additional
−2P(k). For the bispectrum of global mean observables, this is

Table 3
The Kernels Associated with Each Term in the Bispectrum (as Shown in the First Column)
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Notes. Each bispectrum term can typically be generated by multiple kernels. While the result is equivalent at the bispectrum level, for other statistics they have
different properties.
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(Chan et al. 2018)
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and for local mean observables there is an additional −3B(k1,
k2, k3). In both cases, the derivative ∂PSU(k)/∂δb and ∂BSU(k1,
k2, k3)/∂δb are computed from the separate universe simula-
tions using finite differences.

In Figure 10, we plot the response functions, and these show
great agreement with the equivalent plots in Li et al. (2014a)

and Chan et al. (2018). Further, we find that the relative
importance of the supersample covariance terms is very similar
to that found in Chan et al. (2018), providing validation of our
implementation.

Appendix C
Joint Constraints with Parameters beyond ΛCDM

In this appendix, we extend our analysis to include two
common extensions: the dark energy equation of state
parameter, w, and the sum of the masses of the neutrinos
∑mν. We use the simulations described in Villaescusa-Navarro
et al. (2020) to compute the derivatives with respect to w and
the simulations in Hahn et al. (2020) for the neutrino mass
constraints. For the neutrino mass, we use two modifications to
our method: first, we compute the properties with respect to the
total matter field (rather than just the dark matter field). This is
trivial to do by including the neutrinos when gridding the
simulation outputs. Second, we use the third-order difference
method, Equation (4.5) in Hahn et al. (2020), to compute the
derivatives. This is used because the neutrino mass is positive
definite and thus we cannot use the central difference method
used for the other parameters. Additionally, this higher-order
method provides a more accurate estimate of the derivatives.
In Figure 11, we plot the joint constraints of all the

cosmological and PNG parameters. The inclusion of w
primarily degrades the constraints on PNG by decreasing the
constraining power on the ΛCDM parameters. On the other
hand, we find strong degeneracies between ∑mν and the fNL
parameters. This is not unexpected, given that the PNG
parameters exhibit degeneracies with σ8 and the impact of ∑mν

is similar to σ8 on these scales.

Figure 10. The response functions of the power spectrum and bispectrum to a
long-wavelength mode. These have been computed using separate universe
simulations as described in Li et al. (2014a).
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Figure 11. Joint constraints on the standard cosmological parameters, the equation of state of dark energy, w, the sum of the masses of the neutrinos, ∑mν, and three
shapes of primordial non-Gaussianity.
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Appendix D
Impact of a Prior on the Power Spectrum Convergence

In Section 6, we found that the power spectrum constraints
were not converged. As can be seen in Figure 6, the power
spectrum constraints are increased by a factor of ∼10–100
when marginalizing, and this large degeneracy is the reason for
the lack of convergence. To test this idea, we perform our
convergence test when imposing a Gaussian prior of width

fNL= 1000 for all the PNG shapes. In Figure 12, we see the
convergence—and in this case, we find that all derivatives are
sufficiently converged. We show the parameter constraints
obtained when including this prior in Figure 13. The only effect
of the prior is for the power spectrum constraints, where it
improves the constraints on almost all of the cosmological
parameters by ∼20%, with the exception of s8, which is
significantly improved.

Figure 12. The convergence of the power spectrum measurements when using a Gaussian prior of width fNL = 1000.
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