
17 July 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Nicolas Lazzari, Andrea Poltronieri, Valentina Presutti (2023). Classifying Sequences by Combining
Context-Free Grammars and OWL Ontologies. Cham : Springer [10.1007/978-3-031-33455-9_10].

Published Version:

Classifying Sequences by Combining Context-Free Grammars and OWL Ontologies

Published:
DOI: http://doi.org/10.1007/978-3-031-33455-9_10

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/932116 since: 2023-06-21

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1007/978-3-031-33455-9_10
https://hdl.handle.net/11585/932116

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

Lazzari, N., Poltronieri, A., Presutti, V. (2023). Classifying Sequences by Combining Context-Free Grammars
and OWL Ontologies. In: Pesquita, C., et al. The Semantic Web. ESWC 2023. Lecture Notes in Computer
Science, vol 13870. Springer, Cham.

The final published version is available online at: https://doi.org/10.1007/978-3-031-
33455-9_10

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's
website.

https://cris.unibo.it/
https://doi.org/10.1007/978-3-031-33455-9_10
https://doi.org/10.1007/978-3-031-33455-9_10

Classifying sequences by combining context-free
grammars and OWL ontologies

Nicolas Lazzari1,3[0000−0002−1601−7689], Andrea
Poltronieri2[0000−0003−3848−7574], and Valentina Presutti1?[0000−0002−9380−5160]

1 LILEC, University of Bologna, Italy
nicolas.lazzari2@studio.unibo.it, valentina.presutti@unibo.it

2 Department of Computer Science and Engineering, University of Bologna, Italy
andrea.poltronieri2@unibo.it

3 Department of Computer Science, University of Pisa, Italy

Abstract. This paper describes a pattern to formalise context-free gram-
mars in OWL and its use for sequence classification. The proposed ap-
proach is compared to existing methods in terms of computational com-
plexity as well as pragmatic applicability, with examples in the music
domain.

Keywords: sequence classification · context-free grammar · ontologies
· music

1 Introduction

The introduction of formal grammars by Chomsky in the 50s [7], and in par-
ticular Context Free Grammars (CFG), led to prolific research in the area of
Natural Language Processing. Methods based on statistical language modeling
have mostly replaced formal grammars, nevertheless research in this area is still
relevant as many domains and tasks benefit from their application. For example,
an important application of formal grammars concerns high level programming
languages. Through an efficient parsing process [1], machine-level instructions
can be abstracted in human readable instructions. Theoretically, every problem
that can be abstracted as a sequence of symbols can be modeled with formal
grammars, which makes them a suitable tool for sequence classification, the task
we focus on in this paper. In the biology field, the classification of RNA sec-
ondary structures has been performed using CFG [9, 15, 35]. Similarly, in the
music field, CFG are used to classify different types of harmonic and melodic
sequences [3, 24,36,39,41,42].

Background. A language is a collection of sequences, each defined accord-
ing to a finite set of symbols [8]. A grammar can be interpreted as a function
of a language, having a set of symbols as its domain, and a set of sequences
as its range. Defining a formal grammar is a complex task that requires deep
knowledge of the application domain as well as good modeling skills, to obtain

? Alphabetical order

2 N. Lazzari et al.

an efficiently parsable grammar. CFGs can be parsed in less than O(n3) [43],
with n the length of the string. However when symbols have ambiguous seman-
tics and require additional attributes to be disambiguated, parsing a sequence is
NP-complete [14]. Ambiguous symbols are a common issue, for instance in the
case of polysemous words in natural language or diminished chords in music.
This problem can be mitigated through the use of complex notations, such as
SMILES [44] to represent molecules in the biology field or Harte [18] to repre-
sent musical chords. Nevertheless, these notations are either hard to interpret,
requiring additional tools to be converted back into a human understandable
format, or they cause loss of information.

We address the problem of sequence classification by proposing a hybrid ap-
proach that combines the use of Context Free Grammar (CFG) parsers with
OWL ontologies. We define a pattern to formalise CFG by providing a novel
definition for CFG based on Description Logic. We define a set of algorithms to
produce an OWL ontology based on this pattern that supports the alignment of
symbols in a sequence to its classes. Our approach is based on the identification
of sub-sequences according to the taxonomy defined in the ontology. We argue
that our proposal has a relevant pragmatic potential as it enables sequence clas-
sification based on semantic web knowledge representation, therefore supporting
the linking of Context Free Grammars to web ontologies and knowledge graphs.

The contribution of this research can be summarised as follows:

– defining a novel formalisation of Context Free Grammars based on Descrip-
tion Logic;

– providing an algorithm for the conversion of such formalisation in OWL;

– demonstrating the correctness, computational complexity and applicability
of the proposed method in the music domain.

The paper is organized as follows: in Section 2, an overview of related works
on sequence classification is presented. Section 3 provides relevant definitions for
Context Free Grammars that are used later in Section 4, to describe the formali-
sation of CFGs in DL. Section 5 describes our approach to sequence classification.
In section 6 we evaluate our method on the task of sequence classification in the
music domain. Finally, in Section 7, we summarize the contribution and discuss
future development.

2 Related Work

Relevant work to this contribution include: techniques for sequence classification,
sequence model with grammars, approaches to integrate CFG and semantic web
technologies, and their application in the music domain (cf. Section 6).

Sequence Classification (SQ) is the task of predicting the class of an input,
defined as a sequence over time or space, among a predefined set of classes [31].
SQ is relevant in several application fields, such as genomics research [26], health

Classifying sequences with CFG and OWL 3

informatics, abnormality detection and information retrieval [47], Natural Lan-
guage Processing (NLP) [6, 28]. In [47] different methodologies for SQ are iden-
tified, such as feature-based classification, sequence distance-based classification
and support vector machines (SVM). The most advanced approaches mainly rely
on Deep Learning (DL) [5,30]. SQ is relevant in the music domain, as sequences
are at its core, for instance melodic and harmonic sequences that span over
a temporal dimension. An example of sequence classification applied to music
is [31], which addresses the recognition of raga using recurrent neural networks
(LSTM-RNN).

Sequence Model with Grammars. There is a close relationship between se-
quences and formal grammars. A classic related task (ranging from natural lan-
guage processing [27] to bio-informatics [9]) is grammar inference [49]. Grammars
are used for the classification of sequences of different types, mainly for analysing
genetic sequences [15, 35]. There are applications of grammars for music classi-
fication. The most renowned example is the generative theory of tonal music
(GTTM) [29], analogous to Chomsky’s transformational or generative gram-
mar. [7]. Although GTTM does not explicitly provide generative grammar rules,
this work has inspired the formalisation of a wide range of context-free rules,
describing different music genres [24, 39, 41], melody [3] and harmony [36, 42].
These works are relevant input to our work as they formalise aspects of certain
types of sequences into rules.

Sequence Model with OWL. There are proposals to use OWL to classify
sequences. However, one of the main challenges when dealing with sequences in
OWL is to organise the elements being described in an ordered fashion, as pro-
posed in [12]. For instance, OWL reasoning is employed for classifying genomic
data [46]. A method for analysing jazz chord sequences is proposed in [33]. This
system is based on an ontology which, through reasoning, produces a hierarchi-
cal jazz sequence analysis. Similarly, two OWL ontologies, MEO and SEQ, are
presented in [45] that combined with a CFG parser support sequence classifi-
cation. Nevertheless, this method is only able to represent safely-concatenable
CFG, while we overcome this limitation in our approach (cf. Section 5.3).

3 Preliminaries

This section introduces the notation and the definitions used in Section 4, based
on [20] that the reader can consult for details.

Definition 1 (Context Free Grammar). A Context Free Grammar (CFG)
G = (V,Σ,R, S) consists of a finite set of non-terminal V (variables), a set
of terminals Σ such that Σ ∩ V = ∅, a set of functions R ⊆ V × (V × R)∗

(production), and a starting symbol S ∈ V .

Definition 2 (Language of a grammar). The language of a grammar G(V,Σ,R, S)

is defined as L(G) = {w ∈ Σ∗ : S
∗
=⇒ w}, where S

∗
=⇒ w represents the consec-

4 N. Lazzari et al.

utive application of production f ∈ R starting from the initial symbol S, called
derivation.

Example 1 (Context Free Grammar). Let G = (V,Σ,R, S) with

V = {Expression,Bit}
Σ = {0, 1,+}
R = {Expression→ Expression + Expression | Bit 0 | Bit 1 | 0 | 1,

Bit→ Bit 0 | Bit 1 | 0 | 1 }
S = Expression

where X → X1| · · · |Xn is a shorthand for {X → X1, · · · X → Xn}

Example 1 shows a simple grammar used to parse the sum of two binary
numbers. Its language L, as defined in definition 2, is of the form L = {0+0, 0+
1, 1 + 0, 10 + 0, · · · , 11010 + 10, · · · }.

In order to express a concise and effective conversion method and its corre-
sponding proof we only consider grammars in Chomsky Normal Form, as defined
in Definition 3. This results in homogeneous productions in the form

A→ BC or A→ t

where A,B,C ∈ V and t ∈ Σ.

Definition 3 (Chomsky Normal Form). A Context Free Grammar is in
Chomsky Normal Form (CNF) if the set of functions R ⊆ V × (V \{S} ×R)2

Note that the imposed restriction does not imply any loss in expressiveness,
since any context-free grammar can be converted in CNF [20]. For instance,
Example 1, converted in CNF, results in the grammar in Example 2.

Example 2 (Example 1 in Chomsky Normal Form). Let G = (V,Σ,R, S) with

V = {Expression,Expression0,Bit,Zero,One,Plus}
Σ = {0, 1,+}
R = {Expression→ Expression0 Expression | Bit Zero | Bit One | 0 | 1,

Expression0 → Expression Plus,

Bit→ Bit Zero | Bit One | 0 | 1,

Plus→ +,

Zero→ 0,

One→ 1}

When parsing a language based on a grammar, it is useful to visualise the
derivation process as a parse tree.

Definition 4 (Parse tree of a CFG). A parse tree T of G = (V,Σ,R, S) is a
tree in which each leaf l ∈ (V ∪Σ) and each inner node ni ∈ V . Given c1 · · · cn
the children of an inner node ni then ∃f ∈ R s.t. f : ni → c1 · · · cn. [20]

Classifying sequences with CFG and OWL 5

Corollary 1. Given T the parse tree of a CFG in CNF ⇒ T is a binary tree.

Corollary 1 follows from Definitions 3 and 4, since each production is either
a unary or a binary function. Figure 1a shows the parse tree of the sequence 1+0
from the grammar defined by Example 1 and Figure 1b shows the parse tree the
grammar defined by Example 2.

Expression

1 + 0

(a) Parse tree generated by
grammar from Example 2

Expression

Expression0

Expression

1

Plus

+

Expression

0

(b) Parse tree generated by
grammar from Example 2

Fig. 1: Parse trees obtained from the sequence 1+0

4 Formalising Context-Free Grammars using Description
Logic

As OWL is based on Description Logic (DL) theory, we define a DL-based for-
malisation of Context-Free Grammars (in Chomsky Normal Form), which we
refer to as CFG-DL. CFG-DL is based on Definition 1, where variables and
terminals are represented as concepts4. We demonstrate that any CFG can be
converted in a CFG-DL (cf. Theorem 1) and that such conversion can be per-
formed in O(n) (cf. Theorem 2). Theorem 1 and its proof rely on the concept
of rolification, which formalises axioms that act as rules in the form if-then [25].
For each concept C a corresponding axiom RC is created and the restriction
C ≡ RC .Self is imposed. By chaining together different axioms it is possible to
define if-then rules. For a more in-depth explanation, please refer to Krisnadhi
et al. [25].

Definition 5 (CFG-DL). A CFG-DL GDL = (Cv, R, CΣ , S) consists of a fi-
nite set of concepts Cv, a finite set of concepts CΣ, a set of axioms R, and a
starting concept S ∈ Cv.

Theorem 1. Every Context-Free Grammar G in Chomsky Normal Form can
be converted in a CFG-DL GDL.

4 DL concepts translate into OWL classes

6 N. Lazzari et al.

Proof. Given a Context-Free grammar G = (V,Σ,R, S) in Chomsky Normal
Form we can obtain the corresponding GDL = (C ′v, R

′, C ′Σ , S
′) as follows:

1. ∀v ∈ V let Cv be a concept such that Cv v C ′v
==⇒ ∀v ∈ V ∃Cv v C ′v, where Cv is the respective concept of the variable

V .

2. ∀t ∈ Σ let Ct be a concept such that Ct v C ′Σ
==⇒ ∀t ∈ Σ ∃Ct v C ′Σ , where Ct is the respective concept of the terminal t.

3. Let f ∈ R. It follows from Definition 3 that f is of either type:
(a) R→ AB such that R ∈ V , A,B ∈ V ∪Σ.
(b) R→ t such that R ∈ V and t ∈ Σ;
Both cases can respectively be represented in DL as follows:
(a) i. Let CR v C ′v, CA v C ′v, CB v C ′v be the respective concepts of

R,A,B definied in step 1
ii. Let RR, RA, RB be the rolification [25] of the concepts CR, CA, CB

such that CR ≡ ∃RR.Self , CA ≡ ∃RA.Self , and CB ≡ ∃RB .Self .
iii. Let Rnext be the role such that C1 ◦Rnext ◦C2 has semantic meaning

C1 has as next element in the sequence C2, with C1 v C ′ and C2 v
C ′

iv. Let V1 ≡ ∃R1.Self and V2 ≡ ∃R2.Self be roles such that RA ◦
Rnext ◦RB v R1 and RB ◦R−1next ◦RA v R2.

3(a)i,3(a)ii,3(a)iii,3(a)iv
================⇒ R→ AB ⇐⇒ (CA u V1) t (CB u V2) v CR.

(b) Let Ct v C ′Σ be the concept of the terminal t defined in step 2 and
CR v C ′V be the concept of variable R defined in step 1
⇒ R→ t⇐⇒ Ct v Cr

3a,3b
===⇒ f ∈ R′, ∀f ∈ R .

4.
1
=⇒ ∃Cs v C ′V where Cs is the concept corresponding to S, as defined in step

1.

1,2,3,4
====⇒ GDL ≡ G. �

Theorem 2. The conversion between a CFG G = (V,Σ,R, S) and a CFG-DL
GDL = (C ′v, R

′, C ′Σ , S
′) can be performed in O(n), in particular O(|V | + |Σ| +

|R|).

Proof. It follows from the proof of Theorem 1 as we only need to loop through
each element of V , Σ and R at most one time. �

We remark that in Definition 5 terminals are modeled as concepts and stand
at the same level of variables. At first, it might seem more intuitive to represent
terminals as individuals. But this would radically change the semantic meaning
of an element in a sequence. Take for example the sequence 10+11 from the
language of grammar in Example 1. There are three occurrences of terminal 1,
but they are fundamentally different entities: the first occurrence of terminal

Classifying sequences with CFG and OWL 7

1 is characterized by its syntactic aspect as well as its position with respect
to the whole sequence. If we represent each terminal as an individual then each
occurrence of that terminal in a sequence would be represented by the very same
individual. This would invalidate the semantics of the whole sequence and yield
a wrong formalization. In order to address this issue, we need a proper definition
of how to represent a sequence in description logic. We do that by adapting
Definition 2 to CFG-DL.

Definition 6 (Language of a CFG-DL). Let G = (Cv, R, CΣ , S) be a CFG-
DL, we define as L(G) the set of sequences s such that, given N the number of
elements in the sequence s, s ≡ (C1 u ∃Rnext.C2) u · · · u (CN−1 u ∃Rnext.CN),
with Rnext the role defined in step 3(a)iii of Theorem 1’s proof and Ct v CΣ , t ∈
[1, N].

5 Sequence classification using CFG-DL

CFG-DL can be represented in OWL, as OWL2 direct semantics is based on
Description Logic [22]. We devise an algorithm based on Definition 5 and on the
respective constructive proof 4 of Theorem 1. Algorithm 1 converts a CFG to
OWL, without generating any intermediary CFG-DL. A similar algorithm can
be defined to convert a CFG in CFG-DL, following the constructive proof 4.

Triples are written in Manchester syntax [21]. We use the symbol I to indi-
cate the OWL triples that need to be created. We generally use Rnext as the role
Rnext defined in step 3(a)iii of Thereom 1’s proof. Any arbitrary OWL prop-
erty can be used as Rnext as long as it is a functional property, such as the
seq:directlyPrecedes property from the sequence Ontology Design Pattern [19].
Algorithm 1 has also complexity O(n): similarly to the considerations on Theo-
rem 2, we only need to loop through each element of V , Σ and R at most one
time.

The rolification of the classes V 1 and V 2 is performed by using the existential
restriction on owl:Thing. This prevents the creation of non-simple properties
due to the use of property chain later in the algorithm and allows the usage of
reasoners such as Hermit [16] or Pellet [37].

Sequences must be converted to be used in the ontology obtained with Al-
gorithm 1. Algorithm 2 presents an algorithm that performs such conversion in
O(n). It is based on Definition 6. Analogously to Algorithm 1, we express triples
in Manchester syntax using the symbol I and we use Rnext as the role Rnext
defined in step 3(a)iii of Thereom 1’s proof.

Figure 2, shows the grammar from Example 2, converted to a CFG-DL in
OWL with Algorithm 1, used to parse the sequence 1 + 0, converted using
Algorithm 2. We can see how the whole sequence is correctly classified to be
of class Expression and how Expression 0 and Expression are classified as
subclass of each other. Indeed, Expression 0 and Expression are equivalent.
This can be observed from the normalization process performed on Example
1 that resulted in Example 2: Expression 0 variable is introduced to obtain

8 N. Lazzari et al.

Algorithm 1 CFG in OWL

Require: G = (V,Σ,R, S)
I ObjectProperty: R1

I ObjectProperty: R2

I Class: V 1 EquivalentTo: R1 some

I Class: V 2 EquivalentTo: R2 some

for v ∈ V do
I ObjectProperty: Rv

I Class: Cv EquivalentTo: Rv some Self

end for
for t ∈ Σ do
I ObjectProperty: Rt

I Class: Ct EquivalentTo: Rt some Self

end for
for r ∈ R do

if r is of type R→ AB then
with CR, CA, CB being the respective concepts of R,A,B
with RA, RB being the respective rolification of A,B
I ObjectProperty: R1 SubPropertyChain: RA o Rnext o RB

I ObjectProperty: R2 SubPropertyChain: RB o inverse(Rnext) o RA

I (CA and V 1) or (CB and V 2) SubClassOf: CR

else if r is of type R→ t then
with CR, Ct being the respective concepts of R, t
I Class: Ct SubClassOf: CR

end if
end for

Algorithm 2 Sequence in OWL for CFG-DL

Require: G = (V,Σ,R, S)
Require: s ⊆ Σ∗ the sequence to represent
Require: N the length of the sequence s

for i ∈ [1, N − 1] do
si ← s[i]
sn ← s[i+ 1]
with Ci, Cn being the respective concepts of the terminals si, sn
I Individual: sn Types: Cn

I Individual: si Types: Ci Facts: Rnext sn
end for

Classifying sequences with CFG and OWL 9

Fig. 2: Sequence 1+0 parsed by the grammar from example 2 represented as
CFG-DL in OWL

a binary projection of Expression → Expression + Expression, as required by
CNF. If we substitute every occurrence of Expression 0 with its right hand
side (Expression + Expression) an equivalent grammar, which is not in CNF,
is obtained. The overall pattern in Figure 3 can be generalized to every CFG
converted in OWL.

(a)

(b)

Fig. 3: General ontology patterns from Algorithms 1 (3a) and 2 (3b), for a rule of
type R→ A B. The red arrows are created by the reasoner, due to the definition
of the property chain and the general axiom. The pattern from a rule of type
R→ t is a simple subsumption relation.

5.1 Computational complexity

An ontology produced by Algorithm 1 is in DL SROIEL, which is contained
in OWL 2 DL [25]. It has exponential complexity (NExpTime) for automated
reasoning [23]. Parsing a sequence through a DL reasoner would be too complex
compared to an external parser: parsing CFGs has complexity O(n3) [43] even
in the case of ambiguous grammars [13]. Without the use of inverse properties
the produced ontology is in DL SROEL, which is within OWL-EL and solvable

10 N. Lazzari et al.

in polynomial time [23]. To mitigate the overall complexity we propose a hybrid
approach combining CFG parsers and OWL reasoning, to perform sequence
classification.

5.2 Combining CFG parser with OWL-based reasoning

We claim that converting CFG in CFG-DL, besides being an interesting theoret-
ical approach, constitutes a relevant pragmatic approach to perform automatic
sequence classification that can benefit from an explicit knowledge representa-
tion, using OWL ontologies. In practice, given a CFG G, after recognising a
sequence s ∈ L(G) using a parser for G, the resulting parse tree can be con-
verted, using Algorithm 3 to instantiate the OWL ontology O resulting from
Algorithm 1, for G.

Algorithm 3 Parse tree in OWL

Require: G = (V,Σ,R, S) in CNF
Require: s ⊆ Σ∗ with s ∈ L(G)
Require: T the parse tree obtained by parsing s with G
Ensure: T is a binary tree

for all leaf l in R do
with Cl being the concept of the terminal l
for all ancestor a of l do

with Ca being the concept of the variable a
I Class: Cl SubClassOf: Ca

end for
end for

Algorithm 3 is based on Definitions 4 and 1.
The sequence s can be now classified by a DL reasoner according to the classes

in O - or of any other ontology aligned to O. This process is demonstrated in
Section 6 with a use case in the music domain.

The same approach can be used to convert the parse tree produced by al-
gorithms such as Neural Network based Part of Speech tagging [2, 4] or Con-
stituency Parsing [32,40,48].

5.3 Comparison with SEQ

The work presented in [45] introduces SEQ, an ontology pattern used to model
sequence of elements using Description Logic and OWL. The method performs
sequence classification by identifying sub-sequences through a subsumption re-
lation: the sequence that is being classified subsumes a set of patterns (sub-
sequences). Those patterns classify the sequence. The author shows how this
method is only able to represent safely-concatenable CFG. A CFG is safely-
concatenable if its productions are in the form R → t1 · · · tnX, with X,R ∈ V

Classifying sequences with CFG and OWL 11

and t1 · · · tn ∈ Σ [45]. V and Σ are defined as in Definition 1. Such restric-
tions prevent the representation of self-embedding grammars [45], which are
grammars that contain productions of the type R → αRβ, with R ∈ V and
α, β ∈ (V ∪Σ) [8]. Our proposal overcomes this limitation by directly reflecting
the semantics of a production, as shown in Proof 4 of Theorem 1.

6 Experiments

In this section we apply our approach to the music domain 5 to perform the
automatic analysis of harmonic progressions. Harmonic progressions are defined
as sequences of chords, their analysis consists in assessing the underlying function
of each chord [33]. Traditionally, it is performed by trained musicians since a deep
knowledge and understanding of the music domain is required. The correctness
depends on the taxonomy used and on the context in which the sequence is
analysed (e.g. the genre).

In music theory, harmony is a well-researched area, and several taxonomies
have been proposed to perform this task [36]. Most approaches classify each
chord based on its tonal function, according to western musical theory, using
CFG [11,36] or Probabilistic CFG [17]. The implementation of these grammars
can be problematic and relies on different techniques, such as Haskell datatypes
in [11] or extensions to the definition of CFG in [17]. In [24] a CFG is used to
detect sub-sequences, called bricks. Bricks are classes of chords sequences. Their
combination defines new bricks. A similar approach is explored in [33], where the
definition of bricks (called idioms) is performed through the use of a tree-like
hierarchical ontology implemented using Object Oriented programming.

Our experiments are based on a subset of the rules implemented by [24],
which we convert into an OWL ontology using Algorithm 1.

6.1 Grammar subset

The CFG defined in [24] can be formalized as Gk = (V,Σ,R, S) where the set of
variables V is the set of sub-sequences that will be extracted from a harmonic
progression, Σ is the set of chords, R is the set of productions that maps each
sequence to the corresponding set of chords. The starting S can be assigned
to a special variable Vs ∈ V such that ∀ t ∈ Σ ∃f ∈ R : s.t. f(Vs) = t. To
obtain a more tractable example, we extract a subset of the whole grammar Gk:
we will only use the variables, terminals, and productions that are sufficient to
analyze the tune Blue Bossa by Dorham Kenny. We then expand the grammar
to include a few other productions that should not appear in the final analysis,
to investigate how accurately the ontology reflects a grammar-based approach.
A correspondence between the analysis of [24] and our results provides empirical
evidences of the method correctness.

5 The code of the experiments is available at https://github.com/n28div/CFGOwl
under CC-BY License.

https://github.com/n28div/CFGOwl

12 N. Lazzari et al.

OnOffMinorIV Cm→ MinorOn Cm Off F

MinorOn Cm→ C:min | C:minmaj7 | C:min6 | C:min7

Off F→ F:7 | F | F:maj | F:min | F:min7 | F:minmaj7 | F:dim7

SadCadence Cm→ SadApproach Cm MinorOn Cm

| SadApproach Cm MinorOn Cm

| F:7(#11) MinorPerfectCadence Cm

SadApproach Cm→ D:hdim7 G:7

MinorPerfectCadence Cm→ G:7 C:min7

StraightCadence Db→ StraightApproach Db Db

| StraightApproach Db Db:maj7

StraightApproach Db→ Eb:min7 StraightApproach C 0

| Eb:min7 Ab:7

StraightApproach C 0→ Ab:7 C:7/Bb

Fig. 4: Productions of grammar Gk1 ⊆ Gk. Only productions are listed. The set
of terminals and variables is the one used in the productions.

Figure 4 shows the formalization of the rules strictly needed to classify Blue
Bossa as performed in [24]. Using algorithm 1 we convert the grammar in figure
4 into OWL. The resulting ontology contains 130 axioms. Using algorithm 2 we
convert the chord annotations of Blue Bossa, taken from [24] into OWL. The
resulting ontology contains a total of 29 axioms. By joining the two ontologies,
we obtain a final ontology with a total of 159 axioms. The ontology correctly
parses the sequence, as can be seen from table 1.

6.2 Reasoning complexity

As discussed in section 5.1, the computational complexity of parsing a sequence
using a CFG-DL is exponential. On figure 5a we parse the song Blue Bossa
using the grammar defined in Section 6.1. We then progressively add random
productions to the grammar that do not affect the classification. At each iteration
we add 5 new productions, which have a random number of right-hand sides
sampled in the range [1, 10]. Each production is of type R → AB 80% of the
time and R → t 20% of the time, to reflect the higher frequency of R → AB
productions, especially when a CFG is expressed in CNF.

In Figure 5 empirical results from the described experiments are shown. Fig-
ure 5a shows how as productions are added to the grammar, the time complexity
of CFG-DL increases exponentially. This is a consequence of the proportional
increase of axioms as new productions are added (Figure 5b). When using the
hybrid approach of Section 5.2 the computational complexity is much lower.
In Figure 5a the time required to classify a sequence is significantly lower. All

Classifying sequences with CFG and OWL 13

Table 1: Parsing results for the harmonic progression of Blue Bossa using the
grammar of figure 4. The class identified by [24] is represented in bold text

.

Chord Inferred classes

C:min7 OnOffMinorIV Cm VariableOne C:min7 MinorOn Cm

F:min7 OnOffMinorIV Cm VariableTwo F:min7 Off F

D:hdim7 VariableOne SadApproach Cm SadCadence Cm D:hdim7

G:7 MinorPerfectCadence Cm VariableTwo VariableOne G:7
SadApproach Cm SadCadence Cm

C:minmaj7 C:minmaj7 VariableTwo MinorOn Cm SadCadence Cm

Eb:min7 VariableOne StraightApproach Db StraightCadence Db
Eb:min7

Ab:7 VariableTwo VariableOne StraightApproach Db Ab:7
StraightCadence Db StraightApproach C 0

Db:maj7 VariableTwo Db:maj7 StraightCadence Db

D:hdim7 VariableOne SadApproach Cm SadCadence Cm D:hdim7

G:7 MinorPerfectCadence Cm VariableTwo VariableOne G:7
SadApproach Cm SadCadence Cm

C:minmaj7 C:minmaj7 VariableTwo MinorOn Cm SadCadence Cm

(a) Time taken (y axis, logarithmic) as
random productions are added to the
grammar (x axis). Parsing using DL is
compared to the use of Earley parser
on the corresponding CFG. The time
taken by using the hybrid approach is
200% (3 orders of magnitude) than us-
ing DL parsing.

(b) Number of total axioms in the on-
tology (y axis) as random productions
are added to the grammar (x axis).
As more productions are added to the
grammar, say N , roughly 10N axioms
are inserted in the ontology. Since the
computational complexity directly de-
pends on the number of axioms in the
ontology, the resulting CFG-DL is in-
efficient in real-world settings.

Fig. 5: Empirical results of the computational complexity when using a CFG-DL
to parse the song Blue Bossa.

14 N. Lazzari et al.

the experiments are executed using the Pellet reasoner [37] on a 2.4GHz Intel
i5-6300U CPU and 8GB of RAM under regular computational load.

Even though the results of the two methods are indistinguishable, it is im-
portant to note that if the sequence is modified, Algorithm 3 need to be executed
again, while a CFG-DL produced with Algorithm 1 would be able to classify the
new element without any additional effort. We plan to address this aspect in
future works, for instance by combining Algorithm 1 and Algorithm 3.

6.3 Subsequence classification

A complete understanding of the CFG is required to interpret Figure 4 and the
results in Table 1. To obtain an higher interpretability, it is sufficient to expand
the ontology produced by Algorithm 1 and increase the level of abstraction or by
aligning other relevant ontologies. In the example of Figure 6, we can align the
results with a domain-specific ontology, such as the Music Theory Ontology [34].
Differently from [33], the grammar and ontology definitions are decoupled in our
approach.

Fig. 6: Ontology imported by the ontology generated by algorithm 1.

The classification in Table 2 is obtained using the ontology of Figure 6. The
results are arguably easier to interpret when compared to Table 1, without any
update on the original CFG. By converting relevant grammars using Algorithm
1, a Knowledge Graph can be populated using the results of the parsing pro-
cedure. Additional classification can then be performed by aligning additional
ontologies. For instance, to classify modal passages from a major to a minor
progression (i.e. chord progression that transition from a major progression to a
minor progression) as X it would be sufficient to define an axiom such as

I((mto:MajorProgression and V 1) or (mto:MinorProgression and V 2)) SubClassOf: X

Classifying sequences with CFG and OWL 15

Table 2: Parsing results for the harmonic progression of Blue Bossa using the
grammar of Figure 4 and importing Music Theory Ontology as shown in Figure
6.

Chord Progression type

C:min7 Minor

F:min7 Minor

D:hdim7 Minor

G:7 Minor

C:minmaj7 Minor

Eb:min7 Major

Ab:7 Major

Db:maj Major

D:hdim7 Minor

G:7 Minor

C:minmaj7 Minor

7 Conclusions

We present a novel approach to model a Context Free Grammar in Chomsky
Normal Form using Description Logic. The computational complexity, as anal-
ysed in Sections 5.1 and 6.2, is too high to favour the usage of OWL for parsing
sequences. However, as shown in Section 6.3, it enables the alignment of ap-
proaches based on Context Free Grammars with technologies typically used in
the Semantic Web. Sequences can be represented and classified using OWL in
an effective way by combining it with traditional parsing algorithms. This form
of classification can be used for tasks such as the computation of similarity be-
tween two sequences. The inference of these similarities is of great use in the
Music Information Retrieval field, where it is hard to define a similarity metric
between two harmonic progression. The same approach, however, can be applied
to other fields where sequences have been modeled using formal grammar, such
as natural language processing [27], bio-informatics [9] and programming lan-
guages [10]. The hybrid approach using CFG and OWL ontologies allows a shift
in the grammar modeling process: existing extensions, such as Combinatory Cat-
egorical Grammars (CCG) [38], have been proposed to transparently take into
account the semantics of a sequence, along-side the syntactical aspects. It is
possible to formalize a CCG in terms of DL, with a similar approach as the one
presented in Section 4, and develop grammars whose semantic information is
fueled by an expressive ontology.

Acknowledgements This project has received funding from the European
Union’s Horizon 2020 research and innovation programme under grant agree-
ment No 101004746.

16 N. Lazzari et al.

References

1. A. V. Aho and S. C. Johnson. LR parsing. ACM Computing Surveys (CSUR),
6(2):99–124, 1974.

2. A. Akbik, D. Blythe, and R. Vollgraf. Contextual string embeddings for sequence
labeling. In Proceedings of the 27th international conference on computational
linguistics, pages 1638–1649, 2018.

3. M. Baroni and C. Jacoboni. Proposal for a grammar of melody : the Bach chorales.
Presses de l’Universite de Montreal Montreal, 1978.

4. B. Bohnet, R. T. McDonald, G. Simões, D. Andor, E. Pitler, and J. Maynez. Mor-
phosyntactic Tagging with a Meta-BiLSTM Model over Context Sensitive Token
Encodings. In I. Gurevych and Y. Miyao, editors, Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics, ACL 2018, Melbourne,
Australia, July 15-20, 2018, Volume 1: Long Papers, pages 2642–2652. Association
for Computational Linguistics, 2018.

5. R. Carrasco-Davis, G. Cabrera-Vives, F. Förster, P. A. Esté vez, P. Huijse, P. Pro-
topapas, I. Reyes, J. Mart́ınez-Palomera, and C. Donoso. Deep Learning for Image
Sequence Classification of Astronomical Events. Publications of the Astronomical
Society of the Pacific, 131(1004):108006, sep 2019.

6. T. Chen, R. Xu, Y. He, Y. Xia, and X. Wang. Learning User and Product Dis-
tributed Representations Using a Sequence Model for Sentiment Analysis. IEEE
Computational Intelligence Magazine, 11(3):34–44, 2016.

7. N. Chomsky. Three models for the description of language. IRE Transactions on
Information Theory, 2(3):113–124, 1956.

8. N. Chomsky. On certain formal properties of grammars. Information and Control,
2(2):137–167, 1959.

9. R. Damasevicius. Structural analysis of regulatory DNA sequences using grammar
inference and support vector machine. Neurocomputing, 73(4-6):633–638, 2010.

10. C. Z. de Aguiar, R. de Almeida Falbo, and V. E. S. Souza. OOC-O: A reference
ontology on object-oriented code. In A. H. F. Laender, B. Pernici, E. Lim, and
J. P. M. de Oliveira, editors, Conceptual Modeling - 38th International Conference,
ER 2019, Salvador, Brazil, November 4-7, 2019, Proceedings, volume 11788 of
Lecture Notes in Computer Science, pages 13–27. Springer, 2019.

11. W. B. De Haas, J. P. Magalhães, F. Wiering, and R. C. Veltkamp. Automatic
functional harmonic analysis. Computer Music Journal, 37(4):37–53, 2013.

12. N. Drummond, A. L. Rector, R. Stevens, G. Moulton, M. Horridge, H. Wang,
and J. Seidenberg. Putting OWL in order: Patterns for sequences in OWL. In
B. C. Grau, P. Hitzler, C. Shankey, and E. Wallace, editors, Proceedings of the
OWLED*06 Workshop on OWL: Experiences and Directions, Athens, Georgia,
USA, November 10-11, 2006, volume 216 of CEUR Workshop Proceedings. CEUR-
WS.org, 2006.

13. J. Earley. An efficient context-free parsing algorithm. Communications of the
ACM, 13(2):94–102, 1970.

14. R. C. B. G. Edward Barton and E. S. Ristad. Computational complexity and
natural language. Journal of Linguistics, 24(2):573–575, 1987.

15. R. Giegerich. Introduction to stochastic context free grammars. RNA Sequence,
Structure, and Function: Computational and Bioinformatic Methods, pages 85–106,
2014.

16. B. Glimm, I. Horrocks, B. Motik, G. Stoilos, and Z. Wang. HermiT: an OWL 2
reasoner. Journal of Automated Reasoning, 53(3):245–269, 2014.

Classifying sequences with CFG and OWL 17

17. D. Harasim, M. Rohrmeier, and T. J. O’Donnell. A Generalized Parsing Framework
for Generative Models of Harmonic Syntax. In ISMIR, pages 152–159, 2018.

18. C. Harte, M. B. Sandler, S. A. Abdallah, and E. Gómez. Symbolic Representation
of Musical Chords: A Proposed Syntax for Text Annotations. In ISMIR, volume 5,
pages 66–71, 2005.

19. P. Hitzler, A. Gangemi, K. Janowicz, A. Krisnadhi, and V. Presutti, editors. On-
tology Engineering with Ontology Design Patterns - Foundations and Applications,
volume 25 of Studies on the Semantic Web. IOS Press, 2016.

20. J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to automata theory,
languages, and computation. Acm Sigact News, 32(1):60–65, 2001.

21. M. Horridge, N. Drummond, J. Goodwin, A. L. Rector, R. Stevens, and H. Wang.
The Manchester OWL syntax. In OWLed, volume 216, 2006.

22. I. Horrocks, B. Parsia, and U. Sattler. OWL 2 web ontology language direct
semantics. World Wide Web Consortium, pages 42–65, 2012.

23. I. Horrocks and P. F. Patel-Schneider. Reducing OWL entailment to description
logic satisfiability. In International semantic web conference, pages 17–29. Springer,
2003.

24. R. Keller, A. Schofield, A. Toman-Yih, Z. Merritt, and J. Elliott. Automating the
explanation of jazz chord progressions using idiomatic analysis. Computer Music
Journal, 37(4):54–69, 2013.

25. A. Krisnadhi, F. Maier, and P. Hitzler. OWL and rules. In Reasoning Web Inter-
national Summer School, pages 382–415. Springer, 2011.

26. S. Kumar. Gene Sequence Classification Using K-mer Decomposition and Soft-
Computing-Based Approach. In T. K. Sharma, C. W. Ahn, O. P. Verma, and
B. K. Panigrahi, editors, Soft Computing: Theories and Applications, pages 181–
186, Singapore, 2021. Springer Singapore.

27. S. Lawrence, C. Giles, and S. Fong. Natural language grammatical inference with
recurrent neural networks. IEEE Transactions on Knowledge and Data Engineer-
ing, 12(1):126–140, 2000.

28. J. Lei, Q. Zhang, J. Wang, and H. Luo. BERT Based Hierarchical Sequence Clas-
sification for Context-Aware Microblog Sentiment Analysis. In T. Gedeon, K. W.
Wong, and M. Lee, editors, Neural Information Processing, pages 376–386, Cham,
2019. Springer International Publishing.

29. F. Lerdahl and R. Jackendoff. A generative theory of tonal music. The MIT Press,
Cambridge. MA, 1983.

30. G. Lo Bosco and M. A. Di Gangi. Deep Learning Architectures for DNA Sequence
Classification. In A. Petrosino, V. Loia, and W. Pedrycz, editors, Fuzzy Logic and
Soft Computing Applications, pages 162–171, Cham, 2017. Springer International
Publishing.

31. S. Madhusudhan and G. Chowdhary. Deepsrgm - Sequence classification and rank-
ing in Indian classical music with deep learning. In A. Flexer, G. Peeters, J. Urbano,
and A. Volk, editors, Proceedings of the 20th International Society for Music Infor-
mation Retrieval Conference, ISMIR 2019, Proceedings of the 20th International
Society for Music Information Retrieval Conference, ISMIR 2019, pages 533–540.
International Society for Music Information Retrieval, 2019.

32. K. Mrini, F. Dernoncourt, Q. H. Tran, T. Bui, W. Chang, and N. Nakashole. Re-
thinking self-attention: Towards interpretability in neural parsing. In T. Cohn,
Y. He, and Y. Liu, editors, Findings of the Association for Computational Linguis-
tics: EMNLP 2020, Online Event, 16-20 November 2020, volume EMNLP 2020 of
Findings of ACL, pages 731–742. Association for Computational Linguistics, 2020.

18 N. Lazzari et al.

33. F. Pachet. Computer analysis of jazz chord sequence: is solar a blues?, 2000.
34. S. M. Rashid, D. De Roure, and D. L. McGuinness. A music theory ontology. In

Proceedings of the 1st International Workshop on Semantic Applications for Audio
and Music, pages 6–14, 2018.

35. E. Rivas and S. R. Eddy. The language of RNA: a formal grammar that includes
pseudoknots. Bioinform., 16(4):334–340, 2000.

36. M. Rohrmeier. Towards a generative syntax of tonal harmony. Journal of Mathe-
matics and Music, 5(1):35–53, 2011.

37. E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz. Pellet: A practical
owl-dl reasoner. Journal of Web Semantics, 5(2):51–53, 2007.

38. M. Steedman and J. Baldridge. Combinatory categorial grammar. Non-
Transformational Syntax: Formal and Explicit Models of Grammar. Wiley-
Blackwell, pages 181–224, 2011.

39. M. J. Steedman. A Generative Grammar for Jazz Chord Sequences. Music Per-
ception: An Interdisciplinary Journal, 2(1):52–77, 1984.

40. Y. Tian, Y. Song, F. Xia, and T. Zhang. Improving Constituency Parsing with
Span Attention. In T. Cohn, Y. He, and Y. Liu, editors, Findings of the Associa-
tion for Computational Linguistics: EMNLP 2020, Online Event, 16-20 November
2020, volume EMNLP 2020 of Findings of ACL, pages 1691–1703. Association for
Computational Linguistics, 2020.

41. D. Tidhar. A hierarchical and deterministic approach to music grammars and its
application to unmeasured preludes. PhD thesis, Berlin Institute of Technology,
2005.

42. S. Tojo, Y. Oka, and M. Nishida. Analysis of chord progression by HPSG. In
Proceedings of the 24th IASTED International Conference on Artificial Intelligence
and Applications, AIA’06, page 305–310, USA, 2006. ACTA Press.

43. L. G. Valiant. General context-free recognition in less than cubic time. Journal of
computer and system sciences, 10(2):308–315, 1975.

44. D. Weininger. SMILES, a chemical language and information system. 1. intro-
duction to methodology and encoding rules. Journal of chemical information and
computer sciences, 28(1):31–36, 1988.

45. J. Wissmann. Chord Sequence patterns in OWL. PhD thesis, City University
London, 2012.

46. K. Wolstencroft, R. Stevens, and V. Haarslev. Applying OWL Reasoning to Ge-
nomic Data. In C. J. O. Baker and K.-H. Cheung, editors, Semantic Web: Revolu-
tionizing Knowledge Discovery in the Life Sciences, pages 225–248, Boston, MA,
2007. Springer US.

47. Z. Xing, J. Pei, and E. Keogh. A brief survey on sequence classification. SIGKDD
Explor. Newsl., 12(1):40–48, Nov. 2010.

48. K. Yang and J. Deng. Strongly incremental constituency parsing with graph neural
networks. Advances in Neural Information Processing Systems, 33:21687–21698,
2020.

49. M. Young-Lai. Grammar inference. In L. LIU and M. T. ÖZSU, editors, Encyclo-
pedia of Database Systems, pages 1256–1260, Boston, MA, 2009. Springer US.

	Copertina_postprint_IRIS_UNIBO(6)
	2304.03089
	Classifying sequences by combining context-free grammars and OWL ontologies

