Supplementary Information: Information Theoretical Limits for Quantum Optimal Control Solutions: Error Scaling of Noisy Control Channels

Matthias M. Müller ${ }^{1, *}$, Stefano Gherardini ${ }^{2,3}$, Tommaso Calarco ${ }^{1,4}$, Simone Montangero ${ }^{5}$, and Filippo Caruso ${ }^{3}$

${ }^{1}$ Forschungszentrum Jülich GmbH, Peter Grünberg Institute - Quantum Control (PGI-8), D-52425 Jülich Germany ${ }^{2}$ CNR-INO, Area Science Park, Basovizza, I-34149 Trieste, Italy
${ }^{3}$ Department of Physics \& Astronomy \& LENS, University of Florence, I-50019 Sesto Fiorentino, Italy
${ }^{4}$ Institute for Theoretical Physics, University of Cologne, D-50937 Cologne, Germany
${ }^{5}$ Department of Physics \& Astronomy "G. Galilei", University of Padua, and with INFN Sezione di Padova, I-35131 Padua, Italy
*Corresponding author: ma.mueller@fz-juelich.de

ABSTRACT

In this supplementary Information we provide the derivation of the master equation under the evolution of a classical stochastic noise field (Eq. (10) of the main article.)

1 Derivation of the master equation (Eq. (10) of the main article)

Let us start the derivation from Eq. (8) in the main text, i.e.,

$$
\dot{\rho}(t)=-i\left[H_{s}(t), \rho(t)\right]-i\left[\xi(t) H_{n},\left(\rho(0)-i \int_{0}^{t}\left[H\left(t^{\prime}\right), \rho\left(t^{\prime}\right)\right] d t^{\prime}\right)\right] .
$$

After some straightforward calculations, one ends-up to the following relation:

$$
\dot{\rho}(t)=-i\left[H_{s}(t), \rho(t)\right]-\xi(t)\left\{i\left[H_{n}, \rho(0)\right]+\int_{0}^{t}\left[H_{n},\left[H_{s}\left(t^{\prime}\right), \rho\left(t^{\prime}\right)\right]\right] d t^{\prime}\right\}-\left[H_{n},\left[H_{n}, \int_{0}^{t} \xi(t) \xi\left(t^{\prime}\right) \rho\left(t^{\prime}\right) d t^{\prime}\right]\right] .
$$

In this way, by averaging over the noise realizations and using the assumption $\langle\xi(t)\rangle=0$, one gets

$$
\langle\dot{\rho}(t)\rangle=-i\left[H_{s}(t),\langle\rho(t)\rangle\right]-\left[H_{n},\left[H_{n}, \int_{0}^{t}\left\langle\xi(t) \xi\left(t^{\prime}\right) \rho\left(t^{\prime}\right)\right\rangle d t^{\prime}\right]\right],
$$

where

$$
\begin{aligned}
& \left\langle\xi_{1}(t)\right\rangle \equiv \int_{\xi_{1}} p_{t}\left(\xi_{1}\right) \xi_{1} d \xi_{1} \\
& \left\langle\xi_{2}(t) \xi_{3}\left(t^{\prime}\right)\right\rangle \equiv \int_{\xi_{2}} \int_{\xi_{3}} p_{t, t^{\prime}}\left(\xi_{2}, \xi_{3}\right) \xi_{2} \xi_{3} d \xi_{2} d \xi_{3}
\end{aligned}
$$

with $\xi_{1}, \xi_{2}, \xi_{3}$ here representing generic stochastic processes. Accordingly, Eq. (10) in the main text is recovered under the further assumption to consider ξ and ρ as uncorrelated processes, so that the following approximation holds:

$$
\int_{0}^{t}\left\langle\xi(t) \xi\left(t^{\prime}\right) \rho\left(t^{\prime}\right)\right\rangle d t^{\prime} \approx \int_{0}^{t}\left\langle\xi(t) \xi\left(t^{\prime}\right)\right\rangle\left\langle\rho\left(t^{\prime}\right)\right\rangle d t^{\prime}=\int_{0}^{t} R_{\xi}\left(t, t^{\prime}\right)\left\langle\rho\left(t^{\prime}\right)\right\rangle d t^{\prime}
$$

