Supplementary Information: Information Theoretical Limits for Quantum Optimal Control Solutions: Error Scaling of Noisy Control Channels

Matthias M. Müller^{1,*}, Stefano Gherardini^{2,3}, Tommaso Calarco^{1,4}, Simone Montangero⁵, and Filippo Caruso³

¹Forschungszentrum Jülich GmbH, Peter Grünberg Institute - Quantum Control (PGI-8), D-52425 Jülich Germany ²CNR-INO, Area Science Park, Basovizza, I-34149 Trieste, Italy

³Department of Physics & Astronomy & LENS, University of Florence, I-50019 Sesto Fiorentino, Italy

⁴Institute for Theoretical Physics, University of Cologne, D-50937 Cologne, Germany

⁵Department of Physics & Astronomy "G. Galilei", University of Padua, and with INFN Sezione di Padova, I-35131 Padua, Italy

*Corresponding author: ma.mueller@fz-juelich.de

ABSTRACT

In this supplementary Information we provide the derivation of the master equation under the evolution of a classical stochastic noise field (Eq. (10) of the main article.)

1 Derivation of the master equation (Eq. (10) of the main article)

Let us start the derivation from Eq. (8) in the main text, i.e.,

$$\dot{\rho}(t) = -i[H_s(t), \rho(t)] - i\left[\xi(t)H_n, \left(\rho(0) - i\int_0^t [H(t'), \rho(t')]dt'\right)\right].$$

After some straightforward calculations, one ends-up to the following relation:

$$\dot{\rho}(t) = -i[H_s(t), \rho(t)] - \xi(t) \left\{ i[H_n, \rho(0)] + \int_0^t \left[H_n, [H_s(t'), \rho(t')] \right] dt' \right\} - \left[H_n, \left[H_n, \int_0^t \xi(t) \xi(t') \rho(t') dt' \right] \right].$$

In this way, by averaging over the noise realizations and using the assumption $\langle \xi(t) \rangle = 0$, one gets

$$\langle \dot{\rho}(t) \rangle = -i[H_s(t), \langle \rho(t) \rangle] - \left[H_n, \left[H_n, \int_0^t \langle \xi(t) \xi(t') \rho(t') \rangle dt' \right] \right],$$

where

$$\langle \xi_1(t) \rangle \equiv \int_{\xi_1} p_t(\xi_1) \xi_1 d\xi_1 \langle \xi_2(t) \xi_3(t') \rangle \equiv \int_{\xi_2} \int_{\xi_3} p_{t,t'}(\xi_2, \xi_3) \xi_2 \xi_3 d\xi_2 d\xi_3$$

with ξ_1 , ξ_2 , ξ_3 here representing generic stochastic processes. Accordingly, Eq. (10) in the main text is recovered under the further assumption to consider ξ and ρ as *uncorrelated* processes, so that the following approximation holds:

$$\int_0^t \langle \xi(t)\xi(t')\rho(t')\rangle dt' \approx \int_0^t \langle \xi(t)\xi(t')\rangle \langle \rho(t')\rangle dt' = \int_0^t R_{\xi}(t,t')\langle \rho(t')\rangle dt'.$$