ALMA MATER STUDIORUM UNIVERSITȦ DI BOLOGNA

ARCHIVIO ISTITUZIONALE DELLA RICERCA

Alma Mater Studiorum Università di Bologna Archivio istituzionale della ricerca

Spectroscopic and Molecular Docking Study of the Interaction between Neutral Re(I) Tetrazolate Complexes and Bovine Serum Albumin

This is the final peer-reviewed author's accepted manuscript (postprint) of the following publication:

Published Version:
Spectroscopic and Molecular Docking Study of the Interaction between Neutral Re(I) Tetrazolate Complexes and Bovine Serum Albumin / Lazniewska J.; Agostino M.; Hickey S.M.; Parkinson-Lawrence E.;
Stagni S.; Massi M.; Brooks D.A.; Plush S.E.. - In: CHEMISTRY-A EUROPEAN JOURNAL. - ISSN 0947-6539. -
STAMPA. - 27:44(2021), pp. 11406-11417. [10.1002/chem.202101307]

Availability:
This version is available at: https://hdl.handle.net/11585/873689 since: 2022-02-28
Published:
DOI: http://doi.org/10.1002/chem. 202101307

Terms of use:
Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. For all terms of use and more information see the publisher's website.

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

Journal Pre-proofs

Research paper
Alkyl tetrazoles as diimine ("diim") ligands for fac-[Re(diim)(CO) $\left.)_{3}(\mathrm{~L})\right]$-type complexes. Synthesis, characterization and preliminary studies of the interaction with Bovine Serum Albumin

Nicola Monti, Veronica Longo, Stefano Zacchini, Giulia Vigarani, Loris Giorgini, Eugenia Bonora, Massimiliano Massi, Valentina Fiorini, Stefano Stagni

PII: S0020-1693(20)31444-4
DOI:
https://doi.org/10.1016/j.ica.2020.120244
Reference:
ICA 120244

To appear in: Inorganica Chimica Acta
Received Date: 21 November 2020
Revised Date: 26 December 2020
Accepted Date: 27 December 2020

Please cite this article as: N. Monti, V. Longo, S. Zacchini, G. Vigarani, L. Giorgini, E. Bonora, M. Massi, V. Fiorini, S. Stagni, Alkyl tetrazoles as diimine ("diim") ligands for fac-[Re(diim)(CO) $\left.)_{3}(\mathrm{~L})\right]$-type complexes. Synthesis, characterization and preliminary studies of the interaction with Bovine Serum Albumin, Inorganica Chimica Acta (2021), doi: https://doi.org/10.1016/j.ica.2020.120244

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Crown Copyright © 2021 Published by Elsevier B.V. All rights reserved.

Alkyl tetrazoles as diimine ("diim") ligands for fac-[Re(diim)(CO) $)_{3}$ (L)]-type complexes. Synthesis, characterization and preliminary studies of the interaction with Bovine Serum Albumin

Nicola Monti, ${ }^{\text {a }}$ Veronica Longo, ${ }^{\text {a }}$ Stefano Zacchini, ${ }^{a}$ Giulia Vigarani, ${ }^{a}$ Loris Giorgini, ${ }^{a}$ Eugenia Bonora, ${ }^{\mathrm{a}, \mathrm{b}}$ Massimiliano Massi, ${ }^{\mathrm{b} *}$ Valentina Fiorini ${ }^{a *}$ and Stefano Stagni ${ }^{a *}$
a: Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy.
b: Curtin Institute for Functional Molecules and Interfaces, School of Molecular and Life Science, Curtin University, Kent Street, Bentley 6102 WA, Australia.
Email: M.Massi@curtin.edu.au (Massimiliano Massi), valentina.fiorini5@unibo.it (Valentina Fiorini), stefano.stagni@unibo.it (Stefano Stagni)

Dedicated to Professor Maurizio Peruzzini on the occasion of his $65^{\text {th }}$ birthday.

Abstract

Herein, we report a new family of luminescent $\operatorname{Re}(I)$ complexes with general formula fac$\left[\operatorname{Re}(\operatorname{diim})(C O)_{3} \mathrm{~L}\right]^{0 /+}$ in which the role of the diimine-type chelating ligand (diim) is played by alkylated tetrazoles. In particular, the design of the new complexes involved the choice of molecular scaffolds based on 2-pyridyl tetrazole (PTZ) and 2-quinolyl tetrazole (QTZ) which were decorated with various alkyl residues at $\mathrm{N}-2$ position of the pentatomic ring, thereby endowing the resulting alkyl tetrazoles PTZ-R and QTZ-R with the proper "bpy-like" coordination attitude. As the "third" ligand (L), pyridine (pyr) or the 5-phenyl tetrazolato anion (Tph) were selected, leading to cationic "fully tetrazole" complex fac-[Re(CO) $\mathbf{3}^{(Q T Z-M e)(T p h)] . ~ A l l ~ t h e ~ n e w ~ c o m p l e x e s ~ w e r e ~ i d e n t i f i e d ~ b y ~}$ ESI-MS spectrometry and fully characterized by IR, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectroscopy. The findings that were suggested from the interpretation of the spectroscopic data were further confirmed by X-ray crystallography, with the analysis of the molecular structures of the cationic complexes fac- investigation of their photophysical properties, the new luminescent $\operatorname{Re}(I)$ tetrazole -based complexes were studied for any possible interaction with Bovine Serum Albumin (BSA). The results obtained from this preliminary screening highlighted that, along the series of the $\operatorname{Re}(I)$ tetrazole complexes, the QTZ-R based cationic derivatives fac-[Re(CO) $\left.\mathbf{3}_{3}(\mathrm{QTZ-Me})(\mathrm{pyr})\right]^{+}, f a c-\left[\operatorname{Re}(\mathrm{CO})_{3}(\mathrm{QTZ}-\right.$ $\left.{ }^{\text {tBu}} \mathbf{B u}(\mathrm{pyr})\right]^{+}$, as well as the neutrally charged and "fully tetrazole" complex fac-[Re(CO) $\mathbf{3}^{(Q T Z-}$ $\mathbf{M e})(\mathrm{Tph})$], displayed the highest affinity to BSA.

Keywords:

Triscarbonyl Re(I) diimine complexes; diimine type ligands; Alkyl tetrazoles; Luminescence, Protein binding.

Introduction

An "archetypal" structure like fac-[Re(CO) $\left.\mathbf{3}_{\mathbf{3}}(\mathbf{d i i m})(\mathrm{L})\right]^{0 /+}$, where (diim) represents a bidentate aromatic diimine and (L) is a monodentate ancillary ligand, is commonly used to depict Re(I)triscarbonyl diimines, which are known as one of the most important classes of phosphorescent d^{6}-metal complexes that have been - and continue to be - at the centre of intense investigation in many areas of science and technology.[i] In particular, $\operatorname{Re}(I)$ triscarbonyl diimines have been extensively studied in the context of life science, as witnessed by the numerous reports dealing with their use as luminescent imaging for live cells and tissues and intra or extra cellular sensing agents for wide range of analytes.[ii], [iii], [iv] The reasons that have driven this family of $\operatorname{Re}(I)$ complexes to such a biology-oriented applicative scenario are explained by their use as model compounds for the technetium-99 congeners and to their displaying a peculiar environmental sensitivity of the emission stemming from metal-to-ligand charge transfer (MLCT) excited states.[] In particular, the structure-to-properties approach that is commonly adopted for the design of fac$\left[\operatorname{Re}(C O)_{3}(\operatorname{diim}) L\right]^{0 /+}$ type species for bioimaging purposes relies upon the modulation of their luminescent outputs by performing chemical modifications onto the chelate diimine ligand (diim), while the biological targeting is pursued with the choice of an appropriate "third" monodentate ligand (L).[vi] Actually, the factors that govern the cellular uptake and the intracellular localization of luminescent metal complexes are yet far from being fully understood. Nevertheless, the adoption of a similar design strategy - which also included the decoration of fac-[Re(CO) $\left.\mathbf{3}_{\mathbf{3}}(\mathrm{diim}) \mathrm{L}\right]^{0 /+}$ type complexes with pendant biologically active molecules - has led to an impressively high number of reports dealing with the use of such kind of $\operatorname{Re}(I)$ complexes as luminescent imaging reagents, among which the mitochondria specific $\operatorname{Re}(I)$ cationic complex reported by Coogan and co-workers in 2012 represents one of the most successful examples.[vii] In this specific context, we have dedicated intense research efforts to the design of luminescent markers for cellular imaging based on neutrally charged $\operatorname{Re}(\mathrm{I})$ complexes with general formula $\operatorname{fac}-\left[\operatorname{Re}(\mathrm{CO})_{3}(\operatorname{diim})(\mathrm{L})\right]^{0 /+}$, in which the third ligand (L) was represented by variably substituted 5 -aryl tetrazolato anion $\left[\mathrm{R}-\mathrm{CN}_{4}{ }^{-}\right.$]. The results obtained so far have highlighted how the nature of the residue/substituent R represented a key factor for determining any eventual localization of the corresponding Re(I) complexes, which could
be directed toward lipid droplets (as in the case of 4-benzonitrile substituted tetrazolato anion) or to the endoplasmic reticulum, as was observed when the residue R was represented by the 3-pyridyl ring. [viii] Aiming at getting further insights about the importance of tetrazole ligands for this class of Re(I)-based luminescent markers, we now extend our studies to the design and the preparation of series of new $\mathrm{fac}^{-\left[\operatorname{Re}\left(\mathrm{CO}_{3}(\operatorname{diim})(\mathrm{L})\right]^{0 /+}\right.}$ type complexes in which alkylated tetrazoles play the role of the chelating "diimine like" (diim) ligands. For this specific purpose, the 2-pyridyl (PTZ) and 2quinolyl tetrazole (QTZ) molecular scaffolds were modified with the introduction one methyl (PTZMe and QTZ-Me) or one tert-butyl (PTZ-tBu and QTZ-tBu) substituent group in the pentatomic ring, to afford the precursor species fac-[$\left.\operatorname{Re}(C O)_{3}(P T Z-R)(B r)\right]$ and $f a c-\left[\operatorname{Re}(C O)_{3}(Q T Z-R)(B r)\right]$, respectively. In the successive stage, their molecular architectures was modified either by introducing pyridine as the (L) ligand, leading to the series of cationic complexes with general formula fac-[Re(CO) $\mathbf{3}$ (PTZR)(pyr) $]^{+}$and fac- $\left[\operatorname{Re}(\mathbf{C O})_{3}(\mathbf{Q T Z - R})(\mathrm{pyr})\right]^{+}$, (Figure 1) or with the replacement of the bromide ion with one phenyl tetrazolato anion, thereby causing the formation of "fully tetrazole" charge neutral complex fac-[Re(CO) $\left.\mathbf{3}_{\mathbf{3}}(\mathrm{QTZ-Me})(T p h)\right]$ (Figure 1). Herein, the synthesis and the spectroscopic and structural characterization of the new complexes are described, along with an in-depth analysis of their photophysical properties. In addition, continuing our recent studies dealing with the use of $\operatorname{Re}(I)$ tetrazole complexes as luminescent staining agents for proteins, $\left[{ }^{[x}\right]$ the preliminary results about the investigation of any possible interaction of the new $\operatorname{Re}(I)$ complexes with a model protein such as bovine serum albumin (BSA) are reported.

Figure 1: $\operatorname{Re}(I)$ triscarbonyl complexes presented in this work and atom numbering of the tetrazole ring.

Results and Discussions

Since tetrazoles are commonly considered the nitrogen analogues of the corresponding carboxylic acids, the use of the pyridyl-(PTZ) and quinolyl-tetrazole (QTZ) molecular scaffold as neutral diimine type chelate ligands required the replacement of the fairly acidic hydrogen of the $-\mathrm{CN}_{4} \mathrm{H}$ moiety with an alkyl residue, leading to the alkylated tetrazoles abbreviated as PTZ-R and QTZ-R, respectively, in which the -R group was introduced at the N-2 position of the tetrazole moiety. In doing this, the peculiar reactivity that tetrazoles display toward the addition of electrophiles had to be taken into account. Indeed, the alkylation reaction of tetrazoles usually leads to the recovery of the alkylated products as a mixture of regioisomers depending whether the electrophilic addition takes place at the $\mathrm{N}-1$ or the $\mathrm{N}-2$ position of the pentatomic ring.[×]

Figure 2: Functionalization of tetrazole ligands PTZ-H and QTZ-H.

As the steric hindrance of the -R group is the most important factor for determining any eventual regiospecificity of the alkylation reactions, the addition of the bulky tert-butyl (${ }^{(} \mathrm{Bu}$) residue to 2 pyridyl tetrazole (PTZ-H) and 2-quinolyl tetrazole (QTZ-H) led to the exclusive formation of the desired $\mathrm{N}-2$ tert-butylated derivatives (PTZ- ${ }^{\mathrm{t} B u}$) and (QTZ- ${ }^{\mathrm{t}} \mathbf{B u}$). On the other hand, the methylation reaction performed onto the same tetrazole substrates provided the methylated compounds (PTZ$\mathbf{M e}$) and (QTZ-Me) as mixtures of both regioisomers, from which the $\mathrm{N}-2$ substituted isomers were isolated following a column chromatography work up (Figure 2 and experimental section for further details). In particular, the clear distinction of the two substitution isomers could be made from the analysis of the corresponding ${ }^{13} \mathrm{C}$ NMR spectra. In fact, whereas the resonance of the tetrazole carbon $\left(C_{t}\right)$ of N-1 isomers is typically found in the chemical shifts range comprised between 151
and 155 ppm, the isolation of PTZ-Me and QTZ-Me as the N-2 alkylated regioisomers was confirmed by the significant downfield shifting of the corresponding C_{t} signals to chemical shift values ranging from 164 -168 ppm.[10]

$=$ QTZ-R; R = Me, ${ }^{\text {t }} \mathrm{Bu}$
Scheme 1: Synthetic procedure used for the preparation of $f a c-\left[\operatorname{Re}(\mathrm{CO})_{3}\left(\mathrm{~N}^{\wedge} \mathrm{N}\right)(\mathrm{pyr})\right]^{+}$-type complexes.
The reaction of $\mathrm{Re}(\mathrm{CO})_{5} \mathrm{Br}$ with a slight molar excess (1:1.2) of the $\mathrm{N}-2$ substituted tetrazole PTZ-R or QTZ-R in toluene at the reflux temperature led, in all cases, to the isolation of one single and neutrally charged product (Scheme 1), as suggested by electrospray ionization mass spectrometry (ESI-MS) experiments. For all of the new $\operatorname{Re}(I)$ complexes, the facial (fac) configuration of the three CO ligands was suggested by their displaying solid state infrared (IR) spectra (see Experimental and ESIt, Table S1) consisting of one sharp band at $c a .2031 \mathrm{~cm}^{-1}$, that is assigned to the totally symmetric in- phase stretching $A^{\prime}(1)$, followed by two broader bands at ca. 1906 and $1930 \mathrm{~cm}^{-1}$, which results from the of the totally symmetric out-of-phase stretching $\mathrm{A}^{\prime}(2)$ and the asymmetric stretching $A^{\prime \prime} .\left[{ }^{\mathrm{x}}\right]$

The presence of PTZ-R or QTZ-R ligands in the structure of the $\operatorname{Re}(I)$ complexes and, in particular, their adopting the desired chelate coordination to the $\operatorname{Re}(I)$ center, was suggested by the comparison of the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $f a c-\left[\operatorname{Re}(\mathrm{CO})_{3}(\mathrm{PTZ}-\mathrm{R})(\mathrm{Br})\right]$ and fac-[$\left.\mathrm{Re}(\mathrm{CO})_{3}(\mathrm{QTZ}-\mathrm{R})(\mathrm{Br})\right]$ with those of the free ligands PTZ-R and QTZ-R, respectively. As for instance, in the exemplar case described in Figure 3, it was possible to observe that in complex fac-[Re(CO) $\left.)_{3}\left(\mathrm{QTZ}-{ }^{-} \mathrm{Bu}\right)(\mathrm{Br})\right]$, the bis chelate coordination of QTZ-'Bu - while forcing the ligand to a strictly coplanar arrangement - led to the appearance of a different and much better resolved pattern of aromatic signals than the one recorded from QTZ-'Bu as a "free" ligand, in which the mutual rotation of the tetrazole and the quinolyl ring is not prevented.

 $\mathrm{MHz}, \mathrm{CDCl}_{3} ;$ " 1 " and " 3 " are referred to the integral value of the resonance above.

In the successive stage, the obtained complexes $f a c-\left[\operatorname{Re}(C O)_{3}(P T Z-R)(B r)\right]$ and $f a c-\left[\operatorname{Re}(C O)_{3}(Q T Z-\right.$ $\mathbf{R})(\mathrm{Br})$] were used as starting materials for reactions aimed at the replacement of the coordinated bromide ion either with a neutrally charged ligand such as pyridine (pyr), or with the phenyl tetrazolato anion (Tph). As the preliminary step, both procedures involved the $\mathrm{Ag}(\mathrm{I})$-assisted substitution of the bromide ion of the $f a c-\left[\operatorname{Re}(C O)_{3}(\mathrm{PTZ}-\mathrm{R})(\mathrm{Br})\right]$ and $f a c-\left[\operatorname{Re}(\mathrm{CO})_{3}(\mathrm{QTZ}-\mathrm{R})(\mathrm{Br})\right]$ precursor complexes with an acetonitrile solvent molecule. The resulting cationic intermediates fac$\left[\operatorname{Re}(\mathrm{CO})_{3}\left(\mathrm{PTZ}^{2}\right)\left(\mathrm{NCCH}_{3}\right)\right]\left[\mathrm{PF}_{6}\right]$ and fac-[Re(CO) $\mathbf{3}^{\left.(\mathrm{QTZ}-\mathrm{R})\left(\mathrm{NCCH}_{3}\right)\right]\left[\mathrm{PF}_{6}\right] \text { were successively treated }}$ with an excess of pyridine ($\mathbf{p y r}$) in CHCl_{3}, leading to the formation the target cationic complexes fac-$\left[\operatorname{Re}(\mathrm{CO})_{3}(\mathrm{PTZ}-\mathrm{R})(\mathrm{pyr})\right]\left[\mathrm{PF}_{6}\right]$ and fac-[$\left.\operatorname{Re}(\mathrm{CO})_{3}(\mathrm{QTZ}-\mathrm{R})(\mathrm{pyr})\right]\left[\mathrm{PF}_{6}\right]$, respectively. Along with ESI-MS, these reactions were monitored by IR spectroscopy, enlightening how the transformation of the neutrally charged starting compounds into the cationic products was witnessed by the expected shift to higher wavenumbers of the CO stretchings, whose number and relative intensities were again congruent with the facial arrangement of the CO ligands. Following a closer inspection of the IR profiles (Figure 4 and Table S1 ESI \dagger) it was possible to notice that, as sometimes reported for the
 $\left.\mathrm{R})\left(\mathrm{NCCH}_{3}\right)\right]\left[\mathrm{PF}_{6}\right], \quad f a c-\left[\operatorname{Re}\left(\mathrm{CO}_{3}\right)_{3}(\mathrm{QTZ}-\mathrm{R})\left(\mathrm{NCCH}_{3}\right)\right]\left[\mathrm{PF}_{6}\right], \quad f a c-\left[\operatorname{Re}(\mathrm{CO})_{3}(\mathrm{PTZ}-\mathrm{R})(\mathrm{pyr})\right]\left[\mathrm{PF}_{6}\right]$ and fac$\left[\operatorname{Re}(\mathbf{C O})_{3}(\mathbf{Q T Z}-\mathrm{R})(\mathrm{pyr})\right]\left[\mathrm{PF}_{6}\right]$, displayed the superimposition of the $\mathrm{A}^{\prime}(2)$ and $\mathrm{A}^{\prime \prime}$ stretching modes into a single broad band. In addition, from the comparison of the IR profiles of fac-[Re(CO) $\mathbf{3}_{\mathbf{3}}(\mathrm{PTZ}-$ $\mathbf{R})(\mathrm{pyr})]\left[\mathrm{PF}_{6}\right]$ and fac- $\left[\operatorname{Re}\left(\mathrm{CO}_{3}(\mathrm{QTZ}-\mathrm{R})(\mathrm{pyr})\right]\left[\mathrm{PF}_{6}\right]\right.$ with respect to the cationic intermediates fac$\left[\operatorname{Re}(\mathrm{CO})_{3}\left(\mathrm{PTZ}^{2}\right)\left(\mathrm{NCCH}_{3}\right)\right]\left[\mathrm{PF}_{6}\right]$ and fac- $\left[\operatorname{Re}(\mathrm{CO})_{3}(\mathrm{QTZ}-\mathrm{R})\left(\mathrm{NCCH}_{3}\right)\right]\left[\mathrm{PF}_{6}\right]$, it was observed that the
substitution of coordinated acetonitrile molecule in favor of pyridine (pyr) caused the shift towards lower wavenumbers of the pattern relative to the CO stretchings (ca. 2030, 1930 and $1905 \mathrm{~cm}^{-1}$), the occurrence of which effect is most likely to ascribe due to the stronger π-acidity of pyridine with respect to that of acetonitrile (Figure 4).

Figure 4: IR spectra of $f a c-\left[\operatorname{Re}(\mathrm{CO})_{3}\left(\mathrm{PTZ}-{ }^{\mathrm{t}} \mathrm{Bu}\right)(\mathrm{Br})\right]($ black trace $)$, fac-[Re(CO$\left.)_{3}\left(\mathrm{PTZ}^{\mathrm{t}} \mathrm{Bu}^{2}\right)\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right]\left[\mathrm{PF}_{6}\right]$ (blue trace) and fac$\left[\operatorname{Re}(\mathrm{CO})_{3}\left(\mathrm{PTZ}^{\mathrm{t}} \mathrm{Bu}\right)(\mathrm{pyr})\right]\left[\mathrm{PF}_{6}\right]$ (red trace), FTIR-ATR.

As reported in Figure 5 and ESI \dagger Figures S1-S14, the successful introduction of the pyridine ligand within the first coordination sphere of the $\operatorname{Re}(I)$ center was also confirmed by the appearance of the characteristic pattern of signals in the aromatic region in both the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the

 $\mathrm{MHz}, \mathrm{CDCl}_{3}$.

In a different instance, the intermediate species fac-[$\left.\mathrm{Re}(\mathrm{CO})_{3}(\mathrm{QTZ}-\mathrm{Me})\left(\mathrm{CH}_{3} \mathbf{C N}\right)\right]\left[\mathrm{PF}_{6}\right]$ was treated with a slight excess of the 5-(phenyl)tetrazolato anion, abbreviated as Tph (Scheme 2). The ESI-MS, IR and NMR spectroscopic characterization of the resulting product provided results congruent with its occurrence as the neutrally charged and "fully-tetrazole" complex fac-[Re(CO) $\mathbf{3}^{(Q T Z-M e)(T p h)], ~}$
as witnessed by the shift to lower wavenumbers of the fac-type CO stretchings pattern and the concomitant appearance of two distinct tetrazole carbon (Ct) resonances in the chemical shift region comprised between 164 and 168 ppm (see ESI† Table S1, and Figure S14).

Scheme 2: Synthetic procedure used for the preparation of $f a c-\left[\operatorname{Re}(C O)_{3}(Q T Z-M e)(T p h)\right]$.

X-Ray Crystallography

Along the series of the new $\mathrm{Re}(\mathrm{I})$-tetrazole complexes, two cationic species - namely, those
 crystals suitable for X-ray diffraction. For both complexes, the analysis of their molecular structure (Figure 6 and Table 1, ESI† Table S2) provided results congruent with the occurrence of the expected octahedral complexes in which the coordination environment of $\operatorname{Re}(I)$ ion consisted of three CO ligands arranged in a facial (fac) geometry, the pyridyl (PTZ-Me) or quinolyl tetrazole (QTZ-Me) ligands exerting a bis-chelate coordination, and was completed by pyridine as the "third" monodentate ligand. The two complexes show very similar geometries and bonding parameters. The Re-N distances are in the expected range for $\operatorname{Re}-\mathrm{N}\left(\mathrm{sp}^{2}\right)$ interactions. [9], [12], [xiv], [20] $\operatorname{Re}(1)-$
 $\mathbf{M e})(\mathrm{pyr})]\left[\mathrm{PF}_{6}\right]$, respectively) involving the five-member tetrazolato ring, are slightly shorter than $\operatorname{Re}(1)-\mathrm{N}(5)(2.276(7)$ and $2.245(7) \AA$) , involving a condensed six member ring. The $\operatorname{Re}(1)-\mathrm{N}(6)$ interactions (2.201(7) and 2.210(4) Å) are in the middle, in view of the monodentate nature of the pyridine ring.

Figure 6: (left) Molecular structure of $f a c-\left[\operatorname{Re}(C O)_{3}(Q T Z-M e)(p y r)\right]\left[P_{6}\right]$ with key atoms labeled. Displacement ellipsoids are presented at the 30% probability level, $\left[\mathrm{PF}_{6}\right]^{-}$and H -atoms are omitted for clarity; (right) Molecular structure of $f a c-\left[\operatorname{Re}(\mathbf{C O})_{3}(P T Z-M e)(p y r)\right]\left[F_{6}\right]$ with key atoms labeled. Displacement ellipsoids are presented at the 30% probability level, $\left[\mathrm{PF}_{6}\right]^{-}$and H -atoms are omitted for clarity.

Table 1. Selected bond lengths $\left(\AA\right.$) and angles $\left({ }^{\circ}\right)$ for $f a c-\left[\operatorname{Re}(\mathbf{C O})_{3}(\mathrm{QTZ-Me})(\mathrm{pyr})\right]\left[\mathrm{PF}_{6}\right]$ and complex fac-[Re(CO) $\mathbf{3}_{3}(\mathrm{PTZ}-$ Me)(pyr)][PF ${ }_{6}$]

Selected bond	$f a c-\left[\operatorname{Re}(\mathrm{CO})_{3}(\mathrm{QTZ-Me})(\mathrm{pyr})\right]\left[\mathrm{PF}_{6}\right]$	$f a c-\left[\operatorname{Re}(\mathrm{CO})_{3}(\mathrm{PTZ-Me})(\mathrm{pyr})\right]\left[\mathrm{PF}_{6}\right]$
$\mathrm{Re}(1)-\mathrm{C}(1)$	1.923(9)	1.927(9)
$\mathrm{Re}(1)-\mathrm{C}(2)$	1.907(9)	1.939(10)
$\mathrm{Re}(1)-\mathrm{C}(3)$	1.928(10)	1.928(11)
$\mathrm{Re}(1)-\mathrm{N}(1)$	2.132(8)	2.029(6)
$\operatorname{Re}(1)-\mathrm{N}(5)$	2.276(7)	2.245(7)
$\operatorname{Re}(1)-\mathrm{N}(6)$	2.201(7)	2.210(4)
$\mathrm{C}(1)-\mathrm{O}(1)$	1.149(11)	1.127(11)
$\mathrm{C}(2)-\mathrm{O}(2)$	1.164(11)	1.132(11)
$\mathrm{C}(3)-\mathrm{O}(3)$	1.147(11)	1.144(12)
$\mathrm{N}(1)-\mathrm{N}(2)$	1.315(11)	1.4200*
$N(2)-N(3)$	1.309(11)	1.4200*
$\mathrm{N}(3)-\mathrm{N}(4)$	1.338(11)	1.4200*
$N(1)-\mathrm{C}(11)$	1.343(12)	1.4200*
$\mathrm{N}(4)-\mathrm{C}(11)$	1.325(12)	1.4200*
$\mathrm{C}(11)-\mathrm{C}(12)$	1.472(12)	1.281(10)
$\mathrm{C}(12)-\mathrm{N}(5)$	1.343(12)	1.3900*
$\mathrm{N}(3)-\mathrm{C}(21)$	1.457(12)	1.366(15)
$\mathrm{Re}(1)-\mathrm{C}(1)-\mathrm{O}(1)$	177.9(7)	178.5(9)
$\operatorname{Re}(1)-\mathrm{C}(2)-\mathrm{O}(2)$	179.0(8)	177.5(8)
$\mathrm{Re}(1)-\mathrm{C}(3)-\mathrm{O}(3)$	176.6(8)	178.3(11)
$\mathrm{C}(1)-\operatorname{Re}(1)-\mathrm{N}(5)$	169.9(3)	169.5(4)
$\mathrm{C}(2)-\operatorname{Re}(1)-\mathrm{N}(6)$	175.9(3)	179.0(3)
$\mathrm{C}(3)-\operatorname{Re}(1)-\mathrm{N}(1)$	173.4(3)	173.4(5)
$\mathrm{N}(1)-\mathrm{Re}(1)-\mathrm{N}(5)$	74.1(3)	72.8(4)
Sum angles at $\mathrm{N}_{4} \mathrm{C}$	540.0(15)	540.0*

[^0]
Photophysical Properties

The relevant photophysical data of the target cationic and neutrally charged $\operatorname{Re}(I)$ complexes described herein are summarized in Table 2.

Table 2: Relevant Absorption and Emission data of all the target $\operatorname{Re}(\mathrm{I})$ complexes described in this work.

| Complex | Absorption | Emission 298 K | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as solvent | | | |

a: "Air" means air equilibrated solutions, "Ar" means deoxygenated solutions under argon atmosphere; b: $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right] \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}$ was used as reference for quantum yield determinations $\left(\Phi_{\mathrm{r}}=0.028\right)$ [37]; c: in frozen $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

As commonly observed for octahedral d^{6} metal complexes,[1] the absorption profiles of the $\operatorname{Re}(I)$ complexes - which were obtained from the corresponding dilute $\left(10^{-5} \mathrm{M}\right)$ dichloromethane solutions - displayed the UV region dominated by intense ligand-centered (LC) transitions (250-270 nm), followed by metal-to-ligand charge transfer (MLCT) processes (300-410 nm) tailing off in the visible region (See table 2, Figure 5 right and ESI ${ }^{\text {Figures S15-S34). Upon excitation of the corresponding }}$ MLCT features $(\lambda=370 \mathrm{~nm})$, the cationic $f a c-\left[\operatorname{Re}(C O)_{3}(\operatorname{PTZ}-\mathrm{R})(\mathrm{pyr})\right]^{+}$and $f a c-\left[\operatorname{Re}(\mathrm{CO})_{3}(\mathrm{QTZ}-\mathrm{R})(\mathrm{pyr})\right]^{+}$ type species and the neutral complex fac-[Re(CO) $\mathbf{3}^{(Q T Z-M e)(T p h)] ~ d i s p l a y e d ~ b r i g h t ~ l u m i n e s c e n c e ~}$ that, in line with the behavior typical of the family of fac-Re(I) triscarbonyl diimine complexes, was represented by broad and structureless emission profiles centered between ca. 510 nm and 630 nm . In particular, if the emissions originating from the PTZ-R- based complexes fac-[Re(CO) $\mathbf{3}_{\mathbf{3}}$ (PTZR)(pyr)] ${ }^{+}$were found to span from $\lambda_{\text {max }}=514 \mathrm{~nm}$ to $\lambda_{\text {max }}=578 \mathrm{~nm}$, those observed from the series of QTZ-R -based cationic derivatives $f a c-\left[\operatorname{Re}(C O)_{3}(Q T Z-R)(p y r)\right]^{+}$were quite expectedly found to peak at lower energy, as in the cases of for fac-[Re(CO) $\left.\mathbf{3}_{3}(\mathrm{QTZ}-\mathrm{Me})(\mathrm{pyr})\right]^{+}$and fac-[Re(CO) $\mathbf{3}_{\mathbf{3}}(\mathrm{QTZ}-$ $\left.{ }^{\text {t }} \mathrm{Bu}\right)(\mathrm{pyr}) \mathrm{J}^{+}$, whose emissions being both centred at 604 nm . The further red shift of the emission maxima ($\lambda_{\max }=632 \mathrm{~nm}$) was observed for the neutrally charged "fully tetrazole" complex fac$\left[\operatorname{Re}(C O)_{3}(Q T Z-M e)(T p h)\right]$. However, in all cases, the emission can be confidently described as phosphorescence originating from charge transfer states of triplet multiplicity, ${ }^{3} \mathrm{CT}$, in a manner analogous to what we have reported previously for neutral and ionic $\operatorname{Re}(I)$ tetrazolato complexes. [8], [9], [12], [13] In fact, the excited state lifetime (τ) and quantum yield (Ф) are sensitive
to the presence of dissolved dioxygen (Table 2). Further in support of the ${ }^{3}$ MLCT nature of the emissive excited states was the significant rigidochromic blue shift of the emission that was observed on passing from 298 K to $\left.77 \mathrm{~K},{ }^{\mathrm{xv}}\right]$ highlighting an effect that can be ascribed to the ensuing reduction, or almost complete removal, of vibrational and collisional quenching phenomena (Table 2 and ESI \dagger Figures S15-S34). It is worth noting that under all the different the experimental conditions in which the measurement were carried out (Table 2), the fac-[Re(CO) $\left.\mathbf{3}_{\mathbf{3}}(\mathbf{Q T Z - R})(\mathrm{L})\right]^{0 /+}$ type complexes displayed photoluminescence performances superior to those displayed by the parent fac-[$\left.\operatorname{Re}(\mathbf{C O})_{\mathbf{3}}(\mathrm{PTZ-R})(\mathrm{pyr})\right]^{+}$derivatives, in terms both of higher quantum yields $\left(\Phi_{\mathrm{Ar}}\right)$ and longer emission lifetimes (τ). This trend did become even more evident on passing from air equilibrated to O_{2}-free solutions, and was quite unexpected in consideration of the energy gap law, since the emission maxima of all the QTZ-R based complexes did peak at significantly lower energies than what observed for the PTZ-R analogous species. Whereas the more extended π-conjugation across the QTZ backbone reasonably accounts for the red shifted emission of the QTZ-R based complexes, their displaying higher quantum yields and longer emission lifetimes might be explained
 by the benzofused QTZ scaffold with respect to what happens in the presence of the PTZ-based diimine ligand.

 ${ }^{\text {tBu }}$)(pyr) $]^{+}$(red dotted line) and fac-[Re(CO) $\mathbf{3}^{(Q T Z-M e)(T p h)] ~(b l u e ~ s o l i d ~ l i n e), ~ 298 K, ~} \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Interaction with BSA - Bovine Serum Albumin

Within the general framework of our extensive studies concerning the use of $\operatorname{Re}(I)$-tetrazolato complexes in life science, [8], [xvi], [xvii], [xviii], [xix], [xx], [xxi], [xxii], we have recently reported the very first examples of $\operatorname{Re}(I)$-based luminescent markers for proteins purified by SDS-PAGE (Sodium Dodecyl Sulphate - PolyAcrylamide Gel Electrophoresis).[9] In the first stage of those studies, the new $\operatorname{Re}(I)$ complexes - which were designed with the general formula fac- $\left[\operatorname{Re}(\mathrm{CO})_{3}(\mathrm{diim})(\mathrm{L})\right]^{0 /-}$,
where diim could be either bathophenanthroline (BP) or bathophenanthroline disulfonate (BPS) and L was represented by the 5 -(phenyl)tetrazolato anion [Tph-] - were successfully screened with respect the luminescent detection of bovine serum albumin (BSA), which is considered as a model protein due to its structural homology with HSA (human serum albumin). Relying on these premises we have endeavored to preliminarily investigate the occurrence of any possible interaction involving BSA and the new complexes $f a c-\left[\operatorname{Re}\left(\mathrm{CO}_{3}\right)_{3}(\mathrm{diim})(\mathrm{L})\right]^{0 /+}$ presented herein, namely the cationic species
 complex fac-[Re(CO) $\mathbf{3}_{\mathbf{(Q T Z - M e})(T p h)] . ~ T o ~ t h i s ~ e n d, ~ b o t h ~ a b s o r p t i o n ~ a n d ~ e m i s s i o n ~ t i t r a t i o n ~}^{\text {(}}$ experiments were performed by adding $20 \times 5 \mu \mathrm{~L}$ (DMSO as the solvent, $2.1^{*} 10^{-3} \mathrm{M}$) to 2 mL of BSA as $1^{*} 10^{-5} \mathrm{M}$ solution in aqueous PBS buffer-(see ESI† Figures S35-S49). As reported in the literature, [xxiii] the absorption profile of BSA consists of an intense transition centered at 220 nm followed by a weaker band peaking at 280 nm , which are usually assigned to the secondary structure of the protein and the aromatic residues of amino acids, respectively.

Table 3: BSA-Re(I) binding experiments data, 298K.

Complex PBS/DMSO 95:5, 298K	$\begin{gathered} \lambda_{\mathrm{em}} \\ (\mathrm{~nm}) \end{gathered}$	$\begin{gathered} \tau_{0 B S A}{ }^{\mathrm{a}} \\ (\mathrm{~ns}) \end{gathered}$	$\tau_{B S A}{ }^{a}$ (ns)	$\tau_{0} / \tau_{\mathrm{BSA}}{ }^{\mathrm{a}}$	$\begin{gathered} K_{D}^{b} \\ \left(M^{-1}\right) \end{gathered}$	$\begin{gathered} \mathrm{K}_{\mathrm{q}}{ }^{\mathrm{a}} \\ \left(\mathrm{M}^{-1} \mathrm{~s}^{-1}\right) \end{gathered}$	$\begin{gathered} \mathrm{K}_{\mathrm{b}}{ }^{2} \\ \left(\mathrm{M}^{-1}\right) \end{gathered}$	$\mathrm{n}^{\text {c }}$
$f a c-\left[\operatorname{Re}(\mathrm{CO})_{3}(\mathrm{PTZ}-\mathrm{Me})(\mathrm{pyr})\right]^{+}$	586	6.7	6.1	1.1	$9.8 * 10^{2}$	$1.46 * 10^{11}$	$8.8 * 10^{5}$	1.3
$f a c-\left[\operatorname{Re}(\mathrm{CO})_{3}\left(\mathrm{PTZ-}{ }^{\text {t }} \mathrm{Bu}\right)(\mathrm{pyr})\right]^{+}$	538	6.7	6.2	1.1	$8.4 * 10^{2}$	$1.25 * 10^{11}$	$1.6 * 10^{5}$	1.2
fac-[Re(CO) $\left.{ }_{3}(\mathrm{QTZ}-\mathrm{Me})(\mathrm{pyr})\right]^{+}$	580	6.7	5.1	1.3	$3.3 * 10^{3}$	$4.92 * 10^{11}$	$2.8 * 10^{6}$	1.0
$f a c-\left[\operatorname{Re}(\mathrm{CO})_{3}(\mathrm{QTZ-Me})(\mathrm{Tph})\right]$	614	6.7	4.5	1.5	$5.0 * 10^{3}$	$1.49 * 10^{11}$	$1.5 * 10^{6}$	1.3
fac-[Re(CO) $\left.{ }_{3}\left(\mathrm{QTZ-}{ }^{\text {t }} \mathrm{Bu}\right)(\mathrm{pyr})\right]^{+}$	604	6.7	4.5	1.5	$4.8 * 10^{3}$	$7.10 * 10^{11}$	$6.8 * 10^{6}$	1.5

a: $\pm 8 \%, \pm 16 \%{ }^{b}: \mathrm{t}_{0} / \tau=1+\mathrm{K}_{\mathrm{D}}[\mathrm{Q}]$. ${ }^{\text {c }}$: Derived from $\log \left(\mathrm{I}_{0}-\mathrm{I} / \mathrm{I}\right)=\log \mathrm{K}+\mathrm{n} \log [\mathrm{Q}]$.
Accordingly, whereas the perturbations of the secondary structure of BSA usually lead to a decrease of the absorbance centred at 220 nm , the alterations localized in the surroundings of aromatic residues of amino acids are associated to changes in the process found at 280 nm . Upon incremental additions of $2.1^{*} 10^{-3} \mathrm{M}$ solutions of $\mathrm{Re}(\mathrm{I})$-tetrazole based species to 2 mL of a $10^{-5} \mathrm{M}$ BSA solution, the resulting absorption profiles presented an ever-growing process at 220 nm , while at higher wavelengths (250-300 nm), overlapped processes from both BSA and $\operatorname{Re}(I)$ quenchers were

 ${ }^{3} \mathrm{M}, \mathrm{PBS} / \mathrm{DMSO} 95: 5,298 \mathrm{~K} . \lambda_{\text {emi }}=538 \mathrm{~nm} . \lambda_{\text {emi }}$ BSA $=346 \mathrm{~nm} . \lambda_{\text {exc }}=280 \mathrm{~nm}$.

The intrinsic fluorescence of BSA is often referred to the presence of two tryptophan residues, whose accessibility is strictly correlated to the intensity of such emission, as well as the polarity of the solvent used.[xxiv] The occurrence of changes in emission intensity of BSA upon the addition of successive aliquots of a quencher (i.e. Re(I) complexes) might be indicative for alteration of the environment that surrounds the protein, suggesting therefore the occurrence of binding interactions between BSA and the quencher. For all the $\operatorname{Re}(I)$ complexes presented herein, a decrease in the emission intensity of BSA was always observed as a result of the increased concentration of quencher $\left(0-10^{-4} \mathrm{M}\right)$. Instead, only in the case of the cationic complex fac$\left[\operatorname{Re}(\mathrm{CO})_{3}\left(\text { PTZ- }^{\mathrm{t}} \mathrm{Bu}\right)(\mathrm{pyr})\right]^{+}$(Figure 6, right) and the neutrally charged species fac-[Re(CO) $\mathbf{3}^{(Q T Z-}$ Me)(Tph)] (Figure 7, left) an appreciable increase of the Re(I)-based emission intensity was observed.

Figure 7: (I) Emission Titration of BSA $10^{-5} \mathrm{M} / \mathrm{PBS}$ buffer vs fac-[Re(CO) $\mathbf{3}^{(\mathrm{QTZ}-\mathrm{Me})(\mathrm{Tph})], 20 \times 5 \mu \mathrm{~L} 2.1^{*} 10^{-3} \mathrm{M}, \mathrm{PBS} / \mathrm{DMSO}}$ 95:5, 298K. $\lambda_{\text {emi }}=614 \mathrm{~nm}$. $\lambda_{\text {emi }} B S A=346 \mathrm{~nm} . \lambda_{\text {exc }}=280 \mathrm{~nm}$; (r) Stern Volmer plot.

To get more insights about the quenching mechanism that occurs between BSA and our $\operatorname{Re}(I)$ based quenchers, Stern-Volmer analyses were carried out (Figure 7 right for fac-[Re(CO) $\mathbf{3}_{\mathbf{3}}$ (QTZMe)(Tph)], ESI Figures S35-49 for all the other reported species). In all cases, experimental results
exhibited a non-linear behavior of the I_{0} / I vs [Q] plot (I_{0} and I are the emission intensities of BSA with and without quencher, respectively; $[Q]$ is the concentration of the $\operatorname{Re}(I)$-quencher considered), while the decay time of BSA decreased with increasing concentration of quencher (Table 3).Usually upward curvature of Stern-Volmer plot may be due to (i) static as well as dynamic quenching mechanisms that occurs simultaneously and/or (ii) high extent of quenching at higher concentration region of quencher. $\left[{ }^{x \times v}\right]$], [xxvi], [xxvii] Thus, a modified Stern-Volmer equation [xxviii] which accounts for the positive curvature observed was used ($\mathrm{F}_{0} / \mathrm{F}=\left(1+\mathrm{K}_{\mathrm{D}}[\mathrm{Q}]\right)\left(1+\mathrm{K}_{\mathrm{S}}[\mathrm{Q}]\right)$). Attempts to obtain K_{D} and K_{S} values (dynamic and static quenching constants, respectively) using the latter relation were unsuccessful because the resulting quadratic equations were in all cases unsolvable ($\Delta<0$). $[$ [xix $]$ This may be due to the minor contribution of dynamic quenching in the overall process, that was found to range from 10^{2} to $10^{3} \mathrm{M}^{-1}$ from lifetime data (K_{D}, Table 3). Moreover, as the resulting bimolecular quenching constants (k_{q}, Table 3) are higher than the maximum scatter collision-quenching constant of diverse kinds of quenchers for biopolymers fluorescence ($2^{*} 10^{10} \mathrm{M}^{-1} \mathrm{~s}^{-1}$), [$\left.{ }^{\mathrm{xx} \times}\right],\left[{ }^{\times x \times i}\right]$, the static quenching mechanism seems to be prevalent in the interaction between BSA and the presented $\operatorname{Re}(I)$ complexes. On these basis, the affinity (binding constant, k_{b}) and the number of binding sites (n) of BSA towards our Re(I) complexes were determined according to the Scatchard equation.[xxxii], [xxxii], [${ }^{x \times x i v}$] The obtained values (Table 3, ESI Figures S35 to S49) denote an efficient interaction between our $\operatorname{Re}(I)$ complexes - in particular, the ones containing the QTZ-based diimine ligands and BSA, as the optimum range for K_{b} to be indicative for an efficient process is considered to be $10^{4}-10^{6} \mathrm{~L} \mathrm{~mol}^{-1} .\left[\begin{array}{c}\mathrm{xxxv}\end{array}\right]$

Conclusions

N -alkylated tetrazoles such as those based of the 2-pyridyl (PTZ) and 2-quynolyl molecular scaffolds, can actually play the role of diimine "diim" ligands for triscarbonyl $\operatorname{Re}(I)$ complexes with general formula $\operatorname{fac}-\left[\operatorname{Re}(\mathbf{C O})_{3}(\operatorname{diim})(\mathrm{L})\right]^{/+}$. In particular, the analysis of the photophysical behaviour of the new $\operatorname{Re}(I)$ complexes, both in the form of cationic species complexes $f a c-\left[\operatorname{Re}(C O)_{3}(P T Z-R)(p y r)\right]^{+}$, fac-[$\left.\operatorname{Re}(C O)_{3}(Q T Z-R)(p y r)\right]^{+}$, where pyr is pyridine, and of the neutrally charged "fully tetrazole" derivative $\mathbf{f a c}$-[$\left.\mathbf{R e}(\mathbf{C O})_{3}(\mathrm{QTZ}-\mathrm{Me})(T \mathrm{Th})\right]$ displayed results in excellent agreement with those usually described for the family of fac-Re(I) triscarbonyl diimines. Among the new $\operatorname{Re}(I)$ complexes, in particular, unexpectedly efficient emissive performances were exhibited by the whole series of the fac-[Re(CO) $)_{3}(\text { QTZ-R)(L) }]^{0 /+}$ type complexes, enlightening an effect that we have preliminary ascribed to the likely more rigid environment that is brought by the QTZ-based diimine ligands in the
corresponding complexes. Another suggestion for the influence played by the QTZ-R scaffolds in determining the extent of the various properties of the $\operatorname{Re}(I)$ complexes was provided by the results obtained from the preliminary studies about the interaction of the new $\operatorname{Re}(I)$ complexes with Bovine Serum Albumin (BSA), as the K_{b} values for $f a c-\left[\operatorname{Re}(\mathrm{CO})_{3}(\mathrm{QTZ}-\mathrm{R})(\mathrm{L})\right]^{0 /+}$ type complexes were found to be higher than those relative to $\mathrm{fac}-\left[\operatorname{Re}(\mathbf{C O})_{3}(\text { PTZ-R) }(\mathrm{pyr})]^{+}\right.$series. It is also worth noting that in the
 quenching, an appreciable $\operatorname{Re}(I)$-based emission was still observed. Taken together, these preliminary results pave the way for the further development of our $\operatorname{Re}(I)$ tetrazole complexes by investigating their interaction toward a wider range of protein targets and by exploring their possible use as luminescent markers for proteins.

Experimental Section

General considerations All the reagents and solvents were obtained commercially (Sigma Aldrich/Merck, Alfa Aesar, Strem Chemicals) and used as received without any further purification, unless otherwise specified. When required, the reactions were carried out under an argon atmosphere following Schlenk protocols and the purification of the $\operatorname{Re}(I)$ complexes was performed via column chromatography with the use of SiO_{2} as the stationary phase. ESI-mass spectra were recorded using a Waters ZQ-4000 instrument (ESI-MS, acetonitrile as the solvent). Nuclear magnetic resonance spectra (consisting of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$) were always recorded using a Varian Mercury Plus 400 $\left({ }^{1} \mathrm{H}, 399.9 ;{ }^{13} \mathrm{C}, 101.0 \mathrm{MHz}\right) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts were referenced to residual solvent resonances. Infrared Spectra (IR) were acquired with a Perkin Elmer Spectrum One FTIR instrument using the ATR (attenuated total reflectance) module.

Photophysics Absorption spectra were recorded at room temperature using a Perkin Elmer Lambda 35 UV/vis spectrometer. Uncorrected steady-state emission and excitation spectra were recorded on an Edinburgh FLSP920 spectrometer equipped with a 450 W xenon arc lamp, double excitation and single emission monochromators, and a Peltier-cooled Hamamatsu R928P photomultiplier tube (185-850 nm). Emission and excitation spectra were acquired with a cut-off filter (395 nm) and corrected for source intensity (lamp and grating) and emission spectral response (detector and grating) by a calibration curve supplied with the instrument. The wavelengths for the emission and excitation spectra were determined using the absorption maxima of the MLCT transition bands (emission spectra) and at the maxima of the emission bands (excitation spectra). Quantum yields (Φ) were determined using the optically dilute method by Crosby and Demas [xxxvi] at excitation wavelength obtained from absorption spectra on a wavelength scale [nm] and compared to the reference emitter by the following equation:[xxvvii]

$$
\phi_{s}=\phi_{r}\left[\frac{A_{r}\left(\lambda_{r}\right)}{A_{s}\left(\lambda_{s}\right)}\right]\left[\frac{I_{r}\left(\lambda_{r}\right)}{I_{s}\left(\lambda_{s}\right)}\right]\left[\frac{n_{s}^{2}}{n_{r}^{2}}\right]\left[\frac{D_{s}}{D_{r}}\right]
$$

where A is the absorbance at the excitation wavelength $(\lambda), I$ is the intensity of the excitation light at the excitation wavelength $(\lambda), n$ is the refractive index of the solvent, D is the integrated intensity of the luminescence, and Φ is the quantum yield. The subscripts r and s refer to the reference and the sample, respectively. A stock solution with an absorbance > 0.1 was prepared, then a 10 times diluted solution was obtained, resulting in absorbance of about 0.07/0.08 depending on the sample considered. The Lambert-Beer law was assumed to remain linear at the concentration of the
solutions. The degassed measurements were obtained after the solutions were bubbled for 10 minutes under Ar atmosphere, using a septa-sealed quartz cell. Air-equilibrated $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right] \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}$ solution $(\Phi=0.028)$ [xxxviii] was used as reference. The quantum yield determinations were performed at identical excitation wavelengths for the sample and the reference, therefore deleting the $I(\lambda r) / I(\lambda s)$ term in the equation. Emission lifetimes (τ) were determined with the single photon counting technique (TCSPC) with the same Edinburgh FLSP920 spectrometer using pulsed picosecond LED (EPLED 360, FWHM < 800ps) as the excitation source, with repetition rates between 1 kHz and 1 MHz , and the above-mentioned R928P PMT as detector. The goodness of fit was assessed by minimizing the reduced $\chi 2$ function and by visual inspection of the weighted residuals. To record the 77 K luminescence spectra, the samples were put in quartz tubes (2 mm diameter) and inserted in a special quartz Dewar filled with liquid nitrogen. The solvent used in the preparation of the solutions for the photophysical investigations was of spectrometric grade. Experimental uncertainties are estimated to be $\pm 8 \%$ for lifetime determinations, $\pm 20 \%$ for quantum yields, and ± 2 nm and $\pm 5 \mathrm{~nm}$ for absorption and emission peaks, respectively.

Ligand synthesis Tetrazole derivatives are used as components for explosive mixtures.[10] In this lab, the reactions described here were only run on a few grams scale and no problems were encountered. However, great caution should be exercised when handling or heating compounds of this type. Following the general method reported by Koguro and co-workers,[xxxix] tetrazole ligands [H-Tph], [H-QTZ] and [H-PTZ] were obtained in almost quantitative yield.
[H-Tph] ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO} \mathrm{d}^{6}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm})=8.06-8.03(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 2, \mathrm{H} 6), 7.62-7.60(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H} 3$, H4, H5); [H-PTZ] ${ }^{1} \mathrm{H}-\mathrm{NMR},\left(\mathrm{DMSO}-\mathrm{d}^{6}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 8.79-8.77(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 6), 8.22-8.20(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H} 3), 8.08-8.04(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 4), 7.63-7.60(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 5)$; $\mathrm{H}-\mathrm{QTZ}]^{1} \mathrm{H}-\mathrm{NMR},\left(\mathrm{DMSO}^{6}-\mathrm{d}^{6}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm})=$ $8.65\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{H}-\mathrm{H}}=8.79 \mathrm{~Hz}, \mathrm{H} 4\right), 8.31\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{H}-\mathrm{H}}=8.40 \mathrm{~Hz}, \mathrm{H} 5\right), 8.17\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{H}-\mathrm{H}}=8.40 \mathrm{~Hz}, \mathrm{H} 8\right), 8.12$ (d, 1H, $\left.\mathrm{J}_{\mathrm{H}-\mathrm{H}}=7.99 \mathrm{~Hz}, \mathrm{H} 3\right), 7.90(\mathrm{t}, 1 \mathrm{H}, \mathrm{H} 7), 7.74(\mathrm{t}, 1 \mathrm{H}, \mathrm{H} 6)$.

Ligand Functionalization The ligands PTZ-Me (N-3), QTZ-Me (N-3) and PTZ-'Bu, QTZ-'Bu were obtained according to previously reported literature procedures.[x] $\left.{ }^{[}\right]$

PTZ-Me (N-3) ${ }^{1} \mathrm{H}-\mathrm{NMR},\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 8.67-8.65(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 6), 8.13-8.10(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 3)$, 7.77$7.73(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 4), 7.30-7.26(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 5), 4.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR},\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 164.78$ $\left(\mathrm{C}_{\mathrm{t}}\right), 150.18\left(\mathrm{C}_{\text {ipso }}\right), 146.60(\mathrm{C} 6), 137.00(\mathrm{C} 4), 124.73(\mathrm{C} 3), 122.20(\mathrm{C} 5), 39.59\left(\mathrm{CH}_{3}\right) .[40]$

QTZ-Me ($\mathrm{N}-3)^{1} \mathrm{H}-\mathrm{NMR},\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 8.38-8.36(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H} 8, \mathrm{H} 5, \mathrm{H} 4), 7.91-7.88(\mathrm{~m}, 1 \mathrm{H}$, H7), 7.82-7.76 (m, 1H, H3), 7.65-7.61 (m, 1H, H6), $4.52\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR},\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ (ppm): $164.98\left(C_{t}\right), 148.01\left(C_{\text {ipso }}\right), 146.49$ (C10), 137.25 (C4), 130.01 (C8), 129.93 (C5), 128.32 (C6), 127.54 (C7), 127.42 (C9), 119.54 (C3), 39.71 (CH_{3}).[40]

PTZ- ${ }^{\text {t }}{ }^{1}{ }^{1} \mathrm{H}-\mathrm{NMR},\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 8.81-8.80\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{H}-\mathrm{H}}=4.00 \mathrm{~Hz}, \mathrm{H} 6\right), 8.28-8.26\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{H}}\right.$ н $=7.60 \mathrm{~Hz}, \mathrm{H} 3), 7.88-7.84(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 4), 7.40-7.37(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 5), 1.84\left(\mathrm{~s}, 9 \mathrm{H},-{ }^{-} \mathrm{Bu}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR},\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}) \delta(\mathrm{ppm}): 164.1\left(\mathrm{C}_{\mathrm{t}}\right), 155.2\left(\mathrm{C}_{\text {ipso }}\right), 149.4,137.2,124.2,123.7,73.1\left(\mathrm{C}-\left(\mathrm{CH}_{3}\right)_{3}\right), 28.3\left(\left(\mathrm{CH}_{3}\right)_{3}\right)$.

QTZ-'tBu ${ }^{1} \mathrm{H}-\mathrm{NMR},\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 8.38-8.30(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H} 4, \mathrm{H} 5, \mathrm{H} 8), 7.87(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 3), 7.77$ (m, 1H, H7), $7.60(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 6), 1.87\left(\mathrm{~s}, 9 \mathrm{H},-{ }^{-\mathrm{Bu}}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR},\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 163.5\left(\mathrm{C}_{\mathrm{t}}\right), 157.4$ ($\mathrm{C}_{\text {ipso }}$), 144.2 (C10), 137.3 (C4), 129.8 (C8), 128.3 (C6), 127.1 (C7), 125.3 (C5), 121.0 (C9), 119.5 (C3), $72.9\left(\mathrm{C}-\left(\mathrm{CH}_{3}\right)_{3}\right), 28.6\left(\left(\mathrm{CH}_{3}\right)_{3}\right)$.

General Procedure for the Preparation of fac-[Re(CO) $\left.\mathbf{3}^{(}\left(\mathrm{N}^{\wedge} \mathrm{N}\right)-(p y r)\right]^{+}$-type complexes and fac$\left[\operatorname{Re}(\mathrm{CO})_{3}(Q T Z-M e)-(T p h)\right]$

The preparation of $f a c-\left[\operatorname{Re}(C O)_{3}\left(\mathbf{N}^{\wedge} \mathrm{N}\right)-(p y r)\right]^{+}$-type complexes was accomplished by following a multistep procedure which involved at first the formation of the neutral fac-[Re(CO) $\left.)_{3}\left(\mathrm{~N}^{\wedge} \mathrm{N}\right)(\mathrm{Br})\right]$ by refluxing $\operatorname{Re}(C O)_{5} B r(1 \mathrm{eq})$ with the appropriate ($\mathrm{N}^{\wedge} \mathrm{N}$) ligand (1.1 eq) in 20 mL of toluene for 24 h . The crude was allowed to cool to room temperature and the addition of $\mathrm{Et}_{2} \mathrm{O}$ induced the precipitation of bright yellow to orange solids collected by filtration, air-dried and used for the successive steps without any further purification. In a two neck round bottomed flask protected from light, 1 eq of the desired neutral fac- $\left[\operatorname{Re}(\mathrm{CO})_{3}\left(\mathrm{~N}^{\wedge} \mathrm{N}\right)(\mathrm{Br})\right]$ and 1.5 eq. of AgPF_{6} were combined in 20 mL of $\mathrm{CH}_{3} \mathrm{CN}$ and refluxed for 3 hrs . The crude was cooled to room temperature, filtered over a celite pad to remove AgBr and successively combined with pyridine (5 eq .) in CHCl_{3} (20 mL) . The solutions were heated over reflux $\left(70^{\circ} \mathrm{C}\right)$ under an argon atmosphere for 15 hrs , after which the pale to bright yellow precipitates formed were collected by filtration and washed with $\mathrm{Et}_{2} \mathrm{O}$. In the case of $f a c-\left[\operatorname{Re}(C O)_{3}(\mathrm{QTZ}-\mathrm{Me})(T p h)\right], 1.2$ eq. of H -Tph were added to the reaction mixture instead of pyridine after the halide extraction step. The crude was then purified by column chromatography over SiO_{2} eluted with a $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Acetone 9:1 mixture. Product in F 1 .
fac-[Re(CO) $\left.)_{3}(\mathrm{PTZ}-\mathrm{Me})(\mathrm{Br})\right]^{\mathbf{1}} \mathrm{H}-\mathrm{NMR},\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 9.11-9.09(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 6), 8.28-8.25(\mathrm{~m}$, 1H, H3), 8.16-8.11 (m, 1H, H4), 7.65-7.62 (m, 1H, H5), $4.59\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$. ESI-MS (m/z): $[\mathrm{M}+\mathrm{Na}]^{+}=$ 534, $[\mathrm{M}+\mathrm{K}]^{+}=550 . \operatorname{IR}-A T R \vee\left(\mathrm{~cm}^{-1}\right): 2033$ (CO), 1934 (CO), 1907 (CO). $\mathrm{Y}=69 \%(\mathrm{MW}=511 \mathrm{~g} / \mathrm{mol}, 0.35$ mmol).
fac-[Re(CO) $\left.{ }_{3}\left(\mathrm{PTZ}^{-\mathrm{t}} \mathrm{Bu}\right)(\mathrm{Br})\right]{ }^{1} \mathrm{H}-\mathrm{NMR},\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 9.10-9.08(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 6), 8.30-8.26(\mathrm{~m}$, 1H, H3), 8.14-8.10 (m, 1H, H4), 7.63-7.59(m,1H, H5), $1.88(\mathrm{~s}, 9 \mathrm{H},-\mathrm{tBu})$. ESI-MS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}=$ 575. IR-ATR v (cm^{-1}): 2032 (CO), 1933 (CO), 1905 (CO). $\mathrm{Y}=19 \%$ (MW= $\left.552 \mathrm{~g} / \mathrm{mol} ; 0.05 \mathrm{mmol}\right)$.
fac-[Re(CO) $\left.\mathbf{3}_{3}(\mathrm{QTZ-Me})(\mathrm{Br})\right]^{1} \mathrm{H}-\mathrm{NMR},\left(\right.$ Acetone- $\left.{ }^{6}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 9.01-8.99\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{H}-\mathrm{H}}=8.80\right.$ $\mathrm{Hz}, \mathrm{H} 8), 8.87-8.85\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{H}-\mathrm{H}}=8.80 \mathrm{~Hz}, \mathrm{H} 4\right), 8.53-8.51\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{H}-\mathrm{H}}=8.40 \mathrm{~Hz}, \mathrm{H} 5\right), 8.34-8.32(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{J}_{\mathrm{H}-\mathrm{H}}=8.00 \mathrm{~Hz}, \mathrm{H} 3\right), 8.24-8.20\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{H}-\mathrm{H}}=16.00 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8.40 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.60 \mathrm{~Hz}, \mathrm{H} 7\right), 8.00-7.96(\mathrm{t}, 1 \mathrm{H}$, $\left.\mathrm{J}_{\mathrm{H}-\mathrm{H}}=15.2 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8.00 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.20 \mathrm{~Hz}, \mathrm{H} 6\right), 4.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$. ESI-MS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}=584 \mathrm{~m} / \mathrm{z}$. IR-ATR v (cm^{-1}) : 2031 (CO), 1931 (CO), 1910 (CO). $Y=73 \% ~(M W=561 \mathrm{~g} / \mathrm{mol}, 0.51 \mathrm{mmol})$.
fac-[Re(CO) $\left.\mathbf{3}_{3}\left(\mathrm{QTZ-}{ }^{\mathrm{t}} \mathrm{Bu}\right)(\mathrm{Br})\right]^{1} \mathrm{H}-\mathrm{NMR},\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 8.93-8.91\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{H}-\mathrm{H}}=8.00 \mathrm{~Hz}, \mathrm{H} 8\right)$, 8.58-8.56 (d, $\left.1 \mathrm{H}, \mathrm{J}_{\mathrm{H}-\mathrm{H}}=8.0 \mathrm{~Hz}, \mathrm{H} 4\right), 8.35-8.33\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{H}-\mathrm{H}}=8.40 \mathrm{~Hz}, \mathrm{H} 5\right), 8.10-8.01(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 3, \mathrm{H} 7)$, 7.90-7.81 (m, 1H, H6), $1.93\left(\mathrm{~s}, 9 \mathrm{H},-^{\mathrm{t}} \mathrm{Bu}\right)$. ESI-MS (m/z) : $[\mathrm{M}+\mathrm{Na}]^{+}=626,[\mathrm{M}+\mathrm{K}]^{+}=642$. IR-ATR $v\left(\mathrm{~cm}^{-1}\right):$ 2031 (CO), 1930 (CO), 1907 (CO). $Y=73 \%$ (MW= $553 \mathrm{~g} / \mathrm{mol}, 0.60 \mathrm{mmol}) . ~ Y=41 \% ~(M W=603 \mathrm{~g} / \mathrm{mol}$, 0.14 mmol).
fac-[Re(CO) $\mathbf{3}_{3}(\text { PTZ-Me)-(pyr)][PF }]^{1}{ }^{1} \mathrm{H}-\mathrm{NMR}$, (Acetone- $\left.\mathrm{d}^{6}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 9.56-9.54(\mathrm{~m}, 1 \mathrm{H}, \mathrm{PTZ}-$ Me), 8.55-8.52 (m, 3H, pyr), 8.51-8.46 (m, 1H, PTZ-Me), 8.11-8.07 (m, 1H, PTZ-Me), 8.02-7.97 (m, 1H, PTZ-Me), 7.48-7.45 (m, 2H, pyr), 4.75 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$). IR-ATR v (cm^{-1}): 2036.2 (CO), 1913.6 (CO). ESIMS (m/z): $[\mathrm{M}]^{+}=511 ;[\mathrm{M}]=145\left(\mathrm{PF}_{6}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR},\left(\right.$ Acetone- $\left.\mathrm{d}^{6}, 100 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 167.18\left(\mathrm{C}_{\mathrm{t}}\right), 155.29$ ($\mathrm{C}_{\text {ipso }}$), 152.65 (PTZ-Me), 144.56 (pyr), 142.47 (PTZ-Me), 140.16 (pyr), 130.44 (PTZ-Me), 127.07 (PTZMe), 124.84 (pyr), $42.03\left(\mathrm{CH}_{3}\right) . Y=75 \%(\mathrm{MW}=655 \mathrm{~g} / \mathrm{mol} ; 0.303 \mathrm{mmol})$. Anal. Calcd. For $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{P}_{1} \mathrm{~F}_{6} \mathrm{Re}_{1}(655.47) \mathrm{C} 27.49, \mathrm{H} 1.85, \mathrm{~N} 12.82$. Found: C $24.8, \mathrm{H} 1.69, \mathrm{~N} 10.85$.
fac-[Re(CO) ${ }_{3}\left(\right.$ PTZ-tBu) $\left.^{-1}(\mathrm{pyr})\right]\left[\mathrm{PF}_{6}\right]^{\mathbf{1}} \mathrm{H}-\mathrm{NMR},\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 9.17-9.16\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{H}-\mathrm{H}}=5.60\right.$ Hz, PTZ-tBu), 8.44-8.42(d, 1H, $\left.\mathrm{J}_{\mathrm{H}-\mathrm{H}}=7.20 \mathrm{~Hz}, \mathrm{pyr}\right), 8.34-8.30\left(\mathrm{~m}, 1 \mathrm{H}\right.$, PTZ- $\left.{ }^{\mathrm{t}} \mathrm{Bu}\right), 8.26-8.24\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}_{\mathrm{H}-\mathrm{H}}=\right.$ 5.20 Hz, PTZ- ${ }^{\mathrm{t}} \mathrm{Bu}$), 7.91-7.81 (m, 2H, pyr), 7.43-7.40 (m, 2H, pyr), 1.92 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{-}^{\mathrm{t} B u) . ~ E S I-M S ~(m / z): ~}$ $[\mathrm{M}]^{+}=553 ;[\mathrm{M}]^{-}=145\left(\mathrm{PF}_{6}\right)$. IR-ATR v $\left(\mathrm{cm}^{-1}\right): 2045(\mathrm{CO}), 1940(\mathrm{CO}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$, (Acetone-d ${ }^{6}, 100 \mathrm{MHz}$) $\delta(\mathrm{ppm}): 166.98\left(\mathrm{C}_{\mathrm{t}}\right), 155.22\left(\mathrm{C}_{\mathrm{ipso}}\right), 152.61$ (PTZ-tBu), 144.93 (pyr), 142.37 (PTZ- ${ }^{\mathrm{t} B u), 140.20(p y r), ~}$ 130.32 (PTZ-tBu), 127.06 (PTZ- ${ }^{\mathrm{t}} \mathrm{Bu}$), 124.84 (pyr), 69.36 ($\mathrm{C}^{\mathrm{t}} \mathrm{Bu}$), 40.55 (- ${ }^{\mathrm{t} B u) . ~} \mathrm{Y}=19 \%$ ($\mathrm{MW}=698 \mathrm{~g} / \mathrm{mol}$; $0.05 \mathrm{mmol})$. Anal. Calcd. For $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{P}_{1} \mathrm{~F}_{6} \mathrm{Re}_{1}$ (697.55) C 30.99, H 2.60, N 12.05. Found: C 29.43, H 2.45, N 11.94.
fac-[Re(CO) $\left.{ }_{3}(\mathrm{QTZ-Me})-(p y r)\right]\left[\mathrm{PF}_{6}\right]{ }^{\mathbf{1}} \mathrm{H}-\mathrm{NMR},\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 8.95-8.88(\mathrm{~m}, 1 \mathrm{H}, \mathrm{QTZ}-\mathrm{Me})$, 8.49-8.47 (d, 1H, J ${ }_{H-H}=8.0 \mathrm{~Hz}$, QTZ-Me), 8.31-8.27 (m, 2H, QTZ-Me, pyr), 8.17-8.15 (m, 1H, QTZ-Me), 8.03-8.00 (m, 2H, pyr), 7.86-7.80 (m, 2H, pyr), 7.70-7.66 (m, 1H, QTZ-Me), 7.23-7.20 (m, 1H, QTZMe), $4.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) . \operatorname{ESI}-\mathrm{MS}(\mathrm{m} / \mathrm{z}):[\mathrm{M}]^{+}=561 ;[\mathrm{M}]^{-}=145\left(\mathrm{PF}_{6}\right)$. IR-ATR v $\left(\mathrm{cm}^{-1}\right): 2045$ (CO), 1940
(CO). ${ }^{13} \mathrm{C}-\mathrm{NMR},\left(\mathrm{CD}_{3} \mathrm{CN}, 100 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 166.78\left(\mathrm{C}_{\mathrm{t}}\right), 152.53\left(\mathrm{C}_{\mathrm{ipso}}\right), 147.44$ (QTZ-Me), 143.73 (pyr), 139.94 (pyr), 138.34 (QTZ-Me), 134.84 (QTZ-Me), 131.02 (QTZ-Me), 130.81 (QTZ-Me), 130.44 (QTZ$\mathrm{Me}), 130.31$ (QTZ-Me), 129.40 (QTZ-Me), 128.94 (QTZ-Me), 128.76 (QTZ-Me), 128.18 (QTZ-Me), 126.93 (pyr), 119.99 (QTZ-Me), $42.39\left(\mathrm{CH}_{3}\right) . Y=34 \%$ (MW $\left.=705 \mathrm{~g} / \mathrm{mol} ; 0.088 \mathrm{mmol}\right)$. Anal. Calcd. For $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{P}_{1} \mathrm{~F}_{6} \mathrm{Re}_{1}(705.53) \mathrm{C} 32.35, \mathrm{H} 2.00, \mathrm{~N} 11.91$. Found: C 30.39, H 2.04, N 10.63.
fac-[Re(CO) $\left.{ }_{3}\left(Q T Z-{ }^{\mathrm{t}} \mathrm{Bu}\right)-(\mathrm{pyr})\right]\left[\mathrm{PF}_{6}\right]^{\mathbf{1}} \mathrm{H}-\mathrm{NMR},\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 8.87-8.85\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{H}-\mathrm{H}}=8.80\right.$ Hz, QTZ- ${ }^{\mathrm{t}} \mathrm{Bu}$), 8.80-8.78 (d, $1 \mathrm{H}, \mathrm{J}_{\mathrm{H}-\mathrm{H}}=8.40 \mathrm{~Hz}$, QTZ- $^{\mathrm{t}} \mathrm{Bu}$), 8.53-8.51 (d, 1H, $\mathrm{J}_{\mathrm{H}-\mathrm{H}}=8.40 \mathrm{~Hz}$, QTZ- ${ }^{\mathrm{t}} \mathrm{Bu}$), 8.20$8.14(\mathrm{~m}, 2 \mathrm{H}, \mathrm{pyr}), 8.00-7.98\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}_{\mathrm{H}-\mathrm{H}}=5.20 \mathrm{~Hz}, \mathrm{QTZ-tBu}\right), 7.96-7.92(\mathrm{~m}, 1 \mathrm{H}, \mathrm{QTZ-tBu}), 7.79-7.76$ (t, $\left.1 \mathrm{H}, \mathrm{J}_{\mathrm{H}-\mathrm{H}}=15.60 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8.00 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.60 \mathrm{~Hz}, \mathrm{pyr}\right), 7.30-7.26(\mathrm{~m}, 2 \mathrm{H}, \mathrm{pyr}), 1.96$ (s,9H,-tBu). ESI-MS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}]^{+}=603,[\mathrm{M}]^{-}=145\left(\mathrm{PF}_{6}\right) . \operatorname{IR}-A T R v\left(\mathrm{~cm}^{-1}\right): 2030(\mathrm{CO}), 1926(\mathrm{CO}), 1940(\mathrm{CO}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}) \delta(\mathrm{ppm}): 167.60\left(\mathrm{C}_{\mathrm{t}}\right), 151.73\left(\mathrm{C}_{\text {ipso }}\right), 147.18\left(\mathrm{QTZ}^{\mathrm{t}} \mathrm{Bu}\right), 143.42(\mathrm{pyr}), 140.21(\mathrm{pyr}), 134.33$
 121.08 (pyr), 105.01 (QTZ- ${ }^{\mathrm{t} B u}$), 70.01 (${ }^{\mathrm{t} B u}$), 29.63 (${ }^{\mathrm{t} B u}$). $\mathrm{Y}=12 \%$ ($\mathrm{MW}=748 \mathrm{~g} / \mathrm{mol} ; 0.016 \mathrm{mmol}$). Anal. Calcd. For $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{P}_{1} \mathrm{~F}_{6} \mathrm{Re}_{1}$ (747.61) C 35.35, H 2.70, N 11.24. Found: $\mathrm{C} 36.27, \mathrm{H} 2.91, \mathrm{~N}$ 11.03.
fac-[Re(CO) $\left.{ }_{3}(\mathrm{QTZ}-\mathrm{Me})(\mathrm{Tph})\right]{ }^{1} \mathrm{H}-\mathrm{NMR},\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 8.99-8.97\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{H}-\mathrm{H}}=8.80 \mathrm{~Hz}\right.$, QTZ-Me), 8.59-8.57 (d, 1H, J $\mathrm{J}_{\mathrm{H}}=8.40 \mathrm{~Hz}$, QTZ-Me), 8.33-8.31 ($\mathrm{d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{H}-\mathrm{H}}=8.40 \mathrm{~Hz}$, QTZ-Me), 8.078.03 (m, 1H, QTZ-Me), 8.00-7.98 (m, 1H, QTZ-Me), 7.86-7.84 (m, 2H, Tph), 7.82-7.78 (m,1H, QTZMe), 7.31-7.24 (m, 3H, Tph), $4.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$. ESI-MS (m/z): $[\mathrm{M}+\mathrm{H}]=628 \mathrm{~m} / \mathrm{z}$. IR-ATR v (cmr$): 2036$ (CO), 1932 (CO). ${ }^{13} \mathrm{C}-\mathrm{NMR}$, (Acetone-d $\left.{ }^{6}, 100 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 197.34$ (CO), 194.13 (CO), 193.09 (CO), $168.91\left(\mathrm{C}_{\mathrm{t}}, \mathrm{QTZ-Me}\right), 162.65\left(\mathrm{C}_{\mathrm{t}}, \mathrm{Tph}\right), 148.08\left(\mathrm{C}_{\mathrm{ipso}}\right), 147.57\left(\mathrm{C}_{\mathrm{ipso}}\right), 133.54$ (QTZ-Me), 130.22 (QTZMe), 130.17 (QTZ-Me), 129.77 (QTZ-Me), 129.74 (QTZ-Me), 129.56 (Tph), 128.41 (Tph), 128.30 (QTZMe), 128.14 (QTZ-Me), 125.81 (Tph), 119.46 (QTZ-Me), $41.69\left(\mathrm{CH}_{3}\right) . \mathrm{Y}=48 \%(\mathrm{MW}=627 \mathrm{~g} / \mathrm{mol} ; 0.12$ mol). Anal. Calcd. For $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{~N}_{9} \mathrm{O}_{3} \mathrm{Re}_{1}$ (626.6) C 40.25, H 2.25, N 20.12. Found: C 37.14, H 2.27, N 17.72.

Absorption and Emission Titration Experiments PBS buffer (1 L) was prepared by dissolving $\mathrm{Na}_{2} \mathrm{HPO}_{4}(1.44 \mathrm{~g}), \mathrm{KH}_{2} \mathrm{PO}_{4}(0.245 \mathrm{~g}), \mathrm{NaCl}(8 \mathrm{~g})$ and $\mathrm{KCl}(0.2 \mathrm{~g})$ in 0.8 L of $\mathrm{H}_{2} \mathrm{O}$. After complete mixing, the solution was topped up to volume. Final $\mathrm{pH}=7.4$. Then, a $100 \mathrm{~mL} 4.4^{*} 10^{-4} \mathrm{M} \mathrm{BSA}$ (Sigma Aldrich, $\mathrm{MW}=66463 \mathrm{~g} / \mathrm{mol}$) solution was prepared by dissolving 2.9 g of BSA in 100 mL of PBS buffer. The final concentration of BSA used in the absorption and emission titration was $1 * 0^{-5} \mathrm{M}(45.45 \mu \mathrm{~L}$ of $4.4^{*} 10^{-4} \mathrm{M}$ BSA to $\mathrm{V}_{\text {tot }}=2 \mathrm{~mL}$). The $\operatorname{Re}(\mathrm{I})$-complexes solutions were prepared by dissolving 1.2-1.4
mg of complex in 1 mL of DMSO, resulting in concentrations of $2.1^{*} 10^{-3} \mathrm{M} .2 \mathrm{~mL}$ of the BSA/PBS solution were placed in a quartz cuvette and successive aliquots of $\operatorname{Re}(I)$ complexes solutions in DMSO were added with a micropipette $(20 \times 5 \mu \mathrm{~L})$. For absorption titration, absorption spectra were collected from 230 to 800 nm after each addition. For emission titration, emission spectra were collected from 300 to 800 nm by monitoring the 346 nm maxima (BSA emission) upon 280 nm excitation.
\boldsymbol{X}-ray crystallography Crystal data and collection details for fac-[Re(PTZ-Me)(CO) $\left.\mathbf{3}_{3}(\mathrm{pyr})\right]\left[\mathrm{PF}_{6}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and fac -[$\mathrm{Re}(\mathrm{QTZ}-\mathrm{Me})\left(\mathrm{CO}_{3}\left(\mathrm{pyr}_{\mathbf{~})}\right]\left[\mathrm{PF}_{6}\right] \cdot \mathrm{CHCl}_{3}\right.$ are reported in ESI \dagger, Table S2. Data were recorded on a Bruker APEX II diffractometer equipped with a PHOTON2 (fac-[Re(QTZ-Me)(CO) $\left.\mathbf{3}_{\mathbf{3}}\left(\mathrm{pyr}^{\mathbf{p}}\right)\right]\left[\mathrm{PF}_{6}\right] \cdot \mathrm{CHCl}_{3}$) or CCD (fac-[Re(PTZ-Me)(CO) $\left.)_{3}(\mathrm{pyr})\right]\left[\mathrm{PF}_{6}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$) detector using $\mathrm{Mo}-\mathrm{K} \alpha$ radiation. Data were corrected for Lorentz polarization and absorption effects (empirical absorption correction SADABS).[xli] The structures were solved by direct methods and refined by full-matrix least-squares based on all data using F^{2}. [xiii] Hydrogen atoms were fixed at calculated positions and refined by a riding model. All non-hydrogen atoms were refined with anisotropic displacement parameters. The PTZ-Me ligand and $\left[\mathrm{PF}_{6}\right]$ - anion of fac - $\left[\mathrm{Re}(\mathrm{PTZ}-\mathrm{Me})(\mathrm{CO})_{3}\left(\mathrm{pyr}_{\mathrm{r}}\right)\right]\left[\mathrm{PF}_{6}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ are disordered. They have been split into two positions and refined using one occupancy factor per disordered group. CCDC 2044691 and 2044692 contains the supplementary crystallographic data for fac-[Re(PTZ$\left.\mathrm{Me})(\mathrm{CO})_{3}(\mathrm{pyr})\right]\left[\mathrm{PF}_{6}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and fac-[Re(QTZ-Me)(CO) $\mathbf{3}^{(\mathrm{pyr})]\left[\mathrm{PF}_{6}\right] \cdot \mathrm{CHCl}_{3} \text {. These data can be }}$ obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk.

Electronic Supporting Information (ESI $\boldsymbol{\dagger}$) available: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra, IR spectra, absorption, excitation and emission spectra, absorption and emission titrations with BSA, Stern Volmer Analyses and Scatchard Plots for all the reported $\operatorname{Re}(I)$ species. Crystal data and collection details for fac-$\left[\operatorname{Re}(\mathrm{PTZ}-\mathrm{Me})(\mathrm{CO})_{3}(\mathrm{pyr})\right]\left[\mathrm{PF}_{6}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $f a c-\left[\operatorname{Re}(\mathrm{QTZ}-\mathrm{Me})(\mathrm{CO})_{3}(\mathrm{pyr})\right]\left[\mathrm{PF}_{6}\right] \cdot \mathrm{CHCl}_{3}$. Conflicts of Interests. There are no conflicts to declare.

Acknowledgments. The authors wish to thank the Italian Ministry of Education, University and Research (MIUR) for financial support (PRIN project: Towards a Sustainable Chemistry: Design of Innovative Metal-Ligand Systems for Catalysis and Energy Applications). The Overseas (grant for E.B.) and Marco Polo (grant for N.M.) programmes joint by University of Bologna and the Curtin University of Perth are gratefully acknowledged.

ORCID
Nicola Monti: https://orcid.org/0000-0003-1272-931X
Stefano Zacchini: https://orcid.org/0000-0003-0739-0518
Giulia Vigarani: https://orcid.org/0000-0002-9950-203X
Loris Giorgini: https://orcid.org/0000-0003-2248-3552
Massimiliano Massi: https://orcid.org/0000-0001-6949-4019
Valentina Fiorini: https://orcid.org/0000-0003-0467-6705
Stefano Stagni: https://orcid.org/0000-0002-7260-4845

References

Graphical Abstract:

One new set of triscarbonyl $\operatorname{Re}(I)$ diimine complexes with alkyl-tetrazoles as diimine-type ligands is described together with the study of their interaction with BSA.

Conflicts of interest. The Authors state that there is no conflicts of interest of whichever type in doing the research work described in the present manuscript.

Highlights:

New triscarbonyl $\operatorname{Re}(I)$ diimine complexes with alkyl-tetrazoles as diimine-type ligands display bright phosphorescence and are capable to interact with BSA.
[i] R. A. Kirgan, B. P. Sullivan and D-P. Rillema, Photochemistry and Photophysics of Coordination Compounds: Rhenium. In: V. Balzani, S. Campagna (eds) "Photochemistry and Photophysics of Coordination Compounds II", Top. Curr. Chem., 2007, 281, 45-100. https://doi.org/10.1007/128 2007143.
[ii] a) K. Y. Zhang and K. K.-W. Lo, "Chemosensing and Diagnostics", in Coordination and Organometallic Chemistry of Comprehensive Inorganic Chemistry II, ed. V. W.-W. Yam, Elsevier, Amsterdam, 2013, 8, 657-732, and references cited therein. https://doi.org/10.1016/B978-0-08-097774-4.00804-4
[iii] S. Hostachy, C. Policar and N. Delsuc, "Re(I) carbonyl complexes: Multimodal platforms for inorganic chemical biology", Coord. Chem. Rev., 2017, 351, 172-188.
[iv] K. K.-W Lo, "Luminescent Rhenium(I) and Iridium(III) Polypyridine Complexes as Biological Probes, Imaging Reagents, and Photocytotoxic Agents", Acc. Chem. Res., 2015, 12, 2985-2995. https://doi.org/10.1016/i.ccr.2017.05.004.
[] L. C.-C. Lee, K.-K. Leung and K. K.-W. Lo, "Recent development of luminescent rhenium(I) tricarbonyl polypyridine complexes as cellular imaging reagents, anticancer drugs, and antibacterial agents", Dalton Trans., 2017, 46, 16357 - 16380. https://doi.org/10.1039/C7DT03465B.
[vi] V. Fernandez-Moreira, F. L. Thorp-Greenwood and M. P. Coogan, "Application of d6 transition metal complexes in fluorescence cell imaging", Chem. Commun. 2010, 46, 186-202. https://doi.org/10.1039/B917757D.
[vii] F. L. Thorp-Greenwood, M. P. Coogan, L. Mishra, N. Kumari, G. Raic and S. Saripellad "The importance of cellular localisation of probes: synthesis, photophysical properties, DNA interactions and cellular imaging properties of rhenium dppz complexes with known cellular localisation vectors", New J. Chem., 2012, 36, 64-72. https://doi.org/10.1039/C1NJ20662A.
[viii] C. A. Bader, R. D. Brooks, Y. S. Ng, A. Sorvina, M. V. Werrett, P. J. Wright, A. G. Anwer, D. A. Brooks, S. Stagni, S. Muzzioli, M. Silberstein, B. W. Skelton, E. M. Goldys, S. E. Plush, T. Shandala and M. Massi "Modulation of the cellular organelle specificity in $\operatorname{Re}(I)$ tetrazolato complexes leads to unprecedented phosphorescent labeling of lipid droplets", RSC Adv., 2014, 4, 16345-16351. https://doi.org/10.1039/C4RA00050A.
[ix] V. Fiorini, L. Bergamini, N. Monti, S. Zacchini, S. E. Plush, M. Massi, A. Hochkoeppler, A. Stefan and S. Stagni "Luminescent protein staining with Re(I) tetrazolato complexes", Dalton. Trans., 2018, 47, 9400-9410. https://doi.org/10.1039/C8DT02052C.
[x] R. N. Butler "Tetrazoles" In "Comprehensive Heterocyclic Chemistry II"; Storr, R. C., Ed.; Pergamon Press: Oxford, U.K., 1996; Vol. 4, 621-678, and references cited therein.
[xi] S. Sato, T. Morimoto and O. Ishitani "Photochemical Synthesis of mer-[Re(bpy)(CO) $\left.{ }_{3} \mathrm{Cl}\right]$ ", Inorg. Chem., 2007, 46, 9051-9053. https://doi.org/10.1021/ic701458h
[xii] M. V. Werrett, D. Chartrand, J. D. Gale, G. S. Hanan, J. G. MacLellan, M. Massi, S. Muzzioli, P Raiteri, B. W. Skelton, M. Silberstein and S. Stagni "Synthesis, structural, and photophysical investigation of diimine triscarbonyl $\operatorname{Re}(I)$ tetrazolato complexes", Inorg. Chem., 2011, 50, 12291241. https://doi.org/10.1021/ic1015516.
[xiii] M.V. Werrett, S. Muzzioli, P. J. Wright, A. Palazzi, P. Raiteri, S. Zacchini, M. Massi, S. Stagni, "Proton-induced reversible modulation of the luminescent output of rhenium(I), iridium(III), and
ruthenium(II) tetrazolate complexes", Inorg. Chem., 2014, 53, 229-243. https://doi.org/10.1021/ic402187e.
[xiv] M. V. Werrett, G. S. Huff, S. Muzzioli, V. Fiorini, S. Zacchini, B. W. Skelton, A. Maggiore, J. M. Malicka, M. Cocchi, K. C. Gordon, S. Stagni and M. Massi "Methylated Re(I) tetrazolato complexes: Photophysical properties and Light Emitting Devices", Dalton. Trans., 2015, 44, 8379-8393. DOI: https://doi.org/10.1039/C4DT03228D.
[xv] L. Flamigni, A. Barbieri, C. Sabatini, B. Ventura and F. Barigelletti, Photochemistry and Photophysics of Coordination Compounds: Iridium. In: V. Balzani, S. Campagna (eds) "Photochemistry and Photophysics of Coordination Compounds II", Top. Curr. Chem., 2007, 281, 143-203. DOI: https://doi.org/10.1007/128 2007131
[xvi] N. Akabar, V. Chaturvedi, G. E. Shillito, B. J. Schwehr, K. C. Gordon, G. S. Huff, J. J. Sutton, B. W. Skelton, A. N. Sobolev, S. Stagni, D. J. Nelson and M. Massi, "Photophysical and biological investigation of phenol substituted rhenium tetrazolato complexes", Dalton Trans., 2019, 48, 15613-15624. DOI: https://doi.org/10.1039/c9dt02198a
[xuii] J. L. Wedding, H. H. Harris, C. A. Bader, S. E. Plush, R. Mak, M. Massi, D. A. Brooks, B. Lai, S. Vogt, M. V. Werrett, P. V. Simpson, B. W. Skelton and S. Stagni, "Intracellular distribution and stability of a luminescent rhenium(I) tricarbonyl tetrazolato complex using epifluorescence microscopy in conjunction with X-ray fluorescence imaging", Metallomics, 2017, 9, 382-390. DOI: https://doi.org/10.1039/c6mt00243a
[xvii] C. A. Bader, A. Sorvina, P. V. Simpson, P. J. Wright, S. Stagni, S. E. Plush, M. Massi and D. A. Brooks, "Imaging nuclear, endoplasmic reticulum and plasma membrane events in real time", FEBS Letters, 2016, 590, 3051-3060. DOI: https://doi.org/10.1002/1873-3468.12365.
[xix] C. A. Bader, E. A. Carter, A. Safitri, P. V. Simpson, P. J. Wright, S. Stagni, M. Massi, P. A. Lay, D. A. Brooks and S. E. Plush, "Unprecedented staining of polar lipids by a luminescent rhenium complex revealed by FTIR microspectroscopy in adipocytes", Mol. BioSyst., 2016, 12, 2064-2068. DOI: https://doi.org/10.1039/c6mb00242k
[××] C. A. Bader, T. Shandala, E. A. Carter, A. Ivask, T. Guinan, S. M. Hickey, M. V. Werrett, P. J. Wright, P. V. Simpson, S. Stagni, N. H. Voelcker, P. A. Lay, M. Massi, S. E. Plush and D. A. Brooks, "A molecular probe for the detection of polar lipids in live cells", PLoS ONE, 2016, 11, e0161557. DOI: https://doi.org/10.1371/journal.pone. 0161557
[xxi] V. Fiorini, A. M. Ranieri, S. Muzzioli, K. D. M. Magee, S. Zacchini, N. Akabar, A. Stefan, M. I. Ogden, M. Massi and S. Stagni, "Targeting divalent metal cations with Re(I) tetrazolato complexes", Dalton Trans., 2015, 44, 20597-20608. DOI: https://doi.org/10.1039/c5dt03690a
[xxi] M. V. Werrett, P. J. Wright, P. V. Simpson, P. Raiteri, B W. Skelton, S. Stagni, A. G. Buckley, P. J. Rigby and M. Massi, "Rhenium tetrazolato complexes coordinated to thioalkyl-functionalised phenanthroline ligands: Synthesis, photophysical characterisation, and incubation in live HeLa cells", Dalton Trans., 2015, 44, 20636-20647. DOI: https://doi.org/10.1039/c5dt03470a
[xxiii] T. Topala, A. Bodoki, L. Oprean and R. Oprean "Bovine Serum Albumin Interaction with metal complexes", Clujul Medical, 2014, 87, 215-219. https://doi.org/10.15386/cjmed-357.
[xxiv] T. Peters "Serum Albumin", Adv. Protein Chem., 1985, 37, 161-245. DOI: https://doi.org/10.1016/S0065-3233(08)60065-0.
[xxv] D. Peak, T. C. Werner, R. M. Dennin and J. K. Baird "Fluorescence quenching at high quencher concentrations", J. Chem. Phys., 1983, 79, 3328. DOI: https://doi.org/10.1063/1.446234.
[xxvi] H. Boaz and G. K. Rollefson "The Quenching of Fluorescence. Deviations from the Stern-Volmer Law", J. Am. Chem. Soc., 1950, 72, 3435-3443. DOI: https://doi.org/10.1021/ia01164a032.
[xxvii] J. Keizer "Nonlinear fluorescence quenching and the origin of positive curvature in SternVolmer plots" J. Am. Chem. Soc., 1983, 105, 1494-1498. DOI https://doi.org/10.1021/ia00344a013. [xxviii] J. R. Lakowicz "Principles of Fluorescence Spectroscopy, 3 ${ }^{\text {rd }}$ ed." Plenum: New York, 2006. DOI: https://doi.org/10.1007/978-0-387-46312-4.
[xxix] K. M. Danielsen, Y-P. Chin, J. S. Buterbaugh, T. L. Gustafson and S. J. Traina "Solubility Enhancement and Fluorescence Quenching of Pyrene by Humic Substances: The Effect of Dissolved Oxygen on Quenching Processes" Environ. Sci. Technol., 1995, 29, 2162-2165. DOI: https://doi.org/10.1021/es00008a042.
[xxx] W. R. Ware "Oxygen quenching of fluorescence in solution: an experimental study of the diffusion process", J. Phys. Chem., 1962, 66, 455. https://doi.org/10.1021/j100809a020.
[xxxi] C-Y. Gao, X. Qiao, Z-Y. Ma, Z-G. Wang, J. Lu, J-L. Tian, J-Y. Xu and S-P. Yan "Synthesis, characterization, DNA binding and cleavage, BSA interaction and anticancer activity of dinuclear zinc complexes", Dalton Trans., 2012, 41, 12220-12232. https://doi.org/10.1039/C2DT31306E.
[xxxii] G. Scatchard "The attraction of proteins for small molecules and ions", Ann. N.Y. Acad. Sci., 1949, 51, 660. https://doi.org/10.1111/j.1749-6632.1949.tb27297.x.
[xxxiii] N. Ghosh, R. Mondal and S. Mukherjee "Inverse Temperature Dependence in Static Quenching versus Calorimetric Exploration: Binding Interaction of Chloramphenicol to β-Lactoglobulin" Langmuir, 2015, 29, 8074-8080. DOI: https://doi.org/10.1021/acs.langmuir.5b02103.
[xxxiv] M. van de Weert, L. Stella "Fluorescence quenching and ligand binding: A critical discussion of a popular methodology", J. Mol. Struct., 2011, 998, 144-150. DOI: https://doi.org/10.1016/j.molstruc.2011.05.023.
[${ }^{x x v v}$] V. Rajendiran, R. Karthik, M. Palaniandavar, H. Stoeckli-Evans, V. S. Periasamy, M. A. Akbarsha, B. S. Srinag and H. Krishnamurthy "Mixed-ligand copper(II)-phenolate complexes: effect of coligand on enhanced DNA and protein binding, DNA cleavage, and anticancer activity", Inorg. Chem. 2007, 46, 8208-8221. https://doi.org/10.1021/ic700755p.
[xxxvi] G. A. Crosby and J. N. Demas "Measurement of photoluminescence quantum yields. Review.", J. Phys. Chem., 1971, 75, 991-1024. https://doi.org/10.1021/j100678a001.
[xxxvii] F. Eaton "Reference materials for luminescence measurements", Pure Appl. Chem., 1988, 60, 1107-1114.
[xxxviii] K. Nakamaru "Synthesis, Luminescence Quantum Yields, and Lifetimes of Trischelated Ruthenium(II) Mixed-ligand Complexes Including 3, 3^{\prime}-Dimethyl-2, 2'-bipyridyl", Bull. Chem. Soc. Jpn., 1982, 55, 2697-2705. https://doi.org/10.1246/bcsj.55.2697.
[xxxix] K. Koguro, T. Oga, S. Mitsui and R. Orita "Novel Synthesis of 5-Substituted Tetrazoles from Nitriles", Synthesis, 1998, 910-914. https://doi.org/10.1055/s-1998-2081.
$\left.{ }^{[\times 1}\right]$ N. Monti, S. Zacchini, M. Massi, A. Hochkoeppler, L. Giorgini, V. Fiorini, A. Stefan and S. Stagni "Antibacterial activity of a new class of tris homoleptic Ru(II)-complexes with alkyl-tetrazoles as diimine-type ligands", Appl. Organomet. Chem., 2020, 34:e5806. https://doi.org/10.1002/aoc. 5806. [xli] G. M. Sheldrick "SADABS-2008/1 - Bruker AXS Area Detector Scaling and Absorption Correction" Bruker AXS: Madison, Wisconsin, USA, 2008.
[xlii] G. M. Sheldrick "Crystal structure refinement with SHELXL - IUCr", Acta Crystallogr. C, 2015, 71, 3. https://doi.org/10.1107/S2053229614024218.

[^0]: * The PTZ-Me ligand of $f a c-\left[\operatorname{Re}(C O)_{3}(P T Z-M e)(p y r)\right]\left[P_{6}\right]$ is disordered and the atoms of the $N_{4} C$ ring have been constrained to fit a regular pentagon.

