
28 November 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Pasolini G.,  Dardari D.,  Kieffer M. (2020). Exploiting the Agent's Memory in Asymptotic and Finite-time
Consensus over Multi-agent Networks. IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING
OVER NETWORKS, 6, 479-490 [10.1109/TSIPN.2020.3002613].

Published Version:

Exploiting the Agent's Memory in Asymptotic and Finite-time Consensus over Multi-agent Networks

Published:
DOI: http://doi.org/10.1109/TSIPN.2020.3002613

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/763433 since: 2024-09-14

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/TSIPN.2020.3002613
https://hdl.handle.net/11585/763433


SUBMITTED TO IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. XX, NO. X, MONTH YEAR 1

Exploiting the Agent’s Memory
in Asymptotic and Finite-time Consensus

over Multi-agent Networks
Gianni Pasolini, Member, IEEE, Davide Dardari, Senior, IEEE,

and Michel Kieffer, Senior, IEEE

Abstract—This paper proposes two average consensus algo-
rithms exploiting the memory of agents. The performance of
the proposed as well as of several state-of-the-art consensus
algorithms is evaluated considering different communication
ranges, and evaluating the impact of transmission errors. To
compare asymptotic and finite-time average consensus schemes,
the ε-convergence time is adopted for a fair comparison. A
discussion about memory requirements, transmission overhead, a
priori information on network topology, and robustness to errors
is provided.

I. INTRODUCTION

This paper addresses the problem of distributed consensus
in a wireless multi-agent network (MAN). Agents have to
reach an agreement, without the help of a central coordinator,
regarding a certain quantity of interest that depends on their
individual measurement or state [1]. Specifically, this paper
focuses on distributed average consensus [2], [3], where each
agent locally estimates the average of quantities measured by
all agents in the MAN, by exchanging information with its
one-hop neighbours only.

To address this problem, several algorithms have been
proposed, either belonging to the asymptotic consensus class
[4]–[7] or to the finite-time consensus class [8]–[13]. In both
cases, the average consensus is achieved through a proper
exchange of consensus estimates among neighbours.

We propose and analyze an original asymptotic consensus
scheme with memory based on finite impulse response (FIR)
filtering. This scheme achieves, in many configurations, lower
convergence times or better robustness to transmission errors
compared to state-of-the-art asymptotic consensus schemes
with memory. In addition, we introduce a finite-time average
consensus algorithm with memory and assess its performance.

As for the comparison of algorithms, it is noticeable that
in practical applications, consensus up to a given tolerance
ε is usually accepted. Therefore, the ε-convergence time [14],
defined as the time needed to reach the required accuracy level
ε, appears as an appropriate performance figure to compare the
convergence speed of both finite-time and asymptotic schemes.

In this paper, the performances of the proposed, as well as of
some state-of-the-art consensus algorithms, are thus evaluated
in the numerical results in terms of ε-convergence time with
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and without transmission losses. A discussion about memory,
needed a priori information and robustness to errors is also
provided.

II. RELATED WORK

Consensus schemes are the core of several distributed
signal processing approaches. Applications can be found, for
example, in distributed maximum likelihood [15] and least
square estimation [16], distributed Kalman [17], [18] and
particle filtering [19], distributed optimization [20] as well as
distributed algorithms for principal component analysis [21].
Focusing on wireless networks, consensus schemes represent
efficient fully distributed approaches to let wireless agents
agree on a specific quantity without paying the price of the
large overhead caused by routing algorithms [22], [23]. In
Internet of Things (IoT) scenarios [24]–[26], they have been
proposed for decision making of services at edge nodes [27]
as well as in vehicular networks [28].

In the literature, many memory-less average consensus
algorithms have been proposed and proved to converge asymp-
totically (e.g., [4]–[7]). When the graph topology is known,
a semi-definite programming approach has been proposed by
[6] to determine the optimal graph link weights to get the best
convergence rate towards consensus.

The memory of agents is exploited in [29]–[33] to show
that the consensus may be further accelerated compared to
the schemes proposed in [6]. A polynomial filtering of suc-
cessive consensus estimates stored in the memory of agents
is introduced in [34]. The computation of the coefficients of
the optimal polynomial filter is formulated as a semi-definite
programming problem. This idea has been extended in [35],
where Chebychev polynomials are considered.

The schemes proposed in [30]–[32], where only the previous
consensus estimates are kept in memory by each agent, are
further analyzed in [36]: when only lower and upper bounds
are known for the eigenvalues of the linear mapping used in
the iterative consensus estimation, keeping the last consensus
estimate is enough to get the fastest convergence.

More sophisticated filtering schemes have been introduced
in [37], [38], where the problem of dynamic consensus is also
considered. Past messages as well as past estimates are stored
over a given time horizon in agents’ memory and processed
periodically to speed-up convergence, generalizing previous
results from [30]–[32], [34], [35].
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In parallel, several variants of average consensus algorithms
capable of converging in finite time have been proposed, see
e.g., [8], [9], [11], [13], [39], [40]. In the approach proposed by
[8], [39], linear update iterations, as in asymptotic approaches,
are performed first. During this phase, each agent stores the
succession of its consensus estimates. Once Nd iterations have
been performed, where Nd is the number of distinct eigenval-
ues of the matrix associated to the linear consensus update
equation, the final consensus is obtained at each agent by a
linear combination of its Nd past estimates. This estimation
process has been further improved in [39], which shows that
the final consensus value can be evaluated in the minimum
number of steps, without knowing Nd, by checking a rank
condition of a Hankel matrix of the observations of each agent.

A matrix factorization approach has been proposed in [41],
resulting in a communication scheduling between neighbour
agents that reaches the consensus in a finite number of steps. In
[42], polynomial filtering is also used to accelerate the conver-
gence toward average consensus on undirected networks. The
gain of a second-order filtering is investigated. This paper also
establishes the benefit of combining polynomial filtering with
optimization of link weights. This approach is also considered
in [13], where the network topology is assumed to be known.
A selection technique is proposed for the weights associated
with the edges of the graph so as to be able to obtain a minimal
polynomial, to get the fastest finite time consensus.

In [9], [40] a set of Nd consensus matrices are designed
to successively cancel the Nd distinct eigenvalues of the
Laplacian matrix of the network graph. The consensus is again
reached in Nd iterations. Nevertheless, this approach requires
an accurate estimate of the eigenvalues of the graph Laplacian,
and may be numerically unstable. This technique has been
extended in [40], which characterizes the finite-time behavior
of successive eigenspace nulling algorithms, for which the
algorithm of [9] represents a special case. In parallel, [11]
introduced an approach inspired by graph filtering, leading to
the convergence in Nd iterations. In that case, the transient
behavior may lead to numerical instability. These approaches
are well suited to relatively small networks, since, except for
well-structured networks, Nd is usually of the same order of
magnitude as the number of agents of the network.

III. OUR CONTRIBUTION AND PAPER ORGANIZATION

With respect to the literature, our paper provides the fol-
lowing original contributions.

First, after the average consensus problem along with the
performance metrics is formalized in Sec. IV, we introduce in
Sec. V a novel asymptotic consensus algorithm which exploits
the agents’ memory to increase the convergence speed. We
model such an algorithm as a discrete-time linear system with
a feedback loop including a simple FIR filter. We provide
a closed-form expression of the optimum filter coefficients
in the case of memory depth 1. Even though the general
modeling of asymptotic consensus as a feedback loop is not
new [38], the adoption of a FIR loop filter and the derivation
of its coefficients in the case of memory depth 1 is novel.
In the numerical results, we show that, in the presence of

transmission failures, our algorithm outperforms the state-of-
the-art asymptotic scheme based on infinite impulse response
(IIR) loop-filtering proposed in [38] as well as the scheme
proposed in [33]. We will name these reference schemes
asymptotic infinite impulse response (A-IIR) and asymptotic-
Kruzik (A-Kruzik), respectively.

Second, in Sec. VI we introduce an original hybrid finite-
time consensus algorithm (named finite-time memory sum
with propagation (F-MSwP)) that does not require the knowl-
edge of the eigenvalues of the network’s Laplacian matrix. In
the numerical results, we show that this algorithm achieves
an impressive performance level, very close to the theoretic
lower-bound given by the network diameter D, which is
typically much less than Nd. It is worth noting that, differently
from F-MSwP, most of the finite-time consensus schemes,
such as those proposed in [9], [40], require a very accurate
computation of the Laplacian eigenvalues, to an extent that
they might fail to converge when their computation is not ex-
tremely accurate. This prevents their use in practical schemes
that usually work with low numerical precision.

Third, to the best of the authors’ knowledge, our paper
is the first one that compares the performance of state-of-
the-art asymptotic and finite-time consensus algorithms. In
fact, asymptotic consensus schemes, which converge to the
consensus only asymptotically, are usually compared in terms
of convergence rate (that is, in terms of convergence speed
in the asymptotic regime). Contrarily, finite-time algorithms
are usually compared in terms of number of iterations needed
to achieve the exact convergence. Clearly, the two figures of
merit are not comparable, making it impossible to have a clear
picture on which consensus algorithm (asymptotic or finite-
time) is better suited to a given application, which in general
requires the convergence up to a tolerable error ε. The ε-
convergence time [14], adopted in our paper as a common
performance metric, allowed for the first time the comparison
of algorithms belonging to both categories, which is an original
contribution shown in the numerical results in Sec. VII.

Finally, the conclusions are drawn in Sec. VIII.

IV. PROBLEM FORMULATION

A. Problem formulation and notations

Consider a MAN consisting of N communicating agents.
The communication links between agents are described by an
undirected graph G = (V, E), where V = {1, . . . , N} is the set
of agent indexes and E ⊆ V ×V is the set of edges describing
the communication links. For any agent n ∈ V , let Nn denote
its set of one-hop neighbours. One assumes that n /∈ Nn.
For further convenience, we define the symmetric weighted
adjacency matrix W = [wnj ], which is usually chosen such
that W ∈ W , where

W = {W ∈ RN×N |wnj = 0 if {n, j} /∈ E or n = j} . (1)

One also defines the diagonal degrees matrix D =
diag (d(1), d(2), . . . , d(N)), where d (n) =

∑
j wnj denotes

the degrees of agent n, and the Laplacian matrix Lw=D−W.
The spectrum of Lw, given by the set of its eigenvalues,
provides several insights on the graph properties. For instance,
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denoting with {λ1, λ2, . . . λN} the ordered set of eigenvalues
of Lw, with λ1 ≤ λ2 ≤ . . . ≤ λN , the graph is connected
if λ1 = 0 and λ2 > 0. In our analysis we only consider
connected graphs.

When the entries (weights) of W belong to {0, 1} (i.e.,
the communication link between two agents is simply either
absent or present), the classic adjacency matrix W = A =
[anj ] is obtained, and d (n) = |Nn| denotes the number of
neighbours of agent n, so that Lw = L and L = D−A.

Assume that time is slotted and that at time slot (round) k=0
each agent n ∈ V performs some scalar measurement xn(0).
In this paper we investigate the distributed average consensus
problem, meaning that all agents aim at computing

x =
1

N

[
x1 (0) + x2 (0) + ...+ xN (0)

]
, (2)

that is, the average of all measurements {xn(0)}. In each of
the following time slots (k ≥ 1), a round of the consensus
algorithm takes place, under the constraint that each agent
broadcasts no more than one scalar during each round (“one
scalar” rule).

Although the generalization to the case of consensus on
vectors is straightforward, in the following we stick on scalar
consensus to lighten notations.

B. Performance metrics

The performance metric usually adopted to characterize
asymptotic consensus algorithms is the Network Convergence
Rate

Rc = lim
k→∞

log
|
∑
n xn(k)−Nx|

|
∑
n xn(k + 1)−Nx|

, (3)

which provides an indication on how fast the algorithm con-
verges to the consensus in the asymptotic regime, and hence
it is typically used as a design guideline, as it will be clear in
the next section. Nonetheless, depending on the application,
one might be more interested in comparing different schemes
in terms of the time needed to reach a certain tolerable error
ε by introducing the n-th agent ε-convergence time

T (n)
ε = inf{k∗ : |xn(k)− x| < ε ∀k ≥ k∗} (4)

and the network ε-convergence time, or simply ε-convergence
time [14]

Tε = max
{
T (n)
ε

}
. (5)

V. PROPOSED ASYMPTOTIC CONSENSUS METHOD

The proposed asymptotic consensus approach extends the
classical memoryless update equation

xn(k + 1) = xn(k) +
∑
j∈Nn

wnj (xj(k)− xn(k)) , (6)

by including a linear combination of past innovation compo-
nents as follows

xn(k+1)=xn(k)+

M∑
`=0

d`
∑
j∈Nn

wnj(xj(k−`)−xn(k−`)) , (7)

thus accounting for the estimates made by agent n as well as
the messages it received from its neighbours from round k−M

to round k. Here, M represents the memory depth of each
agent. In vector form, we have

x (k + 1) = x (k) +

M∑
`=0

d` W x(k − `) . (8)

We consider (7) starting from k = 0, assuming that xn(0) is
equal to the measurement taken by agent n at round k = 0
and xn(k) , 0 for k < 0. The local estimate xn(k) is also
denoted as state of agent n at round k.

Eq. 7 entails that each agent keeps in memory the last M
scalars received by each of its neighbours so that it can update
the state. The degrees of freedom of (7) are thus the non-
zero coefficients of W and the vector d = [d0, . . . , dM ]

T of
weights given to the estimates and received messages in the
M past rounds. Notably, (7) can be used considering already
known, well-investigated, W matrices, usually adopted by
basic memoryless schemes ruled by (6), which are enhanced
thanks to the memory contributions weighted by the vector d.
In particular, in the following we will consider the matrix W
of two well-know basic consensus schemes, hereafter recalled.

1) asymptotic-constant edge weights (A-CEW) consensus.
In A-CEW consensus, all non-zero components of W are
equal, i.e., wnj=d0 anj and the maximum convergence rate is
achieved when d0 = 2

λ2+λN
[6]. In the following, we will al-

ways assume such optimal implementation of A-CEW. When
the A-CEW weights will be used in (7), the corresponding
memory-enhanced scheme will be named asymptotic finite-
impulse response CEW (A-FIR-CEW).

2) asymptotic Metropolis (A-Metro) Consensus. Choosing
the entries of W according to wnj = [1+max {d(n), d(j)}]−1
for j ∈ Nn and zero otherwise, leads to the Metropolis consen-
sus [7]. Note that Metropolis requires that each agent knows
the number of its neighbors, that is, its local topology. When
the Metropolis weights are used in (7), the corresponding
memory-enhanced scheme will be referred to as asymptotic
finite-impulse response Metropolis (A-FIR-Metro).

A. Eigenvalue Decomposition

Adopting the representation introduced in [37], [38], the
linear average consensus with memory (8) can be represented
as a feedback network system, described in Fig. 1(a), with

A(z) = A(z) IN B(z) = B(z) IN , (9)

where z−1 denotes the unitary delay and IN the identity matrix
of size N . A(z) and B(z) represent, respectively, the transfer
function of the forward and feedback filters applied at each
agent. In particular, the system described by (8) is equivalent
to that depicted in Fig. 1(a) provided that A(z) corresponds
to an integrator, i.e.,

A(z) =
1

1− z−1
, (10)

and B(z) to a FIR filter with M+1 coefficients

B(z) =

M∑
l=0

dl z
−l . (11)



SUBMITTED TO IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. XX, NO. X, MONTH YEAR 4

(a) Full system. (b) Separated systems (m = 1, . . . , N ).

Fig. 1. Linear average consensus scheme with memory represented as a feedback network system.

The system is excited by the impulsive signal
u(k) = δ(k)x(0), with δ(k) = 1 for k = 0 and zero
otherwise.

As described in [37], the Laplacian matrix (supposed
symmetric) can be diagonalized as Lw = VΛVT , where
Λ = diag(λ1, λ2, . . . , λN ) contains the eigenvalues of Lw,
and V = [v1 . . .vN ] contains the corresponding eigenvectors.
For a fully connected graph, λ1 = 0 and v1 = 1N√

N
. Then, the

estimate (which is also the state and output) at round k can
be decomposed as sum of N components

x(k) = VVTx(k) = v1 x̃1(k) +

N∑
m=2

vm x̃m(k) , (12)

where x̃m(k) = vTmx(k) is the projection of x(k) onto the
eigenvector vm. Therefore, the scheme in Fig. 1(a) can be
represented as a set of N separated systems, each one elab-
orating a different component x̃m(k), as shown in Fig. 1(b).
The transfer function of the m-th system is

Hm(z) =
A(z)

1 + λmz−1B(z)A(z)
, (13)

whereas its input is the impulsive signal

ũm(k) = vTmu(k) = vTmδ(k)x(0) . (14)

Since the inputs of the separated systems Hm(z), for m =
1, 2, . . . , N , are impulsive signal, the analysis of their outputs
reduces to the analysis of their impulse responses. Specifically,
considering the system m = 1 in Fig. 1(b), being v1 = 1N√

N
one immediately obtains from (14) that the input ũ1(k) is

ũ1(k) =
1√
N

N∑
n=1

xn(0)δ(k) =
√
N xδ(k). (15)

Since λ1=0, the feedback path is absent, hence the output of
system m=1 is simply the integrator response to the discrete
time input (15), that is x̃1(k) =

√
N xs(k), where s(k) = 1

for k ≥ 0 and zero otherwise is the unit step sequence. The
first component in (12) is therefore

v1x̃1(k) = [xx . . . x]
T
, (16)

for k ≥ 0. One observes that the component v1x̃1(k) of (12)
converges to the target average consensus as soon as k = 0.
Therefore, a sufficient condition to make the system converge
to the average consensus, is designing the feedback filter B(z)
such that the impulse response of all systems with m > 1 tends
to zero.

B. Analysis and filter design for the proposed asymptotic
consensus algorithm

1) General case: Given (10) and (11), the transfer function
of the system in Fig. 1(b) is

Hm (z) =
1

1− z−1 + λm
∑M
l=0 dlz

−l−1
. (17)

The desired behavior is that the m-th component of (12),
with m>1, vanishes to zero as fast as possible for increasing
k, i.e., the impulse response of Hm(z) converge to zero as
fast as possible. The behavior depends on the zeros zmi,
m=2, 3, . . . N , i=1, 2, . . .M+1, of the denominator

F (z, λ,d) = 1− z−1 + λm

M∑
l=0

dl z
−l−1 (18)

of Hm(z), which must lie in the unit circle and close to zero
(for stability and fast convergence). The zeros of (18) depend
on the eigenvalues λm of Lw and can be adjusted by properly
designing the coefficients dl (filter taps). Specifically, one
wants to maximize the network convergence rate determined
by the zero zmi of (18) having the maximum absolute value

Rc = − log max
m∈{2,3,...,N}
i∈{1,2,...,M+1}

|zmi|. (19)

This corresponds to solve the optimization problem

d∗ = argmin
d

max
λ∈{λ2,λ3,...,λN}

z∈C

|z| (20)

subject to F (z, λ,d) = 0 .

For instance, when M = 0, F (z, λ,d) = 0 has a single
solution zm1 = 1− d0λm for each m.

The analytical derivation of the solution of (20) in the
general case appears unrealistic. In the numerical results we
resort to constrained optimization except in the case M = 1,
for which an analytical solution is provided in what follows.

2) Case with memory M = 1: For M = 1, the constraint
F (z, λ,d) = 0 in (20) boils down to a second-order equation
with roots, for each eigenvalue λm, given by

zm1=zm1(d0, d1)=
1

2

[
1−d0λm−

√
(1−d0λm)2−4d1λm

]
(21)

zm2=zm2(d0, d1)=
1

2

[
1−d0λm+

√
(1−d0λm)2−4d1λm

]
(22)

with (d0, d1) ∈ R2 \ { 1
λm
, 0}.
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Fig. 2. Absolute errors experienced by two agents as function of the time for
A-CEW and A-FIR-CEW with M = 3.

Theorem 1. The solutions of (20) for M = 1 are

d∗0 =
λ2 + 3λN

λN (λN + 3λ2)
and d∗1 =

(λ2 − λN ) 2

λN (λN + 3λ2) 2
.

Proof. See the Appendix.

The corresponding convergence rate is

RA-FIR
c =− log max

m∈{2,3,...,N}
|zm2(d

∗
0, d
∗
1)| = log

3λ2 + λN
λN − λ2

.

(23)
The improvement with respect to the convergence rate

RA-CEW
c = − log

λN − λ2
λN + λ2

(24)

of the A-CEW memory-less consensus introduced in [6] is

RA-FIR
c −RA-CEW

c = log
3λ2 + λN
λ2 + λN

, (25)

which is always positive, meaning that the length-2 FIR
filtering is beneficial.
Remark. The convergence rate (19) rules the rapidity with
which agents converge to the consensus in the asymptotic
regime, that is, after the conclusion of the initial transient
that depends on the agents’ own measurements. For a given
network topology, different consensus algorithms simply cor-
respond to different values of the zeros zmi in (19), which in
turn correspond to different convergence rates (that is, different
convergence speeds). This is evident in Fig. 2, which shows
the time evolution of the absolute consensus errors of two
agents adopting either the classic A-CEW consensus [6] or its
enhanced version A-FIR-CEW (proposed in this paper) with
memory M = 3.

Clearly, increasing the converge rate of asymptotic consen-
sus algorithms automatically reduces the ε-convergence time,
as can be seen in Fig. 2, where an example of the error
threshold ε is also depicted: provided that the initial transient is
over, a higher convergence rate makes consensus errors reach
sooner the ε threshold, which results in a lower ε-convergence
time, the latter depending on the measurements.

This means that, even when the ε-convergence is adopted
as performance metric, asymptotic consensus algorithms can
still be designed adopting the maximization of the convergence
rate as design criterion. Moreover, one observes that as the
accuracy requirement becomes more stringent (as ε decreases),
the benefit provided by the enhanced strategies proposed in
this paper gets more and more significant.

VI. PROPOSED FINITE-TIME CONSENSUS WITH MEMORY

In this section, we introduce the finite-time memory sum
(F-MS) algorithm, a finite-time consensus approach exploiting
the memory of agents, and its enhanced version denoted
F-MSwP, which significantly improves its performance.

F-MS: This algorithm, which is an extension of that pro-
posed by the authors in [43], works as follows:
• At round k = 0, each agent n makes its measurement.

The measured value xn(0), which represents the infor-
mation owned by agent n at round k = 0, is broadcast
in the same round.

• At each round k = 1, 2, ..., T−1, with T denoting the
number of rounds needed for the convergence of all
agents (i.e., all agents have the necessary information
to compute the consensus), each agent n computes a
new scalar xn(k) by linearly combining the scalars
xj(k−1), j ∈ Nn, received from its neighbours in round
k−1. The updated scalar xn(k) represents the aggregated
information that agent n broadcasts in the same round,
which is given by

xn(k) =
∑
j∈Nn

rnj(k)xj(k − 1) , (26)

where the rnj(k) are independent, identically distributed
(i.i.d.) random coefficients belonging to {−1, 1}.

One observes, by the way, that (26) is not a state update
equation, as xn(k) is not a state variable that is eventually
meant to converge to the consensus, as for asymptotic con-
sensus schemes. Instead, (26) is simply aimed at aggregating
in a single scalar the information received from the neighbours
in the previous round.

Considering the N×N adjacency matrix A = [anj ], for
k > 1 we can define the randomized adjacency matrix
AR(k) = [aRnj

(k)] as

aRnj
(k) =

{
0 if anj = 0

rnj(k) if anj = 1 .
(27)

Observing that x(1) = AR(1)x(0), x(2) = AR(2)x(1) =
AR(2)AR(1)x(0), and so on recursively, the expression of the
data transmitted (at the network level) at round k > 1 is

x(k) = AR(k) · · ·AR(2)AR(1)x(0) . (28)

At each round k > 1, each agent n also collects in the
vector yn(k) the data (i.e., the information) received at round
k − 1 from its neighbours:

yn(k)=INn
[x(k−1)]=INn

AR(k−1) . . .AR(1)x(0) , (29)

where INn
represents the matrix composed of the rows of

the identity matrix whose indexes are included in the set Nn.
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Therefore, after k rounds, the total amount of data collected
by agent n, including its own measurement yn(0) = xn(0),
can be stacked in the column vector

cn(k) =


yn(0)

yn(1)

...
yn(k)

=


eTn

INn

INn
AR(1)

...
INn

AR(k − 1) · · ·AR(1)


x(0)

= Fn(k)
Tx(0) , (30)

where en is a column vector of all zeros except a one in the
n-th position, to account for the fact that each agent knows its
own measurement, whose stored value is labelled as yn(0).

Each agent n aims then at evaluating (2) from the knowl-
edge of (30).1 Using a linear estimator, one has to determine
whether there exists for some k > 0 a vector wn(k) such that

cn(k)
Twn(k) = x . (31)

The weight vector wn(k) can be found by solving

Fn(k)wn(k) =
1

N
e , (32)

where e is a column vector of all ones. Equation (32) admits
at least one solution if and only if

rank (Fn(k)) = rank
(
Fn(k)

∣∣e) (33)

which is given by

wn(k) =
1

N
Fn(k)

T
(
Fn(k)Fn(k)

T
)−1

e . (34)

If we denote with T (n) the minimum number of rounds
needed to find at least one solution for agent n, the conver-
gence time for the network, expressed in terms of rounds, is
given by T = maxn T

(n). Assuming that all agents know the
matrices AR(k), each agent can compute in advance (with re-
spect to the algorithm execution) its weights vector wn(k) ∀k
and the number of rounds needed for the convergence within
the whole network.

Note that (33) is a condition that may be checked in advance
to determine whether the convergence will be achieved for all
agents, for at least one agent, or for no agent. Specifically, if
(33) is satisfied for all agents, the algorithm can be executed as
it surely converges in a finite-time. Instead, if (33) is not satis-
fied for all agents, F-MS still deserves consideration because
it is the basic component of the two-step hybrid algorithm
introduced in the following subsection, denoted F-MSwP. If
(33) is not satisfied for any agent, a different algorithm must
be chosen. Fortunately, according to our simulations with a
random topology, reported in the numerical results, this event
never happened so that we can conjecture that it is very rare.

F-MSwP: Since a node can check (33) in advance, it is
able to determine whether and at which round it is able to
evaluate the consensus. The performance of F-MS can then

1This entails that each agent knows AR(k) for k= 1, 2, ..., T−1. This
assumption is not critical provided that agents share the same seed for the
generation of random numbers.

be dramatically improved if, as soon as an agent reaches the
consensus, the network stops broadcasting (26) and simply
starts propagating the consensus value.

As it will be shown in the numerical results, this proce-
dure significantly improves the chances of convergence and
ensures that after no more than D rounds from the first-agent
consensus event, all agents achieve the consensus. As a matter
of fact, with F-MSwP it is sufficient that (31) leads only one
agent to the convergence to make all agents converge.

VII. NUMERICAL RESULTS

A. Simulation setup and performance figures
The original algorithms introduced in this paper and bench-

mark state-of the-art algorithms are implemented with Matlab
and compared in a reference scenario. We consider NR = 1000
network realizations, each with N = 100 agents randomly
deployed in a square region of unit area.

At each run, the initial state xn (0) of the generic agent n
is randomly chosen with a zero-mean unit-variance Gaussian
distribution, representing its local measurement. All agents
have the same coverage range R, and a direct communication
link exists between two agents if their Euclidean distance is
below R. Only the realizations resulting in a connected net-
work are considered. Transmission losses are also simulated:
a communication between two neighbouring agents might fail
with probability Perr. The communication channel is assumed
reciprocal, so that a loss in one direction in a given round
implies a loss in the opposite direction in the same round.
Transmission losses are considered uncorrelated in different
rounds and as well among different links. For each network
realization, each algorithm is iterated until the time step T̃ε in
which the following condition is fulfilled by all agents

E(n)
(
T̃ε

)
< ε with n = 1, 2, . . . , N , (35)

where E(n)(k) = |x(n) (k) − x| is the consensus estimation
error of agent n at iteration k, and ε represents the maximum
tolerable error. Clearly, for the algorithm under investigation
and for the given network realization, T̃ε (in the following
referred to as ε-convergence time) represents a lower bound
of the ε-convergence time as defined in (5).2 All numerical
results are obtained setting ε = 10−4. Considering all the
NR realizations, for each algorithm we derive the (empirical)
cumulative distribution function (CDF) of the ε-convergence
time T̃ε.

We remark that, in general, finite-time schemes do not
gradually approach (iteration after iteration) the average con-
sensus, as occurs in the case of asymptotic schemes, but, when
successful, they compute the exact consensus (up to numerical
accuracy) as soon as they collect enough information. This
means that the ε-convergence time coincides with the exact
convergence time.

B. Considered schemes
For the performance comparison, we consider the follow-

ing asymptotic and finite-time algorithms, with and without
memory, namely

2Due to the finite simulation time, (4) cannot be verified for all k > T̃ε.
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• the memoryless asymptotic average consensus algorithms
A-CEW [6], A-Metro [7];

• the recently introduced asymptotic algorithms with mem-
ory A-IIR [38] and A-Kruzik [33], as well as our
memory-enhanced versions of A-CEW and A-Metro, that
is, A-FIR-CEW and A-FIR-Metro, with M = 1, M = 2
and M = 3 (Section V);

• the finite-time average consensus algorithms based on
eigenvalues cancellation proposed independently in [9]
and in [40], which guarantee that the average consensus
is always reached in exactly T = Nd−1 rounds. Since the
cancellation order impacts the time evolution of the resid-
ual errors experienced by agents at intermediate rounds
before the exact convergence is reached, to obtain a
benchmark (not implementable in real networks), we con-
sider a greedy cancellation order through an exhaustive
search by choosing at each round the eigenvalue to cancel
which yields the maximum reduction of the residual mean
absolute error (over all agents). In the following, the
implementation adopting this policy will be named finite-
time optimal eigenvalues cancellation (F-OEC). We also
consider a more realistic case in which all agents adopt
a random order for the eigenvalue cancellation (the same
for each agent) denoted as finite-time random eigenvalues
cancellation (F-REC). Such schemes are compared with
our F-MS and F-MSwP algorithms (Sec. VI).

For comparison purposes, we also include the results ob-
tained using the classic network coding (NC) algorithm [44]–
[46], which is here oriented to the average consensus cal-
culation and denoted finite-time network coding consensus
(F-NCC) [43]. In particular, instead of retrieving each single
measurement, as in the case of classic NC, our F-NCC is aimed
at deriving the average of all measurements (i.e., the average
consensus) in a finite amount of time.

However, one observes that F-NCC requires the transmis-
sion of an overhead (the NC header containing the cod-
ing coefficients), which is in contrast with the basic “one
scalar” rule that holds for consensus algorithms. In fact,
pure consensus algorithms are required to transmit only one
scalar per round per each agent. As will be discussed in the
following, the overhead is the price to be paid to make this
algorithm resilient to transmission errors. As done for the
F-MS algorithm, also in this case we consider an enhanced
version of F-NCC which starts propagating the consensus
value as soon as one node converges. The F-NCC adopting this
policy will be denoted finite-time network coding consensus
with propagation (F-NCCwP) in the following.

Regarding performance indicators, one observes that the
convergence speed may not be the only figure to be considered
as, for practical implementations, also a priori information
requirements on network topology, memory usage, and trans-
mission overhead might play a fundamental role in the choice
of the particular algorithm to be adopted.

As for the a priori availability of network related informa-
tion, at the beginning of the paper we assumed that each agent
knows the adjacency matrix A, which means that all agents are
aware of the network topology. This assumption is well suited
for static networks, in which the network discovery phase,

aimed at retrieving A, is rarely executed by agents. In this
case, the corresponding signaling overhead could be negligible
with respect to the amount of side information that should be
transmitted by the different consensus algorithms when A is
not available. Owing to space limitations this aspect is not
discussed here, but some results on how network topology
can be inferred can be found in [47].

Nevertheless, the full knowledge of A is not strictly needed
for all the investigated algorithms, as some of them require less
information. In Table I, a comparison between the algorithms
discussed in this paper is reported in terms of required a priori
knowledge about the network topology, memory usage at each
agent, and transmission overhead at each round.

Other important practical issues are related to the robustness
to transmission errors, that will be investigated in the next sec-
tion, and the sensitivity to numerical precision. In particular,
an outcome of our investigations which is worth mentioning,
although not discussed here due to lack of space, indicates
that finite-time algorithms may suffer from numerical precision
issues. Those based on eigenvalue cancellation, for instance,
are extremely critical, as they show diverging behaviors for
low degrees of network connectivity, as also mentioned in [9].

C. Simulation results

Fig. 3(a) shows the CDFs of the ε-convergence time for
the asymptotic algorithms A-CEW and A-Metro, as well
as for their memory-enhanced versions A-FIR-CEW and
A-FIR-Metro with M = 1, M = 2 and M = 3. We consider
a transmission coverage range R = 0.25, and no transmission
losses (Perr = 0). Further, Fig. 3(a) shows the CDF of the
network diameter, which represents a lower bound for the CDF
of the convergence time. One observes that exploiting the
memory has a beneficial impact on the ε-convergence time,
which reduces for increasing values of M . Notably, Fig. 3(a)
also shows that increasing the memory from M = 2 to
M = 3 provides only a marginal improvement, which clearly
highlights a saturation effect on the gain provided by additional
contributions from the memory.

Focusing the attention on the best performing A-FIR-CEW
and A-FIR-Metro algorithms (i.e., those adopting M = 3),
Fig. 3(b) provides a comparison with A-IIR and A-Kruzik.
In this regards, one observes that A-FIR-Metro with M = 3
achieves almost the same performance provided by A-IIR
[38] (which exploits memory too) and slightly outperforms
A-Kruzik [33], which operates with the same amount of
memory.3

Finite-time algorithms are investigated under the same con-
ditions (R= 0.25, Perr = 0) in Fig.4(a). Firstly, one notices
the significant impact of the order of eigenvalue cancellation
in F-OEC and F-REC. As expected, F-REC performs worse
than the optimal F-OEC, even though the latter cannot be
implemented in practice. The same figure also shows the
CDFs obtained with F-NCC and F-NCCwP as well as with
our F-MS and F-MSwP algorithms. As for the settings of

3The parameter d in [33] defines how many past rounds must be considered
to derive the future state. With respect to the parameter M of our algorithm,
it is M = d− 1.
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Algorithm Asympt/Finite Time A-priori Knowledge Stored Scalars Convergence Transmission overhead
A-CEW [6] Asymptotic λ2 and λN Neigh+ 1 yes no

A-FIR-CEW with memory M = 1 Asymptotic λ2 and λN 2Neigh+ 1 yes no
A-FIR-CEW with memory M > 1 Asymptotic Network topology Neigh+ 1 +MNeigh yes no

A-Metro [6] Asymptotic Local topology Neigh+ 1 yes no
A-FIR-Metro with memory M = 1 Asymptotic λ2 and λN 2Neigh+ 1 yes no
A-FIR-Metro with memory M > 1 Asymptotic Network topology Neigh+ 1 +MNeigh yes no

A-IIR [38] Asymptotic λ2 and λN Neigh+ 4 yes no
A-Kruzik [33] applied to A-Metro Asymptotic Network Topology Neigh+ d yes no

F-OEC/F-REC [9] Finite Time Network Topology Neigh+ 1 yes no
F-MS - F-MSwP Finite Time Network Topology Neigh×Rounds Not granted no

F-NCC - F-NCCwP Finite Time None Neigh×Rounds Not granted yes

TABLE I
COMPARISON OF CONSENSUS ALGORITHMS. Neigh DENOTES THE NUMBER OF NEIGHBOURS OF THE GENERIC AGENT.

0 50 100 150 200 250

Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F
 o

f t
he

 
-c

on
ve

rg
en

ce
 ti

m
e

A-CEW
A-FIR-CEW, M=1
A-FIR-CEW, M=2
A-FIR-CEW, M=3
A-Metro
A-FIR-Metro, M=1
A-FIR-Metro, M=2
A-FIR-Metro, M=3
Diameter

(a) Asymptotic CEW and Metropolis consensus schemes with their
enhanced versions, R = 0.25, Perr = 0.
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(b) Comparison of A-IIR and A-Kruzik with A-FIR-CEW and A-
FIR-Metro when M = 3, R = 0.25, Perr = 0.

Fig. 3. CDF of the ε-convergence time, ε = 10−4, N = 100, NR = 1000 network realizations.
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(a) Finite-time consensus schemes, R = 0.25, Perr = 0.
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(b) Mixed consensus schemes,R = 0.35, Perr = 0.

Fig. 4. CDF of the ε-convergence time, ε = 10−4, N = 100, NR = 1000 network realizations.

F-NCC and F-NCCwP, they both perform linear combinations
with random coefficients belonging to GF(28), the Galois field

containing 28 elements. One observes, first of all, the good
performance exhibited by F-NCC, which leads all agents to
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Fig. 5. Mixed consensus schemes, R = 0.35, Perr = 0.2.

the consensus in 100% of cases, whereas F-MS achieves the
network convergence only in less than 15% of cases. Such a
gap is completely recovered when the consensus propagation
strategy is enabled. In this regard, the convergence speed-up
provided by the consensus propagation strategy is impressive,
as the CDF of both F-NCCwP and F-MSwP is very close
to the lower bound represented by the CDF of the network
diameter D. This is an important result because most finite-
time algorithms achieve consensus after Nd − 1 rounds [9]
or more [11]. Considering that in most network realizations
the number Nd of distinct eigenvalues (usually close to N ) is
much larger than D, alternative schemes, such as the proposed
F-MSwP, might provide a significant performance gain.

Comparing Figs. 3(a) and 3(b) with Fig.4(a), it is worth
noticing that many of the investigated asymptotic algorithms
reach the ε-convergence earlier than the F-REC and F-OEC
finite-time schemes, which highlights that the ε-convergence
time is certainly an appropriate metric to capture the conver-
gence properties of heterogeneous consensus schemes.

Figure 4(b), when compared with Figs. 3(a), 3(b) and 4(a),
allows to understand the role played by the coverage range
R. It was derived by setting R = 0.35, Perr = 0, and con-
sidering only the best performing algorithms, namely, A-IIR,
A-FIR-Metro with M = 3 and A-Kruzik, as representatives
of the asymptotic consensus algorithms, and both F-NCC
and F-MS, along with their enhanced versions F-NCCwP and
F-MSwP, for the finite-time category.

Firstly, one observes that the increased coverage range R
leads all algorithms to a faster convergence, which is expected
owing to the increased connectivity of agents. Regarding the
asymptotic algorithms, our A-FIR-Metro with M = 3 outper-
forms both A-IIR and A-Kruzik. Further investigations, not
discussed here for space limitations, show that the superiority
of A-FIR-Metro, when compared to A-IIR, increases for larger
values of R.

As for the finite-time algorithms, F-MS exhibits a significant
improvement thanks to the higher connectivity, driving all

agents to the consensus in 90% of network realizations, while
F-NCC confirms its good performance, reaching the network
convergence in 100% of cases. Remarkably, both algorithms,
when enhanced with the consensus propagation capability,
provide extraordinarily good performances, showing CDFs
almost coincident with the lower bound.

The impact of transmission losses is investigated in Fig. 5,
which was derived assuming R = 0.35 and Perr = 0.2. It
can be noticed that the presence of link failures prevents the
convergence to the consensus of F-OEC and F-REC, whose
CDFs are therefore absent. In fact, the eigenvalue cancellation
technique implicitly assumes that the network topology does
not change over time, which is no more true in the presence of
even temporary link failures (i.e., broken links) that introduce
modifications to the network graph. Similarly, transmission
losses prevent also F-MS and F-MSwP from reaching the
consensus, as the matrix Fn(k) used in (34) to derive the
weights is no more consistent with the actual dissemination
of data through the network, which is affected by losses.

As far as the remaining algorithms are concerned, we
only considered the best performing ones, that is, A-IIR, our
A-FIR-Metro with M = 3 and A-Kruzik, as representatives of
the asymptotic consensus algorithms, and F-NCC along with
F-NCCwP for the finite-time category.

One notices that link failures have a detrimental impact on
the convergence speed of all algorithms, although to different
extents. In fact, all curves shown in Fig. 5 are right-hand
shifted with respect to the corresponding ones in Fig. 4(b).
Regarding the asymptotic schemes, our A-FIR-Metro still out-
performs A-IIR and A-Kruzik, also showing better resilience
to transmission losses. In fact, comparing the results in Fig. 5
with those in Fig. 4(b), it turns out that A-IIR suffers a
deterioration by 18.2% in terms of median ε-convergence time,
which is almost twice the 10% worsening experienced by
A-FIR-Metro. Clearly, even larger differences are observed
with respect to A-Kruzik.

With reference to F-NCC and F-NCCwP, they reach the
consensus in 100% of cases, thus proving to be not only
the most rapidly converging schemes but also very robust
against link failures. In particular, the consensus propagation
technique makes F-NCCwP almost insensitive to transmission
losses, which have a very little impact on the convergence
speed. It has to be remarked, however, that this performance
is achieved thanks to the transmission of the Network Coding
header, which implicitly bears the information about possible
transmission errors.

Clearly, this makes the comparison with the other algorithms
unfair. In fact, the transmission of an header containing
how the different measurements have been propagated and
combined through the network, would make also F-MS and
F-MSwP robust to transmission errors. In any case, if the “one-
scalar” rule has to be observed, the asymptotic algorithms rep-
resent the only feasible choice and the proposed A-FIR-Metro
algorithm, with M = 3, proved to be a good candidate.

VIII. CONCLUSION

In this paper a comparison of state-of-the-art and newly
introduced asymptotic and finite-time consensus algorithms
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has been performed adopting common performance metrics.
It has been pointed out how the ε-convergence time and its
CDF appear the most appropriate performance indexes for a
fair comparison of heterogeneous algorithms and to analyze
their performance under delay or residual error constraints.

A discussion on practical aspects about memory, a priori
knowledge on network topology, transmission overhead and
robustness to errors has been provided. The convergence prop-
erties of state-of-the-art as well as of the proposed algorithms
have been investigated under different conditions in terms
of network connectivity and transmission errors, by showing
the benefits gained by letting agents exploit the memory.
In particular, our finite-time consensus scheme has demon-
strated to achieve a performance close to the theoretical limit
given by the network diameter. However, in the presence of
transmission errors finite-time schemes might fail in reaching
the consensus and asymptotic algorithms result to be more
appropriate as that proposed in this paper.

APPENDIX A. OPTIMAL d IN THE CASE M = 1

When M = 1, given (21) and (22), the constrained opti-
mization problem (20) can be reformulated as

d∗=(d∗0, d
∗
1)=arg min

d=(d0,d1)
max

m∈{2,3,...,N}

{∣∣zm(d0, d1)
∣∣}, (36)

where

|zm(d0, d1)| , max
{∣∣zm1(d0, d1)

∣∣, ∣∣zm2(d0, d1)
∣∣} . (37)

As an example case, Fig. 6(a) shows |zm(d0, d1)| as a
function of d0 and d1 when λm = 3. One observes the
presence of left and right wings, which correspond to regions
of the (d0, d1) plane where zm(d0, d1) is real, and of a tail,
where zm(d0, d1) is complex. The boundary between the two
regions is the parabola

d1(d0) =
(1− d0λm)2

4λm
with d0 6=

1

λm
. (38)

In the tail, where zm(d0, d1) is complex,
∣∣zm(d0, d1)

∣∣ has the
following simple expression∣∣zm(d0, d1)

∣∣ =√d1λm. (39)

It also appears that the graph of |zm(d0, d1)| is symmetric
with respect to the plane d0 = 1

λm
.

To find the solution of (36) one has to firstly study the
monotonicity of |zm(d0, d1)| in the (d0, d1) plane. For space
limitation, the gradient of |zm(d0, d1)|, whose evaluation is
easy, is only reported in Fig.6(a) by arrows, indicating the di-
rections along which |zm(d0, d1)| is monotonically increasing.

To compare the graphs of
∣∣zm(d0, d1)

∣∣ for different values
of m, one considers firstly∣∣∣∣←−zm(

←−
d0, d1)

∣∣∣∣=∣∣∣∣zm(d0 =
←−
d0 +

1

λm
, d1)

∣∣∣∣
=
1

2

∣∣∣←−d0λm∣∣∣
∣∣∣∣∣1 +

√
1− 4d1λm

(
←−
d0λm)2

∣∣∣∣∣, (40)

∀(
←−
d0, d1)∈R2 \{0, 0}.

Eq. (40) is a 1/λm translated version of
∣∣zm(d0, d1)

∣∣.
From (40) one deduces that for different values of m, the

corresponding
∣∣∣∣←−zm(
←−
d0, d1)

∣∣∣∣ have the same symmetry plane
←−
d0 = 0 and that ∀(

←−
d0, d1)∈R2 \ {0, 0}

if λi < λj ⇒
∣∣∣∣←−zi (←−d0, d1)∣∣∣∣ < ∣∣∣∣←−zj (←−d0, d1)∣∣∣∣. (41)

Consequently, (i) the graph of the different
∣∣←−zm(
←−
d0, d1)

∣∣ do
not intersect and (ii) ∀(

←−
d0, d1) ∈ R2 \ {0, 0},

∣∣←−zN (
←−
d0, d1)

∣∣ is
larger than

∣∣←−zm(
←−
d0, d1)

∣∣, m = 2, . . . , N − 1.
Considering now

∣∣zm(d0, d1)
∣∣ for different values of m,

one observes in Fig. 6(b) that intersections appear and the
property

∣∣zN (d0, d1)
∣∣>∣∣zm(d0, d1)

∣∣, m = 2, . . . , N − 1, does
not hold anymore in the whole (d0, d1) plane. In this regard,
one observes that the graph of

∣∣zm(d0, d1)
∣∣ is a shifted version

of the graph of
∣∣∣∣←−zm(
←−
d0, d1)

∣∣∣∣ along the d0 axis by 1/λm, and

that this shift is larger for small values of m. Therefore, the
left wings of the graphs of

∣∣zm(d0, d1)
∣∣ for different values of

m cannot intersect. Additionally, since the tail of the graph
of
∣∣zm(d0, d1)

∣∣ is constant along the d0 axis for a given
value of d1 (see (39)), two tails for different values of m
cannot intersect too. Consequently, considering the graphs of∣∣zm(d0, d1)

∣∣ and
∣∣zm′(d0, d1)

∣∣, with m6=m′, intersections may
only exist between a left and a right wing, between a right
wing and a tail, or between two right wings, as evident in
Fig.6(b).

The solution d∗ = (d∗0, d
∗
1) of (36) belongs to the set

of (d0, d1) where the different
∣∣zm(d0, d1)

∣∣ are equal to∣∣zN (d0, d1)
∣∣, i.e., where the graph of

∣∣zN (d0, d1)
∣∣ intersects

the graphs of
∣∣zm(d0, d1)

∣∣. The right wing of
∣∣zm(d0, d1)

∣∣ is
monotonically decreasing when d0 and d1 increase. Moreover,
the left wing of

∣∣zN (d0, d1)
∣∣ is monotonically increasing when

d0 increases and monotonically decreasing when d1 increase.
Consequently, the solution for any given m = 2, . . . , N − 1
of the following problem(
d̂
(m)
0 , d̂

(m)
1

)
=arg min

d=(d0,d1)
max

{∣∣zm(d0, d1)
∣∣, ∣∣zN (d0, d1)

∣∣},
is either found (i) at the point intersection(
d
(1)
0 (λm), d

(1)
1 (λm)

)
of three surfaces, namely, the right

wing of
∣∣zm(d0, d1)

∣∣, the right wing of
∣∣zN (d0, d1)

∣∣, and
the tail of

∣∣zN (d0, d1)
∣∣ (see the circle on the right side of

Fig. 6(b) in the case m = 2) or (ii) at the point intersection(
d
(2)
0 (λm), d

(2)
1 (λm)

)
of the right wing of

∣∣zm(d0, d1)
∣∣ with

the left wing of
∣∣zN (d0, d1)

∣∣ and the tail of
∣∣zN (d0, d1)

∣∣ (see
the circle on the left side of Fig. 6(b) in the case m = 2).

In fact, since the solution of (36) corresponds to the min-
imum of max

{∣∣zm(d0, d1)
∣∣}N
m=2

, one focuses on the twol
point intersections that belong to the tail of

∣∣zN (d0, d1)
∣∣,

where the lowest values of max
{∣∣zm(d0, d1)

∣∣}N
m=2

are ob-
tained. One observes that for each m both candidates belong
to the curve defined by the intersection between the right wing
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(a) |zm(d0, d1)| with λm=3. The arrows indicate the directions along which
|zm(d0, d1)| is monotonically increasing.

(b)
∣∣z2(d0, d1)∣∣, ∣∣zm(d0, d1)

∣∣, ∣∣zN (d0, d1)
∣∣ given λ2<λm<λN .

Fig. 6. Graphical representations of |zm(d0, d1)|.

Fig. 7. Projection of
∣∣zN (d0, d1)

∣∣ on the (d0, d1), plane and intersections
of its tail with

∣∣z2(d0, d1)∣∣ (blue solid line) and
∣∣zm(d0, d1)

∣∣ (green solid
line) when λ2 < λm < λN .

of
∣∣zm(d0, d1)

∣∣, m = 2, . . . , N−1, and the tail of
∣∣zN (d0, d1)

∣∣,
which is obtained by solving

∣∣zm(d0, d1)
∣∣ = √d1λN to get

d1 =
λN (1− d0λm)2

(λm + λN )2
(42)

subject to d1 ≥
(1− d0λN )2

4λN
, (43)

where (43) limits the validity of (42) to the tail4 of∣∣zN (d0, d1)
∣∣. The set P(m) of points (d0, d1) satisfying (42)

and (43) is a part of a parabola.
The projection of

∣∣zN (d0, d1)
∣∣ on the (d0, d1) plane is

represented in Figure 7, where darker regions corresponds to
lower values of

∣∣zN (d0, d1)
∣∣. Given (42) and (43), Fig. 7 also

4The right-hand side of (43) is the boundary of the tail of
∣∣zN (d0, d1)

∣∣
(see (38)).

shows P(2) (blue solid curve) and P(m) (green solid curve)
with λ2 < λm < λN .

The parabola defined by (38) and P(m)intersect at(
d
(1)
0 (λm), d

(1)
1 (λm)

)
=

(
− 1

λN
,
1

λN

)
(44)

independently of m and at(
d
(2)
0 (λm), d

(2)
1 (λm)

)
=

(
λm + 3λN

λN(λN+ 3λm)
,

(λm − λN ) 2

λN(λN+ 3λm)
2

)
.

(45)
The above introduced point intersections are highlighted by
circles in Fig. 7 for the generic m. One may easily verify that

d
(2)
0 (λ2) > d

(2)
0 (λm)∀m = 3, . . . , N − 1.

Moreover, for all (d0, d1) ∈ P(m), m = 2, . . . , N − 1,
combining (39) and (42), one gets

|zm (d0, d1)| =
λN (1− d0λm)

λ2 + λN
. (46)

Consequently, for all d0 ∈
[
d
(1)
0 (λm) , d

(2)
0 (λm)

]
, using (46),

one may easily show that

∣∣∣∣z2(d0, λN (1− d0λ2)2

(λ2 + λN )2

)∣∣∣∣ ≥ ∣∣∣∣zm(d0, λN (1− d0λm)2

(λm + λN )2

)∣∣∣∣ ,
(47)

where equality holds only for d0 = d
(1)
0 .

Given (47) and considering the monotonic increase of∣∣z2(d0, d1)∣∣ for decreasing values of d0 and d1 (that is, in
the directions of the other intersections), one concludes that
the minimum of all maxima required by (36) belongs to the
intersection between

∣∣z2(d0, d1)∣∣ and the tail of
∣∣zN (d0, d1)

∣∣.
This proves that (d∗0, d

∗
1) only depends on λ2 and λN . More-

over, since the derivative of (46) with respect to d0 is negative,
(46) is monotonically decreasing as d0 increases from d

(1)
0 to

d
(2)
0 (λ2). It follows that the minimum in (36) is achieved at
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(
d
(2)
0 (λ2), d

(2)
1 (λ2)

)
=

(
λ2 + 3λN

λN (λN + 3λ2)
,

(λ2 − λN ) 2

λN (λN + 3λ2)
2

)
.

(48)
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