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Algorithms for data assimilation try to predict the most likely state of a dynamical system 
by combining information from observations and prior models. Variational approaches, 
such as the weak-constraint four-dimensional variational data assimilation formulation 
considered in this paper, can ultimately be interpreted as a minimization problem. One 
of the main challenges of such a formulation is the solution of large linear systems 
of equations which arise within the inner linear step of the adopted nonlinear solver. 
Depending on the selected approach, these linear algebraic problems amount to either a 
saddle point linear system or a symmetric positive definite (SPD) one. Both formulations 
can be solved by means of a Krylov method, like GMRES or CG, that needs to be 
preconditioned to ensure fast convergence in terms of the number of iterations. In this 
paper we illustrate novel, efficient preconditioning operators which involve the solution of 
certain Stein matrix equations. In addition to achieving better computational performance, 
the latter machinery allows us to derive tighter bounds for the eigenvalue distribution of 
the preconditioned linear system for certain problem settings. A panel of diverse numerical 
results displays the effectiveness of the proposed methodology compared to current state-
of-the-art approaches.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Given a computational model for a dynamical system, data assimilation aims to merge observational, measured data of 
that system with prior model information to obtain a better estimate of the system state at a specified time. The most 
mature application of data assimilation is to numerical weather prediction (NWP), where it is used to obtain the initial 
conditions for forecasts [7], but in recent years data assimilation approaches have been studied more broadly within earth 
sciences, ecology, and neuroscience; see, e.g., [35,30,41]. In particular, observations yi ∈ Rpi at time ti ∈ [t0, tN ] are com-
bined with prior information xb ∈Rs from a model to compute the most likely state xi ∈ Rs of the system at time ti . It is 
typically assumed that the background state xb can be written as xb = xt

0 + εb where xt
0 denotes the true initial state of the 

system with the error εb . This error is distributed according to a normal distribution with error covariance matrix B ∈Rs×s

and zero mean, i.e., εb ∼ N (0, B). Similarly, we write each observation in terms of the true initial state as yi = Hi(xt
i ) + εi

with the observation error εi ∼ N (0, Ri) for all i = 0, . . . , N . In order to map between observation and state space, we 
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introduce a possibly nonlinear operator Hi : Rs → Rpi which connects the true state xt
i at time ti and the observational 

data yi .
One of the notable aspects of the weak-constraint four-dimensional variational assimilation problem (4D-Var) is the 

propagation of the computed states. If xi−1 denotes the state variable at time ti−1, this is propagated to the next observa-
tion time ti via an imperfect forecast model Mi such that xi = Mi(xi−1) + εm

i where εm
i ∼ N (0, Q i) for all i = 1, . . . , N . 

This is probably the main difference between the weak- and strong-constrained 4D-Var approaches. Indeed, in the latter 
methodology the forecast model is supposed to be exact.

The ultimate goal of weak-constrained 4D-Var is then minimizing the following functional

J (x) =(x0 − xb)
T B−1(x0 − xb) +

N∑
i=0

(yi −Hi(xi))
T R−1

i (yi −Hi(xi))

+
N∑

i=1

(xi −Mi(xi−1))
T Q −1

i (xi −Mi(xi−1)), (1)

where x = (xT
0 , . . . , xT

N )T ∈R(N+1)s collects all the state variables x0, . . . , xN .
The objective function (1) is often minimized by means of an incremental approach [8]. Roughly speaking, this consists 

of a Gauss-Newton scheme where at each iteration a linearised problem needs to be solved. It has been shown that such a 
linear, inner problem can be reformulated as a large, sparse, symmetric, but also very structured saddle point linear system; 
see, e.g., [12,11,18]. A more traditional approach consists of solving the SPD linear system stemming from the quadratic 
optimization problems arising from the adopted Gauss-Newton procedure; see e.g. [10,49].

Krylov methods like the Generalized Minimal RESidual method (GMRES) [40] and the MINimal RESidual method (MIN-
RES) [32] are powerful tools for the solution of saddle point linear systems. See, e.g., the survey paper [2]. Similarly, the 
Conjugate Gradient method (CG) [21] is the most commonly used solver for SPD linear systems. In both scenarios, it is vital 
to choose good preconditioners for the adopted iterative scheme to ensure fast convergence in terms of both the number of 
iterations and wallclock times.

A variety of preconditioners for the saddle point and SPD 4D-Var problems have been proposed in the literature; see, 
e.g., [14,17,47,9,50]. While these operators enjoy some appealing features, e.g., they guarantee parallisability in the saddle-
point context, they also neglect important features of the original linear system to achieve affordable computational costs. 
This worsens the capability of the preconditioners to reduce the overall iteration count. In the operational NWP setting 
this is particularly problematic, as in practice the maximum number of iterations is capped by a very small number com-
pared to the dimension of the problem [7]. Therefore, any preconditioning method that reduces the iteration count without 
dramatically increasing the computational cost is likely to be highly beneficial.

In this work we propose to fully exploit the inherent block structure of both the saddle point and SPD formulations 
within a matrix-oriented GMRES/CG approach, see, e.g., [14,44,27]. Such machinery naturally leads to the design of more 
efficient preconditioning operators with Kronecker structure. These new preconditioners yield beneficial theoretical proper-
ties, thus achieving faster convergence in terms of number of iterations than state-of-the-art approaches, while maintaining 
a low computational cost and an easy-to-parallelize nature.

The framework proposed in this paper requires moderate values of p and s (e.g. O(103)) to be computationally suc-
cessful. We must mention that these restrictions on the problem dimensions may be unrealistic for NWP applications but 
can be reasonable for other data assimilation problems such as parameter estimation tasks for low-dimensional parameter 
domains; see, e.g., [36,23] for some examples in agriculture. The fresh methodology we present in this paper can also be 
successfully applied when data assimilation is combined with model order reduction. This interesting scenario sees a first 
reduction step aimed at reducing the state dimension. Then the reduced model is utilized within the selected data assimila-
tion approach; see, e.g., [26]. Weak-constraint 4D-Var may be a particularly appropriate choice of data assimilation scheme 
to be combined with model order reduction, as it is able to take the additional model error coming from the reduction step 
into account explicitly. Moreover, the techniques we develop here serve as the initial step towards novel procedures tackling 
large-scale problems such as the ones stemming from NWP. This will be the subject of future work.

We additionally note that the weak-constraint 4D-Var problem requires more computational resource than the strong-
constraint formulation, in addition to the need to prescribe model error covariance matrices. Alternative approaches have 
been proposed which incorporate some model error information within a strong-constraint 4D-Var approach via an inflated 
covariance approach, e.g. [22,15]. However, as these methods require the inversion of the inflated observation error co-
variance term, users are limited to the use of (approximate) observation error covariance matrices that are easy to invert. 
Notice that the inversion of the observation error covariance matrix is a common issue to any data assimilation approach 
based on quadratic minimization; see (2). In principle, our new approach is no exception. On the other hand, we are going 
to show that our fresh strategy allows full flexibility for all data assimilation parameters under mild assumptions on the 
error statistics, as well as revealing and exploiting the Kronecker structure that is obscured in the usual primal form. In our 
setting, the easy-to-invert nature of the observation error covariance is guaranteed by its Kronecker structure which is lost 
in case of inflating approaches, in general.

Here is a synopsis of the paper. In section 2 we recall the formulation of the SPD and saddle point linear systems stem-
ming from weak-constraint 4D-Var. We briefly introduce matrix-oriented GMRES and CG in section 2.1 and in section 2.2
2
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we describe a general preconditioning framework to be embedded in these routines. In section 3 we address the case of 
observation-time dependent Mi and propose an original, efficient preconditioning operator. The latter is very similar to 
the original operator with a single exception. In particular, the original forward operator is approximated by a suitable, 
observation-time independent one, namely Mi ≡ M̂ for all i, in the preconditioning operator. Thanks to this feature, we 
are able to show that the inversion of a certain matrix L, which is the predominant computational bottleneck of state-of-
the-art preconditioning procedures for 4D-Var, is in fact equivalent to solving a Stein matrix equation. In addition to leading 
to some insights regarding the selection of a suitable M̂, we describe in section 3.2 how the matrix-oriented perspective 
allows the efficient incorporation of information from the observation term within the Schur complement of the saddle 
point system or, equivalently, in the preconditioner of the SPD problem, by adapting an approach proposed in [48]. We note 
that the observation term has often been completely neglected in state-of-the-art preconditioners, but can be incorporated 
approximately within the Kronecker preconditioning framework at a moderate computational cost. In section 4, some fur-
ther considerations are given in the case that also the original forecast model Mi is observation-time independent itself, 
namely Mi ≡ M for all i = 1, . . . , N in the forward operator. A number of numerical results showing the potential of our 
fresh, successful strategy are reported in section 5. We finish in section 6 by drawing some conclusions and presenting 
possible outlooks.

Throughout the paper we adopt the following notation. Capital italic letters (A) denote block matrices whose blocks 
have a Kronecker structure. These blocks, and in general matrices having a Kronecker structure, are denoted by capital bold 
letters (A) whereas simple capital letters (A) are used for general matrices without any Kronecker structure. IN denotes the 
identity matrix of dimension N . The subscript is omitted whenever the dimension of I is clear from the context. The i-th 
vector of the canonical basis of RN is denoted by ei . The Kronecker product is denoted by ⊗, whereas ◦ represents the 
Hadamard product. Given a matrix X ∈Rn×n , vec(X) ∈Rn2

is the vector collecting the columns of X on top of one another. 
For instance, the variable x in (1) can be written as x = vec([x0, . . . , xN ]). To conclude, λ(A) denotes the spectrum of the 
matrix A, with λmax(A) = λ1(A) ≥ λ2(A) ≥ . . . ≥ λN(A) = λmin(A).

2. Linear system formulations

As previously mentioned, the vector state x which minimizes (1) can be computed by an incremental approach [8] where 
the cost function (1) is approximated by a quadratic function of the increment δx(�) = x(�+1) − x(�) , with x(�) being the �-th 
Gauss-Newton iterate. If δx = vec([δx0, . . . , δxN ]), the quadratic objective function is given by

δ J (�)(δx) =(δx0 − b(�)
0 )T B−1(δx0 − b(�)

0 ) +
N∑

i=0

(d(�)
i − H (�)

i δxi)
T R−1

i (d(�)
i − H (�)

i δxi)

+
N∑

i=1

(δxi − M(�)
i δxi−1) − c(�)

i )T Q −1
i (δxi − M(�)

i δxi−1 − c(�)
i )),

where b(�)
0 = xb − x(�)

0 , d(�)
i = yi −Hi(x(�)

i ), c(�)
i =Mi(x(�)

i−1) − x(�)
i , and H (�)

i , M(�)
i are linearizations of Hi and Mi about x(�)

i , 
respectively. We note that B, Q i and Ri are covariance matrices so that they are symmetric and positive semi-definite by 
construction. In addition, as inverse covariance matrices are required in the objective function formulation (1) we assume 
these matrices to be strictly positive definite. Therefore, by dropping the Gauss-Newton index (�) for better readability and 
assuming p0 = . . . = pN = p, CG can be employed to minimize δ J by solving the following linear system

(LT D−1L + HT R−1H)︸ ︷︷ ︸
S

δx = D−1b + LT HT R−1d, (2)

where b = vec([b0, c1, . . . , cN ]) ∈ R(N+1)s , d = vec([d0, . . . , dN ]) ∈ R(N+1)p , and D, L ∈ R(N+1)s×(N+1)s , R ∈ R(N+1)p×(N+1)p , 
H ∈R(N+1)p×(N+1)s are such that

D =

⎛⎜⎜⎜⎝
B

Q 1
. . .

Q N

⎞⎟⎟⎟⎠ ,L =

⎛⎜⎜⎜⎝
I

−M1 I
. . .

. . .

−MN I

⎞⎟⎟⎟⎠ ,R =

⎛⎜⎜⎜⎝
R0

R1
. . .

R N

⎞⎟⎟⎟⎠ ,H =

⎛⎜⎜⎜⎝
H0

H1
. . .

H N

⎞⎟⎟⎟⎠ .

As an alternative to the quadratic minimization (2), δx can be computed by solving the following saddle point linear 
system [12]⎛⎝ D 0 L

0 R H
LT HT 0

⎞⎠
︸ ︷︷ ︸

⎛⎝δη
δλ

δx

⎞⎠=
⎛⎝b

d
0

⎞⎠ . (3)
=:A

3



D. Palitta and J.M. Tabeart Journal of Computational Physics 482 (2023) 112068
We note that both (2) and (3) contain a lot of inherent block structure.2 We propose to fully exploit this structure 
by using matrix implementations of iterative methods and designing preconditioners with explicit Kronecker structure. 
We illustrate the main concept by considering a data assimilation problem where the blocks of A, S and corresponding 
preconditioners P have Kronecker structure. This could arise naturally via consistent observation networks, with fixed ob-
servation and model error statistics, at each observation time. In the case that Q 1 = · · · = Q N ≡ Q , R0 = · · · = R N ≡ R , and 
H1 = · · · = H N ≡ H , we can write the terms above compactly by using the inherent Kronecker structure

D = e1eT
1 ⊗ B + (IN+1 − e1eT

1 ) ⊗ Q , R = IN+1 ⊗ R, H = IN+1 ⊗ H .

In the more general setting where the covariance matrices and linearised observation operator differ at each time, precon-
ditioners with Kronecker structure can be used within the same setting. We expect the strategy presented in section 3 to 
be effective also in the case where we relax the Kronecker assumptions on R, H and D. This will be the subject of future 
work.

2.1. Matrix-oriented GMRES and CG

The Kronecker form of S and the blocks of the coefficient matrix A naturally suggests the use of matrix-oriented Krylov 
subspace methods to solve the linear systems (2) and (3). Depending on the adopted preconditioning operator (see sec-
tion 2.2), the most popular solution schemes for solving (3) are GMRES, or MINRES if symmetry is preserved. Similarly, CG 
is employed for (2). It is well-known that the original vector form of such methods can be easily transformed in order to 
obtain a matrix-oriented formulation of these routines. These implementations can be obtained by exploiting the properties 
of the Kronecker product [51] and the equivalence between the 2-norm of vectors and the matrix inner product, namely 
vec(A)T vec(B) = trace((AB)T AB). See, e.g., [14,44,34,27] and Appendix B.

We would like to point out that none of the Krylov routines used to obtain the results in section 5 are equipped with 
low-rank truncations as suggested in [14,44,27]. These truncations steps are essential to obtain a feasible storage demand 
when very large dimensional problems are considered. Here we suppose p, s, and N to be moderate, say O(103), so that 
issues related to the memory consumption in our solvers do not occur in general. Avoiding the employment of any low-rank 
truncation will be also crucial to obtain the results stated in Proposition 2 and section 4.1.

2.2. Preconditioning operators

It is well-known that Krylov subspace techniques require effective preconditioning operators to obtain fast convergence 
in terms of the number of iterations.

In the 4D-Var context, many authors considered preconditioners for (2) of the form

Ŝ := LT D−1L, (4)

which neglect the second term HT R−1H in the definition of S. See, e.g., [14,17,47]. This leads to an easier-to-invert precon-
ditioning operator3 as ̂S−1 = L−1DL−T . A key limitation of this preconditioner is that computation of the inverse operators 
L−1 and L−T requires many serial matrix products and is thus not parallelisable. One of the main strategies to overcome 
this issue is the introduction of a further layer of approximation related to employing an operator ̂L ≈ L in the definition of 
Ŝ, such that multiplication of a vector by ̂S−1 = L̂−1D̂L−T can be distributed over multiple processors. Different options for 
the selection of ̂L can be found in, e.g., [12,17,14,47].

For saddle-point linear systems of the form (3), some of the most commonly-used preconditioners are the block diagonal
and block triangular preconditioners. See, e.g., [3,29,17,14]. In particular, the block diagonal preconditioner is defined as 
follows

PD :=
⎛⎝D

R
Ŝ

⎞⎠ , (5)

where ̂S is again such that ̂S ≈ S = LT D−1L + HT R−1H is an approximation to the Schur complement S of A, and it is often 
of the form (4).

Similarly, the block triangular preconditioner is defined as follows

PT :=
⎛⎝D 0 L

R H
Ŝ

⎞⎠ . (6)

2 Notice that the coefficient matrix in (2) is the Schur complement of A. This motivates the use of S for the former.
3 Notice that, due to its structure, L is always nonsingular, regardless of the Mi ’s.
4
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A different class of preconditioning operators for data assimilation problems is given by the inexact constraint precondi-
tioner

PC :=
⎛⎝ D 0 L̂

0 R 0
L̂T 0 0

⎞⎠ , (7)

which does not involve the inexact Schur complement ̂S.
Clearly, the effectiveness of the preconditioning operators Ŝ, PD , PT , and PC significantly depends on the adopted 

approximations L̂ and Ŝ. In this paper we introduce novel tools which allow for more successful selections of L̂ and Ŝ. In 
particular, in section 3.1 we propose a novel approximation ̂L ≈ L which amounts to a Stein operator. We will show that the 
inversion of such ̂L is still computationally affordable by exploiting its matrix equation structure, while it leads to a dramatic 
decrease in the iteration count. Moreover, we extend this matrix-oriented method to preconditioning operators Ŝ which 
explicitly take into account information from the observation term HT R−1H of the Schur complement S (see section 3.2) by 
adapting a low-rank correction approach that was proposed in [48]. The original techniques proposed in this paper lead to 
the design of preconditioning operators with better theoretical properties (section 4.1) and more competitive computational 
records (section 5).

We conclude this section by presenting a novel result related to the use of PD in our setting. We report the proof of the 
following theorem in Appendix A.

Theorem 1. If b = (bT , dT , 0)T denotes the right-hand side in (3), then the orthonormal basis vectors {v1, . . . , vm} of the Krylov 
subspace Km(AP−1

D , b) = span{b, AP−1
D b, . . . , (AP−1

D )m−1b} computed by GMRES are such that

v2k−1 =
⎡⎣ u2k−1

w2k−1
0

⎤⎦ , and v2k =
⎡⎣ 0

0
z2k

⎤⎦ , for any k ≥ 1.

The zero block structure of the basis vectors illustrated in Theorem 1 can be exploited to design more efficient imple-
mentations of the preconditioning step involving PD . For instance, we can invert the (inexact) Schur complement ̂S only for 
alternate iterations. Similarly, the linear systems with D and R play a role only in case of an odd iteration index. The GMRES 
orthogonalization step can also benefit from Theorem 1, as there is no need to explicitly perform the orthonormalization of 
the blocks which necessarily have to be zero in the current iteration.

We take advantage of these observations to obtain all the results related to the performance achieved by PD , which are 
reported in section 5.

3. A new preconditioning operator

In this section we present the main contribution of this paper. In particular, we propose to use the following operator

L̂ = IN+1 ⊗ Is − � ⊗ M̂ =

⎛⎜⎜⎜⎝
I

−M̂ I
. . .

. . .

−M̂ I

⎞⎟⎟⎟⎠ , (8)

in place of L within the selected preconditioning framework. The matrix M̂ in (8) is chosen to be some representative value 
of the Mi ’s defining L.

In the numerical experiments in section 5 we consider a number of options for M̂ including, one of the Mi ’s (e.g. the 
smallest/largest in norm or condition number, first/last in the sequence), possibly cycling on the index i, and the Karcher 
matrix mean [5] when the Mi ’s are all SPD.4

The employment of the operator ̂L described in (8) in the definition of ̂S, PD , PT , and PC leads to novel preconditioning 
operators for (2) and (3) that can significantly outperform other state-of-the-art approaches. In the next proposition we 
provide some indications of when we might expect using our fresh approach to be particularly effective. To this end, we 
present theoretical bounds on the eigenvalues of ̂L−T LT L̂L−1. See Appendix A for the proof.

Proposition 2. Let Di = M̂ − Mi and ̂L as in (8). The eigenvalues of ̂L−T LT L̂L−1 can be bounded above by

1 + N

2

(
ρN +

√
ρ2

N + 4ρN

)
, (9)

4 Alternative matrix means can be used depending on the problem at hand.
5
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where

ρN =

⎧⎪⎨⎪⎩
N · maxm=1,...,N λmax(DT

m Dm), if λmax(M̂T M̂) = 1,

1−λN
max(M̂T M̂)

1−λmax(M̂T M̂)
· maxm=1,...,N λmax(DT

m Dm), otherwise.
(10)

Due to the multiple levels of approximation used to obtain the result of Proposition 2, the bounds are likely to be loose 
in practice. However, the qualitative information encoded in (9) may provide a way to select a ‘good’ choice of M̂ , and an 
indication of when the preconditioner (8) is likely to be effective.

In particular, Proposition 2 indicates that the best results are likely to be obtained when maxi, j ‖Mi − M j‖ is small. If 
the difference between the linearised model operators is large then the maximum eigenvalue of the difference terms cannot 
all be kept small. Similarly, the spectral norm of M̂ itself must also be small. If not, then the sum in (32) will blow up 
rapidly even for moderate values of N . Both of these observations provide insight into a heuristic way to select M̂: begin 
by choosing Mi with smallest norm. If all the values of ||Mi || are similar, then it is likely that the Di term becomes more 
important – we can then choose M̂ to be the value of Mi that minimises the average value of ‖Di DT

i ‖. See section 5 for a 
panel of diverse numerical experiments displaying such trends.

To obtain a successful preconditioning strategy, operating with L̂ in (8) must not be computationally demanding. In 
particular, the application of the preconditioners Ŝ, PD , PT , and PC always requires the inversion of L̂. The efficient 
computation of ̂L−1 will be the subject of the next section.

3.1. On the inversion of the Stein operator ̂L

Thanks to the properties of the Kronecker product, see, e.g., [42], the action of L̂ in (8) on a vector z = vec(Z) can be 
written as follows

L̂z = vec(Z − M̂ Z�T ).

A linear operator of the form

L : Rs×(N+1) → Rs×(N+1)

Z �→ Z − M̂ Z�T

is called a Stein operator in the matrix equation literature; see, e.g., [42]. Therefore, L̂z = vec(L(Z)). Due to this relation, 
hereafter, with abuse of notation, we say that also ̂L amounts to a Stein operator. The inversion of ̂L is thus equivalent to 
inverting L, and hence to solving a so-called Stein matrix equation

vec(Z) = L̂−1vec(V ) ⇐⇒ Z − M̂ Z�T = V . (11)

Similarly,

vec(Z) = L̂−T vec(V ) ⇐⇒ Z − M̂T Z� = V . (12)

Different numerical methods have been proposed in the literature for the efficient solution of Stein matrix equations. See, 
e.g., [1,25] and [42, Section 6].

In our setting, we need to solve equations (11) and (12) several times. Indeed, depending on the adopted preconditioning 
scheme, a couple of Stein equations have to be solved at each GMRES/CG iteration. By fully exploiting the structure of the 
coefficient matrices defining the Stein equations, we illustrate a novel solution procedure that remarkably reduces the 
computational cost of the preconditioning steps. Our original scheme requires some minor precomputation that can be 
performed once prior to the start of the adopted Krylov iterative scheme.

We first notice that we can write

� = C − e1eT
N+1, C =

⎛⎜⎜⎜⎝
0 1
1 0

. . .
. . .

1 0

⎞⎟⎟⎟⎠ . (13)

Thanks to its circulant structure, C can be cheaply diagonalized by the fast Fourier transform (FFT), namely C = F −1	F
where

	 = diag(π1, . . . ,πN+1), (π1, . . . ,πN+1)
T = F Ce1,

and F denotes the discrete Fourier matrix. The observation in (13) leads to the following result. See Appendix A for its 
proof.
6
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1

2

3

1

2

3

Algorithm 1 Solution of the Stein equation Z − M̂ Z�T = V .

input : P ∈Cs×(N+1) and �, T , U ∈Cs×s as in Proposition 3, V ∈Rs×(N+1) .
output : Z ∈Rs×(N+1) solution to Z − M̂ Z�T = V .

Compute Y = P ◦ (T −1 V F T )

Compute W = P ◦ (U−1(�Y F −1eN+1)eT
1 F T )

Set Z = T −1(Y − W )F −T

Algorithm 2 Solution of the Stein equation X − M̂T X� = U .

input : P ∈Cs×(N+1) and �, T , U ∈Cs×s as in Proposition 3, V ∈Rs×(N+1) .
output : Z ∈Rs×(N+1) solution to Z − M̂T Z� = V .

Compute G = P ◦ (T T V F −1)

Compute H = P ◦ (U−1(�G F T e1)eT
N+1 F −1)

Set Z = T −T (G − H)F

Proposition 3. Let M̂ = T �T −1 be the eigendecomposition of M̂ with � = diag(λ1, . . . , λs) and P ∈ Cs×(N+1) be such that Pi, j =
1/(1 − λiπ j). Moreover, let U = I + diag((P (�F e1 ◦ F −T eN+1))) where ◦ denotes the Hadamard product. Then the solution Z to the 
Stein equation in (11) can be written as

Z = T (Y − W )F −T , (14)

where

Y = P ◦ (T −1 V F T ), and W = P ◦ (U−1(�Y F −1eN+1)eT
1 F T ).

Similarly, the solution Z to (12) is such that

Z = T −T (G − H)F , (15)

where

G = P ◦ (T T V F −1), and H = P ◦ (U−1(�G F T e1)eT
N+1 F −1).

The computational cost of the solution of the Stein equations (11)–(12) by (14)–(15) amounts to O(s3(N + 1) log(N + 1))

floating point operations: the cubic term s3 arises from the eigendecomposition of M̂ , while the use of the FFT, namely 
computing the action of the matrices F and F −1 in (14)–(15), leads to the polylogarithmic term in N + 1. Even though 
the eigendecomposition of M̂ can be computed once, prior to the start of the Krylov routine, the approach presented in 
Proposition 3 requires the matrix M̂ to be of moderate size. On the other hand, by fully exploiting the circulant-plus-low-
rank structure of �, we can afford sizable values of N . See [33, Section 5] for constructions similar to the ones stated in 
Proposition 3 derived for the solution of certain Sylvester equations.

The procedures for solving this Stein equation and its transpose are summarized in Algorithm 1 and 2, respectively, and 
they rely on the results presented in Proposition 3. Notice that only matrix-matrix multiplications and entry-wise operations 
are performed in Algorithm 1 and 2 making the preconditioning step easy to parallelize. See, e.g., [19].

3.2. Influence of Schur complement approximations

The quality of the Schur complement approximation Ŝ plays an important role in determining the effectiveness of the 
preconditioning operators for (2) and (3). In this work we make use of two choices of Ŝ. We briefly consider classic ap-
proximations of the form ̂S = L̂�D−1̂L as studied in [14,17] but involving the new approach for ̂L illustrated in the previous 
section. The second option is motivated by a low-rank approximation proposed in [48] and includes information from the 
observation term explicitly. If

Ŝ = L�D−1L, (16)

then the eigenvalues of Ŝ−1S are given by (N + 1)(s − p) unit eigenvalues, and p(N + 1) eigenvalues given by 1 +
λ(L−1DL−T HT R−1H). We note that L−1DL−T HT R−1H is of rank p(N + 1) with non-negative eigenvalues, meaning that the 
minimum eigenvalue of ̂S−1S is 1. However, the remaining non-unit eigenvalues can be large, for example in the case that 
R is ill-conditioned; see, e.g., [46]. An alternative choice of Ŝ which allows any extreme eigenvalues arising from the ob-
servation term to be accounted for within the preconditioner, comes from considering a low-rank update to (16) of the 
form

Ŝ = L�D−1L + KrKT
r , (17)
7
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where Kr = IN+1 ⊗ Vrϒ
1/2
r ∈R(N+1)s×(N+1)r and Vrϒ

1/2
r ∈Rs×r is constructed from the leading r terms of the eigendecom-

position V ϒV T = H T R−1 H . This approach has been studied theoretically in [48], where it was proved that in addition to 
increasing the number of unit eigenvalues, increasing r reduces the largest eigenvalues of ̂S−1S.

A similar low-rank update approach can also be considered when using an approximation L̂ to L. In this setting the 
smallest eigenvalue of Ŝ−1S can now be smaller than one, and including more information from the observation term is 
not guaranteed to reduce bounds on the largest eigenvalue of the preconditioned system. However, this approach has been 
found to perform well for a number of problems, particularly where L̂ is a spectrally good approximation to L. In what 
follows we apply the low-rank update to an approximate first term.

In a true low-rank approach (r << p) computational efficiency is ensured by applying the Woodbury identity. This avoids 
applying the inverse of D, which is expensive and allows the re-use of parallelisable or inexpensive approximations to ̂L−1. 
As the setting considered in this paper requires blocks that are not too large (O(103)), it is not unreasonable to compute 
a full decomposition of H T R−1 H . We therefore propose using the low-rank approach and Woodbury implementation with 
large values of r ≤ p, i.e.,

Ŝ−1 = L̂−1D̂L−T − L̂−1D̂L−T Kr

(
Ir(N+1) + KT

r L̂−1D̂L−T Kr

)−1
KT

r L̂−1D̂L−T . (18)

3.2.1. Algorithmic considerations
While the use of the preconditioner Ŝ−1 in (18) leads to great gains in the convergence properties of the selected 

preconditioned iterative scheme, especially for r ≈ p – see section 5 – it also poses some computational challenges. We now 
demonstrate how to implement (18) in a feasible way by exploiting the Kronecker structure of the new preconditioner.

One benefit of using the Woodbury formulation is that the efficient implementations of ̂L−1vec(V ) and ̂L−T vec(Z) that 
were introduced in section 3.1 can be reused to apply L̂−1DL̂−T . Similarly, we can exploit the Kronecker structure of Kr =
IN+1 ⊗ Vrϒ

1/2
r to cheaply apply this operator and its transpose.

Therefore the main computational bottleneck of the relation (18) is the solution of the r(N + 1) × r(N + 1) linear system 
with Ir(N+1) + KT

r L̂−1D̂L−T Kr . We obtain computational gains by first transforming this problem into an equivalent one, and 
then solving the transformed problem iteratively using an inner matrix-oriented CG problem.

Solving a transformed problem:
We can make considerable computational savings by solving a transformed problem that exploits the identity plus Kronecker 
structure of ̂L. Writing M̂ = T �T −1, we define

L̃ = IN+1 ⊗ Is − � ⊗ �, S̃ = L̃�D̃−1̃L + K̃rK̃T
r ,

where D̃ = e1eT
1 ⊗ T −1 BT −T + (IN+1 − e1eT

1 ) ⊗ T −1 Q T −T , and K̃r = IN+1 ⊗ Vrϒ
1/2
r with Vr , ϒr coming now from the 

eigendecomposition of H̃ T R−1 H̃ , H̃ = H T . The computation of S̃−1 now involves the solution of a linear system with 
Ir(N+1) + K̃T

r L̃−1D̃̃L−T K̃r whose action is performed by following Algorithm 3. Notice that the cost of the latter algorithm is 
now linear in s and polylogarithmic in N + 1 thanks to the semidiagonalization of ̂L.

For the SPD problem (2), we apply the preconditioner ̂S = (IN+1 ⊗ T −T )̃S(IN+1 ⊗ T −1) as

Ŝ−1vec(V ) = (IN+1 ⊗ T )(̃S−1vec(T T V )). (19)

We note the equality here, and that the only assumption required is that the full eigendecomposition of M̂ is available.
Similarly, for the saddle-point linear system (3), we still write PD = T P̃DT T and PT = T P̃T T T where

P̃D =
⎛⎝ D̃

R
S̃

⎞⎠ , P̃T =
⎛⎝ D̃ 0 L̃

R H̃
S̃

⎞⎠ ,

and

T =
⎛⎝ IN+1 ⊗ T

IN+1 ⊗ I p

IN+1 ⊗ T −T

⎞⎠ . (20)

At the jth GMRES iteration we perform

P−1
D vec(V ) = T −T (P̃−1

D (T −T vec(V ))), (21)

and P̃−1
D is computed by following the strategy presented in the previous sections. Notice that T is block diagonal with 

blocks having a Kronecker form. This rich structure can be exploited to cheaply perform the transformations involving T
itself. The same approach is adopted for the block triangular preconditioner PT . The inexact constraint preconditioner PC
would not benefit from the semi-diagonalization of ̂L as its definition does not include the approximate Schur complement 
Ŝ. We note at this stage that the transformed preconditioner is equivalent to (18).
8
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Algorithm 3 Computing the action of Ir(N+1) + K̃T
r L̃−1D̃̃L−T K̃r .

input : Z ∈Cr×(N+1) , Vr , ϒr ∈Rs×r , and �, ̃B , Q̃ ∈Rs×s .
output : X ∈Rr×(N+1) such that vec(X) = (Ir(N+1) + K̃T

r L̃−1 D̃̃L−T K̃r)vec(Z).

Solve Y − �Y � = Vrϒr Z by means of Algorithm 2 with T = I

Compute W = B̃Y e1eT
1 + Q̃ Y (IN+1 − e1eT

1 )

Solve U − �U�T = W by means of Algorithm 1 with T = I

Set X = Z + ϒr V T
r U

Inner matrix-oriented CG:
It now remains to solve (Ir(N+1) + K̃T

r L̃−1D̃̃L−T K̃r)
−1x efficiently. A naive strategy would consist of assembling the coefficient 

matrix first, by possibly exploiting the Kronecker structure of the involved factors K̃r , L̃, and D̃. To this end, the scheme 
proposed in [20] could be employed with straightforward modifications. Even though this step can be carried out prior 
to the GMRES/CG iterations, the construction of the dense matrix K̃T

r L̃−1D̃̃L−T K̃r requires the solution of r(N + 1) matrix 
equations making this task computationally unaffordable.

We thus pursue a different path. Since D and R are SPD by construction Ir(N+1) + K̃T
r L̃−1D̃̃L−T K̃r is SPD as well. More-

over, the Kronecker structure of the latter matrix can be exploited to cheaply compute its action as mentioned above. We 
therefore propose using an iterative method to approximate the solution of (Ir(N+1) + K̃T

r L̃−1D̃̃L−T K̃r)
−1x within the pre-

conditioner by means of a matrix-oriented CG method. This iterative method only requires applications of the operator 
Ir(N+1) + K̃T

r L̃−1D̃̃L−T K̃r . Therefore, the overall scheme for solving (2) and (3) can be seen as an inner-outer iteration [43]
whenever the approximation (18) with r > 0 is adopted within the selected preconditioning framework. In particular, the 
outer Krylov routine (GMRES/CG) is preconditioned with a scheme involving a second, inner Krylov method (CG). Notice that 
the use of CG within the preconditioning step requires the employment of a flexible variant of the outer Krylov method as 
we are using different approximate preconditioners for each outer iteration; see [43]. The matrix-oriented implementation 
of flexible GMRES and CG can be easily obtained from their standard form [38,31].

We stress once again that combining the inner matrix-oriented CG method with the semi-diagonalised approach to solve 
for ̃S−1 significantly lowers the computational cost of the preconditioning step, especially for the case r > 0. Indeed, in this 
case, the cost of the CG iterations involved in the computation of S̃−1 is linear in s and polylogarithmic in N thanks to 
the semi-diagonalization of ̂L; see Algorithm 3. We note that by using an inner iterative solver we obtain an approximation 
to the ‘true’ preconditioner S̃. However, our numerical experiments in section 5 reveal that we can obtain near optimal 
performance using this nested approach for a reasonable choice of tolerance within the inner matrix-oriented CG problem.

As previously mentioned, matrix CG is often equipped with some low-rank truncations to reduce the overall memory 
demand; see, e.g., [27]. However, storage will not be an issue in our context thanks to the modest problem dimensions we 
consider. Moreover, the introduction of any low-rank truncation would worsen the performance of the preconditioning step 
in general. Therefore, we perform no low-rank truncations within the inner matrix CG.

We would like to mention that, similarly to the outer Krylov routine, the inner matrix CG can also be preconditioned to 
achieve a faster convergence in terms of the number of iterations. However, we were not able to design an effective precon-
ditioning operator for Ir(N+1) + K̃T

r L̃−1D̃̃L−T K̃r with a reasonable computational cost. A number of natural preconditioning 
strategies did not yield improvement in terms of computational speed compared to a plain, unpreconditioned matrix CG 
implementation. We therefore present an unpreconditioned inner matrix CG in all the numerical experiments reported in 
section 5.

One may consider performing the FFT transformations involved in the solution of the Stein equations outside the GM-
RES/CG iteration, thinking that this would further decrease the computational cost of the preconditioning steps. However, 
this would also introduce complex arithmetic in the GMRES/CG iteration, increasing the cost of the overall scheme. More-
over, the application of the FFT can be cheaply performed without forming the discrete Fourier matrix F . In particular, in 
all our numerical tests we employed the Matlab fft and ifft functions. In light of these considerations, we confine the 
use of FFT to the preconditioning step only.

4. Observation-time independent M

If the model forecast M takes a constant value between each observation time, the same is true for its linearization. In 
this case, all the matrices Mi in the definition of L are the same, namely M = Mi for all i = 1, . . . , N + 1. In this case, the 
operator

L =

⎛⎜⎜⎜⎝
I

−M I
. . .

. . .

−M I

⎞⎟⎟⎟⎠= IN+1 ⊗ Is − � ⊗ M, (22)

is a Stein operator itself and we can thus use ̂L = L in our preconditioning strategy. In this easier setting, the latter choice 
leads to narrow eigenvalue distributions of the preconditioned coefficient matrices – see section 4.1 – while maintaining 
high computational efficiency.
9
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In contrast to what happens in the more general case discussed at the end of section 3.2.1, we can now perform the 
transformation based on the eigenvector matrix T once before the Krylov routine starts, and not every time the precondi-
tioner is applied. For instance, if M = T �T −1, (2) can be written as

S̃δ̃x = f , (23)

where ̃S = L̃T D̃−1̃L + H̃T RH̃, with D̃, H̃, and ̃L as in section 3.2.1, and f = (I ⊗ T T )(D−1b + LT HT R−1d). Once δ̃x is computed, 
we retrieve the actual solution by performing δx = (IN+1 ⊗ T )δ̃x.

The same approach can be followed for the saddle point linear system (3). We can write

A =
⎛⎝e1eT

1 ⊗ B + (IN+1 − e1eT
1 ) ⊗ Q IN+1 ⊗ Is − � ⊗ M

0 IN+1 ⊗ R IN+1 ⊗ H
IN+1 ⊗ Is − �T ⊗ MT IN+1 ⊗ H T 0

⎞⎠
=T

⎛⎝e1eT
1 ⊗ B̃ + (IN+1 − e1eT

1 ) ⊗ Q̃ IN+1 ⊗ Is − � ⊗ �

0 IN+1 ⊗ R IN+1 ⊗ H̃
IN+1 ⊗ Is − �T ⊗ � IN+1 ⊗ H̃ T 0

⎞⎠
︸ ︷︷ ︸

Ã

T T ,

where B̃ , Q̃ , H̃ , and T are as in section 3.2.1. In place of (3) we can thus solve the transformed system

Ã

⎛⎝ δ̃η
δ̃λ

δ̃x

⎞⎠=
⎛⎝ b̃

d̃
0

⎞⎠ , (24)

where⎛⎝ δ̃η
δ̃λ

δ̃x

⎞⎠= T T

⎛⎝δη
δλ

δx

⎞⎠ , and

⎛⎝ b̃
d̃
0

⎞⎠= T −1

⎛⎝b
d
0

⎞⎠ .

Once (δ̃η, δ̃λ, ̃δx)T is computed, we retrieve the original solution by (δη, δλ, δx)T = T −T (δ̃η, δ̃λ, ̃δx)T .
The preconditioning operators for (23) and (24) can be obtained by mimicking what we presented in the previous 

sections. The major difference is the cheaper inversion of the Stein operator ̃L = IN+1 ⊗ Is − � ⊗ � which is now “semi”-
diagonalized. The cost of computing ̃L−1 is thus linear in s and polylogarithmic in N + 1.

4.1. Spectral results

In this section we present bounds on the eigenvalues of the preconditioned systems using our new approach when ̂L = L.
The spectral properties of linearised data assimilation problem (2) have been studied in [45] for the unpreconditioned 

3D-Var formulation, and in [46] for strong-constraint 4D-Var preconditioned with the exact first term. Bounds on the 
spectrum of the (preconditioned) Hessian S for the weak-constraint problem can be obtained using the same theoretical 
approaches and replacing B in those bounds with LT D−1L.

Proposition 4. Let ̂S = LT D−1L. Then ̂S−1S = Is(N+1) + L−1DL−T HT R−1H and the eigenvalues of ̂S−1S are bounded as follows

λ(̂S−1S) ∈
[

1,
λmax(HT R−1H)

λmin(LT D−1L)

]
. (25)

We note that ̂S−1S has (s − p)(N + 1) unit eigenvalues.

Proof. Apply [46, Theorem 4] replacing B−1 with LT D−1L. �
In the case where the low-rank update to the Schur complement preconditioner presented in section 3.2 is applied with 

L̂ = L, a bound on the maximum eigenvalue is controlled by the largest neglected eigenvalue that is not included in the 
approximation Kr .

Proposition 5 ([48]). Let ̂S = LT D−1L + KrKT
r with Kr defined as in section 3.2. Then S−1S = Is(N+1) + (LT D−1L + KrKT

r )−1HT R−1H
and the eigenvalues of ̂S−1S are bounded between

λ(̂S−1S) ∈
[

1,
λr+1

λmin(LT D−1L)

]
, (26)

where λr+1 is the (r + 1)th largest eigenvalue of HT R−1H, i.e. the largest eigenvalue that is neglected by the low-rank approximation 
KrKT

r to HT R−1H. We note that ̂S−1S has (s + r − p)(N + 1) unit eigenvalues.
10
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Corollary 6. If r = p then ̂S−1S = In and the eigenvalues of the preconditioned system are all units.

Approximations of ̂S, either by using randomised approximations of Kr as proposed in [48], or inner iterative methods 
to compute (18) as proposed in this paper may lead to eigenvalues of the preconditioned system that are smaller than 1
or larger than the theoretical upper bound given by Proposition 5. We will study the performance of these approximate 
preconditioners in section 5.

The spectral properties of the preconditioned saddle point problem (3) have been studied in [18,14,48,11], although 
typically by considering approximations R̂, ̂D and L̂ rather than using the exact forward model matrices. In this work we 
instead propose using the exact covariance matrices within the preconditioner, i.e. R̂ = R and D̂ = D. This is possible due to 
the exploitation of the Kronecker structure and the use of matrix iterative methods.

Let λ(̂S−1S) ∈ [λS, �S]. In what follows we consider how each of the three preconditioners for the saddle point prob-
lem (3) are affected by the approximation of ̂S to S. We now state bounds on the eigenvalues of the preconditioned saddle 
point system using each of the preconditioners introduced in section 2.2 with ̂L = L.

Proposition 7. With the definitions as stated above, the eigenvalues of P−1
D A are real, and satisfy:

λ(P−1
D A) ∈

[
1 − √

1 + 4�S

2
,

1 − √
1 + 4λS

2

]
∪ {1} ∪

[
1 + √

1 + 4λS

2
,

1 + √
1 + 4�S

2

]
.

Proof. The result directly comes from [37, Theorem 4.2.1]. �
We can see that obtaining an improved estimate of the Schur complement (in a spectral sense) will lead to tighter 

bounds on the eigenvalues of the preconditioned system when using P−1
D A.

Corollary 8. If ̂S = S

λ(P−1
D A) ∈

{
1 − √

5

2
,1,

1 + √
5

2

}
.

The quality of the Schur complement approximation also affects the bounds on the eigenvalues of the block triangular 
preconditioner.

Proposition 9. With the definitions as stated above, the eigenvalues of P−1
T A are given by (s + p)(N + 1) units, and the remaining 

s(N + 1) eigenvalues are given by the eigenvalues of ŜS−1.

Proof. We consider the product

AP−1
T =

⎛⎝ D 0 L
0 R H

LT HT 0

⎞⎠⎛⎝D−1 0 D−1L̂S−1

0 R−1 R−1ĤS−1

0 0 −S−1

⎞⎠
=
⎛⎝ I 0 0

0 I 0
LT D−1 HT R−1 ŜS−1

⎞⎠ .

(27)

The eigenvalues of AP−1
T , and by similarity P−1

T A are therefore given by 1 and the eigenvalues of ŜS−1. �
Corollary 10. If ̂S = S, then λ(P−1

T A) = 1.

Proposition 11. With the definitions as stated above, the eigenvalues of P−1
C A consist of (2s − p)(N + 1) unit eigenvalues, with the 

remaining 2p(N + 1) eigenvalues given by

λ(P−1
C A) = 1 ±

√
λi(R−1HL−1DL−T HT )i (28)

Proof. The proof comes from [13, Appendix A]. �

11
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5. Numerical experiments

5.1. Experimental framework

In this section we display some numerical results achieved by the novel preconditioning framework we presented in 
this paper for the two problems of interest (2) and (3). Our matrix-oriented strategy is compared to state-of-the-art vector-
oriented approaches designed for linear systems stemming from data assimilation problems. In particular, we consider the 
scheme from [47] where a user-specified parameter k defines the approximation ̂L−1. This is used within the Hessian/Schur 
complement approximation Ŝ = L̂T D−1̂L; see [47, Section 4] for further details.5 We note that the approach of [47] is 
designed to increase parallelisability of the application of ̂L and hence a preconditioner. All experiments presented in this 
section are performed in serial; by exploiting parallel architectures we expect to see large decreases in wallclock times for 
the approach of [47] when k << N + 1, which is not the case for our new strategy.

We also compare matrix-oriented CG with the improved Schur complement (as presented in section 3.2) against the 
limited memory preconditioner (LMP) approach of [9], where an alternative identity plus low-rank preconditioner is applied 
as a second level preconditioner. This method can only be implemented in the vectorised setting, and requires the use of 
L̂ ≡ L. Hence, in its current formulation, the LMP approach cannot be easily parallelised, making comparison of wallclock 
times with the matrix-oriented approach more meaningful than for the approach of [47].

As previously mentioned, we employ a matrix-oriented implementation of CG (respectively GMRES) whereas the standard 
vector form of CG (resp. GMRES) is adopted whenever a preconditioning strategy different from the one introduced in 
this paper is considered. This is mainly due to the possibility of using existing code for the preconditioners in [14,17,47]. 
Indeed, these routines have been designed for standard GMRES and CG and not for their matrix-oriented counterpart. 
Notice, however, that the two GMRES/CG implementations are equivalent in exact arithmetic as we do not perform any 
low-rank truncation within matrix GMRES/CG. On the other hand, the matrix-oriented form of GMRES/CG may present 
some computational advantages due to the Kronecker form of the blocks of the coefficient matrix A in (3) and S in (2). See, 
e.g., Table 5.

In all the results reported here, the algorithms have been stopped as soon as the iterative method (either in matrix or 
vector form) relative residual norm becomes smaller than 10−8. The same threshold has been used for the inner CG relative 
residual norm when we adopt the strategy presented in section 3.2.1.

In what follows, the matrix-oriented implementation of CG (resp. GMRES) will be denoted by matCG (resp. matGMRES) 
whereas its standard, vector counterpart by vecCG (resp vecGMRES).

All the experiments have been run using Matlab (version 2022a) on a machine with a 1.8GHz Intel quad-core i7 processor 
with 15GB RAM on an Ubuntu 20.04.2 LTS operating system.

For both the problem settings we considered, we used data assimilation terms based on those introduced in [47], which 
we now present briefly. For all experiments the dimension of the state is s = 1000 and the number of observations at each 
observation time is given by p = 500. The background error covariance matrix and model error covariance matrices are 
produced using an adapted SOAR correlation function [47, Equation (15)] with parameters LB = 0.6, L Q = 0.75, σB = 0.5, 
σQ = 0.2, 100 non-zero entries per row for B and 120 for Q . The observation error covariance matrix R ∈ R500×500 is 
produced using the block approach of [47]. The observation operator H ∈R500×1000 has a single unit entry per row, arranged 
in ascending column order. Each of these terms is repeated in a Kronecker structure to obtain D = e1eT

1 ⊗ B +(IN+1 −e1eT
1 ) ⊗

Q ∈R1000(N+1)×1000(N+1) , R = IN+1 ⊗ R ∈R500(N+1)×500(N+1) , and H = IN+1 ⊗ H ∈R500(N+1)×1000(N+1) . We discuss the two 
classes of model matrices in the relevant section.

5.2. Results for Lorenz96

Our first example is the Lorenz96 problem [28], a nonlinear set of coupled ODEs that is often used as a data assimilation 
test problem due to its chaotic nature.

Consider s equally spaced points on the unit line, e.g. �x = 1
s . For i = 1, . . . , s, we consider

dxi

dt
= (xi+1 − xi−2)xi−1 − xi + 8,

with periodic boundary conditions (i.e. x−1 = xs−1, x0 = xs). We discretize the equations above by using the numerical 
implementation of [10], which integrates the model forward in time using a fourth-order Runge-Kutta scheme. We consider 
s = 1000, and unless otherwise mentioned, we use �t = 10−6.

As illustrated in Proposition 2, we expect the strategy proposed in section 3 to work well whenever the selected M̂ has 
small spectral norm and is such that the matrices Di = M̂ − Mi have small spectral norm for all i = 1, . . . , N as well. In 
Table 1 we report ‖M̂‖ and maxm λmax(DT

m Dm) for N = 10 and different choices of M̂ varying �t . In particular, we consider 
as M̂ the symmetrised first and the last matrices in the block subdiagonal of L, namely S ym(M1) = 1/2(M1 + MT

1 ) and 

5 Notice that choosing ̂L = L is equivalent to setting k = N + 1 in [47].
12
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Table 1
Example 5.2. ‖M̂‖, maxm λmax(DT

m Dm) and the upper bound (9) of Proposition 2 for differ-
ent selection of M̂ and N = 10.

�t M̂ S ym(M1) S ym(M10) Karch(Mi)

1 × 10−6 ‖M̂‖ 1.000 1.0023 1.0011
maxm λmax(DT

m Dm) 1.7641 × 10−5 1.7641 × 10−5 1.3981 × 10−5

Upper bound (9) 1.0012 1.0012 1.0001

1 × 10−3 ‖M̂‖ 0.9980 1.0110 1.0046
maxm λmax(DT

m Dm) 1.401 × 10−2 1.401 × 10−2 1.009 × 10−2

Upper bound (9) 1.3796 1.3912 1.3261

5 × 10−2 ‖M̂‖ 0.9980 1.0110 1.0046
maxm λmax(DT

m Dm) 1.401 × 10−2 1.401 × 10−2 1.009 × 10−2

Upper bound (9) 66.9385 11278 320.97

1 × 10−1 ‖M̂‖ 0.8932 8.2359 1.5188
maxm λmax(DT

m Dm) 7.9840 10.8191 7.7113
Upper bound (9) 516.7533 2.148 × 1010 8828.74

Table 2
Example 5.2. Iterations (top) and wallclock time (bottom) to convergence for the Lorenz96 
problem with �t = 10−6 for N = 10 for different preconditioners. Values are averaged over 
10 realisations. The pre-computation for the Karcher mean took 28.7684 seconds.

Ŝ PD PT PC

matCG/matGMRES, M̂ = S ym(M1), r = 0 25.7 45.0 29.0 46.0
matCG/matGMRES, M̂ = S ym(M10), r = 0 25.8 45.0 29.0 46.0
matCG/matGMRES, M̂ = karch(Mi), r = 0 26.3 45.0 28.1 46.0
matCG/matGMRES, M̂ = S ym(M1), r = p 3.8 7.0 6.0 -
matCG/matGMRES, M̂ = S ym(M10), r = p 3.2 7.0 6.0 -
matCG/matGMRES, M̂ = karch(Mi), r = p 3.5 7.0 6.0 -
vecCG/vecGMRES [47], k = 3 529.5 358.0 188.7 66.7

matCG/matGMRES, M̂ = S ym(M1), r = 0 9.3816 7.5924 4.9876 7.0108
matCG/matGMRES, M̂ = S ym(M10), r = 0 9.3436 7.7803 5.0595 6.9689
matCG/matGMRES, M̂ = karch(Mi), r = 0 9.4084 7.6916 4.8374 6.8653
matCG/matGMRES, M̂ = S ym(M1), r = p 3.3120 3.2902 3.6184 -
matCG/matGMRES, M̂ = S ym(M10), r = p 3.0478 3.5083 3.7205 -
matCG/matGMRES, M̂ = karch(Mi), r = p 3.4022 3.4488 3.7182 -
vecCG/vecGMRES [47], k = 3 222.9978 153.9620 91.1391 19.7812

S ym(M10) = 1/2(M10 + MT
10), and the Karcher mean6 of the symmetric parts of the matrices Mi , i = 1, . . . , 10, namely 

S ym(Mi) = 1/2(Mi + MT
i ), as these are all SPD. In what follows, we denote the Karcher mean by Karch(Mi). We also report 

the computed upper bound of Proposition 2.
For �t ≤ 1 × 10−3 the aforementioned selections of M̂ lead to very similar results. As ‖M̂‖ is close to one and 

maxm λmax(DT
m Dm) is rather small, the upper bound on the eigenvalues of ̂L−T LT L̂L−1 is also close to 1. As �t increases, the 

norm of the linearised Mi operators moves further away from 1, leading to increases in the upper bound. For the Lorenz96 
problem, ‖Mi‖ increases monotonically with i, meaning that for larger choices of �t the norm of S ym(M10) is much larger 
than 1. We see that in the case �t = 10−1 the choice of M̂ makes a large difference to the upper bound in Proposition 2. 
In section 3, we proposed to select M̂ with the smallest norm in order to minimise the upper bound on the preconditioned 
spectrum, or by minimising maxm λmax(DT

m Dm) in the case that the norms have similar values. This approach is supported 
by the results of Table 1, and motivates the selection of M̂ = S ym(M1) for this problem for the experiments that follow.

In Table 2 we report the performance achieved by our matrix-oriented preconditioning frameworks: ̂S (with both r = 0
and r = p in (18)) for (2) and PD , PT (with both r = 0 and r = p in (18)), and PC for (3), varying M̂ . We compare these 
results with those attained by the strategy proposed in [47], where ̂L is chosen as follows:

the (i, j)th block of L̂ =

⎧⎪⎨⎪⎩
I, i = j,

−Mi, i = j and i − k� i
k �,

0, otherwise.

As this ̂L does not have the form of a Stein equation, it is applied using vecCG/vecGMRES, with the parameter k = 3.

6 The Karcher mean is computed by means of the routine positive_definite_karcher_mean included in the Matlab toolbox Manopt 6.0 [6]. As 
optimization procedure, we adopted the Barzilai-Borwein approach presented in [24] within positive_definite_karcher_mean.
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Table 3
Example 5.2. Iterations (top) and wallclock time (bottom) to convergence for the 
Lorenz96 problem with N = 100 for different preconditioners. 10 realisations. vecGM-

RES with PD and ̂L−1 computed as in [47] (k = 3) did not converge in 1000 iterations.

Ŝ PD PT PC

matCG/matGMRES, M̂ = S ym(M1), r = 0 213 239 173.5 242.5
matCG/matGMRES, M̂ = S ym(M1), r = p 9 15 14 -
vecCG/vecGMRES [47], k = 3 955.4 - 938.1 570.9

matCG/matGMRES, M̂ = S ym(M1), r = 0 827.34 499.70 356.71 504.56
matCG/matGMRES, M̂ = S ym(M1), r = p 94.80 105.70 116.43 -
vecCG/vecGMRES [47], k = 3 4757 5054 5553 2243

Table 4
Example 5.2. Iterations (left) and wallclock time (right) to convergence for 
the Lorenz96 problem with N = 100 for different preconditioners which 
approximate ̂S. Values are averaged over 10 realisations.

Preconditioner Iterations Wallclock time

matCG, M̂ = S ym(M1), r = 0 212.5 845.71
matCG, M̂ = S ym(M1), r = p 9 98.98
vecCG, k = N + 1, r = 0 178.5 967.73
vecCG, k = N + 1, r = 10 126.2 958.20
vecCG, k = N + 1, r = 10(N + 1), LMP 28 119.22

From the results in Table 2 we can see that the use of the ̂L proposed in section 3 is very effective in reducing the overall 
iteration count for all ̂S, PD , PT , and PC . The number of iterations achieved by ̂S, PD and PT with r = p is remarkably 
small, especially when compared to the one attained by employing the ̂L coming from [47] with k = 3. These small numbers 
of iterations impact on the wallclock time of the overall solution problem too with Ŝ, r = p, with M̂ = S ym(M10) being 
the fastest approach we tested. However, we note that the approach of [47] is designed to increase parallelisability of 
preconditioners, and significant speed up is to be expected for this preconditioner in a parallel setting (all experiments 
presented here are performed in serial).

In Table 3 we report the results obtained for N = 100 for a selection of parameters. For our new strategy, we document 
the results achieved using M̂ = S ym(M1). We can see that Ŝ, PD , and PT with r = p lead to a very small number of
matCG/matGMRES iterations also for this problem setting. Moreover, they scale much better than the strategy from [47]
in terms of computational timing in this serial setting. However, we recall from Table 1 that the norm of the difference 
between the blocks Mi is small for �t = 10−6. This is the best scenario for our novel preconditioning approach.

In Table 4 we consider the performance of different approximations ̂S for the SPD problem (2). In addition to the low-
rank approach presented in section 3.2 we consider the limited memory preconditioning (LMP) approach studied in [9]. The 
LMP approach approximates eigenvalues of I + D1/2L−T HT R−1HL−1D1/2, i.e. symmetrically preconditioning with the exact 
LT D−1L operator. Spectral information is typically approximated using randomised numerical linear algebra approaches. In 
addition to requiring spectral information of a much large linear system than the approach considered in section 3.2, LMP 
requires the use of ̂L = L, meaning that it cannot be readily applied in the matrix-oriented approach. Hence, computing the 
full spectrum of I + D1/2L−T HT R−1HL−1D1/2 is prohibitively costly both in terms of storage and computation. We therefore 
compare matCG preconditioned with Ŝ as in (18) with r = 0, r = p with vecCG preconditioned in two different ways. In 
the first place, we use Ŝ as in (17) where the inverse of the exact L is computed by means of the algorithm in [47] by 
setting k = N + 1. The low-rank term KrKT

r is constructed by considering r = 10, or r = p eigenpairs of H T R H . The second 
preconditioning approach for vecCG is given by LMP. Also in this case L−1 is computed by following [47] with k = N + 1. 
In LMP, the rank of the low-rank approximation to D1/2L−T HT R−1HL−1D1/2 is set to 10(N + 1). Notice that this means 
that we are employing the same number of eigenpairs as in (17) for r = 10. Indeed, if Vrϒr V T

r ≈ H T R H , Vr ∈Rp×10, then 
Kr = IN+1 ⊗ Vrϒ

1/2
r has rank 10(N + 1).

We see that in terms of iterations the LMP approach results in much larger reductions than the approach of section 3.2
for the same number of eigenpairs. However, by exploiting the Kronecker structure of the new preconditioning approach, 
we can incorporate many more terms, leading to very small number of iterations for matCG with r = p. We also note the 
improvement in wallclock times when using the matrix-oriented approach, with the fastest times occurring for matCG with 
r = p.

Fig. 1 shows how the Kronecker preconditioners perform as �t increases, and the difference between linearised model 
operators increases. We compare against the approach of [47] using k = N + 1, i.e. ̂L ≡ L. For the SPD problem, we also plot 
convergence for the vectorised approach with LMP. For �t ∈ [10−6, 10−2] both matCG/matGMRES and vecCG/vecGMRES

behave similarly, with only a small increase in iterations with �t . However, for larger values of �t the number of iterations 
required to reach convergence increases for all methods, with the largest impact seen for matCG/matGMRES. The use of 
r = p within matCG/matGMRES is much more sensitive to the choice of �t , with a steady increase in the number of 
14
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Fig. 1. Example 5.2. Iterations to reach convergence with changing time discretization, �t , for the Lorenz96 problem for different choices of preconditioner 
for N = 10. Panel (a) shows ̂S, (b) shows PD , (c) shows PT and (d) shows PC . For all panels the red solid line represents matGMRES/matCG with r = 0
for M̂ = S ym(M1), blue dashed line represents matGMRES/matCG with r = p, and black dot-dashed line vecGMRES/vecCG for k = N + 1. For panel (a) 
the cyan solid line with cross markers shows vecCG for k = N + 1 and r = 10(N + 1) using the LMP approach. We report averaged behaviour over 10 
realisations. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

iterations required to reach convergence as �t increases. For �t = 5 × 10−2 there is negligible benefit in terms of iterations 
to the inclusion of observation information within the Schur complement. For large values of �t , the difference between 
L̂ = IN+1 ⊗ Is − � ⊗ M̂ and L increases, meaning that including r > 0 factors coming from the observation term is obtaining 
an improved estimate of the wrong preconditioner. In the future it might be possible to design alternative additional terms 
that can correct for this discrepancy. We note that for LMP as ̂L ≡ L the ‘correct’ low-rank update is used for all choices of 
�t .

5.3. Results for heat equation

We now present an example with Mi = M for all i. This simpler setting allows us to validate the theoretical properties 
of our new approach, and consider computational aspects such as the cost of the approach proposed in section 3.2 and 
scaling of our methods with increasing observation times. Our second numerical example comes from [47, Section 6.1]. For 
this example, L is a Stein operator of the form (22) where the matrix M amounts to the discrete operator stemming from 
the discretization of the one-dimensional heat equation on the unit line

∂u

∂t
= ∂2u

∂x2

with Dirichlent boundary conditions u(0, t) = u0, u(1, t) = u1 for all t ∈ (0, 1]. By discretising the equation above by means 
of the forward Euler method in time and second-order central differences in space, M can be written as follows

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 · · · 0 0
0 1 − 2r r 0 · · · 0 0

0 r
. . .

. . .
...

...

0 0
. . .

. . .
. . . 0 0

...
. . .

. . .
. . . r 0

0 · · · 0 0 r 1 − 2r 0
0 · · · 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, r = �t

(�x)2
.

For this example we use �x = 10−3 and �t = 4 × 10−7.
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Table 5
Example 5.3. Iterations and wallclock time to convergence for N = 10 and ̂L ≡ L for 
the objective function formulation (2) (column 1) and the saddle point formula-
tion (3) with different preconditioners (columns 2-4) averaged over 10 realisations.

Ŝ PD PT PC

Iterations – vecCG/vecGMRES 18.4 36.6 18.8 37.6
Iterations – matCG/matGMRES 18.4 36.6 18.8 37.6
Wallclock time – vecCG/vecGMRES 6.2475 7.7263 4.1889 0.4013
Wallclock time – matCG/matGMRES 1.3356 0.8472 0.8493 0.5713

We begin by comparing the performance of the matrix and vector oriented approaches when using the exact L̂ ≡ L in 
all four choices of preconditioner proposed in this paper, and r = 0 in (18). For vecCG/vecGMRES, L−1 is computed by using 
the procedure coming from [47] for k = N + 1. We remind the reader that the two versions of CG/GMRES are equivalent in 
exact arithmetic. However, the matrix oriented approaches present some computational advantages for this example. Table 5
demonstrates the remarkable gain in efficiency that occurs for ̂S, PD , and PT for N = 10. We notice that the strategy based 
on PC is faster than the ones related to the block diagonal and block triangular preconditioners, in spite of the fact that it 
requires a larger number of iterations. This is due to the small N selected in this example which makes the inversion of D
the most expensive step in the preconditioners that involve ̂S. We recall that PC avoids the application of D−1. Moreover, 
for this choice of N , vecGMRES is faster than matGMRES when PC is adopted as preconditioning operator. This is related to 
the cost of the eigendecomposition of M described at the end of section 3.1. This step cubically depends on s; taking about 
0.2 s for this problem, namely about 1/2 of the overall running time achieved by matGMRES. Nevertheless, we anticipate 
the cost of this eigendecomposition to be amortised for larger choices of N (see e.g. Fig. 2).

We now focus on the performance achieved by the novel Schur complement approximation (17) and its implementation 
illustrated in section 3.2.1. To this end, we consider only ̂S and PD . Similar results have also been obtained for PT but are 
not presented here. In Table 6 (left), for different values of N , we report the iteration count and the overall running time 
of matCG/matGMRES when the approximate Schur complement ̂S is adopted for S and PD for r = 0 and r = p. We notice 
that choosing r = p in (17) leads to a remarkable decrease in the number of iterations needed to converge. Moreover, the 
number of CG/GMRES iterations we perform turns out to be N-independent for both problem.

We notice that the number of iterations required to solve the matCG formulation is smaller than for matGMRES, leading 
to smaller wallclock times. We note that for r = p we are approximating the inverse of S to a small tolerance, and hence 
obtain convergence in a single iteration of matCG. Wallclock times for the case r = p are comparable for both problems. 
Even though the use of inner CG introduces some inexactness in the preconditioning step, we notice that the number of 
iterations performed by matCG/matGMRES with Ŝ and r = p is independent of N and equal to the number of iterations 
expected in case of an exact computation of ̂S−1.

The large reduction in the iteration count also leads to a significant speed-up of the overall solution process, which is not 
obvious in general. Indeed, the use of (18) for large values of r can be computationally demanding due to the need to solve 
the linear system with Ir(N+1) + KT

r L−1DL−T Kr . However, thanks to the matrix CG strategy presented in section 3.2.1, which 
takes full advantage of the semi-diagonalization of L, dealing with ̂S by (18) turns out to be computationally affordable for 
r = p. In Table 6 (far right), we report the number of CG iterations and the related running time needed to approximately 
invert ̂S within the matGMRES iteration. We remind the reader that, in light of Theorem 1, ̂S−1 has to be computed only 
every other GMRES iteration. From the results in Table 6 (right), we can see that the CG steps correspond to a small 
proportion of the overall GMRES running time for small N . However, as N increases, the cost of the inner CG iteration 
becomes a larger proportion of the overall wallclock time. The number of CG iterations increases with N , leading to a 
more demanding preconditioning step for larger numbers of observation times. In this scenario, equipping the inner CG 
solve with effective preconditioning operators may be largely beneficial. However, as we previously mentioned, natural 
preconditioning candidates were not able to reduce the CG iteration count without significantly increasing its computational 
cost per iteration. We will explore this challenging topic of designing bespoke preconditioners for the inner CG solver in the 
future.

We conclude the heat equation example by comparing the novel preconditioning operators developed in this paper with 
state-of-the-art approaches. In particular, we consider matCG equipped with ̂S and matGMRES equipped with PD , PT (with 
both r = 0 and r = p in (17)), and PC . Using k = N + 1 within the strategy of [47] becomes infeasible for large values of N . 
We therefore use the strategy coming from [47] with k = 3 to approximate ̂L−1 as a comparison. This is implemented with
vecCG/vecGMRES and is otherwise equipped with the same preconditioning frameworks as our novel approach.

Fig. 2 (top) shows the number of iterations to reach convergence with an increasing number of observation times N . 
We can observe that Ŝ, PD and PT require a very small number of iterations whenever we select r = p in (17). The 
performance of these operators is optimal as the number of performed CG/GMRES iterations is constant with increasing 
N . We recall that such optimality is not guaranteed, as the linear system with Ir(N+1) + KT

r L−1DL−T Kr involved in (18) is 
solved iteratively to a relative residual tolerance of 10−8. As previously mentioned, such inexactness does not allow us to 
claim that we are working within the scenarios depicted in Corollary 8–10 – for which we would be able to guarantee 
an N-independent number of CG/GMRES iterations – even though r = p in (17). Nevertheless, for this example the overall 
solution process does demonstrate N independence of iterations to reach convergence.
D. Palitta and J.M. Tabeart Journal of Computational Physics 482 (2023) 112068
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Table 6
Example 5.3. Iterations and wallclock time to convergence for ̂S (first 
two columns) PD (columns 3-6) with the two different choices r =
0 and r = p in (17) as N varies. In columns 5 and 6 we report the 
iterations and wallclock time needed by inner CG method to solve 
the linear system with Ir(N+1) + KT

r L−1DL−T Kr involved in (18) when 
r > 0 in PD .

matCG matGMRES Inner CG
2nd GMRES it.

N Its. Time Its. Time Its. Time

10 (r = 0) 18.3 1.1732 36.4 1.4561
(r = p) 1 0.6683 3 0.6332 20 0.0598

20 (r = 0) 26.1 1.8153 51.8 2.1692
(r = p) 1 0.8008 3 0.7577 30.3 0.1420

30 (r = 0) 34.2 2.3684 63.0 2.9455
(r = p) 1 0.9045 3 0.9111 40 0.2674

40 (r = 0) 42.1 2.9996 74.2 4.0273
(r = p) 1 1.0495 3 1.0598 49.3 0.4227

50 (r = 0) 49.5 3.5876 83.0 5.1370
(r = p) 1 1.2258 3 1.2289 59 0.5731

60 (r = 0) 57.1 4.2990 92.6 6.7560
(r = p) 1 1.5402 3 1.5267 67 0.8732

Fig. 2. Example 5.3. Iterations (top) and wallclock time (bottom) to reach convergence with increasing problem size (number of observation times) for the 
heat equation problem for different choices of preconditioner. Red solid lines denote matCG/matGMRES with r = 0, blue dashed lines denote matCG/mat-

GMRES with r = p, and black dot-dashed lines denote vecCG/vecGMRES with k = 3. Crosses denote ̂S, pluses denote PD , circles denote PT and triangle 
denote PC . We report averaged behaviour over 10 realisations.
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Competitive performance is attained also when r = 0 in the Ŝ, PD , and PT preconditioning frameworks compared to 
the L−1 approximation with k = 3. The large difference in iterations for the strategy coming from [47] also leads to much 
longer wallclock times.

We notice that the use of PC leads to a number of GMRES iterations which is always very similar to the one achieved 
by PD with r = 0. The performance of ̂S is also similar to the performance of PT in the r = 0 setting.

In Fig. 2 (bottom) we report the computational time of the overall CG/GMRES solution process for all the preconditioning 
operators we mentioned above. We can see that, except for PC with small N , vecGMRES is much slower than matGMRES

equipped with our novel preconditioning strategies. In particular, from the results depicted in Fig. 2 (bottom) we see that 
selecting r = p in ̂S, PD and PT is a favourable choice over r = 0 also in terms of running time, with competitive scaling 
with N when using the improved Schur complement approximation.

6. Conclusions and outlook

To fully exploit the rich Kronecker structure of the matrices stemming from weak-constraint 4D-Var problems, matrix-
oriented Krylov methods can be employed to solve both (2) and (3). The use of such machinery naturally leads to the design 
of new preconditioning approaches. In particular, by selecting a fresh option for the operator ̂L whose inversion can be recast 
in terms of the solution of a Stein matrix equation, we designed improved preconditioners able to drastically reduce the 
Krylov iteration count for certain problems. Our new approach also allows for the efficient inclusion of information from 
the observation term of the Schur complement S, leading to more accurate approximations ̂S.

In the case of observation-time independent forecast models M, our new preconditioning frameworks achieve optimal 
performance in terms of the number of iterations, remarkably without increasing the computational cost of the overall 
solution process.

The implementation presented in this paper requires a number of assumptions on the structure of the data assimilation 
system, which we hope to relax in future work. Firstly, the machinery developed here relies on having a moderate spatial 
dimension s. This assumption is crucial for the Stein equation solution scheme presented in section 3.1. We plan to extend 
the preconditioning framework presented in this paper to the case of sizable s in near future. This can be achieved, e.g., 
by using projection-based methods for large-scale Stein equations. The approach currently also requires that a number 
of other components of the assimilation problem have a strict Kronecker structure, meaning that the model error and 
the observing system are constant for all observation times. As reported in section 3, we could approximate each term 
at the preconditioning level by means of some Kronecker forms. However, the selection of such approximations may be 
cumbersome. These aspects will be investigated elsewhere.
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Here we report the proof of Theorem 1.
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Proof. We first write

AP−1
D =

⎡⎣ I 0 L̂S−1

0 I ĤS−1

LT D−1 HT R−1 0

⎤⎦ .

We show the statement by induction on k ≥ 1.
For k = 1, we define

v1 = 1√‖b‖2 + ‖d‖2

⎡⎣b
d
0

⎤⎦ .

Then,

ṽ2 = AP−1
D v1 = 1√‖b‖2 + ‖d‖2

⎡⎣ b
d

LT D−1b + HT R−1d

⎤⎦ ,

and the latter vector needs to be orthogonalized with respect to v1. A direct computation shows that the outcome of this 
orthogonalization is

v̂2 = 1√‖b‖2 + ‖d‖2

⎡⎣ 0
0

LT D−1b + HT R−1d

⎤⎦ ,

and v2 = v̂2/‖̂v2‖.
We now assume that the result has been shown for a certain k̄ > 1 and we prove the inductive step for k̄ + 1.
It holds

ṽ2(k̄+1)−1 = ṽ2k̄+1 = AP−1
D v2k̄ =

⎡⎣ L̂S−1z2k̄
ĤS−1z2k̄

0

⎤⎦ .

Then the orthogonalization step is such that

v̂2(k̄+1)−1 = ṽ2(k̄+1)−1 −
k̄∑

j=1

α j v2 j−1 −
k̄∑

j=1

β j v2 j,

and the only term that may potentially contribute to the third block of v̂2(k̄+1)−1 is

k̄∑
j=1

β j v2 j =
⎡⎣ 0

0∑k̄
j=1 β j z2 j

⎤⎦ .

However, all the scalars β j ’s are zero since

β j = ṽ T
2(k̄+1)−1

v2 j = [
(L̂S−1z2k̄)

T , (ĤS−1z2k̄)
T ,0

]⎡⎣ 0
0

z2 j

⎤⎦= 0.

Therefore, v2(k̄+1)−1 = v̂2(k̄+1)−1/‖̂v2(k̄+1)−1‖ has a third zero block.

To conclude, if v2(k̄+1)−1 = [uT
2(k̄+1)−1

, w T
2(k̄+1)−1

, 0]T , then

ṽ2(k̄+1) = AP−1
D v2(k̄+1)−1 =

⎡⎣ u2(k̄+1)−1
w2(k̄+1)−1

LT D−1u2(k̄+1)−1 + HT R−1 w2(k̄+1)−1

⎤⎦ ,

and orthonormalizing such a vector with respect to the computed basis, and in particular v2(k̄+1)−1, leads to a v2(k̄+1)

whose third block is the only nonzero block. Hence the result of Theorem 1 holds by induction. �
Here we report the proof of Proposition 2.
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Proof. We begin by observing that ̂L−T LT L̂L−1 = I + A(M̂) where the (i, j)th block of A(M̂) is given by⎧⎪⎨⎪⎩
∑N

k=i M̂(k−i)T DT
k Dk M̂k−i if i = j,

Di−1M̂i− j−1 +∑N
k=i M̂(k−i)T DT

k Dk M̂k− j if i > j,

M̂( j−i−1)T DT
j−1 +∑N

k= j M̂(k−i)T DT
k Dk M̂k− j if j > i.

(29)

We then write A(M̂) =∑N
m=1 Am where Am contains terms which depend only on Dm and powers of M̂ and their transposes 

only. We bound the eigenvalues of A(M̂) above by applying [4, Equation 5.12.2] to obtain

λmax(A(M̂)) ≤ 1 +
N∑

k=1

λmax(Ak). (30)

We now bound the eigenvalues of Am . For m = 1, . . . , N , the (i, j)th block of Am is given by⎧⎪⎨⎪⎩
M̂(m−i)T DT

m Dm M̂m− j if i, j ≤ m,

M̂(m−i)T DT
m if j = m + 1 > i,

Dm M̂m−i if i = m + 1 > j.

(31)

For all choices of m, Am has m2 −1 non-zero blocks, and has rank 2s. If 0� ∈R� denotes the zero vector of length �, the (m −
2)s eigenvectors corresponding to zero take the form (ei, −M̂ei, 0(m−2)s), or (0s, ei, −M̂ei, 0(m−1)s, . . . , (0(m−1)s, ei, −M̂ei, 0s).

The non-zero eigenvalues of Am can be found by solving the s × s system(
Dm

(
N−1∑
k=0

M̂k M̂kT

)
DT

m

)
v = μ2

μ + 1
v,

i.e.

μ = 0.5(ρ ±
√

ρ2 + 4ρ), (32)

where ρ are the eigenvalues of (Dm(
∑m−1

k=0 M̂k M̂kT )DT
m).

By the monotonicity of (32), the largest value of μ occurs for the largest value of ρ with the positive option, and the 
smallest value of μ occurs for the largest value of ρ taking the negative option. Therefore an upper bound for ρ provides 
us with an upper bound for μ, and hence λmax(A(M̂)).

By similarity

max(ρm) = λmax(DT
m Dm(

m−1∑
k=0

M̂k M̂kT ))

≤ λmax(DT
m Dm)λmax(

m−1∑
k=0

M̂k M̂kT ))

≤ λmax(DT
m Dm)

m−1∑
k=0

λmax(M̂T M̂)k.

A loose upper bound can be obtained by defining

ρN = max
m

λmax(DT
m Dm)

N−1∑
k=0

λmax(M̂T M̂)k.

Moreover,

N−1∑
k=0

λmax(M̂T M̂)k =

⎧⎪⎨⎪⎩
N, if λmax(M̂T M̂) = 1,

1−λN
max(M̂T M̂)

1−λmax(M̂T M̂)
, otherwise.

For every choice of m it holds μm ≤ 0.5(ρN +
√

ρ2
N + 4ρN ), therefore

λmax(A(M̂)) ≤ 1 + N
(ρN +

√
ρ2

N + 4ρN). �

2
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Here we report the proof of Proposition 3.

Proof. We show (14). The proof for (15) is analagous.
By plugging (13) into (11) we get

Z − M̂ Z C T + M̂ ZeN+1eT
1 = V .

Premultiplying by T −1 and postmultiplying by F T yields

Z̃ − � Z̃	 + � Z̃(F −T eN+1)(eT
1 F T ) = T −1 V F T , Z̃ := T −1 Z F T ,

whose Kronecker form is given by

(IN+1 ⊗ Is − 	 ⊗ � + (F e1)(eT
N+1 F −1) ⊗ �)vec( Z̃) = vec(T −1 V F T ).

If G := IN+1 ⊗ Is − 	 ⊗ � ∈ C(N+1)s×(N+1)s , M := F e1 ⊗ � ∈ C(N+1)s×s , and N := F −T eN+1 ⊗ Is ∈ C(N+1)s×s , the Sherman-
Morrison-Woodbury formula [16, Equation (2.1.4)] shows that

vec( Z̃) = G−1vec(T −1 V F T ) − G−1M(I + NT G−1M)−1NT G−1vec(T −1 V F T ).

Once Z̃ is computed, we retrieve Z by performing Z = T Z̃ F −T .
We now derive a cheap procedure for the computation of Z̃ which does not involve the construction of any large matrix.
We first notice that, since G is diagonal it holds

vec(Y ) = G−1vec(T −1 V F T ) ⇐⇒ Y = P ◦ (T −1 V F T ),

where P ∈Cs×(N+1) is such that Pi, j = 1/(1 − λiπ j).
Moreover, by exploiting the Kronecker structure of N, we have

NT G−1vec(T −1 V F T ) = ((eT
N+1 F −1) ⊗ Is)vec(Y ) = Y F −T eN+1.

We now focus on the computation of NT G−1M. We remind the reader that

G =
⎛⎜⎝ Is − π1�

.. .

Is − πN+1�

⎞⎟⎠ , N =
⎛⎜⎝ (F −T eN+1)1 Is

...

(F −T eN+1)N+1 Is

⎞⎟⎠ , M =
⎛⎜⎝ (F e1)1�

...

(F e1)N+1�

⎞⎟⎠ ,

and a direct computation shows that

NT G−1M =
N+1∑
j=1

(Is − π j�)−1�(F e1) j(F −T eN+1) j = diag(P (�F e1 ◦ F −T eN+1)).

The formulation above provides a cheap expression for the construction of NT G−1M along with illustrating its diagonal 
structure, hence solving the linear system with U = I + diag(P (�F e1 ◦ F −T eN+1)) does not significantly increase the cost of 
computing Z .

Returning to the computation of Z̃ , we have

G−1M(I + NT G−1M)−1NT G−1vec(T −1 V F T ) =G−1MU−1Y F −T eN+1

=P ◦ (�U−1Y F −T eN+1eT
1 F T )

=W .

Combining the steps above yields the statement in (14). �
Appendix B

For the sake of completeness, in Algorithm 4 we report the pseudocode of the matrix-oriented GMRES method applied 
to (3). The m-th basis vector of the Krylov subspace Km(A, b) is represented in terms of the matrices V1,m ∈ Rs×(N+1) , 
V2,m ∈Rp×(N+1) , and V3,m ∈Rs×(N+1) , namely

vm = vec

⎡⎣V1,m

V2,m

V

⎤⎦ .
3,m
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Algorithm 4 Matrix-oriented GMRES for (3).

input : B, Q 1, . . . , Q N ∈ Rs×s , R0, . . . , RN ∈ Rp×p , H0, . . . , HN ∈ Rp×s , M1, . . . , MN ∈ Rs×s [b0, c1, . . . , cN ] ∈ Rs×(N+1) , [d0, . . . , dN ] ∈ Rp×(N+1) , mmax, 
ε > 0

output : δ�m, δXm ∈Rs×(N+1) , δ�T
m ∈Rp×(N+1) such that vec(δ�T

m, δ�T
m, δX T

m)T is an approximate solution to (3).

Compute β =
√

‖[b0, c1, . . . , cN ]‖2
F + ‖[d0, . . . ,dN ]‖2

F and set V1,1 = [b0, c1, . . . , cN ]/β , V2,1 = [d0, . . . , dN ]/β , and V3,1 = 0

for m = 1, 2, . . . , till mmax do
Set

V̂1,m+1 = [BV1,me1, Q 1V1,me2, . . . , Q NV1,meN+1] + [V3,me1,V3,me2 − M1V3,me1, . . . ,V3,meN+1 − MNV3,meN ]

V̂2,m+1 = [R0V2,me1, . . . , R NV2,meN+1] + [H0V3,me1, . . . , H NV3,meN+1]

V̂3,m+1 = [V1,me1 − MT
1 V1,me2, . . . ,V1,meN − MT

NV1,meN+1,V1,meN ] + [H T
0 V2,me1, . . . , H T

NV2,meN+1]

Set (T m) j,m = 0 for j = 1, . . . , m + 1
for � = 1, 2 do

Compute

(T m) j,m = (T m) j,m +
√

trace(V̂ T
1,m+1V1, j)

2 + trace(V̂ T
2,m+1V2, j)

2 + trace(V̂ T
3,m+1V3, j)

2, j = 1, . . . ,m

Set V̂i,m+1 = V̂1,m+1 −∑m
j=1(T m) j,mVi, j , for i = 1, 2, 3

Compute (T m)m+1,m =
√

‖V̂1,m+1‖2
F + ‖V̂2,m+1‖2

F + ‖V̂3,m+1‖2
F

Set Vi,m+1 = V̂i,m+1/(T m)m+1,m , i = 1, 2, 3
Solve ym = arg miny∈Rm ‖T m y − βe1‖
Compute the residual norm ‖rm‖
if ‖rm‖ ≤ εβ then

Go to 14

Set δ�m =∑m
j=1 V1, j(eT

i ym), δ�m =∑m
j=1 V2, j(eT

i ym), and δXm =∑m
j=1 V3, j(eT

i ym)

Algorithm 5 Matrix-oriented CG for (2).

input : B, Q 1, . . . , Q N ∈ Rs×s , R0, . . . , RN ∈ Rp×p , H0, . . . , HN ∈ Rp×s , M1, . . . , MN ∈ Rs×s [b0, c1, . . . , cN ] ∈ Rs×(N+1) , [d0, . . . , dN ] ∈ Rp×(N+1) , mmax, 
ε > 0

output : δXm ∈Rs×(N+1) approximate solution to (2)

Set R0 = W0 = [Bb0, Q 1c1, . . . , Q N cN ] + [H T
0 R−1

0 d0 − MT
1 H T

1 R−1
1 d1, . . . , H T

N−1 R−1
N−1dN−1 − MT

N H T
N R−1

N dN , H T
N R−1

N dN ], δX0 = 0, and compute ρ0 = ‖R0‖2
F

for m = 1, 2, . . . , till mmax do
Set

Wm = [B−1 Wm−1e1 − MT
1 Q −1

1 (Wm−1e2 − M1Wm−1e1),

Q −1
1 (Wm−1e2 − M1 Wm−1e1) − MT

2 Q −1
2 (Wm−1e3 − M2 Wm−1e2), . . . , Q −1

N (Wm−1eN+1 − MN Wm−1eN )]
+[H T

0 R−1
0 H0 Wm−1e1, . . . , H T

N R−1
N H N Wm−1eN+1]

αm = ρm−1/trace(W T
m Wm−1)

δXm = δXm−1 + αm Wm−1

Rm = Rm−1 − αkWm

ρm = ‖Rm‖2
F

if
√

ρm ≤ ερ0 then
Return δXm

βm = ρm/ρm−1

Wm = Rm + βm Wm−1

The residual norm in line 11 can be cheaply computed by following, e.g., the classic Givens rotations approach presented 
in [39, Section 6.5.3].

Similarly, in Algorithm 5 we report the pseudocode of the matrix-oriented CG method applied to (2).
In what follows, (A)i, j will denote the (i, j)-th entry of the matrix A.
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