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Abstract BPP nets, a subclass of finite Place/Transition Petri nets, are equipped
with an efficiently decidable, truly concurrent, bisimulation-based, behavioral equiv-
alence, called team bisimilarity. This equivalence is a very intuitive extension of clas-
sic bisimulation equivalence (over labeled transition systems) to BPP nets and it is
checked in a distributed manner, without necessarily building a global model of the
overall behavior of the marked BPP net. An associated distributed modal logic, called
team modal logic (TML, for short), is presented and shown to be coherent with team
bisimilarity: two markings are team bisimilar if and only if they satisfy the same
TML formulae. As the process algebra BPP (with guarded summation and guarded
body of constants) is expressive enough to represent all and only the BPP nets, we
provide algebraic laws for team bisimilarity as well as a finite, sound and complete,
axiomatization.

Keywords Equivalence checking · bisimulation equivalence · Petri nets · BPP ·
Hennessy-Milner modal logic · axiomatization.

1 Introduction

A BPP net is a simple type of finite Place/Transition Petri net [52,56] whose tran-
sitions have singleton pre-set. Nonetheless, as a transition can produce more tokens
than the only one consumed, the reachable markings of a BPP net can be infinitely
many. BPP is the acronym of Basic Parallel Processes [16], a simple CCS [47,31]
subcalculus (without the restriction operator) whose processes cannot communicate.
In [32] a variant of BPP, which requires guarded summation (as in Simple BPP [20],
SBPP [25] or BPPg [16]) and also that the body of each process constant is guarded
(i.e., guarded recursion; cf. Section 5.1), is actually shown to represent all and only
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the BPP nets, up to net isomorphism, and this explains the name of this class of nets.
Hence, we can uniformly compare results achieved on BPP nets or on the BPP sub-
calculus with guarded summation and guarded recursion. For uniformity with [32],
in the following the BPP variant we are using is often simply called BPP, while the
original version in [16] is called full BPP; moreover, full BPP with guarded summa-
tion is called SBPP [25]. While these three calculi have the same expressive power
w.r.t. interleaving semantics, in the true-concurrency world full BPP is strictly more
expressive than SBPP [23–25], while SBPP and our BPP are equally expressive as it
is possible to adapt the net semantics for SBPP in [20] to generate all (and only) the
BPP nets as well.

Traditionally, bisimulation-based, behavioral equivalences over Petri nets have
been defined as relations over the set of reachable markings (see, e.g., [53,7,32]);
these relations are all undecidable [21,39]. However, the situation is strikingly dif-
ferent for BPP nets: although the set of reachable markings can be countably infinite,
essentially all the behavioral bisimulation-based equivalences proposed in the litera-
ture are decidable for this class of nets. For instance, deciding if two markings of a
BPP net are interleaving bisimilar (see Definition 4) is PSPACE-complete [40] (w.r.t.
the size of the net, where the size of a BPP net is the sum of the number of its places
and of its transitions).

Our goal is to define a bisimulation-based, behavioral semantics for BPP nets di-
rectly on the finite set of places, rather than on the, possibly infinite, set of reachable
markings. In fact, BPP nets have an important property: since each transition has a
singleton pre-set, the behavior of each token on the net is completely independent
of any other token in the net. This observation suggests that the global behavior of a
marking m can be decomposed into a multiset of independent local behaviors, corre-
sponding to the behaviors of each single token in m, such that the global behavior of
m can be reconstructed from such a collection.

This approach ‘by decomposition’ allows to perform equivalence checking in
a distributed manner; in fact, the problem of checking whether two markings m1
and m2 are behaviorally related can be reduced to that of checking whether their
token-based local behaviors can be bijectively related. Note that to check whether
two markings are equivalent we need not construct an LTS describing the global
behavior of the whole system, but only find a suitable, behavior-preserving match
among the local, sequential states (i.e., the elements of the markings). In this way, the
state-space explosion problem can be tackled efficiently for BPP nets.

Therefore, in this approach, equivalent markings must have the same size. We
think that it is important to define equivalences which relate markings of the same
size only, because a token in a place of a BPP net represents a sequential process,
so that one processor is needed to implement it. So, the marking gives a precise
information about the number of resources/processors that are needed to implement
the system. Hence, an equivalence relation which relates markings of the same size
only is resource aware, and so more useful from a practical point of view.

In a recent paper [33], we approached our problem of decomposing the net be-
havior for the simplest subclass of Petri nets, namely finite-state machines (FSMs, for
short), a class of nets whose transitions not only have singleton pre-set (as for BPP
nets), but also have singleton (or empty) post-set. Therefore, FSMs are very similar to
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finite-state, labeled transition systems (LTSs, for short) [42]. On this class of models,
there is widespread agreement that a very natural and convenient equivalence relation
is bisimulation equivalence [51,47], an equivalence relation that can be verified very
efficiently for finite-state LTSs; more precisley, if m is the number of transitions and
n is the number of states of the LTS, checking whether two states are bisimilar can be
done in O(m · log n) time [54]. As an FSM is so similar to an LTS, we have defined
bisimulation equivalence directly over the set of places of the unmarked net, as a place
in an FSM represents a strictly sequential process type (while the number of tokens
in that place represents the number of currently available instances of that sequential
process type). The advantage is that bisimulation equivalence is a relation on places,
rather than on markings, and so much more easily computable; more precisely, if
m are the net transitions and n are the places, checking whether two places of an
FSM are bisimilar can be done in O(m · log (n+1)) time, by adapting the algorithm
in [54]. Moreover, the resulting notion of bisimilarity enjoys the same properties of
bisimulation over LTSs, i.e., it is coinductive and equipped with a fixpoint character-
ization [47,57,31]. After the bisimulation equivalence over the set of places has been
computed once and for all, we have defined, in a purely structural way, that two mark-
ings m1 and m2 are team equivalent if they have the same size, say |m1| = k = |m2|,
and there is a bisimulation-preserving, bijective mapping between the two markings,
so that each of the k pairs of places (s1,s2), with s1 ∈ m1 and s2 ∈ m2, is such that
s1 and s2 are bisimilar. We proved that team equivalent markings respect interleaving
bisimilarity, and so team equivalence preserves the token game; actually, we proved
that it coincides with strong place bisimilarity [4,5], a truly-concurrent equivalence
respecting the causal global behavior of nets; hence, as a corollary, we have that if
two nets are team equivalent, then they have the same causal nets [6,50].

In this paper, we extend the results above to the class of BPP nets. The extension
is not obvious because of the more general form of net transitions: a BBP net tran-
sition consumes one token but produces a multiset of tokens. Therefore, we cannot
use the simple definition of bisimulation over the places of an FSM net, rather we
need to generalize it to team bisimulation: if two places s1 and s2 are related by a
team bisimulation R, then if s1 performs a and reaches the marking m1, then s2 may
perform a reaching a marking m2 such that m1 and m2 are element-wise, bijectively
related by R (and vice versa if s2 moves first). We show that team bisimilarity enjoys
the same properties of bisimulation over LTSs, i.e., it is coinductive and equipped
with a fixpoint characterization. Moreover, we argue that the optimal algorithm for
bisimulation equivalence over LTSs [54] can be adapted to compute team bisimilarity
in O(m · p2 · log (n+1)) time, where m is the number of net transitions, p is the size
of the largest post-set (i.e., p is the least natural such that |t•| ≤ p for all t) and n is
the number of places.

Team bisimulation equivalence can be extended to markings by additive closure:
if place s1 is team bisimilar to place s2 and the marking m1 is team bisimilar to m2
(the base case relates the empty marking to itself), then also s1⊕m1 is team bisimilar
to s2⊕m2, where ⊕ is the operator of multiset union. Note that if we need to check
whether other two markings of the same net, say m′1 and m′2, are team equivalent, we
can reuse the already computed team bisimulation equivalence over places, and so
such a verification will take only O(k2) time, if k is the size of m′1 and m′2. Of course,
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we prove that team bisimilar markings respect the global behavior; in particular, the
token game (actually, we prove that team bisimilarity implies interleaving bisimilar-
ity) and the causal behavior (actually, we will prove that team bisimilarity coincides
with strong place bisimilarity [4,5]).

The second part of the paper approaches the problem of finding a modal char-
acterization of team bisimulation equivalence, in line of what Hennessy and Milner
proved in [37] for standard bisimulation equivalence over LTSs. The modal logic we
propose, called Team Modal Logic (TML, for short), is indeed a proper extension
of (a variant of) Hennessy-Milner Logic [37,3] (HML, for short), with an additional
operator of parallel composition ⊗ of formulae. The semantics of TML formulae
is given w.r.t. a BPP net; in particular, the semantics of a formula is the set of the
net markings that satisfy it. We prove a coherence theorem: two markings are team
bisimilar if and only if they satisfy the same TML formulae.

The third part of the paper is concerned with the BPP process algebra (with
guarded summation and guarded constants). We recall from [32] the denotational
net semantics for this calculus and, moreover, the so-called representability theorem:
not only any BPP process term is given a BPP net semantics, but also for any BPP
net N we can single out a BPP process term p such that the net semantics for p is
a net isomorphic to N. Then, we prove that team bisimilarity is a congruence for
the operators of the BPP process algebra, we study the algebraic properties of team
bisimilarity and, finally, we provide a finite, sound and complete, axiomatization.

The paper is organized as follows. Section 2 introduces the basic definitions about
BPP nets and two behavioral equivalences: interleaving bisimilarity and strong place
bisimilarity [4,5]; the latter is quite interesting, as we will prove that team bisim-
ilarity coincides with strong place bisimilarity for BPP nets. Section 3 copes with
the distributed equivalence checking problem; first, we discuss the properties of the
additive closure of a relation on places; then team bisimulation over places of an un-
marked BPP net is defined, showing that the classic results of bisimulation over LTSs
also hold in this case; in particular, we provide a fixed point characterization for it.
Moreover, team bisimilarity is extended to markings by additive closure and a few
examples discussing its pros and cons are presented; finally, minimization of BPP net
w.r.t. team bisimilarity is defined. Section 4 describes TML, its syntax and seman-
tics, and shows the coherence theorem: two markings are team bisimilar if and only
if they satisfy the same set of TML formulae. Section 5 describes the BPP process
algebra and its net semantics. Section 6 shows the proof that team bisimilarity is a
congruence for the BPP operators, presents its algebraic properties and also a finite,
sound and complete, axiomatization. Finally, Section 7 discusses related literature,
some future research and open problems.

2 Basic Definitions

Definition 1 (Multiset) Let N be the set of natural numbers. Given a finite set S,
a multiset over S is a function m : S → N. The support set dom(m) of m is {s ∈
S
∣∣ m(s) 6= 0}. The set of all multisets over S, denoted by M (S), is ranged over by

m. We write s ∈ m if m(s) > 0. The multiplicity of s in m is given by the number



Team Bisimilarity for BPP Nets 5

m(s). The size of m, denoted by |m|, is the number ∑s∈S m(s). A multiset m such that
dom(m) = /0 is called empty and is denoted by θ . We write m ⊆ m′ if m(s) ≤ m′(s)
for all s ∈ S.

Multiset union ⊕ is defined as follows: (m⊕m′)(s) = m(s)+m′(s); the opera-
tion ⊕ is commutative, associative and has θ as neutral element. Multiset difference
	 is defined as follows: (m1	m2)(s)=max{m1(s)−m2(s),0}. The scalar product

of a number j with m is the multiset j ·m defined as ( j ·m)(s) = j · (m(s)).
By si we also denote the multiset with si as only element. Hence, a multiset m

over S = {s1, . . . ,sn} can be represented as k1 · s1⊕ k2 · s2⊕ . . .⊕ kn · sn, where k j =
m(s j)≥ 0 for j = 1, . . . ,n. 2

Definition 2 (BPP net) A labeled BPP net is a tuple N = (S,A,T ), where

• S is the finite set of places, ranged over by s (possibly indexed),
• A is the finite set of labels, ranged over by ` (possibly indexed), and
• T ⊆ S× A×M (S) is the finite set of transitions, ranged over by t (possibly

indexed).

Given a transition t = (s, `,m), we use the notation:

• •t to denote its pre-set s (which is a single place) of tokens to be consumed;
• l(t) for its label `, and
• t• to denote its post-set m (which is a multiset, possibly even empty) of tokens to

be produced.

Hence, transition t can be also represented as •t
l(t)−→ t•. 2

Graphically, a place is represented by a little circle, a transition by a little box,
which is connected by a directed arc from the place in its pre-set and to the places
in its post-set (if any); the out-going arcs may be labeled with a number to denote
the number of tokens produced by the transition (if the number is omitted, then the
default value is 1).

Definition 3 (Marking, BPP net system, firing sequence, reachable place, dy-
namically reduced) A multiset over S is called a marking. Given a marking m and
a place s, we say that the place s contains m(s) tokens, graphically represented by
m(s) bullets inside place s. A BPP net system N(m0) is a tuple (S,A,T,m0), where
(S,A,T ) is a BPP net and m0 is a marking over S, called the initial marking. We also
say that N(m0) is a marked net.

A transition t is enabled at marking m, denoted by m[t〉, if •t ⊆ m. The execution
(or firing) of t enabled at m produces the marking m′ = (m	 •t)⊕ t•. This is written
m[t〉m′. This procedure is called the token game.

A firing sequence starting at m is defined inductively as follows:

• m[ε〉m is a firing sequence (where ε denotes the empty sequence of transitions)
and

• if m[σ〉m′ is a firing sequence and m′[t〉m′′, then m[σt〉m′′ is a firing sequence.
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a)

s1

inc

s2

dec

s3

inc

s4 s5

inc
dec

s6

dec

b)

Fig. 1 The net representing a semi-counter in (a), and a variant in (b)

If σ = t1 . . . tn (for n≥ 0) and m[σ〉m′ is a firing sequence, then there exist m1, . . . ,mn+1
such that m = m1[t1〉m2[t2〉 . . .mn[tn〉mn+1 = m′, and σ = t1 . . . tn is called a transition
sequence starting at m and ending at m′. The set of reachable markings from m is

[m〉= {m′
∣∣ ∃σ .m[σ〉m′}.

Note that the reachable markings can be countably infinite. The set of reachable
places from s is

reach(s) =
⋃

m∈[s〉 dom(m).
Note that reach(s) is always a finite set, even if [s〉 is infinite. A BPP net system
N(m0)= (S,A,T,m0) is dynamically reduced if ∀s∈ S∃m∈ [m0〉.m(s)≥ 1 and, more-
over, ∀t ∈ T ∃m,m′ ∈ [m0〉 such that m[t〉m′. 2

Example 1 By using the drawing convention for Petri nets mentioned above, Figure
1 shows in (a) the simplest BPP net representing a semi-counter, i.e., a counter which
cannot test for zero. Note that the number represented by this semi-counter is given
by the number of tokens which are present in place s2, i.e., in the place ready to
perform dec; hence, Figure 1(a) represents a semi-counter holding number 0; note
also that the number of tokens which can be accumulated in s2 is unbounded. Indeed,
the set of reachable markings for a BPP net can be countably infinite. In (b), a variant
semi-counter is outlined, which holds number 2 (i.e., two tokens are ready to perform
action dec). 2

Now we recall two well-known behavioral equivalences over Petri nets: interleav-
ing bisimilarity and strong place bisimilarity.

Definition 4 (Interleaving Bisimulation) Let N = (S,A,T ) be a BPP net. An inter-
leaving bisimulation is a relation R⊆M (S)×M (S) such that if (m1,m2) ∈ R then

• ∀t1 such that m1[t1〉m′1, ∃t2 such that m2[t2〉m′2 with l(t1) = l(t2) and (m′1,m
′
2)∈ R,

• ∀t2 such that m2[t2〉m′2, ∃t1 such that m1[t1〉m′1 with l(t1) = l(t2) and (m′1,m
′
2)∈ R.

Two markings m1 and m2 are interleaving bisimilar (or interleaving bisimulation
equivalent), denoted by m1 ∼int m2, if there exists an interleaving bisimulation R
such that (m1,m2) ∈ R. 2
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Relation ∼int , which is defined as the union of all the interleaving bisimulations,
is the largest interleaving bisimulation and also an equivalence relation.

Remark 1 (Interleaving bisimulation between two nets) The definition above cov-
ers also the case of an interleaving bisimulation between two BPP nets, say, N1 =
(S1,A,T1) and N2 = (S2,A,T2) with S1 ∩ S2 = /0, because we may consider just one
single BPP net N = (S1∪S2,A,T1∪T2): An interleaving bisimulation R⊆M (S1)×
M (S2) is also an interleaving bisimulation on M (S1 ∪ S2)×M (S1 ∪ S2). Similar
considerations hold for all the bisimulation-like definitions we propose in the follow-
ing, which will be defined on a single net only. 2

Remark 2 (Comparing two marked nets) The definition above of interleaving bisim-
ulation is defined over an unmarked BPP net, i.e., a net without the specification of
an initial marking m0. Of course, if one desires to compare two marked nets, then it
is enough to find an interleaving bisimulation (over the union of the two nets, as dis-
cussed in the previous remark), containing the pair composed of the respective initial
markings. This approach is also followed for the other bisimulation-like definitions
we propose in the following. 2

Example 2 Continuing Example 1 about Figure 1, it is easy to realize that R = {(s1⊕
k · s2,s3⊕ k1 · s5⊕ k2 · s6)

∣∣ k = k1 + k2 and k,k1,k2 ≥ 0}∪{(s1⊕ k · s2,s4⊕ k1 · s5⊕
k2 · s6)

∣∣ k = k1 + k2 and k,k1,k2 ≥ 0} is an interleaving bisimulation. 2

We now introduce strong place bisimulation equivalence, introduced in [4,5] as
an improvement of strong bisimilarity, a behavioral relation proposed by Olderog
in [50] on safe nets which fails to be an equivalence relation. Our definition is for-
mulated in a slightly different way, but it is coherent with the original one. First, an
auxiliary definition, which will be further investigated in the next section.

Definition 5 (Additive closure) Given a BPP net N = (S,A,T ) and a place relation
R ⊆ S× S, we define a marking relation R⊕ ⊆ M (S)×M (S), called the additive
closure of R, as the least relation induced by the following axiom and rule.

(θ ,θ) ∈ R⊕
(s1,s2) ∈ R (m1,m2) ∈ R⊕

(s1⊕m1,s2⊕m2) ∈ R⊕
2

Note that, by definition, two markings are related by R⊕ only if they have the
same size; in fact, the axiom states that the empty marking is related to itself, while
the rule, assuming by induction that m1 and m2 have the same size, ensures that
s1⊕m1 and s2⊕m2 have the same size. Note also that there may be several proofs of
(m1,m2) ∈ R⊕, depending on the chosen order of the elements of the two markings
and on the definition of R. For instance, if R= {(s1,s3),(s1,s4),(s2,s3),(s2,s4)}, then
(s1⊕s2,s3⊕s4)∈ R⊕ can be proved by means of the pairs (s1,s3) and (s2,s4), as well
as by means of (s1,s4),(s2,s3). An alternative way to define that two markings m1 and
m2 are related by R⊕ is to state that m1 can be represented as s1⊕ s2⊕ . . .⊕ sk, m2
can be represented as s′1⊕ s′2⊕ . . .⊕ s′k and (si,s′i) ∈ R for i = 1, . . . ,k.



8 Roberto Gorrieri

Definition 6 (Strong Place Bisimulation) Let N = (S,A,T ) be a BPP net. A strong
place bisimulation is a relation R⊆ S×S such that if (m1,m2) ∈ R⊕ then

• ∀t1 such that m1[t1〉m′1, ∃t2 such that m2[t2〉m′2 with (•t1,•t2) ∈ R, l(t1) = l(t2),
(t•1 , t

•
2 ) ∈ R⊕ and (m′1,m

′
2) ∈ R⊕,

• ∀t2 such that m2[t2〉m′2, ∃t1 such that m1[t1〉m′1 with (•t1,•t2) ∈ R, l(t1) = l(t2),
(t•1 , t

•
2 ) ∈ R⊕ and (m′1,m

′
2) ∈ R⊕.

Two markings m1 and m2 are strong place bisimilar, denoted by m1 ∼p m2, if there
exists a strong place bisimulation R such that (m1,m2) ∈ R⊕. 2

Relation ∼p is an equivalence relation [4]. Its definition, however, is not com-
pletely coinductive, as the union of strong place bisimulations may be not a place
bisimulation [4], at least for P/T nets. Nonetheless, ∼p has been characterized as the
union of all the reflexive strong place bisimulations [4]. Of course, ∼p is finer than
∼int , because a strong place bisimulation R is such that R⊕ is an interleaving bisimu-
lation. This will be illustrated in the following, also by means of examples.

3 A Distributed Approach to Equivalence Checking

3.1 Additive Closure and its Properties

The additive closure R⊕ of a place relation R was defined in Definition 5. The sen-
tence after that definition ensures the following.

Proposition 1 For each BPP net N = (S,A,T ) and each place relation R⊆ S×S, if
(m1,m2) ∈ R⊕, then |m1|= |m2|. 2

We list some obvious properties of an additively closed place relation.

Proposition 2 For each BPP net N = (S,A,T ) and each place relation R ⊆ S× S,
the following hold:

1. If R is reflexive, then R⊕ is reflexive.
2. If R is symmetric, then R⊕ is symmetric.
3. If R is transitive, then R⊕ is transitive.
4. If R1 ⊆ R2, then R⊕1 ⊆ R⊕2 , i.e., the additive closure is monotone. 2

A consequence of the proposition above is that if R is an equivalence relation,
then its additive closure R⊕ is also an equivalence relation. Another property of the
additive closure R⊕ of a place relation R is that it is additive, indeed; moreover, it is
also subtractive when R is an equivalence relation.

Proposition 3 (Additivity/Subtractivity) Given a BPP net N =(S,A,T ) and a place
relation R, the following hold:

1. If (m1,m2) ∈ R⊕ and (m′1,m
′
2) ∈ R⊕, then (m1⊕m′1,m2⊕m′2) ∈ R⊕.

2. If R is an equivalence relation, (m1⊕m′1,m2⊕m′2)∈ R⊕ and (m1,m2)∈ R⊕, then
(m′1,m

′
2) ∈ R⊕.
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Proof By induction on the size of m1. Case 1 is obvious. For case 2, if |m1|= 0, then
m1 = θ =m2, so that the thesis follows trivially. Otherwise, |m1|= n+1 (with n≥ 0).
Since (m1,m2)∈R⊕, if m1 = s1⊕m1, then, by Definition 5, there exist s2 and m2 such
that m2 = s2⊕m2, (s1,s2)∈R and (m1,m2)∈R⊕. Since (s1⊕m1⊕m′1,m2⊕m′2)∈R⊕

by hypothesis, then, by Definition 5, there exist s′2 and m such that m2⊕m′2 = s′2⊕m,
(s1,s′2) ∈ R and (m1⊕m′1,m) ∈ R⊕. Note that if s2 = s′2, then m = m2⊕m′2; hence,
(m1⊕m′1,m2⊕m′2) ∈ R⊕, (m1,m2) ∈ R⊕ and |m1|= n, so that, by induction, we get
the thesis (m′1,m

′
2) ∈ R⊕. Otherwise, since R is an equivalence relation, we have that

s2 and s′2 are R-related, and so when a place matches s2, it also matches s′2 just as
well. Note that m contains one occurrence of s2, which is matched in the proof of
(m1⊕m′1,m) ∈ R⊕. If we replace this occurrence of s2 by s′2 in this match, we get a
proof for (m1⊕m′1,m2⊕m′2) ∈ R⊕, where m2⊕m′2 = s′2⊕m	 s2. So, we have that
(m1⊕m′1,m2⊕m′2) ∈ R⊕, (m1,m2) ∈ R⊕ and |m1|= n, so that, by induction, we get
the thesis (m′1,m

′
2) ∈ R⊕. 2

Example 3 The requirement that R is an equivalence relation is strictly necessary for
Propositon 3(2). As a counterexample, consider R = {(s1,s3), (s1,s4),(s2,s4)}. We
have that (s1⊕ s2,s3⊕ s4) ∈ R⊕ and (s1,s4) ∈ R⊕, but (s2,s3) 6∈ R⊕. 2

Algorithm 1 Checking the Additive Closure of an Equivalence Place Relation
Let N = (S,A,T ) be BPP net.
Let R⊆ S×S be a place relation, which is an equivalence.
Let A be the adjacency matrix generated as follows: A[s,s′] = 1 if (s,s′) ∈ R; otherwise A[s,s′] = 0.
Let m1 = k1 · s11⊕k2 · s12⊕ . . .⊕k j1 · s1 j1 such that ki > 0 for i = 1, . . . , j1, and ∑

j1
i=1 ki = k. Let M1 be

an array of length j1 such that M1[ j] = k j , for j = 1, . . . , j1.
Let m2 = h1 · s21⊕h2 · s22⊕ . . .⊕h j2 · s2 j2 such that hi > 0 for i = 1, . . . , j2, and ∑

j2
i=1 hi = k. Let M2

be an array of length j2 such that M2[ j] = h j , for j = 1, . . . , j2.

1: Let P be the set of currently matched R-related places, initialized to /0
2: for i = 1 to j1 do
3: for j = 1 to M1[i] do
4: h = 1
5: b = true
6: while (h≤ j2 and b) do
7: if M2[h] 6= 0 and A[s1i,s2h] == 1 then
8: add (s1i,s2h) to P
9: M2[h] = M2[h]−1

10: b = f alse
11: else
12: h = h+1
13: end if
14: end while
15: if h > j2 then
16: return false
17: end if
18: end for
19: end for
20: return P
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Remark 3 (Complexity 1) Given a place relation R, which is assumed to be an equiv-
alence relation, the complexity of checking if two markings m1 and m2 of equal size
are related by R⊕ is very low. In fact, if R is implemented as an adjacency matrix,
then the complexity of checking if two markings m1 and m2 (represented as an array
of places with multiplicities) are related by R⊕ is O(k2), where k is the size of the
markings, since the problem is essentially that of finding for each element s1 of m1 a
matching, R-related element s2 of m2, as described by Algorithm 1. Note that this al-
gorithm is correct only if R is an equivalence relation, so that R⊕ is subtractive. In fact,
assuming that (m1,m2)∈ R⊕, when we match one place, say s1, in m1 with one place,
say s2, in m2 such that (s1,s2) ∈ R, then we need that also (m1	 s1,m2	 s2) ∈ R⊕

(cf. Example 3). 2

Now we list some useful, and less obvious, properties of additively closed place
relations.

Proposition 4 For each BPP net N = (S,A,T ) and for each family of place relations
Ri ⊆ S×S (i ∈ I), the following hold:

1. /0⊕ = {(θ ,θ)}, i.e., the additive closure of the empty place relation is a singleton
marking relation, relating the empty marking to itself.

2. (IS)
⊕ = IM , i.e., the additive closure of the identity relation on places IS =

{(s,s)
∣∣ s∈ S} is the identity relation on markings IM = {(m,m)

∣∣ m∈M (S)}.
3. (R⊕)−1 =(R−1)⊕, i.e., the inverse of an additively closed relation R is the additive

closure of its inverse R−1.
4. (R1◦R2)

⊕=(R⊕1 )◦(R
⊕
2 ), i.e., the additive closure of the composition of two place

relations is the compositions of their additive closures.
5.
⋃

i∈I(R
⊕
i ) ⊆ (

⋃
i∈I Ri)

⊕, i.e., the union of additively closed relations is included
into the additive closure of their union.

Proof The proof is by induction on the inductive definition of R⊕, as in Definition 5.
(1) The axiom ensures that (θ ,θ) ∈ /0⊕; no other pair can be added, as the rule

can never be applied.
(2) The axiom ensures that the empty marking is related to itself. The rule, by

assuming, by induction, that m1 =m2, ensures that s1⊕m1 = s2⊕m2, as (s1,s2)∈IS
ensures that s1 = s2.

(3) (m2,m1) ∈ (R⊕)−1 if and only if (m1,m2) ∈ R⊕. Then, (m1,m2) ∈ R⊕ if and
only if either m1 = θ =m2, or m1 = s1⊕m′1, m2 = s2⊕m′2, (s1,s2)∈R and, moreover,
(m′1,m

′
2)∈R⊕. In the former case, the pair (θ ,θ)∈ (R−1)⊕ by the axiom in Definition

5. In the latter case, by induction, we can assume that (m′2,m
′
1) ∈ (R−1)⊕; moreover,

we have that (s2,s1) ∈ R−1. Hence, by using the rule in Definition 5, we also have
that (s2⊕m′2,s1⊕m′1) ∈ (R−1)⊕, i.e., (m2,m1) ∈ (R−1)⊕, as required.

(4) If (m1,m3) ∈ (R⊕1 ) ◦ (R
⊕
2 ), then there exists m2 such that (m1,m2) ∈ R⊕1 and

(m2,m3) ∈ R⊕2 . Now we proceed by induction on the size of the involved markings.
If m1 = θ , then m2 = θ = m3 and (θ ,θ) ∈ (R1 ◦R2)

⊕ by the axiom in Definition 5.
If m1 = s1⊕m′1, then by the rule in Definition 5, there exist s2 and m′2 such that m2 =
s2⊕m′2, (s1,s2) ∈ R1 and (m′1,m

′
2) ∈ R⊕1 . Since (m2,m3) ∈ R⊕2 , it follows that there

exist s3 and m′3 such that m3 = s3⊕m′3, (s2,s3) ∈ R2 and (m′2,m
′
3) ∈ R⊕2 . Therefore,
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(s1,s3) ∈ R1 ◦R2 and, by induction, (m′1,m
′
3) ∈ (R1 ◦R2)

⊕. Hence, as required, also
(m1,m3) ∈ (R1 ◦R2)

⊕, by the rule in Definition 5.
If (m1,m3) ∈ (R1 ◦R2)

⊕, then we proceed by induction on the size of m1. If m1 =
θ , then m3 = θ and (θ ,θ) ∈ (R⊕1 ) ◦ (R

⊕
2 ) because (θ ,θ) ∈ R⊕1 and (θ ,θ) ∈ R⊕2 . If

m1 = s1⊕m′1, then by the rule in Definition 5, there exist s3 and m′3 such that m3 =
s3⊕m′3, (s1,s3) ∈ R1 ◦R2 and (m′1,m

′
3) ∈ (R1 ◦R2)

⊕. Since (s1,s3) ∈ R1 ◦R2, there
exists s2 such that (s1,s2) ∈ R1 and (s2,s3) ∈ R2. Moreover, (m′1,m

′
3) ∈ (R⊕1 )◦ (R

⊕
2 )

by induction, so that m′2 exists such that (m′1,m
′
2)∈ R⊕1 and (m′2,m

′
3)∈ R⊕2 . Therefore,

by Definition 5 we have that (s1⊕m′1,s2⊕m′2) ∈ R⊕1 and (s2⊕m′2,s3⊕m′3) ∈ R⊕2 , so
that (m1,m3) ∈ (R⊕1 )◦ (R

⊕
2 ).

(5) If (m1,m2) ∈
⋃

i∈I(R
⊕
i ), then there exists j ∈ I such that (m1,m2) ∈ R⊕j .

Since R j ⊆
⋃

i∈I Ri, then the proof that (m1,m2) ∈ R⊕j can be adapted to prove that
(m1,m2) ∈ (

⋃
i∈I Ri)

⊕, too, by simply changing each occurrence of R j (or R⊕j ) in the
premise of the rule with

⋃
i∈I Ri (or (

⋃
i∈I Ri)

⊕). 2

3.2 Team Bisimulation on Places

Definition 7 (Team bisimulation) Let N = (S,A,T ) be a BPP net. A team bisimu-
lation is a place relation R⊆ S×S such that if (s1,s2) ∈ R then for all ` ∈ A

• ∀m1 such that s1
`−→m1, ∃m2 such that s2

`−→m2 and (m1,m2) ∈ R⊕,

• ∀m2 such that s2
`−→m2, ∃m1 such that s1

`−→m1 and (m1,m2) ∈ R⊕.

Two places s and s′ are team bisimilar (or team bisimulation equivalent), denoted
s∼ s′, if there exists a team bisimulation R such that (s,s′) ∈ R. 2

Remark 4 (Conservative extension) A team bisimulation over a finite-state machine
(FSM, for short), i.e., a net whose transitions have singleton pre-set and singleton (or
empty) post-set, is actually a conservative extension of the definition of bisimulation
for FSMs, defined in [33]; indeed, the team bisimulation condition (m1,m2)∈ R⊕ can
be simplified to the equivalent FSM bisimulation condition: either m1 = θ = m2 or
(m1,m2) ∈ R. 2

Example 4 Continuing Example 1 about the semi-counters in Figure 1, it is easy to
see that relation R = {(s1,s3),(s1,s4),(s2,s5),(s2,s6)} is a team bisimulation. In fact,
the pair (s1,s3) is a team bisimulation pair because, to transition s1

inc−→ s1⊕s2, s3 can
respond with s3

inc−→ s4⊕ s5, and (s1⊕ s2,s4⊕ s5) ∈ R⊕; symmetrically, if s3 moves
first. Also the pair (s1,s4) is a team bisimulation pair because, to transition s1

inc−→ s1⊕
s2, s4 can respond with s4

inc−→ s3⊕s6, and (s1⊕s2,s3⊕s6)∈ R⊕; symmetrically, if s4

moves first. Also the pair (s2,s5) is a team bisimulation pair: to transition s2
dec−→θ ,

s5 responds with s5
dec−→θ , and (θ ,θ) ∈ R⊕. Similarly for the pair (s2,s6). Hence,

relation R is a team bisimulation, indeed. This example shows that team bisimilarity
is compatible with the notion of net unfolding, as the net in (b) can be seen as a sort
of partial unfolding of the net in (a).
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a)

s1

a

s2

b

s3

c

2

b)

s4

a a

s5 s6 s7c c

b b b

s8 s9

2

Fig. 2 Two team bisimilar BPP nets

The team bisimulation above is a very simple finite relation proving that s1 and
s3 are team bisimulation equivalent. In Example 2, in order to show that s1 and s3 are
interleaving bisimilar, we had to introduce a very complex relation, with infinitely
many pairs. 2

Example 5 Consider the nets in Figure 2. It is not difficult to realize that relation
R = {(s1,s4),(s2,s5),(s2,s6),(s2,s7),(s3,s8),(s3,s9)} is a team bisimulation. This
example shows that team bisimulation is compatible with duplication of behavior
and fusion of places. 2

We now list some useful properties of team bisimulation relations.

Proposition 5 For each BPP net N = (S,A,T ), the following hold:

1. The identity relation IS = {(s,s)
∣∣ s ∈ S} is a team bisimulation;

2. the inverse relation R−1 = {(s′,s)
∣∣ (s,s′) ∈ R} of a team bisimulation R is a

team bisimulation;
3. the relational composition R1 ◦R2 = {(s,s′′)

∣∣ ∃s′.(s,s′) ∈ R1∧ (s′,s′′) ∈ R2} of
two team bisimulations R1 and R2 is a team bisimulation;

4. the union
⋃

i∈I Ri of team bisimulations Ri is a team bisimulation.

Proof The proof is almost standard, due to Proposition 4.
(1) (s,s) ∈IS is a team bisimulation pair because whatever transition s performs

(say, s `−→m), the other s in the pair does exactly the same transition s `−→m and
(m,m) ∈I ⊕S , by Proposition 4(2), as required by the team bisimulation definition.

(2) Suppose (s2,s1) ∈ R−1 and s2
`−→m2. Since (s1,s2) ∈ R and R is a team

bisimulation, then second item of the team bisimulation game ensures that m1 ex-
ists such that s1

`−→m1, with (m1,m2) ∈ R⊕, i.e., (m2,m1) ∈ (R⊕)−1. By Proposition
4(3), (m2,m1) ∈ (R⊕)−1 iff (m2,m1) ∈ (R−1)⊕. Summing up, if (s2,s1) ∈ R−1 and

s2
`−→m2, then a marking m1 exists such that s1

`−→m1, with (m2,m1) ∈ (R−1)⊕, as
required. The case when s1 moves first is symmetric and so omitted.

(3) Given a pair (s,s′′) ∈ R1 ◦ R2, there exists a place s′ such that (s,s′) ∈ R1

and (s′,s′′) ∈ R2; as (s,s′) ∈ R1, if s `−→m1, there exists m2 such that s′ `−→m2 with
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(m1,m2) ∈ R⊕1 . But as (s′,s′′) ∈ R2, we have also that there exists m3 such that

s′′ `−→m3 with (m2,m3) ∈ R⊕2 . Hence, (m1,m3) ∈ (R⊕1 ) ◦ (R
⊕
2 ) and, by Proposition

4(4), it follows that (m1,m3)∈ (R1 ◦R2)
⊕. Summing up, for any pair (s,s′′)∈ R1 ◦R2,

if s `−→m1, then a marking m3 exists such that s′′ `−→m3 with (m1,m3) ∈ (R1 ◦R2)
⊕,

as required.
(4) Assume (s,s′) ∈

⋃
i∈I Ri; then, there exists j ∈ I such that (s,s′) belongs to

team bisimulation R j. If s `−→m1, then there must exist a marking m2 such that

s′ `−→m2 with (m1,m2) ∈ R⊕j . By Proposition 4(5), (m1,m2) ∈ (
⋃

i∈I Ri)
⊕ as R j ⊆⋃

i∈I Ri. So
⋃

i∈I Ri is a team bisimulation, too. 2

Remember that s∼ s′ if there exists a team bisimulation containing the pair (s,s′).
This means that ∼ is the union of all team bisimulations, i.e.,

∼=
⋃
{R⊆ S×S

∣∣ R is a team bisimulation}.

By Proposition 5(4), ∼ is also a team bisimulation, hence the largest such relation.

Proposition 6 For each BPP net N = (S,A,T ), relation∼⊆ S×S is the largest team
bisimulation relation. 2

Observe that a team bisimulation relation need not be reflexive, symmetric, or
transitive. Nonetheless, the largest team bisimulation relation ∼ is an equivalence
relation. As a matter of fact, as the identity relation IS is a team bisimulation by
Proposition 5(1), we have that IS ⊆∼, and so∼ is reflexive. Symmetry derives from
the following argument. For any (s,s′) ∈ ∼, there exists a team bisimulation R such
that (s,s′) ∈ R; by Proposition 5(2), relation R−1 is a team bisimulation containing
the pair (s′,s); hence, (s′,s) ∈ ∼ because R−1 ⊆ ∼. Transitivity also holds for ∼.
Assume (s,s′) ∈∼ and (s′,s′′) ∈∼; hence, there exist two team bisimulations R1 and
R2 such that (s,s′) ∈ R1 and (s′,s′′) ∈ R2; by Proposition 5(3), relation R1 ◦R2 is a
team bisimulation containing the pair (s,s′′); hence, (s,s′′)∈∼, because R1 ◦R2 ⊆∼.
Summing up, we have the following.

Proposition 7 For each BPP net N = (S,A,T ), relation ∼⊆ S×S is an equivalence
relation. 2

It is sometimes convenient to write a team bisimulation compactly, by removing
those pairs that differ from others only up to the use of team bisimulation equiv-
alent alternatives. The resulting relation is not a team bisimulation, rather a team
bisimulation up to ∼. We denote by ∼ R ∼ the relational composition ∼ ◦R◦ ∼; in
other words, by s ∼ R ∼ s′ we mean that two places s1 and s2 exist such that s ∼ s1,
(s1,s2) ∈ R and s2 ∼ s′. By Proposition 4(4), (∼ R∼)⊕ is the same as ∼⊕ ◦R⊕◦ ∼⊕.
Hence, by m(∼ R∼)⊕m′ we mean that there exist two markings m1 and m2 such that
m∼⊕ m1, (m1,m2) ∈ R⊕ and m2 ∼⊕ m′.

Definition 8 (Team Bisimulation up to ∼) Given a BPP net N = (S,A,T ), a team
bisimulation up to ∼ is a binary relation R on S such that if (s1,s2) ∈ R then for all
` ∈ A
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• ∀m1 such that s1
`−→m1, ∃m2 such that s2

`−→m2 and m1(∼ R∼)⊕m2,

• ∀m2 such that s2
`−→m2, ∃m1 such that s1

`−→m1 and m1(∼ R∼)⊕m2. 2

Lemma 1 Given a BPP net N = (S,A,T ), if R is a team bisimulation up to ∼, then
∼ R∼ is a team bisimulation.

Proof Assume s∼ R∼ s′, i.e., there exist s1 and s2 such that s∼ s1, (s1,s2) ∈ R and

s2∼ s′. We have to prove that for each s `−→m1 there exists a transition s′ `−→m2 such
that m1(∼ R∼)⊕m2 (the symmetric case when s′ moves first is omitted). If s `−→m1,

since s∼ s1, then there exists m1 such that s1
`−→m1 with m1 ∼⊕ m1. As (s1,s2) ∈ R,

there exists m2 such that s2
`−→m2 with m1(∼ R ∼)⊕m2. Since s2 ∼ s′, there exists

m2 such that s′ `−→m2 with m2 ∼⊕ m2. Summing up, m1 ∼⊕ m1 and m1(∼ R∼)⊕m2
and m2 ∼⊕ m2 can be shortened to m1(∼ R∼)⊕m2, because ∼⊕ ◦(∼ R∼)⊕◦ ∼⊕ is
the same as (∼ ◦ ∼ R ∼ ◦ ∼)⊕ by Proposition 4(4) and ∼ ◦ ∼⊆∼ by Proposition
5(3) and Proposition 6. Hence, we have proved that if s ∼ R ∼ s′ then for each m1

such that s `−→m1 there exists a marking m2 such that s′ `−→m2 with m1(∼ R∼)⊕m2,
as required by the definition of team bisimulation. 2

Proposition 8 If R is a team bisimulation up to ∼, then R⊆∼.

Proof By Lemma 1, ∼ R ∼ is a team bisimulation, hence ∼ R ∼ ⊆ ∼ by definition
of ∼. As the identity relation I ⊆∼ by Proposition 5(1), we have that relation R =
I ◦ R ◦I ⊆∼ R∼, hence R⊆∼ by transitivity. 2

3.3 Team Bisimilarity over Markings

Starting from team bisimilarity ∼, which has been computed over the places of an
unmarked BPP net, we can extend team bisimulation equivalence over its markings
in a distributed way: m1 is team bisimulation equivalent to m2 if they are related by
the additive closure of ∼, i.e., if (m1,m2) ∈∼⊕, usually denoted by m1 ∼⊕ m2.

Proposition 9 For each BPP net N = (S,A,T ), if m1 ∼⊕ m2, then |m1|= |m2|.

Proof Directly from Proposition 1. 2

Proposition 10 For each BPP net N = (S,A,T ), relation∼⊕⊆M (S)×M (S) is an
equivalence relation.

Proof By Proposition 2: since ∼ is an equivalence relation (Proposition 7), its addi-
tive closure ∼⊕ is also an equivalence relation. 2

Example 6 Continuing Example 4 about the semi-counters, the marking s1⊕2 · s2 is
team bisimilar to the following markings of the net in (b): s3⊕2 · s5, or s3⊕ s5⊕ s6,
or s3⊕2 · s6, or s4⊕2 · s5, or s4⊕ s5⊕ s6, or s4⊕2 · s6. 2
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Example 7 Continuing Example 5 about Figure 2, it is clear that, for instance, s1⊕
3 · s2 is team bisimilar to any marking obtained with one token on place s4 and three
tokens distributed over the places s5, s6 and s7; for instance, s1⊕3 ·s2 ∼⊕ s4⊕2 ·s5⊕
s7 or s1⊕3 · s2 ∼⊕ s4⊕ s6⊕2 · s7. 2

Remark 5 (Complexity 2) In Section 3.4, we will argue that the complexity of com-
puting ∼ is O(m · p2 · log (n+1)) time, where m is the number of the net transitions,
n is the number of the net places and p is the size of the largest post-set of the net
transitions (i.e., p is the least number such that |t•| ≤ p, for all t ∈ T ).

Once the place relation ∼ has been computed once and for all for the given net,
Algorithm 1 checks whether two markings m1 and m2 are team bisimulation equiv-
alent in O(k2) time, where k is the size of the markings. Moreover, if we want to
check whether other two markings of the same net are team bisimilar, we can reuse
the already computed ∼ relation, so that the time complexity is again quadratic on
the size of the two markings. However, note that the time spent in creating the adja-
cency matrix A has not been considered: since n is the number of places, O(n2) time
is needed to implement this matrix, so that the time spent for the first check is O(n2),
while for subsequent checks it is only O(k2), where k is the size of the markings.

Algorithm 1 is not optimal. As a matter of fact, since the partition refinement
algorithm does compute the equivalence classes of ∼, we can take advantage of this
fact for checking whether m1 ∼⊕ m2. The algorithm in [45] simply scans these equiv-
alence classes and, for each class, it counts whether the number of tokens in the places
of m1 belonging to this class equals the number of tokens in the places of m2 in the
same class; if this holds for all the equivalence classes, then m1 ∼⊕ m2. Of course, the
complexity of this algorithm is O(n), even for the first check; hence, this algorithm is
usually more performant, even if, from the second check onwards, it may be slower
when applied to small markings; in fact, if the number n of places is greater than k2,
then Algorithm 1 is better. 2

Of course, two markings m1 and m2 are not team bisimilar if they have different
size, or if Algorithm 1 fails by singling out a place s in the residual of m1 (i.e., in the
portion of m1 which has not been scanned yet) which has no matching team bisimilar
place in (the residual of) m2. Or, equivalently, if for some equivalence class B of ∼,
the number of all the tokens in the places of m1 belonging to B is different from the
number of all the tokens in the places of m2 belonging to B.

Example 8 Team bisimulation equivalence is a truly concurrent equivalence. Accord-
ing to the semantics in Section 5, the BPP net in Figure 3(a) denotes (actually, it is
isomorphic to) the net for the BPP process term a.b.0+b.a.0, which can perform the
two actions a and b in either order. On the contrary, the BPP net in (b) denotes the
net for the BPP process term a.0|b.0. Note that s1 is not team equivalent to s4⊕ s5,
because the two markings have different size. Nonetheless, s1 and s4⊕ s5 are inter-
leaving bisimilar. 2

Example 9 If two markings m1 and m2 are interleaving bisimilar and have the same
size, then they may be not team equivalent. For instance, consider Figure 3(c), which



16 Roberto Gorrieri

a)

s1

a b

s2 s3

b a

b)

s4 s5

a b

c)

s6 s7

a b

s8

Fig. 3 Three non-team equivalent net systems: a.b.0+b.a.0, a.0 |b.0 and a.C |b.0 (with C .
= 0)

denotes the net for the BPP process term a.C |b.0, where C is a constant with empty
body, i.e., C .

= 0. Markings s4⊕s5 and s6⊕s7 have the same size, they are interleaving
bisimilar (actually, they are even fully concurrent bisimilar [7]), but they are not team
equivalent: even if s5 ∼ s7, the residuals are not team bisimilar: s4 � s6. As a matter
of fact, s5 ∼ s7 because both can only perform b and then stop successfully, reaching
θ ; however, s4

a−→θ while s6
a−→ s8 and the reached markings, having different size,

are not team bisimilar. 2

The following theorem provides a characterization of team bisimilarity ∼⊕ as a
suitable bisimulation-like relation over markings. It is interesting to observe that this
characterization gives a dynamic interpretation of team equivalence as a relation on
the global model of the system under scrutiny, while Definition 5 gives a structural
definition of team bisimulation equivalence ∼⊕ as the additive closure of the local
relation ∼ on places.

Theorem 1 Let N = (S,A,T ) be a BPP net. Two markings m1 and m2 are team
bisimulation equivalent, m1 ∼⊕ m2, if and only if |m1|= |m2| and

• ∀t1 such that m1[t1〉m′1, ∃t2 such that •t1 ∼ •t2, l(t1) = l(t2), t•1 ∼⊕ t•2 , m2[t2〉m′2
and m′1 ∼⊕ m′2, and symmetrically,

• ∀t2 such that m2[t2〉m′2, ∃t1 such that •t1 ∼ •t2, l(t1) = l(t2), t•1 ∼⊕ t•2 , m1[t1〉m′1
and m′1 ∼⊕ m′2.

Proof (⇒) If m1 ∼⊕ m2, then |m1| = |m2| by Proposition 9. Moreover, for any t1
such that m1[t1〉m′1, we have that m1 = s1⊕m1, where s1 = •t1. As m1 ∼⊕ m2, by
Definition 5, it follows that there exist s2 and m2 such that m2 = s2⊕m2, s1 ∼ s2 and
m1∼⊕ m2. Since s1∼ s2, by Definition 7, there exists a transition t2 such that •t2 = s2,
l(t2) = l(t1) and t•1 ∼⊕ t•2 . Hence, m′1 = t•1 ⊕m1 and m′2 = t•2 ⊕m2, and so m′1 ∼⊕ m′2
by Proposition 3(1). The symmetric case when m2 moves first is symmetric and hence
omitted.

(⇐) Let us assume that |m1|= |m2| and that the two bisimulation-like conditions
hold; then, we prove that m1∼⊕ m2. First of all, assume that no transition t1 is enabled
at m1; in such a case, also no transition t2 can be enabled at m2; in fact, if m2[t2〉m′2,
then, by the second condition, a transition t1 must be executable at m1, contradicting
the assumption that no transition is enabled at m1. If each place in m1 is a deadlock,
and similarly each place in m2 is a deadlock, then all the places in m1 and m2 are
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pairwise team bisimilar; hence, the condition |m1| = |m2| is enough to ensure that
m1 ∼⊕ m2. Now, assume that m1[t1〉m′1 for some t1; the first condition ensures that
there exists t2 such that •t1 ∼ •t2, l(t1) = l(t2), t•1 ∼⊕ t•2 , m2[t2〉m′2 and m′1 ∼⊕ m′2.
Hence, we have that m′1 = t•1 ⊕m1, m′2 = t•2 ⊕m2, m1 = •t1 ⊕m1, m2 = •t2 ⊕m2.
Since m′1 ∼⊕ m′2 and t•1 ∼⊕ t•2 , by Proposition 3(2) it follows that m1 ∼⊕ m2, and so,
by Proposition 3(1), m1 ∼⊕ m2, because •t1 ∼ •t2. Symmetrically, if we start from a
transition t2 enabled at m2. 2

Corollary 1 (Strong place bisimilarity and team bisimilarity coincide) Let N =
(S,A,T ) be a BPP net. Two markings m1 and m2 are team bisimulation equivalent,
m1 ∼⊕ m2, if and only if they are strong place bisimilar, m1 ∼p m2.

Proof By Theorem 1, it is clear that team bisimulation equivalence ∼ over places
is a strong place bisimulation. For the reverse implication, consider a strong place
bisimulation R and some (s1,s2) ∈ R. By Definition 6, to transition s1

`−→m1, s2

can respond with s2
`−→m2 such that (m1,m2) ∈ R⊕. This means that R is a team

bisimulation. 2

Hence, team bisimulation equivalence ∼ is the largest strong place bisimulation.
Therefore, our characterization of strong place bisimilarity is quite appealing because
it is based on the basic definition of team bisimulation on the places of the unmarked
net, and, moreover, offers a very efficient algorithm to check if two markings are
strong place bisimilar, as discussed in Remark 5 and in the next section.

Corollary 2 (Team bisimilarity is finer than interleaving bisimilarity) Let N =
(S,A,T ) be a BPP net. If m1 ∼⊕ m2, then m1 ∼int m2.

Proof By Theorem 1, it is clear that ∼⊕ is an interleaving bisimulation. 2

3.4 Team Bisimilarity over Places as a Fixed Point

Team bisimulation equivalence over places can be characterized nicely as the great-
est fixed point of a suitable monotone relation transformer, essentially by extending
the characterization developed for ordinary bisimulation over LTSs [47,57,31]. Not
surpisingly, this has the interesting consequence of defining a natural, even if not
optimal, algorithm for computing this equivalence.

Definition 9 Given a BPP net N = (S,A,T ), the functional F :℘(S×S)→℘(S×S)
(i.e., a transformer of binary relations over S) is defined as follows. If R⊆ S×S, then
(s1,s2) ∈ F(R) if and only if for all ` ∈ A

• ∀m1 such that s1
`−→m1, ∃m2 such that s2

`−→m2 and (m1,m2) ∈ R⊕,

• ∀m2 such that s2
`−→m2, ∃m1 such that s1

`−→m1 and (m1,m2) ∈ R⊕. 2

Proposition 11 For each BPP net N = (S,A,T ), we have that:

1. The functional F is monotone, i.e., if R1 ⊆ R2 then F(R1)⊆ F(R2).
2. A relation R⊆ S×S is a team bisimulation if and only if R⊆ F(R).
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Proof The proof of (1) derives easily form the definition of F : if (s1,s2) ∈ F(R1)
then for all ` ∈ A

• ∀m1 such that s1
`−→m1, ∃m2 such that s2

`−→m2 and (m1,m2) ∈ R⊕1 ,

• ∀m2 such that s2
`−→m2, ∃m1 such that s1

µ−→m1 and (m1,m2) ∈ R⊕1 .

Since R1 ⊆ R2, by Proposition 2(4), it follows that R⊕1 ⊆ R⊕2 ; hence, the above implies
that for all ` ∈ A

• ∀m1 such that s1
`−→m1, ∃m2 such that s2

`−→m2 and (m1,m2) ∈ R⊕2 ,

• ∀m2 such that s2
`−→m2, ∃m1 such that s1

`−→m1 and (m1,m2) ∈ R⊕2 ,

which means that (s1,s2) ∈ F(R2). Summing up, F(R1)⊆ F(R2).
The proof of (2) is also easy: if R is a team bisimulation, then if (s1,s2) ∈ R then

for all ` ∈ A

• ∀m1 such that s1
`−→m1, ∃m2 such that s2

`−→m2 and (m1,m2) ∈ R⊕,

• ∀m2 such that s2
`−→m2, ∃m1 such that s1

`−→m1 and (m1,m2) ∈ R⊕.

and, by using the reverse implication, this means that (s1,s2) ∈ F(R), i.e., R⊆ F(R).
Similarly, if R ⊆ F(R), then the condition holding for F(R) holds also for all the
elements of R, hence R is a team bisimulation. 2

A fixed point for F is a relation R such that R = F(R). Knaster-Tarski’s fixed
point theorem (see, e.g., [19]) ensures that the greatest fixed point of the monotone
functional F is ⋃

{R⊆ S×S
∣∣ R⊆ F(R)}.

We want to show that this greatest fixed point is ∼. A post-fixed point of F is a
relation R such that R⊆ F(R). By Proposition 11(2), we know that the team bisimu-
lations are the post-fixed points of F . Team bisimilarity∼ is the union of all the team
bisimulations:

∼=
⋃
{R⊆ S×S

∣∣ R is a team bisimulation}.

Hence, we also conclude that ∼ is the greatest fixed point of F , i.e.:

∼=
⋃
{R⊆ S×S

∣∣ R⊆ F(R)}.

Here we provide a direct proof of this fact.

Theorem 2 Team bisimilarity ∼ is the greatest fixed point of F.

Proof We first prove that∼ is a fixed point, i.e.,∼= F(∼), by proving that∼⊆ F(∼)
and that F(∼)⊆∼. Since ∼ is a team bisimulation, ∼⊆ F(∼) by Proposition 11(2).
As F is monotonic, by Proposition 11(1) we have that F(∼) ⊆ F(F(∼)), i.e., also
F(∼) is a post-fixed point of F i.e., a team bisimulation. Since we know that ∼ is the
union of all team bisimulation relations (as well as the greatest post-fixed point of F),
it follows that F(∼)⊆∼.

Now we want to show that ∼ is the greatest fixed point. Assume T is another
fixed point of F , i.e. T = F(T ). Then, in particular, we have that T ⊆ F(T ), i.e., T is
a team bisimulation by Propostion 11(2), hence T ⊆∼. 2
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There is a natural iterative way of approximating ∼ by means of a descending
(actually, initially descending, and then constant from a certain point onwards) chain
of relations indexed on the natural numbers. We will see that there is a strict relation
between this chain of relations and the functional F above.

Definition 10 Given a BPP net N = (S,A,T ), for each natural i ∈ N, we define the
binary relation ∼i over S as follows:

• ∼0 = S×S.
• s1 ∼i+1 s2 if and only if for all ` ∈ A
• ∀m1 such that s1

`−→m1, ∃m2 such that s2
`−→m2 and m1 ∼⊕i m2

• ∀m2 such that s2
`−→m2, ∃m1 such that s1

`−→m1 and m1 ∼⊕i m2.

We denote by ∼ω the relation
⋂

i∈N ∼i. 2

Intuitively, s1 ∼i s2 if and only if the two places are team bisimilar up to paths of
length at most i. Hence, all the places are in the relation ∼0.

Proposition 12 For each i ∈ N:

1. relation ∼i is an equivalence relation,
2. ∼i = F i(S×S)
3. ∼i+1 ⊆∼i,

Moreover, ∼ω =
⋂

i∈N ∼i is an equivalence relation.

Proof (1) The proof is by induction on i. The base case is obvious: ∼0 is an equiva-
lence relation because so is the universal relation. Assuming that∼i is an equivalence
relation, we show that also ∼i+1 is an equivalence relation. Reflexivity is trivial: as
for all ` ∈ A

• ∀m such that s `−→m, ∃m such that s `−→m and m∼⊕i m,

it follows that also s∼i+1 s. Symmetry is also easy: we have to prove that if s1 ∼i+1 s2
then s2 ∼i+1 s1. We know that s1 ∼i+1 s2 if and only if for all ` ∈ A

• ∀m1 such that s1
`−→m1, ∃m2 such that s2

`−→m2 and m1 ∼⊕i m2

• ∀m2 such that s2
`−→m2, ∃m1 such that s1

`−→m1 and m1 ∼⊕i m2.

We also know, by inductive hypothesis, that ∼i is symmetric, and so also ∼⊕i is sym-
metric by Proposition 2(2); hence, m2∼⊕i m1, and, by reordering the two bisimulation-
like conditions, we also have that

• ∀m2 such that s2
`−→m2, ∃m1 such that s1

`−→m1 and m2 ∼⊕i m1.

• ∀m1 such that s1
`−→m1, ∃m2 such that s2

`−→m2 and m2 ∼⊕i m1

which means that s2 ∼i+1 s1. Transitivity is similar, hence left to the reader.
(2) We first explain what we mean by the ith power of F : F0(R)=R and Fn+1(R)=

F(Fn(R)). We prove that ∼i = F i(S× S) by induction on i. The base case is when
i = 0. In such a case, ∼0= S×S = F0(S×S), as required. Now, by induction, we can
assume that∼i = F i(S×S); we want to prove that∼i+1 = F i+1(S×S). By definition,
s1 ∼i+1 s2 if and only if for all ` ∈ A
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• ∀m1 such that s1
`−→m1, ∃m2 such that s2

`−→m2 and m1 ∼⊕i m2

• ∀m2 such that s2
`−→m2, ∃m1 such that s1

`−→m1 and m1 ∼⊕i m2.

By induction, this is equivalent to: for all ` ∈ A

• ∀m1 such that s1
`−→m1, ∃m2 such that s2

`−→m2 and (m1,m2) ∈ F i(S×S)⊕

• ∀m2 such that s2
`−→m2, ∃m1 such that s1

`−→m1 and (m1,m2) ∈ F i(S×S)⊕.

So, by using the definition of F , it follows that (s1,s2)∈ F(F i(S×S)) = F i+1(S×S),
as required.

(3) We prove that ∼i+1 ⊆∼i by induction on i. The base case is ∼1 ⊆∼0, which
trivially holds because ∼0 is the universal relation. Now, by induction, assume that
∼i ⊆ ∼i−1, which, by (2) above, is equivalent to F i(S×S) ⊆ F i−1(S×S). We want
to prove that ∼i+1 ⊆∼i. By Proposition 11(1), we know that F is monotone. Hence,
∼i+1= F(F i(S×S)) ⊆ F(F i−1(S×S)) =∼i.

Observe that ∼ω=
⋂

i∈N ∼i is an equivalence relation, as ∼i is an equivalence
relation for all i ∈ N. As a matter of fact, the identity relation I is a subset of all the
∼i’s, hence I ⊂∼ω , i.e., ∼ω is reflexive. Relation ∼ω is also symmetric because, if
(s1,s2) ∈∼ω , then (s1,s2) ∈∼i for all i ∈N. Since each ∼i is symmetric, (s2,s1) ∈∼i
for all i ∈ N, so (s2,s1) ∈∼ω , hence ∼ω is symmetric. Transitivity of ∼ω can be
proved similarly. 2

Hence, we have a non-increasing chain of equivalence relations,

∼0 = F0(S×S)⊇∼1 = F1(S×S)⊇ . . .⊇∼i = F i(S×S)⊇ . . .⊇∼ω ,

with relation ∼ω as its limit. Interestingly, this limit coincides with team bisimilarity
∼, as proved below. Some auxiliary lemmata are needed.

Lemma 2 For each BPP net N = (S,A,T ), it holds that there exists an index k such
that ∼k =∼k+1= . . . =∼ω , i.e., the chain is initially decreasing, but becomes con-
stant from index k onwards.

Proof Since the BPP net is finite, the initial relation ∼0 = S× S is finite as well.
Therefore, it is not possible that∼i = F i(S×S)⊃∼i+1 for all i∈N. This means that
there exists an index k such that ∼k = Fk(S×S) = F(Fk(S×S)) = ∼k+1. Hence,
∼k =∼ j for each j > k, and so ∼k =∼ω . 2

Theorem 3 For each BPP net N = (S,A,T ), it holds that ∼=∼ω .

Proof We prove first that ∼ ⊆ ∼i for all i by induction on i. Indeed, ∼ ⊆ ∼0 (the
universal relation); moreover, assuming ∼ ⊆ ∼i, by monotonicity of F and the fact
that ∼ is a fixed point for F , we get ∼= F(∼)⊆ F(∼i) =∼i+1. Hence, ∼⊆∼ω .

Now we prove that ∼ω ⊆∼, by showing that relation ∼ω is a team bisimulation.
Indeed, by Lemma 2, we know that∼ω=∼k for some k ∈N. As∼k+1= F(∼k) =∼k,
we have that∼k, thanks to Definition 10, satisfies Definition 9, so that, by Proposition
11(2), ∼k is a team bisimulation. 2
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The proof of the theorem above can be also given by proving that the functional
F is actually cocontinuous [57] for BPP nets, implying that

F(∼ω) = F(
⋂
i∈N
∼i) =

⋂
i∈N

F(∼i) =
⋂
i∈N
∼i+1=∼ω

Therefore, ∼ω is a fixed point of F . Actually, ∼ω is the greatest fixed point of F , and
so, by Theorem 2, it coincides with∼. In fact, by the Cocontinuity Theorem [57], the
greatest fixed point of F is computed by

⋂
i∈NF i(S×S), which, by Proposition 12(2),

coincides with
⋂

i∈N ∼i, and so with ∼ω .
The characterization of ∼ as the limit of the non-increasing chain of relations

∼i offers an easy algorithm to compute team bisimilarity ∼ over BPP nets: just start
from the universal relation R0 = S×S and then iteratively apply functional F ; when
Ri+1 = F(Ri) = Ri, then stop and take Ri as the team bisimilarity relation. Of course,
this algorithm always terminates by the argument in Lemma 2: since S is finite, we
are sure that an index k exists such that Rk+1 = F(Rk) = Rk. The algorithm can be
expressed by the following sequence of instructions.

R0 := S×S ;
R1 := F(R0) ;
while R0 6= R1 do {R0 := R1 ;R1 := F(R0)};
return R0

As an example, take the BPP net in Figure 2(b). The set of places in S= {s4,s5,s6,
s7,s8,s9}. The initial relation in R0 = S×S. Then, R1 = F(R0) is I ∪R∪R−1, where
I is the identity relation and R = {(s5,s6),(s5,s7),(s6,s7),(s8,s9)}. Then, if we ap-
ply functional F to R1 we get the same relation, i.e., R1 is the greatest fixed point.

The algorithm above is not optimal. It is well-known that the optimal algorithm
for computing bisimulation equivalence over a finite-state LTS with n states and m
transitions has O(m · log n) time complexity [54]; this very same partition refinement
algorithm can be easily adapted also for team bisimilarity over BPP nets; it is enough
to start from an initial partition composed of two blocks: S and {θ}, and to consider
the little additional cost due to the fact that the reached markings are to be related
by the additive closure of the current partition; this extra cost is related to the size
of the post-set of the net transitions; if p is the size of the largest post-set of the net
transitions (i.e., p is the least number such that |t•| ≤ p, for all t ∈ T ), then the time
complexity is O(m · p2 · log (n+1)), where m is the number of the net transitions and
n is the number of the net places.

3.5 Minimizing Nets

In the theory of deterministic finite automata (DFAs, for short; see, e.g., [38]), two
language equivalent states can be merged to obtain a language equivalent, smaller
DFA; in fact, it is possible to get the least DFA, whose states are language equiva-
lence classes of the states of the original DFA. Similarly, in the theory of labeled tran-
sition systems (LTSs, for short), two bisimilar states can be merged to get a smaller,



22 Roberto Gorrieri

behaviorally equivalent LTS; in fact, it is possible to get the least LTS, whose states
are bisimulation equivalence classes of the states of the original LTS (see, e.g., [31]).

The situation is not very different for BPP nets, where the team bisimulation
equivalence relation ∼ over places can be used to obtain minimized nets. Also in this
case, two team bisimilar places can be safely merged; hence, given a BPP net N, we
can obtain its behaviorally equivalent, reduced BPP net N′, whose places are team
bisimulation equivalence classes of places of N.

Definition 11 (Reduced net) Let N = (S,A,T ) be a BPP net and let ∼ be the team
bisimulation equivalence relation over its places. The reduced net N′ = (S′,A,T ′) is
defined as follows:

• S′ = {[s]
∣∣ s ∈ S}, where [s] = {s′ ∈ S

∣∣ s∼ s′};
• T ′ = {([s],a, [m])

∣∣ (s,a,m) ∈ T},

where [m] is defined as follows: [θ ] = θ and [m1⊕m2] = [m1]⊕ [m2]. If the net N has
initial marking m0 = k1 · s1⊕ . . .⊕ kn · sn, then N′ as initial marking [m0] = k1 · [s1]⊕
. . .⊕ kn · [sn]. 2

Lemma 3 Let N = (S,A,T ) be a BPP net and let N′ = (S′,A,T ′) be its reduced net
w.r.t. ∼. The following holds: m1 ∼⊕ m2 if and only if [m1] = [m2].

Proof By induction on the size of m1. If |m1|= 0, then m1 = θ = m2 and [m1] = θ =
[m2], as required. Otherwise, if m1 = s1⊕m′1 and m1 ∼⊕ m2, then, by Definition 5,
there exist s2 and m′2 such that m2 = s2⊕m′2, s1 ∼ s2 and m′1 ∼⊕ m′2. By Definition 11,
we have that [s1] = [s2] and, by induction, [m′1] = [m′2], so that the thesis [m1] = [m2]
follows trivially. Conversely, if m1 = s1⊕m′1 and [m1] = [m2], then [m1] = [s1]⊕ [m′1]
and there exist s2 and m′2 such that m2 = s2⊕m′2, [s1] = [s2] and [m′1] = [m′2]. Hence,
by Definition 11, we have that s1 ∼ s2 and, by induction, that m′1 ∼⊕ m′2, so that, by
Definition 5, the thesis m1 ∼⊕ m2 follows. 2

Lemma 4 Let N = (S,A,T ) be a BPP net and let N′ = (S′,A,T ′) be its reduced net
w.r.t. ∼. Relation R = {(s, [s])

∣∣ s ∈ S} is a team bisimulation.

Proof If s a−→m, then also [s] a−→ [m] by definition of T ′ with (m, [m]) ∈ R⊕, as re-
quired. The case when [s] moves first is slightly more complex for the freedom in
choosing the representative in an equivalence class. Transition [s] a−→ [m] is possi-
ble, by Definition of T ′, if there exist s′ ∈ [s] and m′ ∼⊕ m such that s′ a−→m′; as
s ∼ s′, there must exist a transition s a−→m′′ such that m′ ∼⊕ m′′. Summing up, if
[s] a−→ [m], then s a−→m′′, with (m′′, [m′′]) ∈ R⊕, as required, because [m] = [m′] =
[m′′] by Lemma 3. 2

Theorem 4 Let N = (S,A,T ) be a BPP net and let N′ = (S′,A,T ′) be its reduced net
w.r.t. ∼. For any m ∈M (S), we have that m∼⊕ [m].

Proof By induction on the size of m. If m = θ , then [m] = θ and the thesis follows
trivially. If m = s⊕m′, then [m] = [s]⊕ [m′]; by Lemma 4, s ∼ [s] and, by induction,
m′ ∼⊕ [m′]; therefore, by the rule in Definition 5, m∼⊕ [m]. 2
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Fig. 4 A BPP net in (a) and its reduced net in (b)

As a consequence of this theorem, we would like to point out that the reduced
net w.r.t. ∼ is indeed the least net offering the same team bisimilar behavior as the
original net: no further fusion of places can be done, as there are not two places in
the reduced net which are team bisimilar. As a consequence, in the reduced net, if
two markings m1 and m2 are different, then they are not team bisimilar (cf. Lemma
3). Indeed, the reduced net is minimized.

Example 10 Let us consider the semi-counter nets in Figure 1, which are considered
unmarked in this example. It is easy to see that the equivalence classes of ∼ are
{s1,s3,s4} and {s2,s5,s6}. Hence, the reduced net has just two places and is isomor-
phic to the unmarked net in (a). If we consider the current marking s4⊕ s5⊕ s6 for
the net in (b), then the corresponding team bisimilar marking in the reduced net in (a)
is s1⊕2 · s2. 2

Example 11 Consider the net in Figure 2(b), discussed in Examples 5 and 7. By
fusing together the team bisimilar places, we get a net which is isomorphic to that in
Figure 2(a). 2

Example 12 Consider the net in Figure 4(a). It is not difficult to realize that the equiv-
alence classes of ∼ are {s1,s2,s3} and {s4,s5,s6,s7}. Hence, the reduced net is iso-
morphic to the net in Figure 4(b). If the initial marking of the net in (a) is s1⊕s3, then
the initial marking of the reduced net is 2 · s8. Of course, the two initial markings are
team bisimulation equivalent. 2

4 Modal Logic

In this section we propose a new modal logic, called TML (acronym of Team Modal
Logic), which extends conservatively Hennessy-Milner Logic (HML) [37,3]. We will
prove that model checking is coherent with equivalence checking: two markings are
team bisimilar if and only if they satisfy the same TML formulae.
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JnnK = S JvvK = {θ} JttK = M (S) JffK = /0

JF1∧F2K = JF1K∩ JF2K JF1∨F2K = JF1K∪ JF2K J¬FK = M (S)\ JFK

J〈a〉FK = {s ∈ S
∣∣ ∃m.s a−→m and m ∈ JFK}

J[a]FK = {s ∈ S
∣∣ ∀m(s a−→m implies m ∈ JFK)}

JF1⊗F2K = JF1K⊗ JF2K

where M1⊗M2 = {m1⊕m2
∣∣ m1 ∈M1,m2 ∈M2}

Table 1 Denotational semantics

The TML formulae are generated from the finite set A of actions by the following
abstract syntax:

F ::= nn | vv | tt | ff | F ∧F | F ∨F | ¬F | 〈a〉F | [a]F | F⊗F

where a is any action in A, nn and vv denote two atomic propositions (which are not
tt, for true, and ff, for false), ∧ is the operator of logical conjunction, ∨ is disjunction,
〈a〉F denotes possibility (it is possible to do a and then reach a marking where F
holds), [a]F denotes necessity (by doing a, only markings where F holds can be
reached), ¬ is logical negation and, finally, ⊗ is the operator of parallel composition
of formulae.

We denote by FA the set of all TML formulae, built from the actions in A. We
sometimes use some useful abbreviations: if B = {a1,a2, . . . ,ak} ⊆ A, k ≥ 1, then
〈B〉F stands for 〈a1〉F ∨〈a2〉F ∨ . . .∨〈ak〉F , and [B]F stands for [a1]F ∧ [a2]F ∧ . . .∧
[ak]F . In case B = /0, 〈B〉F = ff and [B]F = nn; the reason for the latter will be clear
in the following.

The semantics of a formula F is the set of markings that satisfy it; hence, the
semantic function is parametrized with respect to some given BPP net N = (S,A,T ).
Let J−K : FA→℘(M (S)) be the denotational semantics function, defined in Table
1.

Definition 12 (TML satisfaction relation) We say that a marking m satisfies a for-
mula F , written m � F , if m ∈ JFK. 2

The semantics of any formula F is a set of markings. The semantics of nn is S:
all the places satisfy nn. The semantics of vv is {θ}: only the empty marking satisfies
vv. The semantics of tt is M (S): every marking satisfies tt. The semantics of ff is /0:
no marking satisfies ff.

The logical operator of conjunction ∧ is interpreted as intersection ∩ of
the set of markings satisfied by the two subformulae; symmetrically, disjunction is
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interpreted as set union. The semantics of ¬F is the set of all the markings that do
not satisfy F , i.e., the complement of JFK.

The semantics of 〈a〉F is the set of all the places that can perform a and, in doing
so, reach a marking that satisfies F . For instance, the formula 〈a〉nn is satisfied by
any place able to perform a, reaching another place.

The semantics of [a]F is the set of all the places that, by performing a, can only
reach a marking satisfying F . Note that a place s, which is unable to perform a alto-
gether, satisfies [a]F , for any F , because the universal quantification in the semantic
definition of [a] is vacuously satisfied. For instance, the formula [a]nn is satisfied by
any place that, by performing a, can only reach markings composed of a single place.
To explain why the auxiliary notation [B]F , when B = /0, is to be interpreted as nn,
we have to point out that the semantics of a box formula [a]F is a set of places (not
markings, in general), and so all the places, and only the places, satisfy this formula.

The semantics of F1⊗F2 is the set of markings of the form m1⊕m2 such that
m1 � F1 and m2 � F2.

Example 13 Let us consider the net in Figure 2. It is not difficult to realize that for-
mula F1 = [b]〈c〉nn is such that all places, and in particular s2,s5,s6 and s7, satisfy F1.
Moreover, F2 = [a](F1⊗F1) is such that, e.g., s1 � F2 and s4 � F2. Finally, formula
G = F2⊗F1 is such that, e.g., s1⊕ s2 � G and s4⊕ s7 � G. 2

We are now ready to prove the coherence theorem: two markings are team bisim-
ilar if and only if they satisfy the same TML formulae. The proof is inspired by the
analogous proof in [37,3] for HML and LTS bisimulation.

Proposition 13 Let N = (S,A,T ) be a BPP net. If m1 ∼⊕ m2, then m1 and m2 satisfy
the same TML formulae, i.e., {F1 ∈FA

∣∣ m1 � F1}= {F2 ∈FA
∣∣ m2 � F2}.

Proof Let us assume that m1 ∼⊕ m2. We will prove that, for any F ∈FA, if m1 � F
then also m2 � F . This is enough because, by a symmetric argument, we can also
prove that if m2 � F then also m1 � F , and so m1 and m2 satisfy the same TML
formulae.

The proof is by induction on the structure of F , where the first four cases are the
base cases of the induction.

• F = nn: if m1 � nn, then m1 is a place; since two team bisimilar markings have
the same size, also m2 is a single place and so also m2 � nn.

• F = vv: if m1 � vv, then m1 = θ ; since two team bisimilar markings have the same
size, also m2 = θ and so m2 � vv.

• F = tt: since all the markings satisfy true, also m2 � tt.
• F = ff: since no marking satisfies false, m1 2 ff and also m2 2 ff.
• F = F1∧F2: since m1 � F1∧F2, it follows that m1 � F1 and m1 � F2; by induction,

we can assume that also m2 �F1 and m2 �F2; hence, also m2 �F1∧F2, as required.
• F = F1∨F2: since m1 � F1∨F2, it follows that m1 � F1 or m1 � F2; by induction,

we can assume that also m2 � F1 or m2 � F2; hence, also m2 � F1∨F2, as required.
• F = 〈a〉G: since m1 � 〈a〉G, then m1 = s1 and there exists a marking m′1 such that

s1
a−→m′1 and m′1 � G; as m1 ∼⊕ m2, also m2 must be a single place, say s2, and
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so s1 ∼ s2 holds. By definition of∼, there exists a marking m′2 such that s2
a−→m′2

and m′1 ∼⊕ m′2. Since m′1 ∼⊕ m′2 and m′1 � G, we can apply induction (because
G is a subformula) and conclude that also m′2 � G; hence, m2 = s2 � 〈a〉G, as
required.

• F = [a]G: since m1 � [a]G, then m1 = s1 and, for all m′1 such that s1
a−→m′1, it

follows that m′1 � G. As m1 ∼⊕ m2, also m2 must be a single place, say s2, and
so s1 ∼ s2 holds. Since s1 ∼ s2, for each m′2 such that s2

a−→m′2, there exists m′1
such that s1

a−→m′1 such that m′1 ∼⊕ m′2. Now, since m′1 ∼⊕ m′2 and m′1 � G, by
induction, it follows also that m′2 � G. Hence, for all m′2 such that s2

a−→m′2, we
have that m′2 � G; therefore, m2 = s2 � [a]G, as required.

• F = ¬F ′: since m1 � ¬F ′, it follows that m1 2 F ′. By induction, as F ′ is a subfor-
mula, if m1 does not satisfy F ′, then also m2 does not satisfy F ′, and so m2 � ¬F ′,
as required.

• F = F1⊗F2: m1 � F1⊗F2 only if there exists m′1 and m′′1 such that m1 = m′1⊕m′′1 ,
m′1 � F1 and m′′1 � F2. As m1 ∼⊕ m2, there exists m′2 and m′′2 such that m2 =
m′2 ⊕m′′2 and m′1 ∼⊕ m′2 and m′′1 ∼⊕ m′′2 . By induction, m′2 � F1 and m′′2 � F2;
therefore, also m2 � F1⊗F2, as required.

As no other cases are possible, the proof is complete. 2

Lemma 5 Let N =(S,A,T ) be a BPP net. If s1 and s2 satisfy the same TML formulae,
i.e., {F1 ∈FA

∣∣ s1 � F1}= {F2 ∈FA
∣∣ s2 � F2}, then s1 ∼ s2.

Proof We want to prove that R = {(s,s′)
∣∣ s and s′ satisfy the same TML formulae}

is a team bisimulation, hence proving that two places that satisfy the same formulae
are team bisimilar.

Assume (s1,s2) ∈ R and s1
a−→m1. We will prove that there exists some m2 such

that s2
a−→m2 and (m1,m2) ∈ R⊕. Since R is symmetric, this is enough for proving

that R is a team bisimulation.
Assume, towards a contradiction, that there exists no m2 such that s2

a−→m2 and
(m1,m2) ∈ R⊕. Since the net is finite, the set {m ∈M (S)

∣∣ s2
a−→m} is finite; let us

denote such a set with {m′1,m′2, . . . ,m′k}, with k ≥ 0.
By assumption, for j = 1, . . . ,k, none of the m′j is such that (m1,m′j)∈ R⊕. There-

fore, one of the following two cases is possible:

(a) |m1| 6= |m′j| (i.e., the two markings are composed of a different number of tokens),
or, by looking at Algorithm 1 (which is applicable as R is an equivalence relation),

(b) |m1|= |m′j| but there is a place p j in the residual of m1 that has no R-match in the
residual of m′j.

In case (a), if |m1|= d 6= |m′j|, then the TML formula
nnd = nn⊗ . . .⊗nn︸ ︷︷ ︸

d times
is such that m1 � nnd , while m′j 2 nnd .

In case (b), assume that dom(m′j) has h j ≥ 1 places which are not R-related to p j,

namely {s j
1, . . . ,s

j
h j
} ⊆ dom(m′j). Hence, for each s j

i ∈ m′j, for i = 1, . . . ,h j, there is

a TML formula F j
i such that p j � F j

i and s j
i 2 F j

i . Let m′ be the marking composed
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of all the elements s in m1 such that (s, p j) ∈ R; to be precise, any s ∈ m′ is such that
(s, p j) ∈ R, and any s ∈ m1	m′ is such that (s, p j) 6∈ R. Then,

m′ � G
l j
j = G j⊗ . . .⊗G j︸ ︷︷ ︸

l j times

,

where G j = F j
1 ∧ . . .∧F j

h j
and l j = |m′|. By Definition 12, also m1 � G

l j
j ⊗ nnd−l j ,

where d = |m1|. On the contrary, m′j 2 G
l j
j ⊗nnd−l j because in m′j there are less than

l j elements which are R-related to p j and any other s j
i is such that s j

i 2 F j
i and so

s j
i 2 G j.

Finally, take the formula G = 〈a〉(G′1 ∧G′2 ∧ . . .∧G′k) where, for j = 1, . . . ,k,

G′j = nnd if m1 and m′j have different size, while G′j is the formula G
l j
j ⊗ nnd−l j

above, otherwise. It is easy to see that s1 � G, because m1 � G′j for j = 1, . . . ,k; on the
contrary, s2 2 G, because, for j = 1, . . . ,k, m′j 2 G′j, hence contradicting the previous
assumption that s1 and s2 satisfy the same formulae. (In case k = 0, G = 〈a〉tt.) 2

Proposition 14 Let N = (S,A,T ) be a BPP net. If m1 and m2 satisfy the same TML
formulae, i.e., {F1 ∈FA

∣∣ m1 � F1}= {F2 ∈FA
∣∣ m2 � F2}, then m1 ∼⊕ m2.

Proof We actually prove the contranominal: if two markings are not related by ∼⊕,
then they do not satisfy the same TML formulae. Two markings are not related by
∼⊕ if they have not the same size or if Algorithm 1 fails. In the former case, assume
that |m1|= k > |m2| for some k ≥ 1. Then, the TML formula

nnk = nn⊗ . . .⊗nn︸ ︷︷ ︸
k times

is such that m1 � nnk, while m2 2 nnk, and so m1 and m2 do not satisfy the same TML
formulae.

In the latter case, looking at Algorithm 1, let s be the element of the residual of
m1 that has no team bisimilar match in the residual of m2. Assume that dom(m2)
has h ≥ 1 places which are not team bisimilar to s, namely {s′1, . . . ,s′h} ⊆ dom(m2).
Hence, by (the contranominal of) Lemma 5, for each s′j ∈ dom(m2), there is a TML
formula Fj such that s � Fj and s′j 2 Fj, for j = 1, . . . ,h. Let m′1 be the marking
composed of all the elements s′ in m1 such that s′ ∼ s; to be precise, any s′ ∈ m′1 is
such that s′ ∼ s, and any s′ ∈ m1	m′1 is such that s′ � s. Then,

m′1 � Gl = G⊗ . . .⊗G︸ ︷︷ ︸
l times

,

where G = F1 ∧ . . .∧Fh and l = |m′1|. By Definition 12, also m1 � Gl ⊗ nnk−l , with
k = |m1|; on the contrary, m2 2Gl⊗nnk−l because in m2 there are less than l elements
which are team bisimilar to s and any other s′j is such that s′j 2 Fj and so s′j 2 G. In
conclusion, m1 and m2 do not satisfy the same TML formulae. 2

Theorem 5 (Coherence) Let N = (S,A,T ) be a BPP net. It holds that m1 ∼⊕ m2 if
and only if {F1 ∈FA

∣∣ m1 � F1}= {F2 ∈FA
∣∣ m2 � F2}.

Proof Direct consequence of Propositions 13 and 14. 2
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dec(0) = θ dec(µ.p) = {µ.p}

dec(p+ p′) = {p+ p′} dec(C) = {C}

dec(p | p′) = dec(p)⊕dec(p′)

Table 2 Decomposition function

5 The BPP Process Algebra: Syntax and Net Semantics

Now we define a process algebra that truly represents BPP nets. It is called BPP
as well (where BPP is the acronym of Basic Parallel Processes) and was originally
studied in [16]. BPP is a simple CCS [47,31] subcalculus (without the restriction
operator) whose processes cannot communicate. As mentioned in the Introduction,
we actually study a variant which requires guarded summation and guarded recursion.

5.1 Syntax

Let Act be a finite set of actions, ranged over by µ , and let C be a finite set of con-
stants, disjoint from Act, ranged over by A,B,C, . . .. The size of the sets Act and C is
not important: we assume that they can be chosen as large as needed. The BPP terms
are generated from actions and constants by the following abstract syntax:

s ::= 0 | µ.p | s+ s guarded processes
q ::= s | C sequential processes
p ::= q | p | p parallel processes

where 0 is the empty process, µ.p is a process where action µ ∈ Act prefixes the
residual p (µ.− is the action prefixing operator), s1 + s2 denotes the alternative com-
position of s1 and s2 (−+− is the choice operator), p1 | p2 denotes the asynchronous
parallel composition of p1 and p2 and C is a constant. A constant C may be equipped
with a definition, but this must be a guarded process, i.e., in the syntactic category s:
C .
= s. A term p is a BPP process if each constant in Const(p) (the set of constants

used by p; see [32] for details) is equipped with a defining equation (in syntactic
category s). The set of BPP processes is denoted by PBPP, the set of its sequential
processes, i.e., of the processes in syntactic category q, by Pseq

BPP, while the set of its
guarded processes, i.e., of the processes in syntactic category s, by Pgrd

BPP,

5.2 Net Semantics

The net for the process algebra BPP (with guarded summation and guarded recur-
sion), originally outlined in [32], is such that the set of places SBPP is the set of the
sequential BPP processes, without 0, i.e., SBPP = Pseq

BPP \ {0}. The decomposition
function dec : PBPP →M (SBPP), mapping process terms to markings, is defined
in Table 2. An easy induction proves that dec(p) is a finite multiset of sequential
processes for each p ∈PBPP. Note that, if C .

= 0, then θ = dec(0) 6= dec(C) = {C}.
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J0KI = ( /0, /0, /0,θ)

Jµ.pKI = (S,A,T,{µ.p}) given JpKI = (S′,A′,T ′,dec(p)) and where

S = {µ.p}∪S′, A = {µ}∪A′, T = {({µ.p},µ,dec(p))}∪T ′

Jp1 + p2KI = (S,A,T,{p1 + p2}) given JpiKI = (Si,Ai,Ti,dec(pi)) for i = 1,2, and where

S = {p1 + p2}∪S′1 ∪S′2, with, for i = 1,2,

S′i =

{
Si ∃t ∈ Ti such that t•(pi)> 0
Si \{pi} otherwise

A = A1 ∪A2, T = T ′ ∪T ′1 ∪T ′2 , with, for i = 1,2,

T ′i =

{
Ti ∃t ∈ Ti . t•(pi)> 0
Ti \{t ∈ Ti

∣∣ •t(pi)> 0} otherwise

T ′ = {({p1 + p2},µ,m)
∣∣ ({pi},µ,m) ∈ Ti, i = 1,2}

JCKI = ({C}, /0, /0,{C}) if C ∈ I

JCKI = (S,A,T,{C}) if C 6∈ I, given C .
= p and JpKI∪{C} = (S′,A′,T ′,dec(p))

A = A′,S = {C}∪S′′, where

S′′ =


S′ ∃t ∈ T ′ . t•(p)> 0

S′ \{p} otherwise

T = {({C},µ,m)
∣∣ ({p},µ,m) ∈ T ′}∪T ′′ where

T ′′ =

{
T ′ ∃t ∈ T ′ . t•(p)> 0
T ′ \{t ∈ T ′

∣∣ •t(p)> 0} otherwise

Jp1 | p2KI = (S,A,T,m0) given JpiKI = (Si,Ai,Ti,mi) for i = 1,2, and where

S = S1 ∪S2, A = A1 ∪A2, T = T1 ∪T2, m0 = m1⊕m2

Table 3 Denotational net semantics

Now we provide a construction of the net system JpK /0 associated with process
p, which is compositional and denotational in style. The details of the construction
are outlined in Table 3. The mapping is parametrized by a set of constants that have
already been found while scanning p; such a set is initially empty and it is used to
avoid looping on recursive constants. The definition is syntax driven and also the
places of the constructed net are syntactic objects, i.e., BPP sequential process terms.
For instance, the net system Ja.0K /0 is a net composed of one single marked place,
namely process a.0, and one single transition ({a.0},a,θ). A bit of care is needed in
the rule for choice: in order to include only strictly necessary places and transitions,
the initial place p1 (or p2) of the subnet Jp1KI (or Jp2KI) is to be kept in the net for
p1 + p2 only if there exists a transition reaching place p1 (or p2) in Jp1KI (or Jp2KI),
otherwise p1 (or p2) can be safely removed in the new net. Similarly, for the rule for
constants.

Example 14 Consider the BPP process SC for a semi-counter, whose definition is
SC .

= inc.(SC |dec.0).
We have that

JSCK{SC} = ({SC}, /0, /0,{SC}), and
Jdec.0K{SC} = ({dec.0},{dec},{({dec.0},dec,θ)},{dec.0}).
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Therefore, the net JSC |dec.0K{SC} is
({SC,dec.0},{dec},{({dec.0},dec,θ)},{SC,dec.0}).

The net Jinc.(SC |dec.0)K{SC} is
({inc.(SC |dec.0),SC,dec.0},{inc,dec},{({inc.(SC |dec.0)}, inc,{SC,dec.0}),
({dec.0},dec,θ)},{inc.(SC |dec.0)}).

Finally, the net JSCK /0 is
({SC,dec.0},{inc,dec},{({SC}, inc,{SC,dec.0}),({dec.0},dec,θ)},{SC}),

which is (isomorphic to) the net in Figure 1(a), where s1 is SC and s2 is dec.0. 2

We now list some properties of the semantics, whose proofs are in [32], which
state that the process algebra BPP (with guarded summation and guarded recursion)
really represents the class of BPP nets.

Theorem 6 (Only BPP nets) For each BPP process p, JpK /0 is a BPP net. 2

Definition 13 (Translating BPP Nets into BPP Terms) Let N(m0) = (S,A,T,m0)
— with S = {s1, . . . ,sn}, A ⊆ Act, T = {t1, . . . , tk}, and l(t j) = µ j — be a BPP net.
Function TBPP(−), from BPP nets to BPP processes, is defined as

TBPP(N(m0)) =C1| · · · |C1︸ ︷︷ ︸
m0(s1)

| · · · |Cn| · · · |Cn︸ ︷︷ ︸
m0(sn)

where each Ci is equipped with a defining equation Ci
.
= c1

i + · · ·+ck
i (with Ci

.
= 0 if

k = 0), and each summand c j
i , for j = 1, . . . ,k, is equal to

• 0, if si 6∈ •t j;
• µ j.Π j, if •t j = {si}, where process Π j is C1| · · · |C1︸ ︷︷ ︸

t•j (s1)

| · · · |Cn| · · · |Cn︸ ︷︷ ︸
t•j (sn)

, meaning that

Π j = 0 if t•j = /0. 2

Example 15 Consider the net in Figure 1(b), whose set of places is {s3,s4,s5,s6}.
According to Definition 13, the associated BPP term is p =C4 |C5 |C6, with the fol-
lowing constant definitions:

C3
.
= inc.(C4 |C5)+0+0+0

C4
.
= 0+ inc.(C3 |C6)+0+0

C5
.
= 0+0+dec.0+0

C6
.
= 0+0+0+dec.0.

Of course, the semantics associates to p a net isomorphic to the net in Figure 1(b). 2

Theorem 7 (All BPP nets: Representability Theorem) Let N(m0) = (S,A,T,m0)
be a dynamically reduced BPP net such that A ⊆ Act, and let p = TBPP(N(m0)).
Then, JpK /0 is isomorphic to N(m0). 2
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6 Process Algebraic Properties

Thanks to the theorems of the previous section, we can transfer the definition of team
bisimilarity from BPP nets to BPP process terms in a simple way.

Definition 14 Two BPP processes p and q are team bisimilar, denoted p∼⊕ q, if, by
considering the (union of the) nets JpK /0 and JqK /0, we have that dec(p)∼⊕ dec(q). 2

Of course, for sequential BPP processes, team bisimulation equivalence ∼⊕ co-
incides with team bisimilarity on places ∼.

Thanks to Definition 14, we can now perform the usual process algebraic study of
a behavioral equivalence: to prove that it is a congruence for the operators of the BPP
process algebra, to study its algebraic properties and, finally, to define a (possibly
finite) sound and complete, axiomatization for it. These will be the subject of the
next subsections.

6.1 Congruence

Now we show that team equivalence is a congruence for all the BPP operators.

Proposition 15 For each p,q ∈Pgrd
BPP, if p∼ q (or p = q = 0), then

p+ r ∼ q+ r for all r ∈Pgrd
BPP.

Proof Assume R is a team bisimulation such that (p,q)∈ R (or R = /0 in case p = q =
0). It is very easy to check that, for each r, the relation Rr = {(p+r,q+r)}∪R∪Ir is
a team bisimulation, where Ir = {(r′,r′)

∣∣ r′ ∈ reach(r),r′ 6= θ} if r 6= 0, otherwise
Ir = /0. 2

Proposition 16 For each p,q ∈PBPP, if p∼⊕ q, then µ.p∼ µ.q for all µ ∈ Act.

Proof Assume R is a team bisimulation such that (dec(p),dec(q)) ∈ R⊕. Consider,
for each µ ∈ Act, relation Rµ = {(µ.p,µ.q)}∪R. It is very easy to check that Rµ is
a team bisimulation on places. 2

Proposition 17 For every p,q,r ∈PBPP, if p∼⊕ q, then p |r ∼⊕ q |r .

Proof By induction on the size of dec(p). If |dec(p)| = 0 = |dec(q)|, then p = 0 =
q. Hence, dec(p |r) = dec(r) = dec(q |r) and the thesis follows trivially, because
∼⊕ is reflexive. Since dec(p) ∼⊕ dec(q), if |dec(p)| = k + 1 for some k ≥ 0, then
by Definition 5, there exist p1, p2,q1,q2 such that p1 ∼ q1, dec(p2) ∼⊕ dec(q2),
dec(p) = p1⊕dec(p2) and dec(q) = q1⊕dec(q2). Since |dec(p2)|= k = |dec(q2)|
and p2 ∼⊕ q2, by induction, we have that p2 |r∼⊕ q2 |r. Since p1 ∼ q1, by Definition
5, we have that dec(p |r) = p1⊕ dec(p2 |r) ∼⊕ q1⊕ dec(q2 |r) = dec(q |r). Hence,
p |r ∼⊕ q |r. 2

Note that the symmetric cases r+ p ∼ r+ q and r | p ∼⊕ r |q are implied by the
fact that the operators of choice and parallelism are commutative w.r.t. ∼ and ∼⊕,
respectively (see Proposition 18 and 20).
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Still there is one construct missing: recursion, defined over guarded terms only.
Consider an extension of BPP where terms can be constructed using variables, such
as x,y, . . . (which are in syntactic category q): this defines an “open” BPP, where
terms may be not given a complete semantics. For instance, p1(x) = a.(b.0+c.x) and
p2(x) = a.(c.x+b.0) are open guarded BPP terms.

Definition 15 (Open BPP) Let Var = {x,y,z, . . .} be a finite set of variables. The
BPP open terms are generated from actions, constants and variables by the following
abstract syntax:

s ::= 0 | µ.p | s+ s guarded open processes
q ::= s | C | x sequential open processes
p ::= q | p | p parallel open processes

where x is any variable taken from Var. The open net semantics for open BPP extends
the net semantics in Table 3 with JxKI = ({x}, /0, /0,{x}), so that, e.g., the semantics of
a.x is the net ({a.x,x},{a}, {(a.x,a,x)},a.x). 2

However, a place x is not equivalent to 0+0, even if both are stuck, because x is
intended to be a placeholder for a sequential BPP term. Team bisimulation equiva-
lence can be extended to open terms, by considering the variables in a proper way. For
instance, a.x+a.0 is team bisimilar to a.x+a.0+a.x, because R = {(a.x+a.0,a.x+
a.0+a.x),(x,x)} is an open team bisimulation. However, more formally, we can ex-
tend team bisimilarity to open terms as follows.

An open term p(x1, . . . ,xn) can be closed by means of a substitution as follows:

p(x1, . . . ,xn){r1/x1, . . . ,rn/xn}

with the effect that each occurrence of the variable xi (within p and the body of
each constant in Const(p)) is replaced by the closed BPP sequential process ri, for
i = 1, . . . ,n. For instance, p1(x){d.0/x}= a.(b.0+ c.d.0).

A natural extension of team bisimulation equivalence∼ over open guarded terms
is as follows: p(x1, . . . ,xn)∼ q(x1, . . . ,xn) if for all tuples of (closed) BPP sequential
terms (r1, . . . ,rn), p(x1, . . . ,xn){r1/x1, . . . ,rn/xn} ∼ q(x1, . . . ,xn){r1/x1, . . . ,rn/xn}.
E.g., it is easy to see that p1(x) ∼ p2(x). As a matter of fact, for all r, p1(x){r/x} =
a.(b.0+ c.r) ∼ a.(c.r+b.0) = p2(x){r/x}, which can be easily proved by means of
the algebraic properties (discussed in the next subsection) and the congruence ones
of ∼.

For simplicity’s sake, let us now restrict our attention to open guarded terms using
a single undefined variable. We can recursively close an open term p(x) by means of
a recursively defined constant. For instance, A .

= p(x){A/x}. The resulting process
constant A is a closed BPP sequential process. By saying that team bisimilarity is a
congruence for recursion we mean the following: If p(x)∼ q(x) and A .

= p(x){A/x}
and B .

= q(x){B/x}, then A∼ B. The following theorem states this fact.

Theorem 8 Let p and q be two open guarded BPP terms, with one variable x at
most. Let A .

= p{A/x}, B .
= q{B/x} and p∼ q. Then A∼ B.



Team Bisimilarity for BPP Nets 33

Proof Consider R = {(r{A/x},r{B/x})
∣∣ r ∈ reach(p)∪reach(q),r 6= θ}. Note that

when r is x, we get (A,B) ∈ R. The proof that R is a team bisimulation up to ∼ (cf.
Definition 8) is not difficult. By symmetry, it is enough to prove that if r{A/x} µ−→m1,
then r{B/x} µ−→m2 such that m1(∼ R ∼)⊕m2. The proof proceeds by induction on
the definition of the net for r{A/x}. We examine the possible shapes of r, which is an
open sequential process.

• r = µ.r′. In this case, r{A/x}= µ.r′{A/x} µ−→dec(r′){A/x}. Similarly, r{B/x}=
µ.r′{B/x} µ−→dec(r′){B/x}, and (dec(r′){A/x},dec(r′){B/x}) ∈ R⊕.

• r =D, with D .
= s. So, r{A/x} .

= s{A/x} and r{B/x} .
= s{B/x}. If r{A/x} µ−→m1,

then this is possible only if s{A/x} µ−→m1. Since s is guarded, s{A/x} µ−→m1 is
possible only if s

µ−→m with m1 = m{A/x}. Therefore, also s{B/x} µ−→m{B/x}
is derivable, and also r{B/x} µ−→m{B/x}, with (m{A/x},m{B/x}) ∈ R⊕.

• r = r1+ r2. In this case, r{A/x}= r1{A/x}+ r2{A/x}. A transition from r{A/x},
e.g., r1{A/x}+ r2{A/x} µ−→m1, is derivable only if ri{A/x} µ−→m1 for some i =
1,2. Without loss of generality, assume the transition is due to r1{A/x} µ−→m1.
Since r1 is guarded, transition r1{A/x} µ−→m1 is derivable because r1

µ−→m,
with m1 = m{A/x}. Therefore, also r1{B/x} µ−→m{B/x} is derivable, as well
r{B/x}= r1{B/x}+ r2{B/x} µ−→m{B/x}, with (m{A/x},m{B/x}) ∈ R⊕.
• r = x. Then, we have r{A/x}= A and r{B/x}= B. We want to prove that for each

A
µ−→m1, there exists m2 such that B

µ−→m2 with m1(∼ R ∼)⊕m2. By hypothesis,
A .
= p{A/x}, hence also p{A/x} µ−→m1 is a transition in the net for p{A/x};

since p is guarded, p{A/x} µ−→m1 is possible only if p
µ−→m with m1 =m{A/x}.

Therefore, also p{B/x} µ−→m{B/x} is derivable. But we also have that p∼ q, so
p

µ−→m can be matched by q
µ−→m′ with m∼⊕ m′. Hence, q{B/x} µ−→m′{B/x}

is derivable with m{B/x} ∼⊕ m′{B/x}. Since B .
= q{B/x}, also B

µ−→m′{B/x}
is a transition with m1 ∼⊕ m{A/x}R⊕m{B/x} ∼⊕ m′{B/x}, as required. 2

The extension to the case of open terms with multiple undefined constants, e.g.,
p(x1, . . . ,xn) can be obtained in a standard way [47,31].

6.2 Algebraic Laws

On guarded/sequential processes we have the following algebraic laws.

Proposition 18 (Laws of the choice operator) For each p,q,r ∈Pgrd
BPP, the follow-

ing hold:
p+(q+ r) ∼ (p+q)+ r (associativity)

p+q ∼ q+ p (commutativity)
p+0 ∼ p if p 6= 0 (identity)
p+ p ∼ p if p 6= 0 (idempotency)
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Proof For each law, it is enough to exhibit a suitable team bisimulation relation
on places, where each place is actually a process term, according to the net se-
mantics. E.g., for idempotency, for each p guarded (p 6= 0), take relation Rp =
{(p+ p, p)}∪Ip where Ip = {(q,q)

∣∣ q ∈ reach(p),q 6= θ} is the identity rela-
tion. It is an easy exercise to check that Rp is a team bisimulation on the places of

Jp+ pK /0 and JpK /0. In fact, if p
µ−→m, then (according to the semantics for p+ p) also

p+ p
µ−→m and (m,m) ∈ I ⊕p , and so (m,m) ∈ R⊕p . Symmetrically, if p+ p

µ−→m,

then (according to the semantics for p+ p) this is possible only if p
µ−→m is deriv-

able and the condition (m,m) ∈ R⊕p is trivially satisfied. As a further example, for the
associativity law, the candidate team bisimulation relation is R(p,q,r) = {(p+(q+
r),(p+q)+ r)}∪I(p,q,r), where I(p,q,r) = {(v,v)

∣∣ v ∈ reach(p+(q+ r)),v 6= θ}
is the identity relation. 2

Proposition 19 (Laws of the constant) For each p ∈Pgrd
BPP, and each C ∈ C , the

following hold:
if C .

= 0, then C ∼ 0+0 (stuck)
if C .

= p and p 6= 0, then C ∼ p (unfolding)
if C .

= p{C/x} and q∼ p{q/x} then C ∼ q (folding)

where, in the third law, p is actually open on x (while q is closed).

Proof The stuck property is trivial: since the decomposition of a constant is a place,
if the body is stuck, it corresponds to a stuck place, such as 0+0.

The required team bisimulation on places proving the unfolding property is RC,p =
{(C, p)}∪IC, where IC = {(q,q)

∣∣ q ∈ reach(C),q 6= θ} is the identity relation.

In fact, if C
µ−→m, then (according to the net semantics for C .

= p) this means that
also p

µ−→m, with (m,m) ∈I ⊕C , and so (m,m) ∈ R⊕C,p as required. Symmetrically if
p moves first.

For the folding property, observe that the statement is implied by the following: if
q1 ∼ p{q1/x} and q2 ∼ p{q2/x} then q1 ∼ q2. In fact, if we choose q1 =C, then C =
q1 ∼ p{q1/x} = p{C/x} (which holds by hypothesis, due to the unfolding property)
and C = q1 ∼ q2, which is the thesis. This statement can be proven by showing that

R = {(r{q1/x},r{q2/x})
∣∣ r ∈ reach(p),r 6= θ}

is a team bisimulation up to ∼ (cf. Definition 8). Clearly, when r = x, we have that
(q1,q2) ∈ R. So, it remains to prove the team bisimulation (up to) conditions.

If r{q1/x} µ−→ t, then this can be due to one of the following:

• r
µ−→m and so t = m{q1/x}, where the substitution is applied element-wise to

each place in m. In this case, also r{q2/x} µ−→m{q2/x} is derivable such that
(m{q1/x},m{q2/x}) ∈ R⊕.
• r = x and q1

µ−→m1, and so t = m1. Since q1 ∼ p{q1/x} and p is guarded, we
have that there exists m such that p

µ−→m and p{q1/x} µ−→m{q1/x} with m1 ∼⊕

m{q1/x}. Therefore, p{q2/x} µ−→m{q2/x} is derivable, too. Since q2∼ p{q2/x},
it follows that there exists a marking m2 such that q2

µ−→m2 with m2∼⊕ m{q2/x}.
Summing up, if x{q1/x}= q1

µ−→m1, then x{q2/x}= q2
µ−→m2 such that m1 ∼⊕
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m{q1/x}, (m{q1/x},m{q2/x})∈R⊕ and, moreover, m{q2/x}∼⊕ m2, as required
by the team bisimulation up to condition.

Simmetrically, if r{q2/x} moves first. Hence, R is a team bisimulation up to ∼. 2

Proposition 20 (Laws of the parallel operator) For each p,q,r ∈PBPP, the fol-
lowing hold:

p |(q |r) ∼⊕ (p |q) |r (associativity)
p |q ∼⊕ q | p (commutativity)
p |0 ∼⊕ p (identity)

Proof To prove that each law is sound, it is enough to observe that the net for the
process in the left-hand-side is exactly the same as the net for the process in the right-
hand-side. For instance, Jp |qK /0 = Jq | pK /0. In fact, dec(p |q) = dec(p)⊕ dec(q) =
dec(q)⊕ dec(p) = dec(q | p) and the resulting net is obtained by simply joining the
net for p with the net for q. Therefore, the identity relation on places, which is a team
bisimulation, is enough to prove that dec(p |q)∼⊕ dec(q | p). 2

6.3 Axiomatization

In this section we provide a sound and complete, finite axiomatization of team bisim-
ulation equivalence over BPP. For simplicity’s sake, the syntactic definition of open
BPP (cf. Definition 15) is assumed here flattened, with only one syntactic category,
but we require that each ground instantiation of an axiom must respect the syntac-
tic definition of (closed) BPP given in Section 5.1. This means that we can write
the axiom x+(y+ z) = (x+ y)+ z (these terms cannot be written in open BPP ac-
cording to Definition 15), but it is invalid to instantiate it to C + (a.0 + b.0 |0) =
(C+a.0)+(b.0 |0) because these are not legal BPP processes (the constant C and the
parallel process b.0 |0 cannot be used as summands).

The set of axioms are outlined in Table 4. We call E the set of axioms {A1, A2,
A3, A4, R1, R2, R3, P1, P2, P3}. By the notation E ` p = q we mean that there
exists an equational deduction proof of the equality p = q, by using the axioms in
E. Besides the usual equational deduction rules of reflexivity, symmetry, transitivity,
substitutivity and instantiation (see, e.g., [31]), in order to deal with constants we
need also the following recursion congruence rule:

p = q ∧ A .
= p{A/x} ∧ B .

= q{B/x}
A = B

The axioms A1-A4 are the usual axioms for choice where, however, A3-A4 have
the side condition x 6= 0; hence, it is not possible to prove E ` 0+0 = 0, as expected,
because these two terms have a completely different semantics; in fact, no other se-
quential process p can be equated to 0. The conditional axioms (or inference rules)
R1-R3 are about process constants. Note that R2 requires that p is not (equal to) 0
(condition p 6= 0). Note also that these conditional axioms are actually a finite collec-
tion of axioms, one for each constant definition: since the set C of process constants
is finite, the instances of R1-R3 are finitely many. Finally, we have axioms P1-P3 for
parallel composition.
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A1 Associativity x+(y+ z) = (x+ y)+ z

A2 Commutativity x+ y = y+ x

A3 Identity x+0 = x if x 6= 0
A4 Idempotence x+ x = x if x 6= 0

R1 Stuck if C .
= 0, then C = 0+0

R2 Unfolding if C .
= p ∧ p 6= 0, then C = p

R3 Folding if C .
= p{C/x} ∧ q = p{q/x}, then C = q

P1 Associativity x |(y |z) = (x |y) |z
P2 Commutativity x |y = y |x
P3 Identity x |0 = x

Table 4 Axioms for team bisimulation equivalence

Theorem 9 (Soundness) For every p,q ∈PBPP, if E ` p = q, then p∼⊕ q.

Proof The proof is by induction on the proof of E ` p = q. The thesis follows by
observing that all the axioms in E are sound by Propositions 18, 19 and 20 and that
∼⊕ is a congruence. 2

Proposition 21 (Unique solution) Let X̃ = (x1,x2, . . . ,xn) be a tuple of variables
and let p̃ = (p1, p2, . . . , pn) be a tuple of open guarded BPP terms (pi 6= 0 for i =
1, . . . ,n), using the variables in X̃ . Then, there exists a tuple q̃ = (q1,q2, . . . ,qn) of
closed sequential BPP terms such that

E ` qi = pi{q̃/X̃} for i = 1, . . . ,n.
Moreover, if the same property holds for q̃′ = (q′1,q

′
2, . . . ,q

′
n), then

E ` q′i = qi for i = 1, . . . ,n.

Proof By induction on n. We assume that there exists a tuple of constants C̃ =(C1,C2,
. . . ,Cn) that do not occur in p̃ = (p1, p2, . . . , pn).

For n = 1, we choose q1 =C1, and we close this new constant with the definition
C1

.
= p1{C1/x1}, and so the result follows immediately using axiom R2. This solution

is unique: if E ` r1 = p1{r1/x1}, since C1
.
= p1{C1/x1}, by axiom R3 we get E `

C1 = r1.
Now assume a tuple p̃ = (p1, p2, . . . , pn) and the term pn+1, so that they are all

open on X̃ = (x1,x2, . . . ,xn) and the additional xn+1. Assume, w.l.o.g., that xn+1 oc-
curs in pn+1. First, define Cn+1

.
= pn+1{Cn+1/xn+1}, so that this new constant Cn+1

is now open on X̃ only. Therefore, also for i = 1, . . . ,n, each pi{Cn+1/xn+1} is now
open on X̃ only. Thus, we are now able to use induction on X̃ and (p1{Cn+1/xn+1},
. . . , pn{Cn+1/xn+1}), to conclude that there exists a tuple q̃=(q1,q2, . . . ,qn) of closed
sequential BPP terms such that

E ` qi = (pi{Cn+1/xn+1}){q̃/X̃}= pi{q̃/X̃ ,Cn+1{q̃/X̃}/xn+1} for i= 1, . . . ,n.
Note that above by Cn+1{q̃/X̃} we have implicitly closed the definition of Cn+1 as
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Cn+1
.
= pn+1{Cn+1/xn+1}{q̃/X̃}= pn+1{q̃/X̃}{Cn+1/xn+1},

so that Cn+1 can be chosen as qn+1. By axiom R2, E `Cn+1 = pn+1{q̃/X̃}{Cn+1/xn+1},
as required.

Unicity of the tuple (q̃,qn+1) can be proved by using axiom R3. Assume to have
another solution tuple (q̃′,q′n+1). This means that

E ` q′i = pi{q̃′/X̃ ,q′n+1/xn+1} for i = 1, . . . ,n+1.
By induction, we can assume that E ` qi = q′i, for i = 1, . . . ,n.

Since E `Cn+1 = pn+1{q̃/X̃}{Cn+1/xn+1}, by substitutivity, we get
E `Cn+1 = pn+1{q̃′/X̃}{Cn+1/xn+1}.

Let F be a constant defined as F .
= pn+1{q̃′/X̃}{F/xn+1}. Then, by axiom R3, E `

F =Cn+1. Hence, since E ` q′n+1 = pn+1{q̃′/X̃}{q′n+1/xn+1}, by axiom R3, we get
E ` F = q′n+1; so the thesis E `Cn+1 = q′n+1 by transitivity. 2

Proposition 22 (Equational characterization) For each p ∈Pseq
BPP (p 6= 0), there

exists a set {p1, p2, . . . , pk} ⊆Pseq
BPP such that k≥ 1, E ` p = p1 and, for i = 1, . . . ,k,

E ` pi = p′i where p′i can be either 0+ 0 or ∑
n(i)
j=1 ai j.qi j (with n(i) ≥ 1) such that

dom(dec(qi j))⊆ {p1, p2, . . . , pk}.

Proof By induction on the syntactic definition of p. Actually, induction is on the pair
(p, I), where I is a set of constants, initially empty: the proof starts with the pair
(p, /0). In all the cases, except for the case of process constants, the parameter I is
omitted for the sake of simplicity.

If p = µ.q, then let dec(q) = k1 · r1⊕k2 · r2⊕ . . .⊕kh · rh. If h = 0, then E ` q = 0
and the thesis follows trivially by choosing p1 = µ.0 = p′1. Otherwise, by induction,
for each j = 1, . . . ,h, there exist {r j

1, . . .r
j
l j
}⊆Pseq

BPP such that E ` r j = r j
1, E ` r j

i = s j
i

for i = 1, . . . , l j, where s j
i can be either 0+ 0 or a sumform ∑

n j(i)
h=1 aih.t

j
ih such that

dom(dec(t j
ih)) ⊆ {r

j
1, . . .r

j
l j
}. We can choose p1 = µ.t, where t is a term such that

dec(t) = k1 · r1
1⊕ k2 · r2

1⊕ . . .⊕ kh · rh
1; indeed, E ` p = p1 via axioms P1-P3 and by

substitutivity. Moreover, the set of sequential processes is {p1}∪{r1
1, . . .r

1
l1
}∪ . . .∪

{rh
1, . . .r

h
lh
}. Since for each r j

i there is already a suitable s j
i , it remains to define p′1,

which is p′1 = µ.t.
If p = r1 + r2, then, in case r1 = 0 = r2, take p1 = 0 + 0 = p′1. In case r1 6=

0 = r2, then, by induction there exist {r1
1, . . .r

1
k1
} such that E ` r1 = r1

1, and for i =

1, . . . ,k1, E ` r1
i = s1

i , where s1
i can be either 0+0 or a sumform ∑

n1(i)
h=1 aih.t1

ih such that
dom(dec(t1

ih))⊆ {r1
1, . . .r

1
k1
}. We can take p1 = r1

1 +0 and p′1 = s1
1, with E ` p = p1

by substitutivity, and E ` p1 = p′1 by substitutivity and axiom A3; the other terms
are {r1

2, . . .r
1
k1
}, with their corresponding {s1

2, . . .s
1
k1
}. Symmetrically in case r1 =

0 6= r2. Otherwise (i.e., when r1 6= 0 6= r2), by induction there exist {r1
1, . . .r

1
k1
} and

{r2
1, . . .r

2
k2
}, such that E ` r1 = r1

1, E ` r2 = r2
1, and (for j = 1,2) E ` r j

i = s j
i , where s j

i

can be either 0+0 or a sumform ∑
n j(i)
h=1 aih.t

j
ih such that dom(dec(t j

ih))⊆ {r
j
1, . . .r

j
k j
}.

We can take p1 = r1
1 + r2

1 so that the set is {p1}∪ {r1
1, . . .r

1
k1
}∪ {r2

1, . . .r
2
k2
}. Since

for each r j
i there is already a suitable s j

i , it remains to define p′1. If s1
1 is 0+ 0 and
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s2
1 is 0+ 0, then p′1 = 0+ 0 (by axiom A4). If s1

1 is 0+ 0 and s2
1 = ∑

n2(1)
j=1 a1 j.t2

1 j,

then p′1 = s2
1 (by axioms A1-A3). Symmetrically, if s2

1 is 0+0 and s1
1 = ∑

n1(1)
j=1 a1 j.t1

1 j,

then p′1 = s1
1 (by axioms A1-A3). If s1

1 = ∑
n1(1)
j=1 a1 j.t1

1 j and s2
1 = ∑

n2(1)
j=1 a′1 j.t

2
1 j, then

p′1 = ∑
n1(1)
j=1 a1 j.t1

1 j +∑
n2(1)
j=1 a′1 j.t

2
1 j.

In case p = C, we have to consider the second parameter I: if (C, I) is such that
C ∈ I, then we have that p1 =C and p′1 = 0+0. If C 6∈ I and C .

= r, then we have to
distinguish two subcases:

(i) If r = 0, then p1 =C and p′1 = 0+0, with E ` p1 = p′1 by axiom R1.
(ii) If r 6= 0, by induction on (r, I∪{C}), we know that for r there exist k≥ 1 and

{r1, . . . ,rk} such that E ` r = r1 and for i = 1, . . . ,k, E ` ri = r′i where r′i can be either
0+ 0 or a sumform ∑

n(i)
j=1 ai j.ti j such that dom(dec(ti j)) ⊆ {r1,r2, . . . ,rk}. Note that

E ` C = r′1, because E ` r = r1, E ` r1 = r′1 and, by axiom R2, E ` C = r. If r′1 is
0+0, then k = 1 and p1 =C and p′1 = 0+0. If r′1 is ∑

n(1)
j=1 a1 j.ti j, then, p1 =C and for

i = 1, . . . ,k, pi+1 = ri and, moreover, p′1 = r′1 and p′i+1 = r′i if ri 6=C, while p′i+1 = r′1
otherwise. 2

Example 16 To illustrate how induction works in the proof of the proposition above,
consider the constant C .

= a.C+ 0. We have to start with (C, /0), whose solution re-
quires to consider (a.C + 0,{C}), in turn requiring to consider (a.C,{C}), in turn
(C,{C}), which is the base of the induction. As C ∈ {C}, we have that for (C,{C})
the required terms are p1 =C and p′1 = 0+0. Now we can compute the terms associ-
ated with (a.C,{C}), which are: p1 = a.C, p′1 = a.C, p2 =C, p′2 = 0+0. So, now we
can compute the terms for (a.C+0,{C}), which are: p1 = a.C+0, p′1 = a.C, p2 =C,
p′2 = 0+0. Finally, (C, /0) has these terms: p1 =C, p′1 = a.C, p2 = a.C+0, p′2 = a.C,
p3 =C and p′3 = a.C. Of course, p3 is redundant and the required set is {C,a.C+0},
with their associated a.C. 2

Proposition 23 (Completeness for sequential terms)
For each p, p′ ∈Pseq

BPP, if p∼ p′ (or p = 0 = p′), then E ` p = p′.

Proof If p = 0 = p′, then E ` p = p′ by reflexivity. Otherwise, by Proposition 22, we
have that there exists a set {p1, p2, . . . , pk} of sequential processes such that E ` p =
p1, and there exist r1,r2, . . . ,rk such that, for i = 1, . . . ,k, E ` pi = ri and ri is either
0+0 or a sumform ∑

n(i)
j=1 ai j.ti j such that dom(dec(ti j))⊆ {p1, p2, . . . , pk}.

Similarly, there exists a set {p′1, p′2, . . . , p′h} of sequential processes such that E `
p′ = p′1, and there exist r′1,r

′
2, . . . ,r

′
h such that, for i = 1, . . . ,h, E ` p′i = r′i and r′i is

either 0+0 or a sumform ∑
n′(i)
j=1 a′i j.t

′
i j such that dom(dec(t ′i j))⊆ {p′1, p′2, . . . , p′h}.

By Theorem 9, we have that p ∼ p1 ∼ r1 and p′ ∼ p′1 ∼ r′1; as by hypothesis
p∼ p′, by transitivity we have that p1 ∼ p′1 and r1 ∼ r′1.

If r1 = 0+0, then also r′1 = 0+0, and so E ` r1 = r′1 by reflexivity and E ` p = p′

by transitivity. Otherwise, let r1 = ∑
n(1)
j=1 a1 j.t1 j and r′1 = ∑

n′(1)
j=1 a′1 j.t

′
1 j.

Now, let I = {(i, i′)
∣∣ pi ∼ p′i′}. Clearly, (1,1) ∈ I. Since pi and p′i′ are team

bisimilar when (i, i′) ∈ I, the following hold: for each (i, i′) ∈ I, there exists a to-
tal surjective relation Jii′ between {1,2, . . .n(i)} and {1,2, . . .n′(i′)} given by Jii′ =
{( j, j′)

∣∣ ai j = a′i′ j′ ∧ (dec(ti j),dec(t ′i′ j′)) ∈ I⊕}, where (dec(ti j),dec(t ′i′ j′)) ∈ I⊕ if
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• dec(ti j) = pd(i, j,1)⊕ pd(i, j,2)⊕ . . .⊕ pd(i, j,n) such that 1≤ d(i, j,l) ≤ k for l = 1, . . . ,n;
• dec(t ′i′ j′) = p′d′

(i′, j′,1)
⊕ p′d′

(i′, j′,2)
⊕ . . .⊕ p′d′

(i′, j′,n)
, such that 1 ≤ d′(i′, j′,l) ≤ h for l =

1, . . . ,n; and
• (d(i, j,l),d′(i′, j′,l)) ∈ I for l = 1, . . . ,n. (If n = 0, then (θ ,θ) ∈ I⊕).

Now, for each (i, i′) ∈ I, let us consider the variables xii′ and the open term

vii′ = ∑
( j, j′)∈Jii′

ai j.(xd(i, j,1)d
′
(i′, j′,1)

|xd(i, j,2)d
′
(i′, j′,2)

| . . . |xd(i, j,n)d
′
(i′, j′,n)

)

where, if Jii′ = /0, then vii′ = 0+ 0, while in case dec(ti j) = dec(t ′i′ j′) = θ , the open
parallel process

xd(i, j,1)d
′
(i′, j′,1)

|xd(i, j,2)d
′
(i′, j′,2)

| . . . |xd(i, j,n)d
′
(i′, j′,n)

is actually 0. By Proposition 21, for each (i, i′)∈ I, there exists sii′ such that E ` sii′ =
vii′{s̃/X̃}, where s̃ denotes the tuple of terms of the form sii′ for each (i, i′) ∈ I, and X̃
denotes the tuple of variables xii′ for each (i, i′) ∈ I.

If we close each vii′ by replacing each xd(i, j,l)d
′
(i′, j′,l)

with pd(i, j,l) , we get

∑
( j, j′)∈Jii′

ai j.(pd(i, j,1) | pd(i, j,2) | . . . | pd(i, j,n))

which is equal, up to axioms P1-P3, to ∑( j, j′)∈Jii′
ai j.ti j, in turn equal, via axioms A1-

A4, to ri: in fact, Jii′ is surjective so that the two summations differ only for possible
repeated summands. Since E ` pi = ri for i = 1, . . . ,k, we get that

E ` ri = ∑( j, j′)∈Jii′
ai j.(rd(i, j,1) |rd(i, j,2) | . . . |rd(i, j,n)).

Therefore, we note that ri is such that E ` ri = vii′{r̃/X̃} and so, by Proposition 21,
we have that E ` sii′ = ri. Since (1,1) ∈ I, we have that E ` s11 = r1.

Similarly, if we close each vii′ by replacing each xd(i, j,l)d
′
(i′, j′,l)

with p′d′
(i′, j′,l)

, we get

∑
( j, j′)∈Jii′

ai j.(p′d′
(i′, j′,1)

| p′d′
(i′, j′,2)

| . . . | p′d′
(i′, j′,n)

)

which is equal, up to axioms P1-P3, to ∑( j, j′)∈Jii′
ai j.t ′i′ j′ , in turn equal, via axioms

A1-A4, to r′i′ : in fact, Jii′ is surjective so that the two summations differ only for
possible repeated summands. Since E ` p′i = r′i for i = 1, . . . ,h, we get that

E ` r′i′ = ∑( j, j′)∈Jii′
ai j.(r′d′

(i′, j′,1)
|r′d′

(i′, j′,2)
| . . . |r′d′

(i′, j′,n)
).

Thus, we note that r′i′ is such that E ` r′i′ = vii′{r̃′/X̃} and so, by Proposition 21, we
have that E ` sii′ = r′i′ . Since (1,1) ∈ I, we have that E ` s11 = r′1; by transitivity, it
follows that E ` r1 = r′1, and so that E ` p = p′. 2

Theorem 10 (Completeness) For every p,q ∈PBPP, if p∼⊕ q, then E ` p = q.

Proof The proof is by induction on the size of dec(p). If |dec(p)|= 0, then dec(p) =
θ ; as p∼⊕ q, necessarily also dec(q) = θ . By observing the definition of the decom-
position function in Table 2, this is possible only if p and q are either 0 or a parallel
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composition of 0’s, e.g., 0 |0; hence, E ` p = 0 and E ` q = 0, possibly using ax-
ioms P1-P3; hence, by transitivity we get E ` p = q. If |dec(p)| = k+ 1, then there
exist p1 and p2 such that dec(p) = p1⊕dec(p2). As p ∼⊕ q, there exist q1,q2 such
that dec(q) = q1⊕ dec(q2), p1 ∼ q1 and dec(p2) ∼⊕ dec(q2). By the definition of
the decomposition function and by axioms P1-P3, this means that E ` p = p1 | p2
and E ` q = q1 |q2. By Proposition 23 we have that E ` p1 = q1. By induction, we
have that E ` p2 = q2. By substitutivity we get E ` p1 | p2 = q1 |q2 and so the thesis
follows by transitivity. 2

7 Conclusion, Related Literature and Future Research

Team bisimulation equivalence is a truly concurrent equivalence which seems the
most natural, intuitive and simple extension of LTS bisimulation equivalence to BPP
nets. It also has a very low complexity: indeed, ∼ can be computed in O(m · p2 ·
log (n+1)) time, where m is the number of net transitions, p is the size of the largest

post-set (i.e., p is the least natural such that |t•| ≤ p for all t) and n is the number of
places; after having computed ∼, checking whether two markings of size k are team
bisimilar can be done in O(k2) (according to Algorithm 1) or in O(n) (according
to the algorithm in [45], cf. Remark 5). As, in order to perform team bisimulation
equivalence checking, there is no need to compute the LTSs of the global behavior
of the systems under scrutiny, our proposal seems a natural solution to solving the
state-space explosion problem for BPP nets.

Moreover, team bisimilarity is intuitively appealing as it coincides with strong
place bisimilarity [4,5], which on BPP nets is coarser than the branching-time se-
mantics of isomorphism of (nondeterministic) occurrence nets (or unfoldings) [26]
and finer than the linear-time semantics of isomorphism of causal (or determinis-
tic occurrence) nets [6,50]. Moreover, in the companion paper [35] we prove that
for BPP nets team bisimulation equivalence coincides with a notion of bisimulation
on causal nets, called causal-net bisimulation (inspired to [29]), and with a slight
strengthening of history-preserving bisimilarity [55,18,27] (which on nets takes the
form of so-called fully concurrent bisimilarity [7]) which requires additionally that
whenever two markings are related they must have the same size. Hence, team bisim-
ulation equivalence does respect the causal behavior of BPP nets.

Concrete semantics, such as team bisimilarity, which observe also the structure
of the distributed state are resource aware, and so potentially more useful in practical
applications. For instance, the security paper [36] shows that an illegal information
flow cannot be detected if the low user cannot observe the structure of the state.

Our approach is based on an intuition very similar to [23,24], where Fröschle
extends the unique decomposition idea, originally proposed in [48] for interleav-
ing bisimilarity over finite BPP (i.e., BPP without constants/recursion), to a truly-
concurrent setting. She proposes to consider the decomposition of a truly-concurrent
semantic model (e.g., 1-safe P/T net, or asynchronous transition system [59]) so that
it can be dissected into independent ‘chunks of behaviour’. She introduces the corre-
sponding concept of ‘decomposition into independent components’: in order to check
whether two systems P and Q are equivalent, one can check whether there is a one-
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to-one correspondence between the independent components of P and those of Q
such that related components are equivalent. By means of this approach, she was
able to prove that history-preserving bisimilarity [55,18,27] and hereditary history-
preserving bisimilarity [10,41] coincide on SBPP (while this is not the case on full
BPP). Moreover, on SBPP she proved, in joint work with her co-workers, in [25], by
using an event structure [58] semantics, that history-preserving bisimilarity (which
on nets takes the form of fully concurrent bisimilarity [7]) is decidable with time
complexity O(n3 · log n), where n is a measure of the size of the involved SBPP
terms; therefore, the time complexity for hpb on SBPP is roughly comparable with
the complexity of team bisimilarity on BPP nets.1 In the companion paper [35] we
show that our definition of team bisimulation can be weakened to h-team bisimilarity,
an equivalence which coincides with history-preserving bisimilarity on BPP, with a
time complexity similar to that of team bisimilarity.

Since BPP (with guarded summation and guarded constants) is the process alge-
bra representing, up to net isomorphism, all the possible BPP nets [32], it would also
be interesting to compare team bisimulation equivalence with other non-interleaving
equivalences proposed on process algebras, such as distributed bisimilarity [14], per-
formance bisimilarity [30], location bisimilarity [15] or causal bisimilarity [17] (the
latter being equivalent to history-preserving bisimilarity [55,18,27]; hpb, for short).
All these non-interleaving equivalences do coincide on SBPP [2,22,44]. As discussed
above, team bisimulation equivalence coincides with strong place bisimilarity, which
is finer than than hpb. Hence, team bisimulation equivalence is finer than all of these
non-interleaving behavioral equivalences; the inclusion is strict: for instance, let C
be a process constant with empty body, C .

= 0; then the two terms a.0 and a.0 |C are
causal bisimilar, but they generate two markings of different size, and so they are not
related by team bisimulation equivalence (see also Example 9).

This research is a generalization of our previous paper [33], where we approached
the same problem for a simpler class of finite Petri nets, called finite-state machines
[52,32], a class of nets whose transitions have singleton pre-set (as for BPP) and
singleton post-set, so that the set of reachable markings is always finite. The main
problem we had to face here was related to the more complex nature of post-sets
for BPP nets, so that classic bisimulation, which is enough to deal with finite-state
machines, has to be properly generalized to team bisimulation. In this paper, we have
defined the theory of team bisimulation, including its fixpoint characterization and
the definition of the “up-to” proof technique.

Team bisimulation equivalence is characterized by a very simple and natural
modal logic, namely TML, extending conservatively Hennessy-Milner Logic (HML)
[37,3]. TML is also an extension of BTML (Basic TML), we defined in [33] in order
to characterize team equivalence over finite-state machines. TML parallel composi-
tion operator ⊗ on formulae reminds the spatial operator of Caires’ and Cardelli’s
spatial logic [13], also used on spatial transition systems in, e.g., [1]. More complex
modal logics characterizing some non-interleaving equivalences have been proposed

1However, we note that this value n is strictly larger than the size of the corresponding BPP net. In fact,
in [25] the size of a BPP term p is defined as “the total number of occurrences of symbols (including paren-
theses)”, where p is defined by means of a non-ambiguous, concrete syntax. For instance, p = (a.0) |(a.0)
has size 11, while the net semantics for p generates one place and one transition (and 2 tokens).
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in, e.g., [11,9]. A possible future work is to extend TML to become a temporal logic,
with least and greatest fixpoint operators, as in Kozen’s modal mu-calculus [43].

The set of axioms in Table 4 we have provided for axiomatizing team bisimilarity
over BPP (with guarded summation and guarded recursion) is the same set we first
outlined in our previous paper [34], where we proved that exactly this set constitutes
also a finite, sound and complete, axiomatization for team equivalence of the pro-
cess algebra CFM, which truly represents the class of finite-state machines [32]. This
is not surprising, because BPP and CFM have exactly the same algebraic operators,
the only difference being that, in the action prefixing operator, an action may prefix
only a sequential process in CFM, while it may prefix a parallel process in BPP. Our
axiomatization, and the proof techniques we adopted to prove its completeness, are
based on [46], where Milner provided a finite axiomatization of interleaving bisim-
ilarity for finite-state CCS; nonetheless, our technical treatment, based on constants
defined over guarded processes (e.g., C .

= a.C) rather than on the recursive operator
(with possible unguarded variables; e.g. f ixX .(a.X +X)), is simpler than that.

In the literature there are only few examples of finite axiomatizations for truly-
concurrent equivalences. In [16] distributed bisimilarity [14] is axiomatized for SBPP,
and in [24] hereditary history-preserving bisimilarity [10,41] is axiomatized for full
BPP with a sequent-based approach. These two finite axiomatizations are actually
sound and complete also for history-preserving bisimilarity (hpb, for short), as on
SBPP these two behavioral equivalences coincide with hpb [2,22]. Our axiomatiza-
tion can be adapted to offer an alternative finite axiomatization of hpb for BPP (with
guarded summation and guarded recursion): it is enough to remove the side-condition
x 6= 0 in axioms A3-A4, to drop axiom R1 and to remove the premise p 6= 0 in the
conditional axiom R2. A formal proof of this fact is described in the forthcoming pa-
per [35]. This explains the essence of the difference between these two equivalences:
hpb is slightly coarser than team bisimulation equivalence because only the former
may relate markings with different size where, however, the possible additional com-
ponents are all stuck. Moreover, to get the axiomatization for the linear-time versions
of team bisimulation equivalence and history-preserving bisimilarity for BPP with
guarded summation, we conjecture that it is enough to add the distributivity axiom:
µ.(x+ y) = µ.x+µ.y.

Finally, a possible extension of this work is about BPP nets with silent moves:
weak team bisimulation and branching team bisimulation can be defined, taking in-
spiration from the definitions of weak bisimulation [47] and branching bisimulation
[28] over LTSs.
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version of this paper.
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Rüdiger Olderog on the Occasion of His 60th Birthday, LNCS 9360, Springer (2015)
50. E.R. Olderog, Nets, Terms and Formulas, Cambridge Tracts in Theoretical Computer Science 23,

Cambridge University Press (1991)
51. D.M.R. Park, Concurrency and Automata on Infinite Sequences, In Proc. 5th GI-Conference on

Theoretical Computer Science, LNCS 104, 167-183, Springer (1981)
52. J.L. Peterson, Petri Net Theory and the Modeling of Systems, Prentice-Hall (1981)
53. L. Pomello, G. Rozenberg, C. Simone, A Survey of Equivalence Notions for Net Based Systems, in

Advances in Petri Nets: The DEMON Project, LNCS 609, 410-472, Springer (1992)
54. R. Paige, R.E. Tarjan, Three Partition Refinement Algorithms, SIAM Journal of Computing 16(6):973-

989 (1987)
55. A. Rabinovich, B.A. Trakhtenbrot, Behavior Structures and Nets, Fundamenta Informaticae

11(4):357-404 (1988)
56. W. Reisig, Understanding Petri Nets: Modeling Techniques, Analysis Methods, Case Studies, Springer

(2013)
57. D. Sangiorgi, An Introduction to Bisimulation and Coinduction, Cambridge University Press (2012)
58. G. Winskel, Event Structures, Advances in Petri Nets, Part II, Proceedings of an Advanced Course,

Bad Honnef, 1986, LNCS 255, 325-392, Springer (1987)
59. G. Winskel, M. Nielsen, Models for Concurrency, Handbook of Logic in Computer Science, Vol. 4,

1-148, Oxford Univ. Press (1995)


	Copertina_postprint_IRIS_UNIBO (2) - Copy
	final-team.pdf

