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Abstract

We study existence and multiplicity of radial ground states for the
scalar curvature equation

∆u + K(|x|)u
n+2
n−2 = 0, x ∈ Rn , n > 2,

when the function K : R+ → R+ is bounded above and below by two
positive constants, i.e. 0 < K ≤ K(r) ≤ K for every r > 0, it is decreasing
in (0, 1) and increasing in (1,+∞). Chen and Lin in [9] had shown the
existence of a large number of bubble tower solutions if K is a sufficiently
small perturbation of a positive constant. Our main purpose is to improve
such a result by considering a non-perturbative situation: we are able to
prove multiplicity assuming that the ratio K/K is smaller than some
computable values.
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Marche, Via Brecce Bianche 1, 60131 Ancona - Italy. email: franca@dipmat.univpm.it Par-
tially supported by the GNAMPA project “Sistemi dinamici, metodi topologici e applicazioni
all’analisi nonlineare”.
‡Dipartimento di Ingegneria Industriale e Scienze Matematiche, Università Politecnica delle
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1 Introduction

This paper is devoted to the study of existence and multiplicity of positive
solutions for the scalar curvature equation

∆u+K(|x|)u
n+2
n−2 = 0, (1.1)

where x ∈ Rn, n > 2, and K is a reciprocally symmetric, bounded, positive,
continuous function, C1 for r = |x| > 0. The main purpose is to ensure the
multiplicity of positive entire solutions which decay at infinity like |x|2−n (i.e.
fast decay solutions), when

K decreases in (0, 1) and K increases in (1,∞). (1.2)

According to [3, Theorem 1], [5, Theorem 2], we know that assumption (1.2)
guarantees that each solution of (1.1) is radially symmetric about the origin.
Therefore, it is not restrictive to concentrate on radial solutions of (1.1), by
considering the equivalent singular O.D.E.

(u′ rn−1)′ +K(r) rn−1 u
n+2
n−2 = 0 , r ∈ (0,∞), (1.3)

where “ ′ ” denotes the differentiation with respect to r = |x|, and, with a slight
abuse of notation, u(r) = u(x).
The solutions of (1.3) can be classified according to their asymptotic behaviour
at zero and at infinity. More precisely, a solution u(r) of (1.3) is called regular
if u(0) = d and u′(0) = 0 and it will be denoted by u(r; d), and singular if
limr→0u(r) = ±∞; similarly, u(r) is a fast decay solution if limr→∞u(r)rn−2 =
c, and a slow decay solution if limr→∞u(r)rn−2 = ±∞.
Moreover, we say that u(r) is a ground state (G.S.) if it is a positive regular
solution of (1.3) such that limr→∞ u(r) = 0; we say that u(r) is a singular ground
state (S.G.S.) if it is a positive singular solution of (1.3), which is defined for
any r > 0 and satisfies limr→∞ u(r) = 0. It is easy to show that G.S. and S.G.S.
are decreasing, see Remark 2.5.

Equation (1.1) and its generalizations have attracted the attention of several
different authors giving rise to a huge literature on the topic, both for its intrinsic
mathematical interest and for its relevance in application. In fact equation (1.1)
is known as scalar curvature equation since the existence of G.S. with f.d. is
equivalent to the existence of a metric in Rn conformally equivalent to the
Euclidean metric and which has scalar curvature K, see e.g. [6, 9, 14] for more
details.

Furthermore, equation (1.1) finds application in astrophysics for particular
type of K: a significant example is given by the Matukuma equation where u
represents the gravitational potential in a globular cluster (cf., among others,
[1, 11, 40]). Finally, it can be used to study the stationary states for a nonlinear
Schroedinger equation in quantum mechanic and for a reaction diffusion equa-
tion in chemistry. In most of the applications, positivity is crucial and the fast
decay is needed to deal with physically relevant solutions.

In the 80s it was realized that the Pohozaev function P (r) =
∫ r

0
K ′(s)sn−1ds

plays a key role in determining the structure of positive solutions of (1.3). No
G.S. with fast decay can exist if P (r) has constant sign, so, in particular, when
K is monotone (but non constant), see [32, 14, 28, 26]; while there are many



3

different existence results when P (r) changes sign. The situation is simpler if
P (r) is positive for r small and negative for r large, in particular when K(r)
has a maximum, see e.g. [28, 29, 6, 11, 7, 38, 39]. More in detail, the existence
of a radial G.S. with fast decay was proved requiring that

K(r) = A0r
δ0+A1r

δ1 as r → 0, K(r) = B0r
−η0+B1r

−η1 as r →∞, (1.4)

where A0, B0, δ0, η0 are positive constants, δ1 > δ0, η1 > η0, see [11, 28, 38, 39].
Results are also available when δ0 = η0 = 0 and Ai, Bi, δ1, η1 are positive,
see e.g. [6, 7, 29, 39]. We emphasize that under assumption (1.4) a complete
classification of both regular [27, 37, 40] and singular solutions [13] is available,
and the uniqueness of radial G.S. with fast decay is guaranteed whenever the
unique critical point of K is a maximum. More precisely, if K(r) satisfies (1.4)
with Ai, Bi, δi, ηi ≥ 0, and rK ′/K is decreasing, then there is a unique d∗ > 0
such that u(r; d) is a G.S. with slow decay if 0 < d < d∗, it is a G.S. with fast
decay if d = d∗ and it has a positive zero if d > d∗, see in particular [27, 37, 40]
concerning the uniqueness of d∗. Furthermore, there are uncountably many
radial S.G.S. with slow decay and uncountably many radial S.G.S. with fast
decay. Nowadays, also nodal solutions are classified [31, 13], and many results
have been extended to a p-Laplace context [24, 17, 18]. We remark that the
presence of a local maximum allows existence and multiplicity of non-radial
positive solutions of (1.1), cf. [33] and [35], respectively.

However, there is a striking difference in the structure of radial positive
solutions between the case in which K admits a unique maximum and the
case in which it admits a unique minimum. As observed above, in the former
(and easier) case we could have a unique G.S. with fast decay of (1.3), and a
complete classification of the solutions. In the latter (and more complicated)
situation, we range from a large number of G.S. with fast decay to non-existence
results, see e.g. [6] for non-existence, [6, 7] for existence, and [1, 20, 21] for both
multiplicity and non-existence results in the case where K is an unbounded
function satisfying K(r) ∼ rδ as r → 0 and K(r) ∼ rη as r → +∞, with
δ < 0 < η. Partial structure results have been achieved, cf. [20].

Similarly, for K(r) varying between two positive constants the situation is
delicate and quite complicated: non-existence results as well as existence of
non-radial solutions for (1.1) can be achieved, cf. [7, Theorem 0.4] and [4],
respectively.

In the 90s it was noticed that multiplicity results could be produced requiring
several sign changes in the Pohozaev function, namely asking the function K to
have many critical points, under the additional assumption that K is either a
regular or a singular perturbation of a constant, i.e.

K(|x|) = 1 + εk(|x|) , 0 < k(|x|) < 1, (1.5)

K(|x|) = k(|x|ε) , k(|x|) bounded, (1.6)

see [25, 2]. Some further results in this direction are contained in [8, 36].
Chen and Lin in [9] noticed that if K(|x|) has a critical point but it is a

minimum, uniqueness of the G.S. might be lost. They considered K(|x|) as in
(1.5) and assume the following

(K0) K(r) = K
(

1
r

)
for any 0 < r ≤ 1;

(K1) K ′(r) ≤ 0 for any r ∈ (0, 1), but K ′(r) 6≡ 0 ;
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(K2) K(r) = K(0)−Arl + h(r) where

A > 0, 0 < l <
n− 2

2
, lim

r→0
|h(r)|r−l + |h′(r)|r−l+1 = 0.

Theorem A. [9, Theorem 1.1] Assume that K satisfies (1.5) and (K0)-
(K1)-(K2), then for any ` ∈ N there exists a ε` > 0 such that for every ε ∈
(0, ε`) equation (1.3) admits at least ` G.S. with fast decay u1, . . . , u`, where the

function uj(r)r
n−2

2 has j local maxima and (j − 1) local minima.

Lin and Liu in [30] obtained a similar result, again in a perturbative setting
for K of the form (1.5), removing the technical symmetry assumption (K0), but
requiring condition (K2) with a more restrictive smallness assumption on the
parameter l. The same conclusion as in Theorem A was also obtained in [15] for
K of the form (1.6), just requiring that K has a (possibly degenerate) positive
minimum. As far as we are aware, [9, 30, 15] are the only papers obtaining
multiplicity of G.S. with fast decay for (1.3) with a unique positive minimum of
K.

The main purpose of this article is to extend the perturbative result of [9] to
a non-perturbative situation. To this aim, we give a new argument to reprove
Theorem A which furnishes a precise estimate on how small ε` should be, and
we show that ε` need not be too small.

Theorem 1.1. All the constants ε` in Theorem A can be explicitely com-
puted. In particular, we can find the following approximations from below:

n ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε8

3 2 0.910 0.584 0.429 0.339 0.280 0.238 0.207
4 1 0.5 0.333 0.25 0.2 0.166 0.142 0.125
5 0.666 0.347 0.235 0.178 0.143 0.119 0.103 0.090
6 0.5 0.266 0.182 0.138 0.111 0.093 0.080 0.070

(1.7)

Moreover, the explicit expression of the first two constants is

ε1 =
2

n− 2
, ε2 =

2

n

[(
n

n− 2

)n−2
2

− 1

]−1

, (1.8)

and ε3 solves the equation

[X q(ε3) +W(ε3)]
2
q = X 2(ε3) +

2

q
W(ε3) ,

where

X (ε3) =

(
q

2(ε3 + 1)

) 1
q−2

, W(ε3) = 1 +
1

ε3

(
1− q

2

)
, q =

2n

n− 2
.

Finally, if the dimension is n = 4, we have ε` =
1

`
for every positive integer `.

We wish to remark that conditions (K1) and (K2) are crucial to obtain multi-
plicity results, but they can be weakened or overlooked when dealing with the
existence of at least a G.S. with fast decay. Condition (K0) is a technical re-
quirement which greatly simplifies the proof. The possibility of removing such
a condition will be the object of forthcoming investigations.

As a first step in our analysis we also obtain the following existence result
which does not require any integral or asymptotic condition.
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Theorem 1.2. Assume that K satisfies (K0) and (1.5) with 0 < ε ≤ ε1 := 2
n−2 ,

then equation (1.3) admits at least a G.S. with fast decay.

The symmetric condition (K0) allows to overcome the Pohozaev obstruction;
furthermore the smallness condition is again quantitative and not of perturba-
tive nature.

We emphasize that with a standard rescaling argument we can address equa-
tion (1.1) with more general bounded functions K. Indeed, let v(r) be a solution

of (1.3) where K satisfies 0 < K ≤ K(r) ≤ K < ∞, then u(r) = K(n−2)/4v(r)

solves (u′ rn−1)′ + K (r) rn−1 u
n+2
n−2 = 0, where K (r) := K−1K(r) can be writ-

ten in the form (1.5) with ε = K/K − 1. So, we have the following.

Remark 1.3. Let 0 < K ≤ K(r) ≤ K < ∞ for any r ≥ 0, then Theorems
A and 1.2 keep on holding, simply by replacing the condition 0 < ε < ε` with
K/K < 1 + ε`.

Theorems 1.1, 1.2 and Remark 1.3 can be trivially generalized to embrace
the slightly more general case of

∆u+ rσ[1 + εk(|x|)]uq(σ)−1 = 0, where q(σ) = 2 n+σ
n−2 , (1.9)

and σ > −2. Notice that in this case we cannot apply directly [5, Theorem 2],
so G.S. need not be radial.

Anyway, restricting to consider just radial G.S, we can reduce equation (1.9)
to

(u′rn−1)′ + rn−1+σ[1 + εk(|x|)]uq(σ)−1 = 0. (1.10)

Then, we can prove a slightly more general version of Theorem A which has not
appeared in literature previously, as far as we are aware.

Corollary 1.4. Theorem A continues to hold for equation (1.10) when 0 <
k(|x|) < 1. Furthermore, we can reprove Theorems 1.2 and 1.1 as well. We
stress that in the equations defining εj we must replace q = q(0) by q(σ). Conse-
quently, all the values in the table 1.7 have to be slightly modified. In particular,
we find

ε1 = q−2
2 = 2+σ

n−2 , (1.11)

ε2 = q−2
q

[(
q
2

) 2
q−2 − 1

]−1

= 2+σ
n+σ

[(
n+σ
n−2

)n−2
2+σ − 1

]−1

. (1.12)

To conclude this incomplete review of the vast literature on the problem,
we wish to draw to the reader’s attention the interesting paper [35], where Wei
and Yan prove that if K(|x|) has a positive maximum there are infinitely many
non-radial G.S. This result, together with [9, 15] and the present article, seems
to suggest that the bubble tower phenomenon occurs in presence of a critical
point of K(|x|), and it is made up by radial solutions if the critical point is a
minimum and by non-radial ones if it is a maximum.

Ours proofs are developed through basic tools of phase plane analysis af-
ter passing from (1.3) to the 2-dimensional dynamical system (2.2), via Fowler
transformation. The problem of existence of G.S. with fast decay is then trans-
lated into a problem of existence of homoclinic trajectories. Following the out-
line of [9], we perform a shooting argument, within system (2.2), from the origin
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towards the isocline ẋ = 0. The results are then obtained by combining some
barrier sets constructed in Section 3 and an asymptotic result borrowed from
[9, 10].

The paper is organized as follows. In Section 2 we introduce the Fowler
transformation and we give some preliminary results. In Section 3 we sketch
the geometrical construction on which the proof of our main results developed
in Section 4 is based. In Section 5 we compute explicitly the values of the
constants ε`. In the appendix we reprove [10, Theorem 1.6] for completeness.

2 Fowler transformation and invariant manifolds

Let us introduce a classical change of variable, known as Fowler transforma-
tion, to convert equation (1.3) into a two-dimensional dynamical system. More
precisely, by setting

x(t) = u(r)rα, y(t) = αu(r)rα + u′(r)rα+1 , (2.1)

α = n−2
2 , r = et, K(t) = K(et)

we can rewrite (1.3) as the following system:(
ẋ
ẏ

)
=

(
0 1
α2 0

)(
x
y

)
+

(
0

−K(t)xq−1

)
, (2.2)

where “ · ” denotes the differentiation with respect to t, and q = 2n
n−2 .

Remark 2.1. If we start from (1.10), we obtain system (2.2) again, but the
power q is different, i.e. q(σ) = 2 n+σ

n−2 .

We collect here some notations that will be in force throughout the whole
paper. Let Q ∈ R2, we denote by φ(t; τ,Q) the trajectory of (2.2) which
is in Q at t = τ . We denote by u(r; d) the regular solution of (1.3) such
that u(0; d) = d > 0 and u′(0; d) = 0, and by φ(t, d) = (x(t, d), y(t, d)) the
corresponding trajectory of (2.2). The origin is a critical point for (2.2) and the
linearization of (2.2) at the origin has constant positive and negative eigenvalues,
i.e. ±α; so the origin is a saddle. Moreover, from [12, §13.4], we see that the
non-autonomous system (2.2) admits unstable and stable leaves, i.e.

Wu(τ) := {Q | limt→−∞ φ(t; τ,Q) = (0, 0)} ,
W s(τ) := {Q | limt→∞ φ(t; τ,Q) = (0, 0)} . (2.3)

Namely, Wu(τ) and W s(τ) are C1 immersed one-dimensional manifolds.
Another way to construct Wu(τ) is to add the extra variable z = e$t, where

$ > 0, so that the system (2.2) can be rewritten as the equivalent autonomous
three-dimensional system ẋ

ẏ
ż

 =

 0 1 0
α2 0 0
0 0 $

 x
y
z

+

 0

−K
(

ln(z)
$

)
xq−1

0

 . (2.4)

It can be shown that if (2.4) is smooth it admits a two-dimensional unstable
manifold Wu and that

Wu(τ) = {Q ∈ R2 | (Q, z(τ)) ∈Wu}.
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This allows us to define Wu(−∞) = {Q ∈ R2 | (Q, 0) ∈ Wu}, which is the
unstable manifold of the frozen autonomous system where K ≡ K(0).

Since the flow of (2.2) is ruled by its linear part close to the origin, according
to [22, 25] and [12, §13.4], we easily deduce the following properties of the
unstable and stable leaves, respectively.

Remark 2.2. Assume that K ∈ C1 and it is bounded. Then,

u(r; d) is a regular solution ⇐⇒ φ(τ0, d) = Q ∈Wu(τ0).

Moreover, Wu(τ) is tangent in the origin to the line y = αx, for any τ ∈ R,
and it depends smoothly on τ ; i.e. let L be a segment which intersects Wu(τ0)
transversally in a point Q(τ0), then there is a neighborhood I of τ0 such that
Wu(τ) intersects L in a point Q(τ) for any τ ∈ I, and Q(τ) ∈ C1.

Furthermore, if (2.4) is smooth for z = 0 too (e.g. if (K2) holds and
0 < $ < l), the smoothness property of Wu(τ) is extended to τ0 = −∞, i.e. to
the system (2.4) restricted to z = 0, see [23, §2.2] for more details.

Similarly, fast decay solutions correspond to trajectories of W s(τ).

Remark 2.3. Assume that K ∈ C1 and it is bounded. Let φ(t; τ0,Q) be the
trajectory of (2.2) corresponding to the solution u of (1.3). Then,

u(r) is a fast decay solution ⇐⇒ φ(τ0; τ0,Q) = Q ∈W s(τ0).

Moreover, W s(τ) is tangent in the origin to the line y = −αx, for any τ ∈ R,
and it depends smoothly on τ .

We stress that the manifold Wu(τ) (as well as W s(τ)) is divided by the
origin in two connected components: one which leaves the origin and enters
x > 0, and the other that enters x < 0. Since we are just interested in positive
solutions, abusing the notation, we let Wu(τ) and W s(τ) stand for the branches
of the leaves which depart from the origin and enter in x > 0.

Remark 2.4. Assume that K ∈ C1 and it is bounded. Fix τ ∈ R, and let
Q(d) ∈Wu(τ) be such that φ(τ, d) = Q(d), for every d ≥ 0. Then, the function
Q : [0,+∞) → Wu(τ) is a smooth (bijective) parametrization of Wu(τ) and
Q(0) = (0, 0).

We refer to [13, Lemma 2.10] for the proof of Remark 2.4. Let us also notice
that, in a similar way, the stable leave W s(τ) can be parametrized directly by
c := limr→∞u(r)rn−2.

Remark 2.5. Any regular solution u(r; d) is decreasing until its first zero; so
Ground States are monotone decreasing.

For an easy proof of the remark we refer to [32, Lemma 3.7].
Assumption (K0) guarantees that K is even, i.e. K(−t) = K(t) for any t ∈ R.
Hence, if φ(t, d) = (x(t), y(t)) solves (2.2) and y(0) = 0, then x(t) is even and
y(t) is odd. Thus, we get the following.

Remark 2.6. Assume (K0). If φ(t, d) is such that x(t, d) > 0 for t ≤ 0, and
y(0, d) = 0, then u(r; d) is a monotone decreasing G.S. with fast decay.



8

To illustrate the main ideas of the proofs of Theorem 1.2 and Theorem A,
we enumerate some results which will be proved in Section 4.

Taking into account that the origin is a critical point and that Wu(τ) is
tangent in the origin to the line y = αx, we easily deduce that x(t, d) is strictly
increasing and, consequently, y(t, d) is strictly positive for t in a neighborhood
of −∞, for any d > 0.
For any ` ∈ N, ` ≥ 1 we define the sets

I` := {d > 0 | y(t, d) has at least ` zeroes for t ∈ R} . (2.5)

We denote by T1(d) and T`(d) respectively the first and the `th zero of y(t, d) =
ẋ(t, d), i.e.

T1(d) := min{t ∈ R | y(t, d) = 0} , R1(d) := eT1(d) ,
T`(d) := min{t > T`−1(d) | y(t, d) = 0} , R`(d) := eT`(d) .

(2.6)

Remark 2.7. Assume (1.5) and 0 < ε ≤ ε1. Then, there is D1 > 0 such that
R1(d) > 1 for every d ∈ (0, D1).

This Remark is proved in Section 4 as an easy consequence of Remark 4.3.
In Section 4 (Lemma 4.4) and in the Appendix we reprove for completeness

the following result, which is a consequence of [9, 10].

Proposition 2.8. [10, Theorem 1.6], [9, Lemma 2.2]. Assume (K1) and
(K2). Then, for any fixed ` ∈ N, ` ≥ 1, and for any ρ > 0 there is d` ∈ I` such
that R`(d`) < ρ.

Under very mild conditions we can show the continuity of R1(d).

Proposition 2.9. Assume (1.5) with 0 < ε ≤ ε1, then I1 = (0,+∞) and R1(d)
is continuous in I1. Furthermore, limd→+∞R1(d) = 0 and limd→0R1(d) = +∞.

Proposition 2.9 is restated in a dynamical context and proved in Section 4 as
Lemma 4.9. From Proposition 2.9 we find d∗1 > 0 such that R1(d∗1) = 1; hence,
if (K0) holds, φ(t, d∗1) is a homoclinic trajectory for (2.2) such that x(t, d) is
positive and increasing for t ≤ 0 and positive and decreasing for t ≥ 0. Then,
Theorem 1.2 immediately follows from Remark 2.6.

To prove the continuity of Rj(d) for j ≥ 2 we need to require (K1) and to
develop an articulated barrier argument which guarantees that the flow φ(t, d)
intersects the x-axis transversally.

Proposition 2.10. Assume (K1) and (1.5) with 0 < ε ≤ ε`, where ε` is the
computable constant given by Lemma 3.7 below. If Rj(d) ≤ 1, then Rj is
continuous for any j = 1, . . . , `.

Let us sketch the proof of Theorem A, see Section 4 for a full fledged argu-
ment. Fix ` ∈ N, assume (K0)-(K1)-(K2) and (1.5) with 0 < ε < ε`. According
to Proposition 2.8, Remark 2.7 and Proposition 2.10, for any j = 1, . . . , ` there
is at least a value d∗j ∈ Ij such that Rj(d

∗
j ) = 1. Hence, from Remark 2.6 we

immediately infer that φ(t, d∗j ) is a homoclinic trajectory for (2.2) such that
x(t, d∗j ) is positive for any t ∈ R and y(t, d∗j ) has exactly (2j − 1) zeroes. This
would complete the proof of Theorem A.

We emphasize that, in this paper as well as in [9], the simplicity of the zeros of
y(t, d) is crucial to obtain the continuity of the function Rj , i.e. Proposition 2.10.
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The contribution here with respect to [9] lies in the fact that the perturbative
result in [9] gives no information on the actual size of the values εj and no clue
on how to compute them.

3 Some geometrical constructions: meaning of
ε1 and definition of ε`.

Define

H(x, y, t) :=
y2

2
− α2 x

2

2
+K(t)

xq

q
, with q :=

2n

n− 2
. (3.1)

If we evaluate H along a solution (x(t), y(t)) of (2.2), we obtain the associated
Pohozaev type energy H(x(t), y(t), t), whose derivative with respect to t satisfies

d

dt
H(x(t), y(t), t) =

x(t)q

q

dK(t)

dt
. (3.2)

We immediately observe that if (K1) holds, then the function H is decreasing
along the trajectories defined on negative values of t.
Moreover, if u(r; d) is a regular solution, then the corresponding trajectory
φ(t, d) satisfies limt→−∞H(φ(t, d), t) = 0, since H(0, 0, t) ≡ 0. So, we easily get
the following lemma.

Lemma 3.1. Assume (K1). Then, H(x(t, d), y(t, d), t) < 0 for any t ≤ 0 and
d > 0.

Let us now consider the frozen autonomous system (2.2) defined by setting
K(t) ≡ 1 + c for any t ∈ R, for a certain constant c ≥ 0, i.e.(

ẋ
ẏ

)
=

(
0 1
α2 0

)(
x
y

)
+

(
0

−(c+ 1)xq−1

)
. (3.3)

We introduce the corresponding energy function

Hc(x, y) :=
y2

2
+Gc(x) , where Gc(x) = −α2 x

2

2
+ (1 + c)

xq

q
. (3.4)

Notice that if (x(t), y(t)) is a solution of (2.2), then

d

dt
Hc(x(t), y(t)) = y(t)x(t)q−1 (1 + c−K(t)) . (3.5)

System (3.3) admits a homoclinic orbit

Γc = {(x, y) | Hc(x, y) = 0 , x > 0} . (3.6)

Lemma 3.2. Assume (1.5) and (K1). Then, the trajectory φ(t, d) of system
(2.2) belongs to the region enclosed by Γ0 for every t ≤ 0 and d > 0. In
particular, x(t, d) > 0 for any t ≤ 0.

Proof. Assumption (1.5) ensures that K(t) ≥ 1 for every t ≤ 0. Thus, combining
definitions (3.1) and (3.4) with Lemma 3.1, we immediately deduce that

H0(x(t, d), y(t, d)) ≤ H(x(t, d), y(t, d), t) < 0, ∀t ≤ 0.
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Remark 3.3. The homoclinic orbit Γc1 belongs to the region enclosed by Γc2 ,
whenever c1 > c2.

System (3.3) admits a unique critical point P ∗(c) = (P ∗x (c), 0) such that
P ∗x (c) > 0, i.e.

P ∗x (c) =

(
α2

c+ 1

) 1
q−2

=

(
(n− 2)2

4(c+ 1)

)n−2
4

. (3.7)

Remark 3.4. Set Gminc := Gc(P
∗
x (c)), the minimum of Gc in the interval

[0,+∞). Fix g ∈ (Gminc , 0); then the equation Gc(x) = g admits exactly two
positive solutions x1,c(g) and x2,c(g) such that 0 < x1,c(g) < P ∗x (c) < x2,c(g).
We denote by A1(c) the unique positive solution of the equation Gc(x) = 0, i.e.

A1(c) := x2,c(0) =

(
α2q

2(c+ 1)

) 1
q−2

=
(q

2

) 1
q−2

P ∗x (c) =

(
(n− 2)n

4(c+ 1)

)n−2
4

. (3.8)

Remark 3.5. The functions x1,c(g) and x2,c(g) are, respectively, decreasing
and increasing functions with respect to the energy g ∈ (Gminc , 0]. In particular,
A1(c) = (A1(c), 0) is the right extremal of Γc.

We set ε1 = q−2
2 = 2

n−2 = 1
α , so that, from (3.7) and (3.8), we find

A1(ε1) = P ∗x (0),

P ∗x (0) ≤ A1(ε) ⇐⇒ 0 < ε ≤ ε1 .
(3.9)

We are now going to define a spiral-like path γ inside the region bounded
by Γ0, cf. Figure 1. The path γ will rotate several times around the points
P ∗(ε) and P ∗(0) provided that ε is sufficiently small, as described in Lemma
3.7 below. Such a path will allow to locate the solutions of the non-autonomous
system (2.2) satisfying (x(t), y(t))→ (0, 0) as t→ −∞, cf. Figure 2 and Lemma
4.6 below.
We emphasize that the spiral-like path γ depends on ε, but we leave this depen-
dence unsaid for simplicity. The path γ is made up by the level curves of Hε in
the half-plane {y ≥ 0} and by the level curves of H0 in the half-plane {y ≤ 0}.
The continuity of the path is guaranteed by the proper choice of the levels.

Let us introduce the curve

A1 := {(x, y) | Hε(x, y) = 0 , x > 0 , y ≥ 0} = Γε ∩ {(x, y) | y ≥ 0} , (3.10)

joining the origin to the point A1(ε) = (A1(ε), 0). We set

H1 := H0(A1) = Hε(A1)− ε

q
Aq1 = −ε

q
Aq1. (3.11)

Then, for any 0 < ε ≤ ε1 we define

A2 = {(x, y) | H0(x, y) = H1 , x > 0 , y ≤ 0} , (3.12)

and A2 = (A2, 0) as the left extremal of A2, i.e A2 = x1,0(H1).

Remark 3.6. For any 0 ≤ ε ≤ ε1, the functions A1 = A1(ε) and H1 =
H1(ε) are both continuous and decreasing, while A2 = A2(ε) is continuous and
increasing. Furthermore, A2 belongs to the region enclosed by Γε.
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Figure 1: The construction of the path γ consisting of the sets Aj .

Proof. The properties of A1(ε) and H1(ε) follow from (3.8) and (3.11). Since
H1(ε) is decreasing, from Remark 3.5 we find that A2(ε) = x1,0(H1(ε)) is in-
creasing.

Since P ∗x (ε) is descreasing, we deduce that P ∗x−A2 is a continuous decreasing
function satisfying

P ∗x (0)−A2(0) = P ∗x (0) > 0, P ∗x (ε1)−A2(ε1) = P ∗x (ε1)− P ∗x (0) < 0,

which guarantees the existence of ε2 ∈ (0, ε1) such that

A2(ε2) = P ∗x (ε2). (3.13)

(We will show in Section 5 how to compute ε2). Now, assume 0 < ε < ε2, so
that A2 < P ∗x (ε): taking into account (3.11), we set

H2 := Hε(A2) = H0(A2) +
ε

q
Aq2 = −ε

q
(Aq1 −A

q
2) < 0.

We define
A3 = {(x, y) | Hε(x, y) = H2 , x > 0 , y ≥ 0} , (3.14)

and A3 = (A3, 0) as the right extremal of A3. In particular, A3 = x2,ε(H2).
Combining Remarks 3.5 and 3.6, we deduce that H2(ε) and, consequently, A3(ε)
are both continuous and decreasing for ε ∈ (0, ε2]. Moreover, from (3.13) and
(3.9), we deduce that A3(ε2) = P ∗x (ε2) < P ∗x (0) and limε→0A3(ε) = x2,0(0) =
A1(0) > P ∗x (0), which ensures the existence of ε3 ∈ (0, ε2) such that

A3(ε3) = P ∗x (0). (3.15)

For ε < ε3 we have A3 > P ∗x (0), and we can construct the set

A4 = {(x, y) | H0(x, y) = H3 , x > 0 , y ≤ 0} ,
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where H3 := H0(A3) = Hε(A3)− ε
qA

q
3 = H2 − ε

qA
q
3 = − εq (Aq1 − A

q
2 + Aq3) < 0.

Finally, we locate the point A4 = (A4, 0) as the left extremal of A4, so that
A4 = x1,0(H3). Iterating such a procedure, we have the following lemma which
summarizes the situation, see Figure 1.

Lemma 3.7. There exists a decreasing sequence of positive values (ε`)`∈N with
the following property: for every ε < ε` we can construct the sets A1, . . . ,A` as
follows

A2i+1 = {(x, y) | Hε(x, y) = H2i , x > 0 , y ≥ 0} ,
A2i+2 = {(x, y) | H0(x, y) = H2i+1 , x > 0 , y ≤ 0} , (i ∈ N)

where H0 = 0,

Hj =
ε

q

j∑
i=1

(−1)iAqi , (3.16)

with A2i+1 = x2,ε(H2i), A2i+2 = x1,0(H2i+1). Moreover,

A2 < · · · < A2i < A2i+2 < · · · < P ∗x (ε) < P ∗x (0) <

< · · · < A2i+3 < A2i+1 < · · · < A1 . (3.17)

We can glue together the sets A1, . . . ,A` and draw a spiral-like path γ which
rotates around the points P ∗(ε) and P ∗(0).

Finally, if we choose a critical value ε = ε`, we can construct the sets
A1, . . . ,A` using the definitions above, with the only difference that A` = P ∗x (0)
if ` is odd and A` = P ∗x (ε`) if ` is even.

The function Aj = Aj(ε) is continuous and decreasing if j is odd, while it
is increasing when j is even; Hj = Hj(ε) is continuous and decreasing, and
Hj+2 < Hj.

Remark 3.8. Note that H2j+1 = H0(A2j+1) and H2j = Hε(A2j+1), which
implies that A2i+1 = x2,0(H2i+1) and A2i+2 = x1,ε(H2i+2). Finally, observe
that γ ⊆ Γε ⊂ Γ0.

The computation of the values ε` is postponed to Section 5.

4 Proofs

In the previous section we have constructed the path γ gluing together tra-
jectories of the autonomous systems (3.3). Now, we turn to consider the non-
autonomous problem (2.2). The first step is to locate the initial branch of the
unstable manifold Wu(τ): this will be enough to prove Theorem 1.2. Then, to
obtain the multiplicity result, Theorem A, we will use the set γ to control the
behaviour of the solutions of (2.2) for t ≤ 0.

Having in mind (3.4) and (3.8), we define

B1 = {(x, y) | H0(x, y) = 0 , x > 0 , y > 0} ⊂ Γ0 ,
L1 = {(x, 0) | A1(ε) ≤ x ≤ A1(0)} ,
E1 = {(x, y) | H0(x, y) ≤ 0 ≤ Hε(x, y) , x ≥ 0 , y ≥ 0} .

(4.1)

Notice that E1 is the set enclosed by Γ0 and Γε in the half-plane {y ≥ 0}.
We aim to prove the following.
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Lemma 4.1. Assume (1.5) with 0 < ε ≤ ε1. Then, for any τ ∈ R there is
ξ1(τ) = (ξ1(τ), 0) such that ξ1(τ) ∈ [Wu(τ) ∩ L1] and the connected branch
W̃u(τ) of the manifold Wu(τ) between the origin and ξ1(τ) lies in E1.

In order to prove Lemma 4.1 we need the following result.

Lemma 4.2. Assume (1.5), then the flow of (2.2) on A1 and B1 points towards
the interior of E1. Assume also 0 < ε ≤ ε1, then the flow of (2.2) on L1 points
towards the exterior of E1 for any t ∈ R. In particular, if Q ∈ L1, then
ẏ(t; t,Q) < 0.

Proof. From (3.5) and (1.5), we get

d

dt
H0(x(t), y(t)) < 0 <

d

dt
Hε(x(t), y(t)) , (4.2)

for every solution (x(t), y(t)) of (2.2) with x(t) > 0, y(t) > 0. This proves the
first assertion of the Lemma.
Assume now 0 < ε ≤ ε1 and consider a solution (x(t), y(t)) of (2.2) with
(x(t0), y(t0)) ∈ L1. Thus, from (1.5) and (3.8) we get

K(t0)x(t0)q−2 > A1(ε)q−2 =
α2q

2(ε+ 1)
≥ α2q

2(ε1 + 1)
= α2,

which implies
ẏ(t0) = x(t0)

(
α2 −K(t0)x(t0)q−2

)
< 0.

This completes the proof of the lemma.

Proof of Lemma 4.1. We just sketch the proof inspired by Ważewski’s principle;
we refer to [16, Theorem 3.3], see also [19, Lemma 3.5], [23, Lemma 6.3] for more
details.
Fix τ ∈ R. We claim that L1 ∩ Wu(τ) 6= ∅. Consider Q ∈ L1 \ Wu(τ).
Taking into account Lemma 4.2 and the absence of invariant sets in the interior
of E1, we define T (Q) as the value in (−∞, τ ] such that φ(t; τ,Q) ∈ E1 for
every t ∈ (T (Q), τ) and φ(T (Q); τ,Q) ∈ (A1 ∪ B1). Combining (4.2) with the
continuity of the flow, it is easy to check that the sets

LA := {Q ∈ L1 | φ(T (Q); τ,Q) ∈ A1} ,
LB := {Q ∈ L1 | φ(T (Q); τ,Q) ∈ B1}

are open. Furthermore, observe that (A1(ε), 0) ∈ LA and (A1(0), 0) ∈ LB; from
a connection argument it follows that there is ξ1(τ) ∈ L1, ξ1(τ) 6∈ LA ∪ LB.
Then, according to Lemma 4.2, we easily deduce that φ(t; τ, ξ1(τ)) ∈ E1 for any
t < τ , and limt→−∞φ(t; τ, ξ1(τ)) = (0, 0). Therefore, ξ1(τ) ∈ Wu(τ), which
proves the claim.

Consider a continuous path σ : [0, 1]→ R joining A1 and B1 with σ(0) ∈ A1

and σ(1) ∈ B1. We could adopt the argument above, with L1 replaced by σ,
to prove the existence of s ∈ (0, 1) such that σ(s) ∈ Wu(τ). Then, applying
Lemma 4 in [34] we conclude that the set Wu(τ) defined as in (2.3) contains a
compact connected set W̃u(τ) which contains the origin, ξ1(τ) ∈ L1 and such
that W̃u(τ) ⊂ E1. Furthermore, using the classical results in [12, §13.4], we
see that W̃u(τ) and Wu(τ) are indeed one-dimensional immersed manifolds, see
also [23, Lemma 6.5].
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Combining the previous results with Remark 2.4, we can state the following.

Remark 4.3. Assume (1.5) with 0 < ε ≤ ε1, fix τ ∈ R and let d∗(τ) > 0 be
such that φ(τ, d∗(τ)) = ξ1(τ), then φ(τ, d) ∈ W̃u(τ) for any d ≤ d∗(τ). In
fact, the map φ(τ, ·) : [0, d∗(τ)] → E1 is a smooth parametrization of W̃u(τ).
Furthermore, by construction, φ(t, d) ∈ W̃u(t) ⊂ E1 for any t ≤ τ and any
0 < d ≤ d∗(τ).

According to definition (2.6), we notice that T1(d∗(τ)) = τ , whence T1(d) > 0
for any d < D1 = d∗(0). Thus, Remark 2.7 immediately follows.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Setting τ = 0 and applying Lemma 4.1 and Remark 4.3,
we see that φ(t, d∗(0)) ∈ E1 for any t < 0. In addition, x(t, d∗(0)) > 0 and
y(t, d∗(0)) > 0 for t < 0, and y(0, d∗(0)) = 0. Thanks to assumption (K0), we
can apply Remark 2.6 to deduce that u(r; d∗(0)) is a G.S. with fast decay and
x(t, d∗(0)) has a unique critical point which is a positive maximum.

Lemma 4.4. [10, Theorem 1.6], [9, Lemma 2.2]. Assume conditions (K1)-
(K2) and fix ρ ∈ (0, 1). For any positive integer ` there is d` such that x(t, d`) >
0 and y(t, d`) has at least ` non degenerate zeroes for t < ln(ρ).

As a consequence, T`(d`) < ln(ρ) < 0.

Notice that the last assertion gives Proposition 2.8. The proof of Lemma 4.4
is far from being trivial and it is reproved in the Appendix for completeness,
following the original idea of [10, Theorem 1.6]. In fact from Proposition 2.8
we easily get the existence of a trajectory of (2.2) having the whole set Γε as
α-limit set. We emphasize that if l ≥ n−2

2 in (K2) such a trajectory does not
exist, see [10, Theorem 1.1].

We are now interested in showing the continuity of the maps T`(d) and R`(d),
defined in (2.6), since this property is crucial to prove Theorem A, as observed
in the final part of Section 2.

Lemma 4.5. Let D > 0 be such that y(t,D) has at least ` zeroes for t ∈ R, so
that T`(D) is well defined. Assume that ẏ(T`(D)) 6= 0, then the functions T`(d)
and R`(d), introduced in (2.6), are continuous in d = D.

Proof. Fix τ < T`(D). According to Remark 2.4, we set Q(D) = φ(τ,D) ∈
Wu(τ). Notice that y(T`(D); τ,Q(D)) = 0 and ẏ(T`(D); τ,Q(D)) 6= 0. We
assume that ẏ(T`(D); τ,Q(D)) > 0 (i.e. ` even); the case ẏ(T`(D); τ,Q(D)) < 0
(` odd) is analogous. Then, for every small ∆t ∈ (0, T`(D) − τ) we can find
c > 0 such that

y(T`(D)−∆t; τ,Q(D)) < −c < 0 < c < y(T`(D) + ∆t; τ,Q(D)) ,

and ẏ(t; τ,Q(D)) > 0 for any t ∈ [T`(D) −∆t, T`(D) + ∆t]. Using continuous
dependence on initial data, we can choose σ > 0 such that ‖φ(t; τ,Q(D)) −
φ(t; τ,Q)‖ < c, whenever ‖Q−Q(D)‖ < σ for every t ∈ [τ, T`(D) + ∆t]. From
Remark 2.4, for any σ > 0 we can find δ > 0 with the following property:
if |d − D| < δ, then ‖Q(d) − Q(D)‖ < σ, where Q(d) := φ(τ, d) ∈ Wu(τ).
Summing up, if |d−D| < δ we get

y(T`(D)−∆t; τ,Q(d)) < 0 < y(T`(D) + ∆t; τ,Q(d))
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Figure 2: The sets F1 and L1; F2 and L2; F3 and L3, respectively.

and we can assume ẏ(t; τ,Q(d)) > 0 for any t ∈ [T`(D)−∆t, T`(D) + ∆t], too.
Hence, T`(d) is uniquely defined and |T`(D)−T`(d)| < ∆t holds. This concludes
the proof.

We emphasize that the transversality assumption in Lemma 4.5 is not just
a technical condition: the continuity of T`(d) and R`(d) might indeed be lost
removing this condition.

In order to prove the continuity of Tj(d), we introduce some useful notation.
Let B0 = (B0, 0) = Γ0 ∩ {(x, 0) | x > 0}, i.e. B0 = A1(0). Assume

0 < ε < ε`; from Lemma 3.7 we can construct the sets Aj for j ∈ {1, . . . , `}.
Let Fj be the bounded set enclosed by Aj and the line y = 0 (see Figure 2), i.e.

F2i+1 = {(x, y) | Hε(x, y) ≤ H2i, y ≥ 0, x ≥ 0} ,
F2i+2 = {(x, y) | H0(x, y) ≤ H2i+1, y ≤ 0, x ≥ 0} . (i ∈ N)

Define
L2i+1 := {(x, 0) | A2i+1 < x < B0} ,
L2i+2 := {(x, 0) | 0 < x < A2i+2} .

(i ∈ N)

Following the procedure developed in the proof of Lemma 4.2, from (3.5),
(3.7) and (3.17), we easily get the following result which is crucial to prove the
continuity of T`(d) in its whole domain.

Lemma 4.6. Assume (1.5) with 0 < ε ≤ ε`, where ε` is the computable constant
given by Lemma 3.7; then the flow of (2.2) on Aj points towards the exterior
of Fj for every j ∈ {1, . . . , `}. Moreover, the flow of (2.2) on Lj points towards
y > 0 if j is even, respectively towards y < 0 if j is odd.

Now we are in a position to obtain the continuity of Tj(d).

Lemma 4.7. Assume (K1) and (1.5) with 0 < ε ≤ ε`. Then, the functions
Tj(d), j = 1, . . . , `, are continuous in their domains, provided that Tj(d) ≤ 0.

Proof. Let us fix j ∈ {1 . . . , `}. Let d > 0 be such that Tj(d) is well defined
and Tj(d) ≤ 0 holds. Then, the solution φ(·, d) intersects the x-axis at Tj(d) in
the point ξj(Tj(d)) = φ(Tj(d), d). By Lemma 4.6, the solution φ(·, d) is driven
by the spiral γ around the points P ∗(ε) and P ∗(0) remaining inside the set Γ0

in (−∞, 0) (cf. Lemma 3.2) and, finally, ξj(Tj(d)) ∈ Lj with ẏ(Tj(d), d) 6= 0.
Then, by Lemma 4.5 the continuity of Tj in d follows.

Remark 4.8. Notice that Proposition 2.10 follows from Lemma 4.7.
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We state the following result, which is a translation of Proposition 2.9.

Lemma 4.9. Assume (1.5) with 0 < ε ≤ ε1. Then, T1(d) is continuous for any
d > 0 and

lim
d→0

T1(d) = +∞, lim
d→+∞

T1(d) = −∞, (4.3)

Proof. Combining Lemma 4.2 and Lemma 4.5 with the absence of invariant
sets in the interior of E1 we see that the function T1(d) is well defined for any
d > 0 and it is continuous. From Remark 4.3 we know that for any τ ∈ R
there is d∗(τ) > 0 such that T1(d∗(τ)) = τ , hence T1(·) : (0,+∞) → R is
surjective. According to Remark 2.4, we can parametrize W̃u(τ) by Q̃u(d) so
that Q̃u(0) = (0, 0) and Q̃u(d∗(τ)) = ξ1(τ). Hence, from Remark 4.3 it easily
follows that T1(d)→ +∞ as d→ 0.

Observe now that d∗(τ) → +∞ as τ → −∞. In fact, by Remark 2.5
u′(r, d∗(τ)) < 0 for any 0 < r < eτ , which, combined with (2.1) and (3.9)
leads to

d∗(τ) > u(eτ , d∗(τ)) > P ∗x (ε)e−ατ → +∞ as τ → −∞.

Recalling that T1(d∗(τ)) = τ , we see that there is dk ↗ +∞ such that
T1(dk)→ −∞. This is what is actually needed for the argument of this paper.
However, we show that T1(d)→ −∞ as d→ +∞.

Assume by contradiction that there are M > 0 and d̃m ↗ +∞ such that
T1(d̃m) > −M for any m. Then, for any m we can choose k such that
dk ≤ d̃m < dk+1; we can assume without loss of generality that T1(dk) <
−M − 1, T1(dk+1) < −M − 1, while T1(d̃m) > −M . Let us fix τk = 1 +
max{T1(dk);T1(dk+1)} and denote by W̆u(τk) the branch of Wu(τk) between
the origin and Q̃u(dk+1). Following W̆u(τk) from the origin towards Q̃u(dk+1)
we meet Q̃u(dk) and then Q̃u(d̃m). Hence, W̆u(τk) enters the set E1 defined
in (4.1), it crosses the x positive semi-axis until it gets to Q̃u(dk) which lies in
y < 0 < x, then it bends and gets back to Q̃u(d̃m) ∈ E1, then it bends again
and gets to Q̃u(dk+1) which lies again in y < 0 < x. But this is in contradic-
tion with Remark 2.2, since W̆u(τk) is C1 close to the corresponding branch of
Wu(−∞). In fact we can find a segment transversal to Wu(−∞) which has a
tangency point with W̆u(τk).

Now Theorem A easily follows from Lemmas 4.4 and 4.7.

Proof of Theorem A. Let us fix ` ≥ 2, 0 < ε ≤ ε` and j ∈ {1, 2, . . . , `}. Let us
define

Îj := {d > 0 | Tj(d) < 0}.
Obviously, Îj is a subset of Ij defined in (2.5). Since Tj(d) is continuous when

it is negative (cf. Lemma 4.7), it is easy to see that Îj is open. Furthermore,

there is a1 > 0 such that Îj ⊂ Î1 ⊂ (a1,+∞), cf. (4.3). From Lemma 4.4 we

know that Îj 6= ∅. Hence, we can find an interval (aj , bj) ⊂ Îj such that aj 6∈ Îj ,
and aj ≥ a1 > 0. Notice that bj can be +∞, and, in fact, b1 = +∞.

We claim that Tj(aj) = 0 for any j ∈ {1, 2, . . . , `}. In fact, let us consider
a sequence dk ↘ aj . Since Tj is continuous, limk→∞ Tj(d

k) = Tj(aj) ≤ 0. But,

if Tj(aj) < 0 then aj ∈ Îj , which is a contradiction. Therefore, Tj(aj) = 0 and
the claim is proved.

Then, it follows that x(t, aj) is positive, and y(t, aj) has exactly j zeroes for
t ≤ 0, so Theorem A follows from Remark 2.6.
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5 Computation of ε`’s. Proof of Theorem 1.1.

In this section we provide a procedure in order to obtain the values ε` presented
in Theorem 1.1. Let us recall that the explicit formula for ε1, cf. (1.8) and
(1.11), has been already deduced from equation (3.9).

We begin by giving an algorithm which allows to compute explicitly the
values of ε` for equation (1.9) for any ` and any dimension n. In particular,
when σ = 0, i.e. (1.3) is considered, we obtain the table (1.7). However, these
values are not expressed by close formulas.

Then, we obtain an explicit formula for ε2 in Proposition 5.3, while ε3 is given
as a solution of an algebraic equation in Proposition 5.4. Finally, in Proposition
5.5 we prove the surprisingly simple formula for the n = 4 and σ = 0 case:
ε` = 1/`.

As illustrated in Section 3, in order to control the behavior of the solutions
of system (2.2) converging to the origin as t → −∞, we need to construct a
spiral-like path γ. This curve is built by gluing together branches of different
level curves of the energy functions Hε and H0 introduced in (3.4).

The first branch of γ is defined when 0 < ε ≤ ε1, and is made up by the
0-level curve A1 of Hε, see (3.10), which connects the origin O and the point
A1(ε) = (A1(ε), 0) defined in (3.8); we set H1 = H0(A1(ε)) as in (3.11).
The second branch exists for 0 < ε ≤ ε2 (defined just below) and it is made
up by A2 which is part of the H1-level curve of H0, see (3.12): it connects
A1(ε) and A2(ε) = (A2(ε), 0). We denote by ε2 > 0 the unique value such
that A2(ε2) = P ∗x (ε2), so that A2(ε) < P ∗x (ε) iff 0 < ε < ε2, and we set
H2 = Hε(A2). Then, the third branch exists for 0 < ε ≤ ε3 and it is made up
byA3 which is part of theH2-level curve of Hε, see (3.14): it connectsA2(ε) and
A3(ε) = (A3(ε), 0). Then, ε3 > 0 is the unique value such that A3(ε3) = P ∗x (0),
so that A3(ε) > P ∗x (0) iff 0 < ε < ε3, and we set H3 = H0(A3).

So the iterative scheme to calculate the extremal x-coordinates Ai is obtained
via Lemma 3.7 and Remark 3.8, by setting A0 = 0, and

A2i+1 = x2,ε(H2i) = x2,0(H2i+1), A2i+2 = x1,0(H2i+1) = x1,ε(H2i+2), (5.1)

which, combined with formula (5.5), allows us to determine Ai+1 from the pre-
vious term Ai, with a recursive procedure.

According to Lemma 3.7 and Remark 3.8, the procedure to draw γ for a
certain value ε can be summarized by the following algorithm:
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0. Set H0 = 0, j = 1;
1. If j is odd:
1a. Set Aj = {(x, y) ∈ R2 | Hε(x, y) = Hj−1 , y ≥ 0};
1b. Find Aj = x2,ε(Hj−1);
1c. If Aj > P ∗x (0)

Draw Aj as a subset of γ;
Set Hj = H0(Aj , 0);

else
γ consists of the previously drawn branches; ⇒ END

2. If j is even:
2a. Set Aj = {(x, y) ∈ R2 | H0(x, y) = Hj−1 , y ≤ 0};
2b. Find Aj = x1,0(Hj−1);
2c. If Aj < P ∗x (ε)

Draw Aj as a subset of γ;
Set Hj = Hε(Aj , 0);

else
γ consists of the previously drawn branches; ⇒ END

3. Increase j to j + 1;
4. Go to 1.

The critical value ε` is the only value which satisfies the identities

A` = P ∗x (0) if ` is odd, A` = P ∗x (ε`) if ` is even. (5.2)

Formula (5.2), combined with the explicit expression (3.7) of P ∗x , allows us
to calculate all the values ε` with a simple shooting argument. In particular,
through a rigorous computer-assisted computation we obtain the table (1.7),
which provides approximations from below of the values ε`.

Recalling that we are treating equation (1.1) with K as in (1.5), we can
observe that the value ε` are not so small!

Remember that Gc is defined in (3.4); furthermore x1,c(g) and x2,c(g) are the
non-negative zeroes of the equation in x, Gc(x) = g and they are, respectively,
decreasing and increasing with respect to g, see Remark 3.5.

Let Rc : [Gminc , 0]→ [0, 1] be the continuous function defined by

Rc(g) =
x1,c(g)

x2,c(g)
if g ∈ (Gminc , 0), Rc(0) = 0, Rc(G

min
c ) = 1. (5.3)

Remark 5.1. The function Rc is strictly decreasing.

Let us evaluate ε2: the stating point is (3.13), i.e. A2(ε2) = P ∗x (ε2). Then,
from (3.7) and (3.8), we get

A2(ε2) = P ∗x (ε2) =

(
α2

ε2 + 1

) 1
q−2

= A1(ε2)

(
2

q

) 1
q−2

.

According to (5.3) and recalling that A1 = x2,0(H1) and A2 = x1,0(H1), the
previous condition is equivalent to ask for

Λ := R0(H1) =

(
2

q

) 1
q−2

. (5.4)

Definition (5.3) enables us to express x1,c and x2,c as functions of Rc.
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Lemma 5.2. Consider R ∈ (0, 1) and g ∈ (Gminc , 0) such that Rc(g) = R. Then,
we get

x2,c(g) =

(
α2q

2(c+ 1)
· 1− R2

1− Rq

) 1
q−2

, x1,c(g) = Rx2,c(g).

Proof. From Gc(x1,c(g)) = Gc(x2,c(g)) = g, we deduce that

c+ 1

q
([x2,c(g)]q − [x1,c(g)]q) =

α2

2

(
[x2,c(g)]2 − [x1,c(g)]2

)
. (5.5)

Then, substituting x1,c(g) = Rx2,c(g), we easily complete the proof.

We are now in the position to calculate explicitly the critical value ε2, proving
(1.12) and its restriction (1.8) to the σ = 0 case.

Proposition 5.3. The critical value ε2 for (1.9) is given by the following for-
mula

ε2 =
q − 2

q

[(q
2

) 2
q−2 − 1

]−1

, (5.6)

which equals ε2 = 2
n

[(
n
n−2

)n−2
2 − 1

]−1

for (1.3), i.e. when σ = 0 and q = 2n
n−2 .

Proof. From (3.8) and Lemma 5.2 with R = Λ and c = 0, we obtain(
α2q

2(ε2 + 1)

) 1
q−2

= A1(ε2) =

(
α2q

2
· 1− Λ2

1− Λq

) 1
q−2

,

whence

1

ε2 + 1
=

1− Λ2

1− Λq
. (5.7)

From (5.4) and (5.7), since Λq−2 = 2
q , we get

ε2 =
1− Λq

1− Λ2
− 1 =

Λ2(Λq−2 − 1)

Λ2 − 1
=
q − 2

q

[(q
2

) 2
q−2 − 1

]−1

.

Let us now proceed with the estimate of ε3, starting from A3(ε3) = P ∗x (0).

Proposition 5.4. The critical value ε3 is the unique solution of the following
equation:

[X q(ε3) +W(ε3)]
2
q = X 2(ε3) +

2

q
W(ε3) , (5.8)

where X (ε3) =

(
q

2(ε3 + 1)

) 1
q−2

, W(ε3) = 1 +
1

ε3

(
1− q

2

)
, (5.9)

provided that X q(ε3) +W(ε3) > 0.
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Proof. From (3.16) we have Gε(A3) = H2 = − εq (Aq1 − A
q
2). Thus, according to

(3.4), we immediately infer that

Aq2 = Aq1 +
1 + ε

ε
Aq3 −

qα2

2ε
A2

3 . (5.10)

Similarly, from (3.16) we find G0(A2) = H1 = − εqA
q
1, hence

A2
2 =

2

qα2
(Aq2 + εAq1) , A2 > 0. (5.11)

Substituting the expression of A2 given by (5.10) into (5.11), we obtain[
Aq1 +

1 + ε

ε
Aq3 −

qα2

2ε
A2

3

] 2
q

=
2

qα2

[
(ε+ 1)

(
Aq1 +

1

ε
Aq3

)
− qα2

2ε
A2

3

]
.

Since A3 = A3(ε3) = Px(0), see (3.7), and A1 is given by (3.8) we get[(
q

2(ε3 + 1)

) q
q−2

+ 1 +
1

ε3

(
1− q

2

)] 2
q

=

=
2

q

[
(ε3 + 1)

(
q

2(ε3 + 1)

) q
q−2

+ 1 +
1

ε3

(
1− q

2

)]
,

which coincides with equation (5.8). The uniqueness of the solution of this
equation is guaranteed provided that A2(ε3) > 0, which is equivalent to X q(ε3)+
W(ε3) > 0.

Proposition 5.5. Consider (1.3), i.e. (1.9) with σ = 0, and set n = 4. Then,

ε` =
1

`
for any ` ≥ 1.

Proof. According to (2.1) and (3.1), we know that α = 1, q = 4. Consequently,
(5.5) becomes

x1,c(g)2 + x2,c(g)2 =
2

c+ 1
.

Hence, from (5.1) we obtain the following identities

A2
2i+1 +A2

2i+2 = 2 , A2
2i +A2

2i+1 =
2

ε+ 1
.

Starting from A0 = 0, we can prove by induction that

A2i =

√
2 εi

1 + ε
, A2i+1 =

√
2(1− εi)

1 + ε
.

Combining (5.2) with (3.7), we note that if ` = 2̂i+ 1 is odd,

A` = A2î+1 =

√
2(1− ε`î)

1 + ε`
=

√
2− (`− 1)ε`

1 + ε`
= 1 = P ∗x (0) ,

whence it follows ε` =
1

`
. Conversely, if ` = 2̂i is even, one has

A` = A2î =

√
2 ε` î

1 + ε`
=

√
`ε`

1 + ε`
=

√
1

1 + ε`
= P ∗x (ε`) ,

which implies ε` =
1

`
. This completes the proof.
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A Proof of Lemma 4.4

In this Appendix we reprove Lemma 4.4, and so Proposition 2.8, in order to be
more self-contained. We recall that this result has been already proved in [10,
Theorem 1.6] by Chen and Lin and restated in [9, Lemma 2.2]. However, their
clever proof is far from being trivial, and the argument is even more difficult
to be read due to the presence of some misprints. For this reason and for
completeness, we reprove it here in a slightly more general version, following
the outline of the original idea, but performing some changes in certain points
to make it more coherent with the dynamical ideas of the present article.

In this appendix we consider equation

(u′rn−1)′ + rn−1+σK(|x|)uq(σ)−1 = 0, where q(σ) = 2
n+ σ

n− 2
, (A.1)

and K is a positive C1 function. Our aim consists in proving the following
result.

Proposition A.1. Consider equation (A.1), and assume both (K1) and (K2).
Then, for any fixed ` ∈ N, and for any ρ > 0 there is d` ∈ I` such that
R`(d`) < ρ.

Taking into account the standard rescaling argument exhibited to prove Re-
mark 1.3, without loss of generality, from now on we will restrict ourselves to
the case

K(r) = 1 + χk(r) , 0 ≤ k(r) ≤ 1, ∀ r ∈ [0, 1], (A.2)

where χ > 0 is a fixed constant, which need not be small. In particular, equation
(A.1) reduces to equation (1.9).

Let u(r) = u(r; d) be a solution of (1.9), and let φ(t, d) = φ(t) = (x(t), y(t))
be the corresponding trajectory of (2.2). According to (3.2), H(φ(t), t) is de-
creasing for t ≤ 0, and, consequently, as in Lemma 3.1, H(φ(t), t) is non-
positive for t ≤ 0, and u(r) and x(t) are positive for r ≤ 1 and t ≤ 0, re-
spectively. From the monotonicity assumption on K, we immediately observe
that 1 ≤ K(t) ≤ 1+χ, for t ≤ 0. Thus, according to Lemma 3.2, we deduce that
φ(t) belongs to the region enclosed by Γ0 for t ≤ 0, and, consequently, φ(t, d)
is bounded for t ≤ 0, uniformly in d; in fact 0 < x(t) ≤ A1(0), see (3.8).

Furthermore, from (2.2), it is easy to check that ẏ(t) > 0 as long as 0 <
x(t) < P ∗x (χ) ≤ P ∗x (χk(et)) for t ≤ 0, see (3.7). Let us choose ζ0 = P ∗x (χ)/2 > 0.

Lemma A.2. Fix ζ < ζ0; there exist the sequences di, T̄ i1 and T̄ i2 with T̄ i1 < T̄ i2,
di ↗ +∞, T̄ i2 ↘ −∞ such that the trajectory φi(t) = (xi(t), yi(t)) of (2.2)
corresponding to ui(r) = u(r; di) satisfies the following property: xi(t) < ζ for
t < T̄ i1, xi(T̄ i1) = ζ, xi(t) > ζ for T̄ i1 < t < T̄ i2, and xi(T̄ i2) = ζ.

Proof. To prove this Lemma we use an argument different from [10, Theorem
1.6]. Let us observe that the level curve Γχ defined in (3.6) intersects the line
x = ζ in two points Q∞± = (ζ,±Y∞), where Y∞ > 0. Let

L := {(ζ,−Y ) | Y∞/2 < Y < 2Y∞} ,

and notice that the flow of the autonomous system (2.2), where K(t) ≡ K(0) =
1 + χ is transversal on L, since ζ < ζ0. Furthermore, Γχ is the graph of
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a homoclinic trajectory ψτ (t) of such a system, and for any τ ∈ R we may
assume that ψτ (τ) = Q∞− , due to the t-translation invariance of the autonomous
system. From Remark 2.2, we see that there is τ∗ such that the unstable leaf
Wu(τ) of the original non-autonomous system (2.2) intersects the line L in a
point Q(τ) for any τ ≤ τ∗. Furthermore, Q(τ)→ Q∞− as τ → −∞.

Let us consider the trajectory ψτ (t) = φ̄(t; τ,Q∞− ) of the frozen autonomous
system (2.2) where K(t) ≡ 1 + χ for τ ≤ τ∗, and the corresponding regular
solution ū(r; d̄(τ)) of (A.1), with K(r) ≡ 1 + χ. Similarly, let φ(t; τ,Q(τ))
be a trajectory of the original non-autonomous system (2.2), and let u(r; d(τ))
be the corresponding regular solution of (A.1) with the original K(r). Using
continuous dependence on parameters, we see that φ(t; τ,Q(τ)) is close to ψτ (t)
if t ≤ τ and τ ≤ τ∗, with a possibly larger |τ∗|. According to [20, Remark 2.5],
we notice that d̄(τ) → +∞ as τ → −∞, which implies that d(τ) → +∞ as
τ → −∞, see also the proof of Lemma 4.9. The claim immediately follows by
extracting the sequence di = d(T̄ i2) which satisfies the required monotonicity
properties.

Fix ζ < ζ0 so that the existence of the sequences di, T̄ i1, T̄
i
2 is guaranteed

by Lemma A.2. Let ui(r) = u(r; di), and let φi(t) = (xi(t), yi(t)) be the
corresponding trajectory of (2.2).

Lemma A.3. For any M > 0 there are r0 and i0 such that ui(r0) ≥M for any
i ≥ i0.

Proof. From now on we follow quite closely the ideas of [10]. Assume, by con-
tradiction, that the Lemma is false; then there exists M > 0 with the following
property: for any r0 > 0 there is a subsequence, still denoted by ui, such that
ui(r0) < M for any i.

Fix δ > 0 small enough to satisfy

β = 2
(α
l
− 1
)
− δ

α− δ
> 0 and δ < α− l, (A.3)

where the constant l ∈ (0, α) is given by assumption (K2). We set ζ̃ = ζ̃(δ) =

min

[(
2δα−δ2

K(0)

) 1
q−2

; ζ

]
, so that from (2.2) we find

ẍi(t) = ẏi(t) > (α− δ)2xi(t) , for any 0 < x < ζ̃, t ≤ 0. (A.4)

Taking into account (K2), we choose r0 so small that Mr
(n−2)/2
0 < ζ̃/2, and

−3
lA

2
rl−1 ≤ K ′(r) ≤ − lA

2
rl−1, ∀r ∈ (0, r0). (A.5)

Set T0 = ln(r0) < 0. Recalling that T̄ i2 ↘ −∞, we can find i0 ∈ N such that
T̄ i1 < T̄ i2 < T0 for any i ≥ i0. Without loss of generality, we now restrict
ourselves to consider the sequence ui with i ≥ i0. Thus,

xi(T0) = ui(r0)r
(n−2)/2
0 < Mr

(n−2)/2
0 < ζ̃/2 . (A.6)

According to Lemma A.2, we define

T̄ i = max{t ∈ [T̄ i2;T0) | xi(t) ≥ ζ̃}, (A.7)
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so that xi(t) < ζ̃ when T̄ i < t < T0, hence (A.4) holds and ẍi(t) > 0 in this
interval. So, we have two cases: either ẋi(t) < 0 for any T̄ i < t < T0, or xi(t)
has a local minimum at t = T ∈ (T̄ i, T0).
Case 1) Assume ẋi(t) < 0 for any T̄ i < t < T0. Let Eδ(x, y) = y2− (α− δ)2x2.
According to (2.2), we deduce that

Ėδ(x
i(t), yi(t)) = 2ẋi(t)

(
ẏi(t)− (α− δ)2xi(t)

)
. (A.8)

From (A.4) we see that Eδ(x
i(t), yi(t)) is strictly decreasing if T̄ i < t < T0.

Hence, Eδ(φ
i(t)) > Eδ(φ

i(T0)) for any T̄ i < t < T0, so that from (2.2) we find

[ẋi(t)]2 = [yi(t)]2 > (α− δ)2[(xi(t))2 − (xi(T0))2]. (A.9)

Since xi(t) is decreasing, the right hand side of (A.9) is positive in (T̄ i, T0),
hence

−ẋi(t)
(α− δ)

√
(xi(t))2 − (xi(T0))2

> 1 (A.10)

for any T̄ i < t < T0. Integrating, we get

T0 − T̄ i <
1

α− δ

∫ xi(T0)

xi(T̄ i)

−dx√
x2 − [xi(T0)]2

=
1

α− δ

∫ ζ̃/xi(T0)

1

dz√
z2 − 1

=
1

α− δ

[
ln(z +

√
z2 − 1)

]ζ̃/xi(T0)

1
≤ 1

α− δ
ln

(
2ζ̃

xi(T0)

)
.

(A.11)

At this point, we need assumption (K2) to estimate T̄ i from above. Since
xi(T̄ i) = ζ̃, cf. (A.7), and xi(T0) < ζ̃/2, cf. (A.6), there is T̃ ∈ (T̄ i, T0)
such that xi(T̃ ) = ζ̃/2. Furthermore, yi(t) is bounded, so there is c > 0 such
that T̃ − T̄ i > c ζ̃. Actually, it might be shown that T̃ − T̄ i > ln(2)/α as a
consequence of the negativity of H(φi(t), t) for t ≤ 0 and using some Gronwall
estimates. Thus, from (3.1) and (3.2) we find

−α
2

2
[xi(T0)]2 ≤ H(φi(T0), T0) = H(φi(T̄ i), T̄ i) +

∫ T0

T̄ i
K̇(t)

[xi(t)]q

q
dt . (A.12)

Then, recalling that H(φi(t), t) and K̇(t) are non-positive and xi(t) decreases
when t ∈ [T̄ i, T0], from (K2) and (A.5), we obtain

|xi(T0)|2 ≥ 2

α2

∫ T̃

T̄ i
|K̇(t)| |x

i(t)|q

q
dt ≥ ζ̃ q

qα2 2q−1

∫ T̃

T̄ i
|K̇(t)|dt

≥ lA

qα22q
ζ̃qelT̄

i

(T̃ − T̄ i) > c21elT̄
i

ζ̃ q+1,

(A.13)

where c1 = 1
α

√
lAc
q2q . Hence, by (A.6)

MeαT0 > ui(r0)eαT0 = xi(T0) > c1e
lT̄ i

2 ζ̃
q+1

2 , (A.14)

which implies
l

2
T̄ i < αT0 + ln

(
M

c1

)
− q + 1

2
ln(ζ̃) . (A.15)
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Plugging the second inequality of (A.14) in (A.11), we get

T0 <
(q − 1)

2(α− δ) ln
(

1
ζ̃

) +

(
1− l

2(α− δ)

)
T̄ i + c2 , (A.16)

where c2 = ln(2)−ln(c1)
α−δ . Then, from (A.16) and (A.15) we find

T0 <
(q − 1)

2(α− δ)
ln

(
1

ζ̃

)
+

+
2

l

(
1− l

2(α− δ)

)[
αT0 + ln

(
M

c1

)
+
q + 1

2
ln

(
1

ζ̃

)]
+ c2 .

(A.17)

From the choice of δ in (A.3), 2α
l

(
1− l

2(α−δ)

)
− 1 = 2

(
α
l − 1

)
− δ

α−δ = β > 0,

then there are c3 > 0, c4 > 0 such that (A.17) can be written as follows

−βT0 < c3 ln

(
1

ζ̃

)
+ c4 ln

(
M

c1

)
+ c2 . (A.18)

Since ζ̃ > 0 and M > 0 are fixed, we can let T0 go to −∞, obtaining a contra-
diction with (A.18), and the Lemma in Case 1 is proved.

Case 2) Assume that there is T ∈ (T̄ i, T0) such that ẋi(t) < 0 for T̄ i ≤ t < T
and ẋi(t) > 0 for T < t ≤ T0.
Repeating the argument of Case 1 for T̄ i ≤ t < T , we go through (A.9) and
(A.10) and we find

T − T̄ i < 1

α− δ
ln

(
2ζ̃

xi(T )

)
. (A.19)

Now we estimate T0 − T with analogous techniques. In particular, from (A.4)
and (A.8) we see that Eδ(x

i(t), yi(t)) is strictly increasing if T < t < T0. Hence,
Eδ(φ

i(t)) > Eδ(φ
i(T )) for any T < t < T0, and, consequently,

[ẋi(t)]2 = [yi(t)]2 > (α− δ)2[(xi(t))2 − (xi(T ))2]. (A.20)

Since ẋi(t) > 0, the right hand side of (A.20) is positive in (T , T0), hence

ẋi(t)

(α− δ)
√

(xi(t))2 − (xi(T ))2
> 1, ∀t ∈ (T , T0).

Integrating, we get

T0 − T <
1

α− δ

∫ xi(T0)

xi(T )

dx√
x2 − [xi(T )]2

=
1

α− δ

∫ xi(T0)/xi(T )

1

dz√
z2 − 1

=

=
1

α− δ

[
ln(z +

√
z2 − 1)

]xi(T0)/xi(T )

1
≤ 1

α− δ
ln

(
2xi(T0)

xi(T )

)
.

(A.21)

Combining (A.19) with (A.21), we conclude that

T0 − T̄ i <
1

α− δ
ln

(
2ζ̃

xi(T )

)
+

1

α− δ
ln

(
2xi(T0)

xi(T )

)
. (A.22)
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Moreover, notice that (A.12) and (A.13) keep on holding by replacing T0 with
T . In particular, according to (A.6), the following inequalities hold:

xi(T ) > c1e
lT̄ i

2 ζ̃
q+1

2 , xi(T0) < MeαT0 ,

which, plugged in (A.22), lead to

T0 − T̄ i <
αT0

α− δ
− lT̄ i

α− δ
+

q

α− δ
ln

(
1

ζ̃

)
+

lnM

α− δ
+ 2c2.

Hence, there are c̃3 > 0 and c̃4 > 0 such that(
−1 +

l

α− δ

)
T̄ i <

δ

α− δ
T0 + c̃3 ln

(
1

ζ̃

)
+ c̃4 lnM + 2c2.

Taking into account that T0 < 0, we finally infer that(
−1 +

l

α− δ

)
T̄ i < c̃3 ln

(
1

ζ̃

)
+ c̃4 lnM + 2c2, (A.23)

where
(
−1 + l

α−δ

)
< 0 by (A.3). Since ζ̃ > 0 and M > 0 are fixed, while

T̄ i < T0 is arbitrarily small, we can let T0 and, consequently, T̄ i go to −∞,
obtaining a contradiction with (A.23). This proves Case 2.

Now we are ready to state the result proved in [10, Theorem 1.6] from which
Proposition A.1 and Lemma 4.4 follow.

Proposition A.4. Consider equation (A.1) under the condition (A.2), and
assume both (K1) and (K2). Then, there is a singular solution u∞(r) such
that lim infr→0 u

∞(r)rα = 0 and lim supr→0 u
∞(r)rα = A1(χ).

Proof. Since ui(r) < A1(0)r−α and there is c > 0 such that |u′i(r)| < cr−(α+1)

for any 0 ≤ r < 1, it follows that, up to subsequences, ui(r) converges uni-
formly in any compact interval of (0, 1] to a function, say u∞(r), together
with its derivative. Notice that u∞(r) is a solution of (A.1); furthermore,
from Lemma A.3 we know that limr→0u

∞(r) = +∞, so u∞ is singular. Let
φ∞(t) = (x∞(t), y∞(t)) be the trajectory of (2.2) corresponding to u∞(r).

Using (3.2) and Lebesgue convergence theorem for any t ≤ 0, we find

H(φ∞(t), t) = lim
i→+∞

H(φi(t), t)

= lim
i→+∞

∫ t

−∞
K̇(s)

[xi(s)]q

q
ds =

∫ t

−∞
K̇(s)

[x∞(s)]q

q
ds.

Since K̇(t) [x∞(t)]q

q ∈ L1((−∞, 0]), we see that limt→−∞H(φ∞(t), t) = 0. Being

u∞(r) a singular solution, we conclude that x∞(t) 6→ (0, 0) as t→ +∞, so x∞

has the whole Γχ as α-limit set, and the Proposition follows.

Proof of Proposition A.1. Proposition A.1 now follows immediately from Propo-
sition A.4 recalling that ui(r) = u(r; di) → u∞(r) uniformly in any compact
subset of (0, 1]. For any fixed ρ > 0 and ` ∈ N we can find ρ` < ρ such that
φ∞(t) intersects the x-axis at least ` times in the interval (ln ρ`, ln ρ). So, the
same property holds for φi(t), when the index i is sufficiently large; hence, for
any ` we find φi`(t) = φ(t, di`) such that R`(d

i`) < ρ.
We refer to [9], in particular [9, Lemma 2.2], for more details.
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