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Abstract

Machine Learning (ML) plays a crucial role in data analysis and data platforms (i.e., integrated sets of technologies that collectively
meet end-to-end data needs). In the last decade, we have witnessed an exponential growth in both the complexity and the number
of ML techniques; leveraging such techniques to solve real-case problems has become difficult for Data Scientists. Automated
Machine Learning (AutoML) tools have been devised to alleviate this task, but easily became as complex as the ML techniques
themselves—with Data Scientists losing again control over the process. In this paper, we design and extend HAMLET (Human-
centered AutoMl via Logic and argumEnTation), a framework that helps Data Scientists to redeem their centrality. HAMLET
enables Data Scientists to express ML constraints in a uniformed human- and machine-readable medium. User-defined constraints
are interpreted to drive the exploration of ML pipelines (i.e., Data Pre-processing transformations shape the data so that the ML
task can be performed at its best). AutoML retrieves the most performing pipeline instance, and finally, new constraints are learned
and integrated through Logic and Argumentation. By doing so, HAMLET not only allows an easy exploitation of the knowledge
acquired at each iteration, but also enables its continuous revision via the AutoML tool and the collaboration of both Data Scientists
and domain experts.

Keywords: Human-centered, AutoML, Logic, Argumentation, CRISP-DM, Data Scientist

1. Introduction

Data platforms, integrated sets of technologies that collec-
tively meet end-to-end data needs, work towards the automation
of data management and analysis [1]. Machine Learning (ML)
plays a key role in such processes (e.g., to devise cost models
for querying data over heterogeneous data sources [2] and man-
age data through lineage [3]; many applications are well sur-
veyed in [4]). Data platforms aim at supporting end-to-end data
analysis; in this scope, the Cross-Industry Standard Process for
Data Mining (CRISP-DM) [5] is the most acknowledged stan-
dard process model—and we will take it as a reference model
hencefort. Given a Machine Learning task to solve, the Data
Scientist (DS) collects raw data in arbitrary formats (e.g., from
the data lake), builds up knowledge on both the problem and
the data, translates such knowledge into constraints, designs
and trains a model, and finally deploys the solution as a new
component integrated into the data platform. Such a solution
consists of a ML pipeline: a sequence of Data Pre-processing
transformations ending with an ML task. The DS instantiates
the pipeline among a large set of algorithms, which, in turn,
can potentially have many hyperparameters. The accuracy of
the deployed solution depends on finding both the best algo-
rithms along with their hyperparameters within an exponential
search space.
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Automated Machine Learning (AutoML) tools assist the DS
in finding such an ML pipeline. They leverage state-of-the-art
optimization approaches to smartly explore huge search spaces
of solutions. AutoML has been demonstrated to provide accu-
rate performance, even in a limited time/iteration budget. When
setting up the search space, it is highly important for the DS to
inject her knowledge about the problem into constraints that
prevent the AutoML tool to retrieve invalid solutions (i.e., the
result of those cannot be deemed correct). However, the sup-
port to constraint/knowledge injection is limited and the Au-
toML tools became that complex to make it difficult for the DS
to understand their functioning, hence losing control over the
process [6].

The need for a Human-centered and explainable framework
for AutoML is real [7, 8, 9] (or even mandatory in recent ana-
lytic scenarios where the user is interacting with mixed-reality
and smart assistants [10, 11]). It is crucial for the DS to aug-
ment her knowledge by learning new insights (e.g., new con-
straints) from the retrieved solutions. Indeed, the DS requires
understanding the AutoML process in order to trust the pro-
posed solutions [12]. Some works [7, 8, 9] prescribe the us-
age of a Human-centered framework for AutoML, yet they only
suggest design requirements. Alternatively, the authors in [13]
have proposed a tool that visualizes the best and the worst so-
lutions retrieved by an AutoML tool. We claim that a Human-
centered framework should provide the mechanisms to: (i) help
the DS to structure her knowledge about the problem in an ef-
fective search space; and (ii) augment the knowledge initially
possessed by the DS with the one produced by the AutoML
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Figure 1: Integrating HAMLET with the CRISP-DM process model.

optimization process.
For this purpose, we introduce HAMLET (Human-centered

AutoMl via Logic and argumEnTation; Figure 1), a frame-
work that enhances AutoML with Structured Argumentation to:
structure the constraints and the AutoML solutions in a Logi-
cal Knowledge Base (LogicalKB); parse the LogicalKB into a
human- and machine-readable medium called Problem Graph;
devise the AutoML search space from the Problem Graph; and
leverage the Problem Graph to allow both the DS and an Au-
toML tool to revise the current knowledge. This paper extends
and engineers the vision proposed in [14] as follows.

(i) We provide an innovative formalization of the AutoML
problem, which considers ML pipelines of multiple
lengths, Data Pre-processing steps and user-defined con-
straints.

(ii) We design the formal foundation of HAMLET, supporting
the injection of constraints to select ML pipelines as well
as the resolution of possible arising inconsistencies.

(iii) We implement a functioning prototype of HAMLET.
(iv) We provide a preliminary empirical evaluation, including

the overhead introduced by the argumentation process and
the comparison against state-of-the-art algorithms.

The remainder of the paper is structured as follows. In
Section 2, we introduce the related work and necessary back-
ground. Then, we provide the problem formulation in Section 3
and its implementation in Section 4. Finally, we provide some
preliminary evaluation in Section 5, and we draw the conclu-
sions and future research directions in Section 6.

2. Background and Related Work

HAMLET intersects two research areas, Automated Ma-
chine Learning and Argumentation. To the best of our

knowledge, no contribution lies in this intersection to pro-
vide a Human-centered approach for the optimization of ML
pipelines.

2.1. Automated Machine Learning
AutoML tools lighten the DS in the overwhelming prac-

tice of finding the best ML pipeline instance (AutoML contri-
butions mainly refer to supervised tasks). In the early days,
only the optimization of the ML task was addressed (but no
pre-preprocessing). Auto-Weka [15] formalized the problem
as “combined algorithm selection and hyperparameter opti-
mization”: various ML algorithms and hyperparameters are
tested over a dataset to find the most performing configuration.
Such optimization was successfully implemented by leveraging
Bayesian optimization [16], a sequential strategy for global op-
timization: until a limit (budget) of iterations or time is reached,
an increasingly accurate model is built on top of the previously
explored configurations.

Recently, AutoML is no longer limited to optimizing just
the ML task, but it also includes Data Pre-processing [17, 18].
In doing so, Auto-sklearn [19] fixes the arrangement of the
transformations a priori, without considering that the most per-
forming arrangement changes according to the problem and
dataset at hand. However, considering several arrangements
translates into larger search spaces that are not easy to explore.

Several improvements have been made to let AutoML tools
explore as many configurations as possible. Multi-fidelity
methods [20] (i.e., the use of several partial estimations to
boost the time-consuming evaluation process) have been ex-
ploited. Meta-learning leverages the previous performance of
pipeline instances on a wide range of different datasets to pro-
vide several recommendations for the dataset at hand, such as
promising pipeline instances (possibly acting as an alternative
to Bayesian optimization) and search spaces producing good
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performance. Yet, meta-learning per se performs poorly, be-
cause it provides coarse-grained recommendations, while it is
beneficial in warm-starting Bayesian optimization (i.e., the sug-
gested pipeline instances are visited at the beginning to boost
the convergence process). With respect to HAMLET, meta-
learning per se is not expressive enough to be considered as
an alternative, but can be leveraged as a support in building the
LogicalKB (i.e., learning constraints that resulted effective on
many similar datasets).

We believe that the DS has the duty to revise and super-
vise the suggested solutions as well as the process producing
them. Yet, stacking (more and more) complex mechanisms on
top of each other unavoidably led to a less understandable opti-
mization that can be hardly controlled by the DS (especially if
without a strong computer science background).

2.2. Towards Human-centered AutoML Approaches

As of now, the DS role in AutoML is limited to choosing
the dataset to analyze, the validation technique (e.g., cross val-
idation, hold out), and the metric to optimize (e.g., accuracy,
F1 score). AutoML researchers aim at making ML accessible
to a wider audience; this has been addressed first by improving
automation and now by improving transparency, which also en-
ables human intervention when needed. Auto-Weka [15] and
Auto-Sklearn [19] enables non-expert users to build ML mod-
els, but the “black-box” can be barely open. Indeed, as advo-
cated in [12], DSs require to understand the process to trust the
proposed solutions. This direction, named “Human-centered
AutoML”, is pursued by both researchers and companies.

As to research contributions, we found plenty of visualiza-
tion wrappers. In [12], the authors raise the need of incorporat-
ing transparency into AutoML: after a session interview, they
discover that – out of all their proposed features – model per-
formance metrics and visualizations are the most important in-
formation to DSs when establishing their trust in the proposed
solutions. ATMSeer [21] provides different multi-granularity
visualizations to enable users to monitor the AutoML process
and analyze the searched models. PipelineProfiler [13] offers
interactive visualizations of the AutoML outputs and enables
the reproducibility of the results through a Jupiter notebook.
Other contributions enhance current AutoML techniques to-
wards easier human-interactions by: (i) supporting ethic and
fair constraints in Bayesian Optimization through a mathemat-
ical encoding [22, 23]; (ii) simplifying the usage of AutoML
with symbolic annotations [24] and declarative languages [25];
(iii) supporting fast feed-backs from AutoML (i.e., runs that are
less time-consuming) by leveraging well-known mechanisms
of the DBMS (e.g., lineage optimization) [26, 27]. Recently,
MILE [8] has proposed to perform AutoML analysis with an
end-to-end framework that reflect a DBMS (i.e., a query lan-
guage + a lineage optimization).

Companies like Google and IBM are the ones most engaged
in boosting the involvement of the human in the loop. Google
Vizer [28] and Google Facets1 are the two main visualization

1https://pair-code.github.io/facets/

tools. The former reveals details of the different hyperparam-
eters tried in the optimization [28], and the latter focuses on
analyzing the output and recognizes biased AI (e.g., ML mod-
els that discriminate on sensible attributes such as gender). As
to IBM, AutoAI [29] and AutoDS [30] are the tools devel-
oped within the MIT-IBM Watson AI Lab. Specifically, the for-
mer enables non-technical users to define and customize their
business goals as constraints. The latter assists the DS team
throughout the CRISP-DM process (e.g., in data collection and
pipeline design [31, 30] and in the augmentation of the DS’s
knowledge about the dataset features [12]).

Overall, several studies have been made to understand the
proper design of a Human-centered AutoML tool. In [32], the
authors overview the main AutoML issues; while in [33] au-
thors suggest improvements towards the Human-centered shift.
In [7, 6, 34], interviews with DSs are conducted to reveal their
perception of AutoML as well as their needs and expectations
in the next-generation tools. The main insight is that the future
of data science work will be a collaboration between humans
and AI systems, in which both automation and human expertise
are indispensable [9]. To this end, AutoML should focus on:
simplicity, reproducibility, and reliability [6, 34].

While the above-mentioned papers mainly focus on visual-
ization, HAMLET brings the DS in the loop by allowing her
to inject knowledge in the form of constraints, optimizing and
learning new constraints through AutoML, and managing such
constraints and conflicts through Argumentation.

2.3. Logic and Argumentation

Logic is defined as the abstract study of statements, sen-
tences and deductive arguments [35]. From its birth, it has been
developed and improved widely, now including a variety of for-
malisms and technologies.

Argumentation is a well-known formal tool for handling
conflicting information (e.g., opinions and empirical data). In
Abstract Argumentation [36], a scenario (e.g., a legal case) can
be represented by a directed graph. Each node represents an
argument, and each edge denotes an attack by one argument on
another. Each argument is regarded as atomic. There is no in-
ternal structure to an argument. Also, there is no specification
of what is an argument or an attack. A graph can then be an-
alyzed to determine which arguments are acceptable according
to some general criteria (i.e., semantics) [37].

A way to link Abstract Argumentation and logical for-
malisms has been advanced in the field of Structured Argu-
mentation [38], where we assume a formal logical language for
representing knowledge (i.e., a LogicalKB) and for specifying
how arguments and conflicts (i.e., attacks) can be derived from
that knowledge. In the structured approach, the premises and
claims of the argument are made explicit, and the relationship
between them is formally defined through rules internal to the
formalism. We can build the notion of attack as a binary relation
over structured arguments that denotes when one argument is in
conflict with another (e.g., contradictory claims or premises).
One of the main frameworks for Structured Argumentation is
ASPIC+[39]. In this formalism, arguments are built with two
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kinds of inference rules: strict rules, whose premises guaran-
tee their conclusion, and defeasible rules, whose premises only
create a presumption in favor of their conclusion. Then con-
flicts between arguments can arise from both inconsistencies in
the LogicalKB and the defeasibility of the reasoning steps in
an argument (i.e., a defeasible rule used in reaching a certain
conclusion from a set of premises can also be attacked).

Once defined the right logical language for encoding the DS
and AutoML knowledge, a Structured Argumentation model
(e.g., an ASPIC+ instance [40]) can support HAMLET with
the formal machinery to build an Argumentation framework
upon the data, while Abstract Argumentation would dispense
the evaluation tools.

3. Problem Formulation

Figure 1 illustrates the overview of HAMLET. When ad-
dressing end-to-end data analysis, a DS usually follows a pro-
cess model such as CRISP-DM. The DS starts by collecting
raw data in an arbitrary format. Then, “Domain Understand-
ing” is conducted. The DS works in close cooperation with
domain experts and enlists domain-related constraints (i.e., in-
trinsic of the problem). Follows “Data Understanding”, devoted
to data analysis, and to extract data-related constraints (e.g.,
defined by the data format). Domain and Data Understanding
might be repeated many times until the DS is satisfied by the ac-
quired knowledge. Once confident, the DS investigates differ-
ent solutions throughout “Data Pre-processing”, “Modelling”,
and “Evaluation”. Data Pre-processing and Modelling are con-
ducted to effectively build the solution, while Evaluation offers
a way to measure its performance. Such a solution consists of
a ML pipeline: a sequence of Data Pre-processing transforma-
tions ending with an ML task. The DS instantiates different
pipelines among a large set of algorithms; the performance are
affected by both the algorithms and some exposed hyperparam-
eters. While seeking the best performing and valid solution, the
DS should consider the already known constraints – domain-
and data-related – and the ones she discovers during Data Pre-
processing and Modelling, respectively: transformation- and
algorithm-related constraints (e.g., due to the intrinsic semantic
of transformations and algorithms at hand). Finally, the process
concludes with the “Deployment” of the solution.

HAMLET intersects CRISP-DM, allowing the DS to inject
and augment her knowledge while automatizing the exploration
towards the solution (i.e., instantiate the best ML pipeline). We
now dig the foundation of HAMLET by incrementally intro-
ducing the concepts necessary to move from AutoML to Logic
and Argumentation. To support the reader, we summarize the
main notation in Table 1.

3.1. AutoML Formalization

We provide a novel formalization necessary to move from
single algorithms to the optimal pipeline. For the sake of clarity,
we refer to a Classification task, but the formalization also holds
for supervised ML tasks in general.

Table 1: Main symbols used in the formalization.

Symbol Meaning

A Algorithm
h Algorithm hyperparameter
S Step
P Pipeline
λ∗ Instance of *
Λ∗ Domain of *
Λ Search space

Definition 1 (Dataset). A dataset X is a matrix where data items
(i.e., rows) are characterized by features (i.e., columns).

Definition 2 (Algorithm). An algorithm A is a function that
transforms an input dataset X′ into a new dataset X′′. The al-
gorithm exposes a (possibly empty) set H of hyperparameters.
Each hyperparameter h ∈ H has a domain Λh. We call the
algorithm domain ΛA the Cartesian product of all hyperparam-
eter domains (i.e., ΛA = Λh1 × . . . × Λh|H| ). We call algorithm
instance λA ∈ ΛA an algorithm whose hyperparameters have
been assigned with values from their respective domains.

A Classification algorithm returns a vector (i.e., a matrix
with a single column) of labels Y out of the input dataset X′.

Definition 3 (Step). A step S is a set of alternative algorithms
with the same goal. The step domain is defined as a disjoint
union of the algorithm domains ΛS = ΛA1

·∪ . . . ·∪ ΛA|S | .

Where ·∪ combines the domains of the given algorithms,
while retaining the original domain membership (i.e., it is possi-
ble to refer to the domain of each algorithm included in a step).

We identify two types of steps: Data Pre-preprocessing
steps (e.g., Discretization, Normalization) shape the dataset for
the last mandatory step, which fulfill the task—Classification in
this case.

Example 1 (Algorithm and step). Examples of steps are Nor-
malization (N), Discretization (D), and Classification (Cl). An
algorithm for Classification is Decision Tree (Dt) [41], exam-
ples of hyperparameters for Dt are its maximum depth (N+)
and the minimum samples split (N+) required to split a node;
hence ΛDt = N+ × N+. An example of algorithm instance is
λDt = {depth = 3, samples split = 10}.

Definition 4 (Pipeline). Given a (possibly empty) set of Pre-
processing steps S = {S 1, . . . , S |S|} and a Classification algo-
rithm A from the Classification step, a pipeline P is a sequence
that concatenates steps from S and A. The domain of a pipeline
is ΛP = ΛS 1 × . . . × ΛS |S| × ΛA. We call pipeline instance λP a
sequence of algorithm instances λP = ⟨λA1 , . . . , λA|P|⟩ such that
λP ∈ ΛP.

Example 2 (Pipeline and pipeline instance). Given the pre-
processing steps Normalization (N) and Discretization (D), the
possible pipelines for the DecisionTree (Dt) are:

P1 = ⟨Dt⟩ P2 = ⟨D,Dt⟩ P4 = ⟨D,N ,Dt⟩

P3 = ⟨N ,Dt⟩ P5 = ⟨N ,D,Dt⟩
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Figure 2: Examples of the pipeline domain ΛP4 and pipeline instance λP4 , for
the sake of visualization we omit the third dimension representing the domain
of the Decision Tree. Green (or red) circles represent valid (or invalid) sub-
regions of the search space; Normalization is not allowed in the pipeline. The
rectangle represents a zoom in the domain of the Binarizer algorithm.

Given Binarizer (B) and KBinsDiscretizer (Kb) as algorithms
of Discretization (D), and MinMaxScaler (Mm) and Standard-
Scaler (Ss) and as algorithms of Normalization (N), we pro-
vide examples of instances of P2 and P4:

λP2 = ⟨λB, λDt⟩, λP4 = ⟨λKb, λMm, λDt⟩

λB = {thr = 5.5}, λKb = {n bins = 3, . . .}
λMm = {∅}, λDt = {depth = 3, . . .}

Figure 2 depicts the pipeline domain ΛP4 and the pipeline in-
stance λP4 .

Depending the on the involved algorithms, their order and
hyperparameters, the search space – out of which the best
pipeline instance is select – is defined as follows. While, its
extraction is later discussed in Algorithm 1.

Definition 5 (Search space). The search space Λ is the Carte-
sian product of the domain of the Classification step and
the disjoint union of the all partial permutations of the pre-
preprocessing steps domains.

AutoML optimizes the exploration of such space. However,
it is not only about algorithms and hyperparameters but also
about constraints.

Definition 6 (Constraint). A constraint C ⊆ Λ is a region of
search space that is either mandatory or forbidden. Given a
pipeline instance λP ∈ ΛP ⊆ Λ

• a mandatory constraint C is fulfilled if λP ∈ C;

• a forbidden constraint C is fulfilled if λP < C.

Example 3 (Constraint). Given the Normalization step (N) and
Decision Tree (Dt) as a Classification algorithm, an example
of algorithm-related constraint is “forbid N in pipelines with

Dt”. This discards all the pipelines containing both Normal-
ization and Decision Tree. Figure 2 depicts the effects of the
constraint on the pipeline domain ΛP4 .

Considering all the constraint combinations is overwhelm-
ing and, additionally, conflicts might occur; for instance in the
case of ethical [42] and legal fields that easily inject conflicting
constraints into the search space.

Definition 7 (Constrained pipelines optimization). Given a
search space Λ and a set of constraints C, finding the best
pipeline instance λ̂P is defined as λ̂P = argmaxλP∈ΛP metric(λP),
where metric(λP) is the function evaluating the goodness of λP

and the explored pipelines fulfill the constraints in C.

3.2. Argumentation Formalization

AutoML is not explainable, hence it does not provide the
DS with feedbacks that would help her to augment the knowl-
edge about the problem. It is necessary to represent both (i) the
DS knowledge about the problem and (ii) the outcome of the
AutoML tool in a uniform human-readable medium. The for-
mer helps to drive the optimization process, the later augments
the knowledge about the problem by learning from the explored
configurations of pipeline instances—deriving new constraints
that increase the DS awareness. We leverage Logic as the
key element in defining a common structure (i.e., a uniformed
human- and machine-readable medium) on which the knowl-
edge of both the DS and the AutoML tool can be combined
fruitfully. In a way, our approach follows the steps of the well
known logical based expert systems, of which it is possible to
find a great number of successful examples [43]. Logic pro-
vides the tools to cope with one of the distinctive features of
the knowledge we want to deal with: inconsistency. Indeed, the
ML process is the product of possible attempts, validated or re-
futed by a consequent evaluation. Hence, the mechanism used
to encode the knowledge is required to manage this constant re-
vision process. This is the role of Argumentation—one of the
main approaches for dealing with inconsistent knowledge and
defeasible reasoning.

Definition 8 (Argumentation Theory). An Argumentation the-
ory is a tuple AS=⟨L,R⟩ with:

• L an Argumentation language;

• R the set of defeasible rules in the form r : ϕ0, . . . , ϕn ⇒

ϕ, where ϕ0, . . . , ϕn, ϕ are well-formed formulae in the
L language and r is the identifier of the rule; we call
ϕ0, . . . , ϕn the premises of the rule, and ϕ its conclusion.
Rules with no premises are allowed (i.e. r :⇒ ϕ).

The set of rules R in the theory is used to define how el-
ements from the language are combined together. In the fol-
lowing two definitions, we specialize L into the language LML

expressing all the basic elements of an AutoML problem and R
into a Logical Knowledge Base written in the language LML.
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Definition 9 (AutoML language). Given an argumentation lan-
guage L, we define the AutoML language LML as L ∪ W, with
W the following set of predicates2:

• step(S ) with S ∈ L, representing a step S in the pipeline;

• algorithm(S , A) with S , A ∈ L, representing an algorithm
A for the step S ;

• hyperparameter(A, h, t) with A, h, t ∈ L, representing an
hyperparameter h for the algorithm A of type t (e.g., nu-
merical, categorical);

• domain(A, h, Λh) with A, h,Λh ∈ L, representing an hy-
perparameter h for the algorithm A with domain Λh;

• pipeline(⟨S 1, . . . , S n⟩, A) with S 1, . . . , S n, A ∈ L, rep-
resenting a pipeline consisting of the sequence of steps
⟨S 1, . . . , S n⟩ and the Classification algorithm A;

• mandatory(⟨S 1, . . . , S n⟩, Z) with S 1, . . . , S n,Z ∈ L, rep-
resenting a constraint imposing the steps ⟨S 1, . . . , S n⟩ on
the pipelines with algorithm A (Z = A) or on all the Clas-
sification pipelines (Z = Cl);

• forbidden(⟨S 1, . . . , S n⟩, Z) with S 1, . . . , S n,Z ∈ L, rep-
resenting a constraint forbidding the steps ⟨S 1, . . . , S n⟩

on the pipelines with algorithm A (Z = A) or on all the
Classification pipelines (Z = Cl);

• mandatory order(⟨S 1, . . . , S n⟩, Z) with S 1, . . . , S n,Z ∈
L, representing a constraint imposing the sequence of
steps ⟨S 1, . . . , S n⟩ on the pipelines with algorithm A (Z =
A) or on all the Classification pipelines (Z = Cl).

Definition 10 (Logical Knowledge Base). Given the language
LML, we call Logical Knowledge Base (LogicalKB) the set of
rules for a given AutoML problem.

In other words, the DS leverages an intuitive logical lan-
guage (i.e., LML), and enlists the constraints one-by-one (i.e., in
the LogicalKB). In our vision, the LogicalKB consists of (i) a
set rules specified by the DS and a (ii) set of common rules that
enable the automatic derivation of pipelines and constraints.
Besides, the DS community could create a shared LogicalKB
derived from the available literature and similar real-case prob-
lems.

Example 4 (Logical Knowledge Base). We focus on Dis-
cretization (D), Normalization (N) and Classification (Cl)
steps, and, for brevity, only define the Classification algorithms:
Decision Tree (Dt) and K-Nearest Neighbors (Knn).

# define Discretization step

s1 : ⇒ step(D).

# define Normalization step

s2 : ⇒ step(N).

# define Classification step

2For the sake of conciseness, when writing statements of the AutoML lan-
guage, the letters S (and A) refer to the name of the step (and algorithm)

s3 : ⇒ step(Cl).
# DT is a Classification algorithm

a1 : ⇒ algorithm(Cl, Dt).
# Knn is a Classification algorithm

a2 : ⇒ algorithm(Cl, Knn).
# Forbid Normalization when using DT

c1 : ⇒ forbidden(⟨N⟩, Dt).

s1, s2, and s3 represent the steps; a1 and a2 represent the al-
gorithms; finally, c1 represent the algorithm-related constraint
from Example 3, namely “forbid N in pipelines withDt”.

When applying constraints, they can be conflicting. We
reify the constraints from Definition 6 through conflict function
in the Structured Argumentation domain-

Definition 11 (AutoML Conflict). The conflict function cML is
a function from LML to 2LML that given a statement from LML

returns the set of conflicting statements.

We support both the AutoML conflicts on “pipeline vs con-
straint” and “constraint vs constraint”. Formally, let us consider
two lists of steps α = ⟨. . . , S i, S j, . . .⟩ and β = ⟨. . . , S y, S x, . . .⟩.

• Pipeline vs constraint: return the constraints conflicting
with pipelines.

cML(pipeline(β, A)) =
{mandatory(α, A) | ∃S i ∈ α s.t. S i < β} ∪

{ f orbidden(α, A) | ∀S i ∈ α, S i ∈ β} ∪

{mandatory order(α, A) | ∃S i, S j ∈ α, S x, S y ∈ β,

S i = S x, S j = S y s.t. i < j, x > y}

Intuitively, a pipeline pipeline(⟨S i, S j⟩, A) is conflict-
ing with a mandatory constraint if the pipeline does
not contains at least a mandatory step (e.g., the
pipeline is conflicting with mandatory(⟨S j, S k⟩, A)), with
a f orbidden constraint if the pipeline contains all the
forbidden steps (e.g., the pipeline is conflicting with
f orbidden(⟨S j⟩, A)), and with a mandatory order con-
straint if the pipeline contains at least two steps that are
not in the mandatory order (e.g., the pipeline is conflict-
ing with mandatory order(⟨S j, S i⟩, A)).

• Constraint vs constraint: return the constraints conflict-
ing with other constraints.

cML( f orbidden(β, A)) = {mandatory(α, A) | ∀S j ∈ β, S j ∈ α}

cML(mandatory(β, A)) = { f orbidden(α, A) | ∀S j ∈ α, S j ∈ β}

cML(mandatory order(β, A)) =
{mandatory order(α, A) | ∃S i, S j ∈ α, S x, S y ∈ β,

S i = S x, S j = S y s.t. i < j, x > y}

Intuitively, mandatory and f orbidden constraints are
in conflict if all the forbidden steps are included in the
mandatory constraint (i.e., mandatory(⟨S i, S j, S k⟩, A))
and a f orbidden(⟨S i, S j⟩, A))), this hold symmet-
rically for f orbidden and mandatory constraints.

6



(a) (b) (c)

Figure 3: Examples of Problem Graphs. Green nodes are valid arguments, red ones are refuted. Arrows are attacks.

Two mandatory order constraints are in conflict
if they contain at least two steps in different or-
der (i.e., mandatory order(⟨S i, S j, S k⟩, A)) and a
mandatory order(⟨S j, S i⟩, A))).

Example 5 (AutoML conflict). With reference to the Logi-
calKB in Example 4, let us consider the set of rules that rep-
resent the pipelines related toDt:

# pipeline ending with a DT

p1 : ⇒ pipeline(Dt).
# Discretization and DT

p2 : ⇒ pipeline(⟨D⟩, Dt).
# Normalization and DT

p3 : ⇒ pipeline(⟨N⟩, Dt).
# Discretization , Normalization , and DT

p4 : ⇒ pipeline(⟨D, N⟩, Dt).
# Normalization , Discretization , and DT

p5 : ⇒ pipeline(⟨N , D⟩, Dt).

In this case, c1 (i.e., “forbid N in pipelines with Dt”) is in
conflict with the pipeline statements p3, p4, and p5 since they
contain N andDt.

To create a Problem Graph, which is the medium readable
by users and machines, we informally (for the sake of concise-
ness) introduce the key elements from Structured Argumenta-
tion; a complete formalization is available in [39]. Given an
Argumentation theory, an argument is created for every rule
with no premises (e.g., from the rule r :⇒ c, we derive an argu-
ment with conclusion c using r). Then, we recursively apply the
other rules in the theory to the newly generated argument (e.g.,
we can use the argument with conclusion c and the following
rule r1 : c ⇒ d to conclude an argument for d using r and r1).
This is repeated until no new argument can be generated. In the
rest of the paper we will refer to an argument with the set of

rules used to generate it (e.g., given r :⇒ c and r1 : c ⇒ d, we
will write r and r1 when referring to the rules and {r} and {r, r1}
for – respectively – the argument with conclusion c using r and
the argument with conclusion d using r and r1).

An Argumentation framework is defined using the argu-
ments built from an Argumentation theory and their attack re-
lations. Attacks are inconsistencies between arguments’ con-
clusions and are computed using a conflict function (Defini-
tion 11). For instance, given two arguments concluding respec-
tively a and b, and the conflict function c such that c(a) = {b},
then the argument for b directly attacks the one for a (i.e., b is in
conflict with a). The attack is propagated to all the arguments
built over the receiver of the attack (e.g., if a1 directly attacks
a2, and a2’s conclusion is used to derive a3, then a1 also attacks
a3). Also, we can define a preference relation over arguments
using a partial ordering over the rules in the Argumentation the-
ory: it is impossible for an argument to be attacked by the least
preferred ones, even if they are in conflict. In other words, we
can explicitly solve inconsistencies in the LogicalKB using pri-
orities. We exploit the last-weakest ordering as in [39].

Finally, the evaluation of an Argumentation framework is
performed through semantics, which determines all the sets of
arguments that are consistent (called extensions) in an Argu-
mentation framework. We exploit grounded semantics [36]
to produce a grounded extension; this semantics is the most
skeptical—i.e., it includes only the arguments that are verified
by all the possible interpretations.

Definition 12 (Problem Graph). We call Problem Graph a
graph in which nodes are arguments and edges are attacks from
the Argumentation framework that is built on the Argumenta-
tion theory ⟨LML, LogicalKB⟩ and the conflict function cML.

The benefits of the Problem Graph are two-fold. First of all,
it can be leveraged by both DSs and domain experts to: under-
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stand, summarize and visualize the current knowledge. Second
of all, it is straightforward to convert such a graph of constraints
into a space of possible solutions (i.e., exploiting Argumenta-
tion semantics, it is easy to obtain all the sets of arguments –
constraints and pipelines – which hold together).

Example 6 (Problem Graph). Figure 3a illustrates the Problem
Graph extracted from the LogicalKB introduced in Example 4
and 5 and evaluated under grounded semantics. Arguments are
represented as nodes, attacks as arrows and the colors repre-
sent the state of the arguments according to the semantics: red
for refuted arguments, and green for the ones in the extension.
The arguments are identified through the set of rules used to
build them. In the upper part of the figure, we have a group
of undefeated arguments, namely {s1}, {s2}, {s3}, {a1}, and
{a2}, representing the basic knowledge used to setup the Au-
toML search space (i.e. steps and algorithms). Then, we have
an argument for every pipeline in Example 5: from {p1} to {p5}
the pipelines regardingDt, from {p6} to {p10} the ones regard-
ing Knn. Finally, we can observe three different attacks: from
{c1} to {p3}, {p4}, and {p5}, in accordance with the conflicts
identified in Example 5. The arguments in the extension give
us all the information that we should use during the AutoML
optimization process – i.e. we should discard all the pipelines
refuted by the constraint argument ({c1}), and focus on the re-
maining part of the search space.

The use of Argumentation relieves the DS of the burden of
manually considering all the effects of the possible constraints.
It is important to notice that, although the increased degree of
automation, the Problem Graph allows the DS and domain ex-
perts to correct, revise, and supervise the process. Accordingly,
possible inconsistencies – due to diverging constraints – can be
verified by the DS using her knowledge.

Any change in the LogicalKB translates into a change in the
Problem Graph, allowing the DS and domain experts to visual-
ize it and argue about it. The revision of the Problem Graph
is the key element in the process of augmenting the knowl-
edge: the DS and domain experts can consult each other and
discuss how the new insights relate to their initial knowledge.
Indeed, thanks to the nature of the Problem Graph, it would
be extremely easy to identify new possible conflicts and sup-
porting arguments. Furthermore, AutoML can update the Prob-
lem Graph by extracting constraints from the performed explo-
ration, and transposing them into the LogicalKB. For instance,
the DS may not have considered that the dataset contains miss-
ing values. AutoML helps in identifying the new data-related
constraint “require Imputation (I) in all the pipelines” and adds
it to the LogicalKB (mandatory(⟨I⟩,Cl)).

The described process is compliant with and augments the
CRISP-DM process. The inferred/learned knowledge is auto-
matically handled throughout iterations, supporting the DS in
the whole analysis in a continuous revision of the constraints.

4. HAMLET

HAMLET iterates over three phases (Figure 1): (i) the gen-
eration of Problem Graph and search space out of the Logi-
calKB, (ii) the exploration of the search space in compliance
with the specified constraints, and (iii) the augmentation of the
LogicalKB through a rule recommendation.

The framework is available at https://github.com/

QueueInc/HAMLET, and it is composed of two sub-modules.
The first, written in Kotlin and running on the JVM, exposes a
graphical interface on which the DSs can compile and revise the
LogicalKB. The module is also responsible for the generation
and evaluation of the Problem Graph; it implements the Struc-
tured Argumentation functionalities as specified in Section 3
using Arg2P [40], an ASPIC+-based Kotlin library. The second
module, written in Python, is responsible for performing the
AutoML optimization and the extraction of the new constraints
from the explored space.

4.1. Generation of Problem Graph and Search Space

In Section 3, we defined the LogicalKB as the set of rules
specified by the DS using her knowledge. The LogicalKB also
includes a set of hard-encoded rules representing inferences
necessary to characterize the AutoML problems. These rules
are joined to the ones defined by the DS and used to build the
Problem Graph (i.e., Argumentation framework).

A subset of rules is shown in Figure 4. The first two (hc0
and hc1) define how to automatically derive a pipeline using al-
gorithms and steps. The construction of pipelines can be com-
pletely automated and the DS should be dispensed from man-
ually enumerating all the possible pipelines as in Example 5.
In particular, the correct set of rules is built dynamically using
the steps and algorithms provided by the DS, then they are used
to derive all the arguments for the possible pipelines. The last
three rules (hc2, hc3 and hc4) encode constraints – mandatory,
forbidden, mandatory order – on all the available algorithms
with a single statement (e.g., mandatory(⟨D⟩,Cl)): it will be
automatically used by the framework to derive the constraints
for all the specific algorithms in the theory.

Example 7 (Hard-coded rules). With reference to Example 6
and Figure 4, we add rule c2 for a new data-related constraint.

# mandatory Norm. in Class. pipelines

c2 : ⇒ mandatory(⟨N⟩, Cl)

From the rule c2, the hard-coded rules generate the two argu-
ments c2’ = {c2, a1, hc2} (i.e., mandatory(⟨N⟩,Dt)) and
c2’’ = {c2, a2, hc2} (i.e., mandatory(⟨N⟩,Knn)) that are
specific for the Classification algorithms in the LogicalKB.

However, {c1} (i.e., f orbidden(⟨N⟩,Dt); is in conflict with
c2’. Depending on her experience, the DS decides to resolve
the conflict by specifying an ordering over the rules in the Log-
icalKB. Assuming that the DS prefers c1 to hc2, the argument
{c1} is preferred to c2’ and the attack from the latter is not con-
sidered in the final graph. Figure 3b shows the updated graph.
Firstly, we observe the support relation between {c2} and the
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# given an algorithm , create a pipeline including only such algorithm

hc0 : algorithm(Cl, A) ⇒ pipeline(⟨ ⟩, A).

# given some steps and an algorithm , create a pipeline including such steps and algorithm

hc1 : step(S 1),. . .,step(S n), algorithm(Cl, A) ⇒ pipeline(⟨S 1, . . . , S n⟩, A).

# given constraints on the Pre -processing steps required for Classification ...

# ... apply this constraints to all Classification algorithms

hc2 : mandatory(⟨S 1, . . . , S n⟩, Cl), algorithm(Cl, A) ⇒ mandatory(⟨S 1, . . . , S n⟩, A).

hc3 : forbidden(⟨S 1, . . . , S n⟩, Cl), algorithm(Cl, A) ⇒ forbidden(⟨S 1, . . . , S n⟩, A).

hc4 : mandatory_order(⟨S 1, . . . , S n⟩, Cl), algorithm(Cl, A) ⇒ mandatory_order(⟨S 1, . . . , S n⟩, A).

Figure 4: A subset of rules from the LogicalKB.

generated constraints c2’ and c2’’. Since {c1} has no attack-
ers, it is added to extension. Consequently, c2’ is refuted and
the the pipelines attacked by it are correctly reinstated.

Given the Problem Graph (we recall that the Problem Graph
contains all the generated pipelines – including their partial per-
mutations), the search space can be extracted as in Algorithm 1.
We iterate over all the generated pipelines in the Problem Graph
and we recursively build their domain: the pipeline domain is
the Cartesian product of the step domains, the step domain is the
disjoint union of the algorithm domains (we leverage the dis-
joint union since each algorithm can be picked as an alternative
to the others), the algorithm domain is the Cartesian product of
its hyperparameters; the domain of a hyperparameter is given
by definition. Finally, the search space is the disjoint union of
all the alternative pipeline domains.

Noticeably, while the search space could be constrained
during its construction (e.g., by simply adding an “if” condi-
tion to check the validity of each pipeline at Algorithm 1 line
10), current AutoML frameworks leverage optimization tech-
niques that do not allow the explicit exclusion of regions from
the search space. As a consequence, we need to produce the
entire search space first.

4.2. Exploration of a Constrained Search Space
The Problem Graph is not only used to build the en-

tire search space but it is also evaluated to understand which
pipelines are invalid and which constraints are valid. Hence –
through the Problem Graph – we enhance AutoML exploration
by combining the following techniques.

(i) Invalid pipelines are used to discourage the exploration
of such a portion of the search space (we recall that a
pipeline has a domain – a region of the search space – in
which several pipeline instances are parametrized). First,
we sample such regions of the search space, then we en-
force a knowledge injection mechanism through warm-
starting (i.e., the process of providing previous evalua-
tions that help the model to converge faster). For in-
stance, with reference to Example 7, we sample some
pipeline instances from the pipelines that have been dis-
carded (from {p3} to {p7}); then, we label such samples
as invalid and provide them to the AutoML tool, help-
ing the optimization algorithm to focus only on the valid
portions of the space.

Algorithm 1 Search Space from the Problem Graph
Require: PG(N, E): Nodes and Edges of a Problem Graph
Ensure: Λ: Search Space

1: procedure GetDomain(A)
2: ΛA ← ∅
3: for each h ∈ A do ▷ For each hyperparameter in the algorithm...
4: ΛA ← ΛA ×Λh ▷ Compute Cartesian product of hyperpar. domains
5: end for
6: return ΛA ▷ Return the algorithm domain
7: end procedure

8: Λ← ∅ ▷ Initialize the search space
9: for each pipeline(α, A) ∈ N do ▷ For each argument that is a pipeline with
α steps and alg. A...

10: ΛP ← GetDomain(A) ▷ Init. pipeline domain with algorithm domain
11: for each S ∈ α do ▷ For each step in the pipeline...
12: ΛS ← ∅ ▷ Init. the step domain
13: for each A ∈ S do ▷ For each algorithm in the step...
14: ΛS ← ΛS ·∪ GetDomain(A) ▷ Add alg. to step domain
15: end for
16: ΛP ← ΛP × ΛS ▷ Add step domain to pipeline domain
17: end for
18: Λ← Λ ·∪ ΛP ▷ Add pipeline domain to the search space
19: end for
20: return Λ ▷ Return the search space

(ii) Valid constraints – expressed as conjunctions of Boolean
clauses – are used to discard the invalid pipeline instances
that still are encountered by the AutoML tool. Indeed,
since the sampling from (i) is non-exhaustive, it can hap-
pen that small portions of invalid regions could still be
explored.

Our AutoML implementation is based on FLAML [44],
which mixes Bayesian Optimization with CFO (Frugal Op-
timization for Cost-related Hyperparameters). In a standard
Bayesian process, an increasingly accurate model is built on
top of the previously explored pipeline instances to suggest the
most promising ones among the remaining. The pipeline in-
stances keep being explored, updating the model, until a bud-
get in terms of either iterations or time is reached. With CFO,
there is also an estimation of the evaluation time to consider the
frugality of the suggested pipeline instances – hence favoring
the ones requiring a smaller amount of time. Throughout the
exploration, different solutions are tested, which contribute to
augmenting the global knowledge about the problem.
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4.3. Knowledge Augmentation through Rule Recommendation
New constraints are automatically mined out of the pipeline

instances explored by AutoML and recommended in our log-
ical language as rules. Then, the DS decides which rules are
accepted and added to the LogicalKB.

At this stage, we leverage frequent pattern mining tech-
niques to learn constraints in an unsupervised manner. Frequent
pattern mining is the task of finding the most frequent and rel-
evant patterns in large datasets (e.g., finding the products fre-
quently bought together in the domain of market basket anal-
ysis); depending on the constraint type, we look for (sub)sets
[45] or (sub)sequences [46] frequently recurring among the ex-
plored pipelines. Since a pipeline instance is a sequence of
algorithms, the set of the explored pipeline instances can be
directly mapped into a transactional dataset [45] where each
pipeline instance is a transaction and each step – inferred from
the algorithm – is an item.

We recommend the same constraints we support at
the Argumentation level (i.e., mandatory, f orbidden,
mandatory order) so that AutoML can be as expressive as
the DS. For mandatory and forbidden constraints we look
for (sub)sets [45] frequently recurring among the explored
pipelines. Specifically, we split the explored pipeline instances
by the applied Classification algorithm, set a minimum fre-
quency (i.e., support) threshold to 50% (i.e., to be retrieved,
a set/sequence must occur at least in 50% of the explored
instances), and extract frequent maximal3 itemsets. The
recommendation depends on the constraint.

• mandatory: we consider only the patterns with good per-
formance (i.e., 0.7 ≤ metric ≤ 1.0);

• f orbidden: we consider only the patterns with bad per-
formance (i.e., 0.0 ≤ metric ≤ 0.3);

• mandatory order: the same considerations of the
mandatory constraints stand, except that we look for
(sub)sequences [46] of length 2 to discover ordering de-
pendencies in pairs of steps as in [47].

We leveraged well-known implementations [48] and [49] for
itemsets and sequences mining, respectively. Finally, we return
to the DS only the top-10 rules sorted by descending support;
we allow the DS to explore all the rules on-demand.

The thresholds act as filters on the extracted rules since we
cannot burden the user with the investigation of hundreds of
recommendations. As to the intervals, our rationale is simple:
we only want to recommend as mandatory (order) the rules that
achieved “good performance” and as forbidden the rules that
achieved “bad performance”. Since we handle classification
pipelines that mainly refer to (balanced) accuracy/F1 score/re-
call, we mapped “good” in the interval [0.7, 1.0] and “bad” in
the interval [0, 0.3]. For the frequent pattern extraction, we con-
sider only the pipeline instances falling in these intervals. As

3Maximal itemsets are patterns that are not contained in any other. For
instance, given two frequent patterns, {a, b, c} and {a, b}, the former is maximal
while the latter is not.

to the support, 50% ensures that the pattern recurs on many
of the explored instances and empirically showed to be a good
threshold to have good efficiency in the extraction of frequent
patterns.

Example 8 (Rules Recommendation). With reference to the
Problem Graph in Example 7, the AutoML results are filtered
according to the chosen metric, the algorithm [48] is applied,
and let us assume that the rule c3 is recommended:

c3 : ⇒ mandatory(⟨D⟩, Dt).

The constraints specifies “mandatoryD in pipelines withDt”.
As a matter of fact, it is well known that Discretization improves
the performance of tree-based algorithms giving to them the
ability to apply multiple split in the decision nodes. Figure 3c
shows the effect of the applied constraint: a new portion of the
search space is excluded from the extension ({p1}).

5. Experimental Evaluation

The performance of HAMLET depends on (i) the rules en-
coded in the LogicalKB and (ii) the rules recommended after
each run. To test both the effectiveness and efficiency of our
approach, we define three experimental settings.

• PKB (Preliminary Knowledge Base), HAMLET starts
with a preliminary LogicalKB constraining the search
space from the first iteration, and no rule mining is ap-
plied. The preliminary LogicalKB consists of the rules
discovered in [47] and some well-known from the lit-
erature (e.g., suggested by scikit-learn4). The complete
knowledge base can be found in the Github repository.

• IKA (Iterative Knowledge Augmentation), HAMLET
starts with an empty LogicalKB, and all the rules rec-
ommended after each run are applied to extend the Logi-
calKB.

• PKB+IKA, HAMLET starts with a preliminary Logi-
calKB, and the rules recommended after each run are ap-
plied to extend the LogicalKB.

HAMLET run 4 times in every setting – intuitively, four runs
of knowledge augmentation – the budget assigned to each run
is 125 pipeline instances in 900 seconds (15 minutes). We also
test against a baseline: we let AutoML explore 500 pipeline
instances (= 125 · 4) in a single run with a time budget of 3600
seconds (= 900 · 4; 1 hour).

For such an evaluation, we derive a search space out of
6 steps, 5 Data Pre-processing steps (Imputation, Normaliza-
tion, Discretization, Feature Engineering, and Rebalancing) fol-
lowed by the final Classification task. Since the tests are run
on datasets from OpenML [50] – a well-known repository for
data acquisition and benchmarking – and it provides already-
encoded datasets, we do not consider the encoding step. Except

4https://scikit-learn.org/stable/auto_examples/

preprocessing/plot_discretization.html
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Table 2: Algorithms and number of hyperparameters for each of the steps in
HAMLET. Algorithm names and hyperparameters are imported from the scikit-
learn Python library.

Step Algorithm #Hyperparameters

Imputation SimpleImputer 1
IterativeImputer 2

Normalization StandardScaler 2
MinMaxScaler 0
RobustScaler 2
PowerTransformer 0

Discretization Binarizer 1
KBinsDiscretizer 3

Feature Eng. SelectKBest 1
PCA 1

Rebalancing NearMiss 1
SMOTE 1

Classification DecisionTreeClassifier 7
KNeighborsClassifier 3
RandomForestClassifier 7
AdaBoostClassifier 2
MLPClassifier 6

Table 3: Dataset descriptions.

OpenMLID a Dataset Instances Features Classes

40983 wilt 4839 L 6 L 2 L

40499 texture 5500 L 41 L 11 H

1485 madelon 2600 L 501 H 2 L

1478 har 10229 L 562 H 6 H

1590 adult 48842 H 9 L 2 L

– – – H – L – H

– – – H – H – L

554 mnist 784 70000 H 785 H 10 H

– Not Applicable
H The value v is high for the meta-feature F if v ≥ 1

|F|
∑

f∈F f
L The value v is low for the meta-feature F if v < 1

|F|
∑

f∈F f
a Datasets are available at https://www.openml.org/d/<OpenMLID>

for that, we included all the Data Pre-processing steps and al-
gorithms available in the scikit-learn [51] Python library (plus
imbalance-learn [52] for Rebalancing transformations). The
leveraged steps, algorithms per step, and hyperparameters per
algorithm are reported in Table 2.

The OpenML-CC18 suite is a well-known collection of 72
datasets for benchmarking. Given the time-consuming compu-
tation of each dataset (8 hours per dataset = 2 hours for the
baseline + 6 hours for HAMLET in the three settings) – in
this preliminary evaluation – we select a representative sub-
set of datasets according to three meta-features provided by
OpenML: number of instances, number of features, and num-
ber of classes. For each of the considered meta-features, we
search for datasets with either high or low values, and we select
the representatives that maximize the overall dataset diversifica-
tion. Table 3 illustrates the 6 datasets that have been identified;
note that some combinations of meta-features have no represen-
tative dataset in the suite. Among these, we do not report the
results for the dataset mnist 784 since the number of explored
pipeline instances is insufficient to validate the result (i.e., due
to the time necessary to run a single pipeline instance, only 50
instances were explored out of 1000).
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Figure 5: Results assessing the effectiveness of HAMLET w.r.t. the baseline.

5.1. Effectiveness
We employ balanced accuracy as the quality metric. For

instance, in case of (two) binary classes, such a score is

Balanced accuracy =
1
2

( T P
T P + FN

+
T N

T N + FP

)
where T P and T N stand respectively for True Positive and True
Negative (i.e., number of instances that have been correctly as-
signed to the positive and negative classes), and FP and FN
stand respectively for False Positive and False Negative (i.e.,
number of instances that have been mistakenly assigned to the
positive and negative classes). The formulation generalized to
more than 2 classes can be found at [53]. The score avoids
inflated performance estimations on imbalanced datasets. For
balanced datasets, the score is equal to the conventional accu-
racy (i.e., the number of correct predictions divided by the total
number of predictions), otherwise it drops to 1

#classes .
Figure 5 illustrates the performance achieved by the base-

line and the three settings of HAMLET. HAMLET is clearly
beneficial since in all datasets the framework overcomes the
baseline. The preliminary results highlight that both the Logi-
calKB and rule recommendation play important roles:

• When we warm-start the exploration with a non-empty
LogicalKB (PKB), in all datasets HAMLET overcomes
the baseline.

• When we only leverage rule recommendation (IKA), we
achieve results that are better than or equivalent to PKB,
indeed we are injecting in the LogicalKB new rules that
are tailored to the dataset.

• The synergy of PKB+IKA performs better than PKB in
adult, worse in wilt, and the two are comparable in the
other datasets. On the one hand, the PKB act as a warm
start mechanism that speeds up the optimization; on the
other hand, if not aligned with the recommended rules,
it can mitigate the benefits of IKA. This proves to be
a promising direction that further requires investigation
since merging the words will require further studies. In-
deed, it is worth noting that the recommended rules can
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Figure 6: Results assessing the performance of HAMLET through the optimization time.
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Figure 7: Comparison of the best pipeline instances characterized by optimization time and (balanced) accuracy, bigger circles represent settings that dominate the
others.

be overlapping with the ones in the LogicalKB, highlight-
ing the need to improve the recommendation process by
also considering the rules that are already present in the
LogicalKB.

In PKB+IKA, IKA can introduce rules that contradict the
ones in the LogicalKB of PKB; for instance when the PKB con-
tains rules that are not “representative” of the dataset/algorithms
in use. We believe that this is an added value of HAMLET since
“incomplete” (or even wrong) LogicalKBs can be corrected/re-
fined by a data-driven approach. Finally, PKB+IKA and IKA
are likely to produce different rules, since in PKB+IKA the
LogicalKB biases the exploration of the search space from the
beginning (acting as a warm start mechanism).

5.2. Efficiency

Figure 6 shows how settings converge to the optimal
pipeline instance. Noticeably, PKB and PKB+IKA start with
higher accuracy than IKA and the baseline in four datasets out
of five, proving how the preliminary LogicalKB warm starts
the exploration. However, time and #iterations alone are not
fair metrics for comparison; for instance, an optimization strat-
egy could privilege simple algorithms taking small amounts
of computational time but producing worse results than “more
complex” algorithms. In the direction of multi-objective opti-
mization (exploration time should be minimized while accuracy
should be maximized), Figure 7 depicts which settings domi-
nate the others using the Skyline operator [54]. A setting dom-
inates another one if it is as good or better in all dimensions
(time and accuracy) and better in at least one dimension (time

wilt texture madelon har adult
0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f t
im

e

argum. PKB
automl PKB

argum. IKA
automl IKA

argum. PKB + IKA
automl PKB + IKA

Figure 8: Computational time of the argumentation and AutoML processes.

or accuracy). PKB dominates in 80% of the datasets, IKA in
40%, PKB+IKA in 20%, and the baseline in 40%. Noticeably,
the baseline is selected as dominating only in madelon and har
datasets due to the fact that converges faster than HAMLET
(although it converges to a pipeline instance with lower accu-
racy).

Finally, Figure 8 depicts the overhead introduced by the ar-
gumentation framework in HAMLET that, at maximum, is 20%
of the computational time in the adult dataset. This proves that
the argumentation time is marginal with respect to the duration
of the optimization process. As expected, PKB+IKA shows the
highest overhead since the number of rules to manage is the
highest.
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Figure 9: Results assessing the performance of HAMLET w.r.t. Auto-sklearn
[19] and H2O [55].

5.3. Comparison

Figure 9 compares HAMLET against two well-known Au-
toML frameworks: Auto-sklearn [19] and H2O [55]. In four
datasets out of five, HAMLET outperforms or is comparable to
the two frameworks. Additionally, the added value of HAM-
LET is explainability. Hamlet is a human-in-the-loop AutoML
framework tailored to the needs of DS that (i) enables the in-
jection of their experience into the exploration process as well
as (ii) the spreading and sharing of knowledge bases that en-
code what DSs have understood by the optimization of their
pipelines.

6. Conclusions and Future Work

Data platforms support Data Scientists in performing end-
to-end data analysis; to this end, Machine Learning plays a
primary role. However, the complexity and heterogeneity of
(Automated) Machine Learning processes are leading Data Sci-
entists to lose control over such processes. Human aware-
ness about the constraints and solutions of Machine Learning
tasks is a fundamental aspect to consider, and consequently, the
Data Scientist should play a central role in the design of next-
generation data platforms.

According to this vision, we present HAMLET, a frame-
work for Human-centered AutoML based on Logic and Struc-
tured Argumentation. Logic is exploited to structure the knowl-
edge that the Data Scientist gathers while designing, modeling,
and deploying a solution. The logical encoding of the knowl-
edge provides a medium that is both human- and machine-
readable and it allows an easy exploration and verification of
all the constraints that may apply to the case at hand—it is
overwhelming for the Data Scientist to correctly handle the
vast amount of them. The preliminary evaluation of HAM-
LET shows promising results against state-of-the-art AutoML
algorithms both in terms of effectiveness and efficiency, with
argumentation introducing a small overhead with respect to the
duration of the exploration process.

The directions for future work are plentiful, among them:

(i) the recommendation of more constraints out of the ex-
plored search space (e.g., rare or negative patterns);

(ii) the support to heterogeneous constraints on hyperparam-
eter domains;

(iii) the injection of meta-learning into our Logical Knowl-
edge Base to better identify when and how the constraints
should be applied (e.g., this can be done after testing
HAMLET on a multitude of datasets);

(iv) the introduction of a visual metaphor (e.g., based on the
Problem Graph) to help Data Scientists’ understanding;

(v) the study of automatic resolution/recommendation of
conflicting constraints, also depending on the rules al-
ready embedded in the Logical Knowledge Base.
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R. Matulevičius (Eds.), Advances in Databases and Information Systems,
Springer International Publishing, Cham, 2021, pp. 136–151.

[3] P. Agrawal, R. Arya, A. Bindal, S. Bhatia, A. Gagneja, J. Godlewski,
Y. Low, T. Muss, M. M. Paliwal, S. Raman, V. Shah, B. Shen, L. Sugden,
K. Zhao, M.-C. Wu, Data platform for machine learning, in: Proceedings
of the 2019 International Conference on Management of Data, SIGMOD
’19, Association for Computing Machinery, New York, NY, USA, 2019,
p. 1803–1816. doi:10.1145/3299869.3314050.
URL https://doi.org/10.1145/3299869.3314050

[4] L. Zhou, S. Pan, J. Wang, A. V. Vasilakos, Machine learning on big
data: Opportunities and challenges, Neurocomputing 237 (2017) 350–
361. doi:10.1016/j.neucom.2017.01.026.

[5] R. Wirth, J. Hipp, Crisp-dm: Towards a standard process model for
data mining, in: Proceedings of the 4th international conference on the
practical applications of knowledge discovery and data mining, Vol. 1,
Springer-Verlag London, UK, 2000.

[6] D. Xin, E. Y. Wu, D. J. L. Lee, N. Salehi, A. G. Parameswaran, Whither
automl? understanding the role of automation in machine learning work-
flows, in: CHI ’21: CHI Conference on Human Factors in Comput-
ing Systems, ACM, 2021, pp. 83:1–83:16. doi:10.1145/3411764.

3445306.
[7] Y. Gil, J. Honaker, S. Gupta, Y. Ma, V. D’Orazio, D. Garijo, S. Gade-

war, Q. Yang, N. Jahanshad, Towards human-guided machine learning,
in: Proceedings of the 24th International Conference on Intelligent User
Interfaces, 2019, pp. 614–624.

[8] D. J.-L. Lee, S. Macke, A human-in-the-loop perspective on automl:
Milestones and the road ahead, IEEE Data Engineering Bulletin (2020).

[9] D. Wang, J. D. Weisz, M. Muller, P. Ram, W. Geyer, C. Dugan,
Y. Tausczik, H. Samulowitz, A. Gray, Human-ai collaboration in data sci-
ence: Exploring data scientists’ perceptions of automated ai, Proceedings
of the ACM on Human-Computer Interaction 3 (CSCW) (2019) 1–24.

[10] M. Francia, M. Golfarelli, S. Rizzi, Augmented business intelligence, in:
I. Song, O. Romero, R. Wrembel (Eds.), Proceedings of the 21st Inter-
national Workshop on Design, Optimization, Languages and Analytical
Processing of Big Data, co-located with EDBT/ICDT Joint Conference,
DOLAP@EDBT/ICDT 2019, Lisbon, Portugal, March 26, 2019, Vol.
2324 of CEUR Workshop Proceedings, CEUR-WS.org, 2019.
URL http://ceur-ws.org/Vol-2324/Paper02-MGolfarelli.

pdf

13

https://doi.org/10.1016/j.future.2021.06.031
https://doi.org/10.1016/j.future.2021.06.031
https://doi.org/10.1016/j.future.2021.06.031
https://doi.org/10.1016/j.future.2021.06.031
https://doi.org/10.1145/3299869.3314050
https://doi.org/10.1145/3299869.3314050
https://doi.org/10.1145/3299869.3314050
https://doi.org/10.1016/j.neucom.2017.01.026
https://doi.org/10.1145/3411764.3445306
https://doi.org/10.1145/3411764.3445306
http://ceur-ws.org/Vol-2324/Paper02-MGolfarelli.pdf
http://ceur-ws.org/Vol-2324/Paper02-MGolfarelli.pdf
http://ceur-ws.org/Vol-2324/Paper02-MGolfarelli.pdf


[11] M. Francia, E. Gallinucci, M. Golfarelli, COOL: A framework for con-
versational OLAP, Inf. Syst. 104 (2022) 101752. doi:10.1016/j.is.
2021.101752.
URL https://doi.org/10.1016/j.is.2021.101752

[12] J. Drozdal, J. Weisz, D. Wang, G. Dass, B. Yao, C. Zhao, M. Muller,
L. Ju, H. Su, Trust in automl: exploring information needs for establishing
trust in automated machine learning systems, in: Proceedings of the 25th
International Conference on Intelligent User Interfaces, 2020, pp. 297–
307.

[13] J. P. Ono, S. Castelo, R. Lopez, E. Bertini, J. Freire, C. T. Silva, Pipeline-
profiler: A visual analytics tool for the exploration of automl pipelines,
IEEE Transactions on Visualization and Computer Graphics 27 (2) (2021)
390–400.

[14] J. Giovanelli, G. Pisano, Towards human-centric automl via logic and ar-
gumentation, in: M. Ramanath, T. Palpanas (Eds.), Proceedings of the
Workshops of the EDBT/ICDT 2022 Joint Conference, Edinburgh, UK,
March 29, 2022, Vol. 3135 of CEUR Workshop Proceedings, CEUR-
WS.org, 2022.
URL http://ceur-ws.org/Vol-3135/dataplat_short2.pdf

[15] L. Kotthoff, C. Thornton, H. H. Hoos, F. Hutter, K. Leyton-Brown, Auto-
weka: Automatic model selection and hyperparameter optimization in
weka, in: Automated Machine Learning, Springer, Cham, 2019, pp. 81–
95.

[16] P. I. Frazier, A tutorial on bayesian optimization, CoRR abs/1807.02811
(2018). arXiv:1807.02811.
URL http://arxiv.org/abs/1807.02811

[17] J. Giovanelli, B. Bilalli, A. Abelló, Effective data pre-processing for au-
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