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Abstract—In this paper we investigate how to effectively deploy
deep learning in practical industrial settings, such as robotic
grasping applications. When a deep-learning based solution is
proposed, usually lacks of any simple method to generate the
training data. In the industrial field, where automation is the
main goal, not bridging this gap is one of the main reasons
why deep learning is not as widespread as it is in the academic
world. For this reason, in this work we developed a system
composed by a 3-DoF Pose Estimator based on Convolutional
Neural Networks (CNNs) and an effective procedure to gather
massive amounts of training images in the field with minimal
human intervention. By automating the labeling stage, we also
obtain very robust systems suitable for production-level usage. An
open source implementation of our solution is provided, alongside
with the dataset used for the experimental evaluation.

I. INTRODUCTION

Among visual perception tasks, 2D Object Detection with
category-level classification has achieved an effectiveness
thanks to Convolutional Neural Networks (CNNs) [1],[2],[3].
Unfortunately, the more complex perception task of the 3D
Pose estimation has not experienced the same strengthening,
notwithstanding remarkable results [4],[5],[6] have endorsed
CNNs also for this – more complex – task. We argue that
between the key reasons for this state-of-affairs is the lack
of training data: while for 2D Object Detection huge datasets
like Pascal VOC [7] or COCO [8] define a reliable testbed
for the community, the same can not be said for the 3D
counterpart (with the exception of some small datasets e.g. like
[9],[10]). Obviously, for relevant robotic applications, such as,
for instance, a fully automatic pick-and-place, Pose Estimation
is an essential stage of the overall pipeline, and, as stated
before, the availability of training data hinders deployment of
CNNs. Thus, the claim of our work is that for a real industrial
application it is not sufficient to develop advanced data-driven
models, like a convolutional neural networks, but – simul-
taneously – the data sourcing problem should be addressed.
Thus, we propose to tackle the object detection and 3-DoF
pose estimation task by an integrated framework based on
CNNs wherein the required labeled training data are sourced
autonomously, i.e. with negligible human intervention. We also

This work was supported by the European Union’s Horizon 2020 research
and innovation programme under grant agreement No. 870133 as part of
the RIA project REMODEL (Robotic tEchnologies for the Manipulation of
cOmplex DeformablE Linear objects).

show how the proposed framework enables development of a
fully automated robotic grasping system.

The basic idea of our approach is to take advantage of the
known difficulty of CNNs to learn rotational invariant image
features. As shown in [11],[12] these networks redundantly
learn multiple representation of sought objects when they
exhibit multiple rotation in the training images. As opposed to
approaches like [13],[11], which try to learn rotation-invariant
representation, we leverage on classical CNN-based Object De-
tectors to formulate the angle estimation task as a classification
problem by leading the network to interpret each single object
orientation as a stand-alone class (for this reason we name the
algorithm LOOP: Leveraging on a generic Object detector for
Orientation Prediction). As previously mentioned, we endow
our approach with an automated dataset generation technique
that allows to label an entire video sequence easily, provided
that the sequence features the same type of image acquisitions
conditions as those in which the detector is exptected to
operate at test time (e.g. a quite-planar scene in front of the
camera). This approach enables collections of massive amounts
of training data which, in turn, allow the creation of an almost
perfect object detector (i.e. ∼ 0.99 mAP according to our
experiments).

Thus, the key contributions of our paper are:
• A novel approach to extend a generic CNN-based 2D

Object Detector in order to predict oriented bounding
boxes.

• A fast and reliable Labeling pipeline that allows to gather
a labeled Dataset to train the above mentioned extended
Object Detector with minimal human intervention (i.e. the
user has to manually label only the first frame of a video
sequence).

• A real – proof-of-concept – pick&place robotic application
based on this approach.

An open source implementation of the proposed method is
available online 1.

II. RELATED WORKS

Nowadays, object detection and 3-DoF Pose Estimation in
industrial settings is mainly addressed by classical computer
vision approaches based on hand-crafted 2D features, which

1 https://github.com/m4nh/loop

https://github.com/m4nh/loop


!"#$

Auto-Generated
Dataset

From Video Sequence

DCNN-based
Object Detector

%&'()*° %&'()*°
Training Inference

Oriented Labels

Converts Oriented to 
Unoriented Labels

Converts Unoriented
to Oriented LabelsLOOP

,-.

-. /.

,-.

!$#"

012 = %&'()*°

12 = %&'(

4&567)8°

,-9

/9

:/.

:/9

12 = %&'(

Fig. 1. The overall pipeline of LOOP. The starting point is the creation of a dataset of oriented bounding boxes (oriented labels) with minimal human intervention.
The oriented labels are converted in unoriented labels, by means of the fo2u function , suitable to train a classical object detector, which encodes objects
orientation in the classification process. Hence the detector infers unoriented predictions (yi), with the same orientation encodings. The unoriented predictions
are then transformed in oriented predictions (y̆i) by means of the fu2o function.

can effectively represent the orientation of salient local image
structures. SIFT [14] is one of the most popular 2D feature
detector and descriptor by which it is possible to implement a
full Object Detection pipeline for textured objects. By match-
ing multiple 2D local features it is possible to estimate the
homography (or even a rigid transform) between a model
image and the target scene. SIFT can be replaced by other
popular alternatives, like SURF, KAZE, ORB, BRISK etc.. [15]
presents a comprehensive evaluation of the main algorithms
for 2D feature matching. As stated before, the aforementioned
methods are suitable – mostly – for textured objects detection,
but the same matching pipeline can be deployed replacing them
with detectors/descriptor based on geometrical primitives (e.g.
oriented segments) amenable to texture-less objects. One of the
leading texture-less object detectors is BOLD [16], which was
then followed by BORDER [17] (and its extension, referrred
to as BIND [18]). A popular alternative to features, instead,
is Rotation-Invariant Template Matching like OST [19], OCM
[20] or Line2D [21]. However, a tamplate-based approach may
not be the most efficient solution for real-time applications.

The above-mentioned considerations have lead us to compare
LOOP mainly with SIFT [14] and BOLD [16], undoubtedly two
state-of-the-art approaches in textured and texture-less object
detection, respectively. Our claim is to propose a real-time
deep learning alternative able to cope with both textured as
well as untextured models and, seamlessly, over plain and
cluttered backgrounds. As stated in section I, as we can exploit
any generic CNN Object Detector, we investigated here about
well established approaches like YOLO [1] and SSD[2], which
resolve the 2D object detection and recognition task with a
single image analysis pass, as well as Faster R-CNN[3], which
instead conceptually splits the detection and recognition parts.
We found that YOLOv3 [22], the newest declension of the
classical YOLO algorithm, represents a satisfactory test case
for our experiments, though is worth pointing out that LOOP
is detector-agnostic.

Another research line to attain robotic grasping systems
concerns direct estimation of grasping points from images by

 BBOBB

Fig. 2. Graphic representation of the conversion between Oriented-to-
Unoriented bounding boxes. The real angle θ is converted in the index Cθ
of the corresponding quantized bin among the k = d 2π

θ̂
e possible bins.

Fig. 3. A graphical representation of the conversion between Unoriented-to-
Oriented bounding boxes. It is important to know the ratio of the sought object
in order to produce a commesurate oriented bounding box.

means of CNNs. One of the most used approach, conceptually
similar to our method, is the 2D Rectangular Representation
of grasp, as described in [23]. The authors demonstrated that
a 2D representation of grasp is enough to perform a 3D
manipulation with a robotic arm. Recent works like [24] or
[25] estimate the position and the orientation of these 2D
Rectangular Representation of grasp by means of a CNN,
as either a regression or classificatiton problem, respectively.
However, we believe that the full 2D Oriented Bounding Box
of the sought objects yielded by our approach is a better
representation for grasp in planar setting, because it allows to
perform both obstacle avoidance as well as model-based grasp
points computation.



III. HOW DOES LOOP WORK?

As illustrated in Figure 1, given an RGB image, the LOOP
framework can produce a set of predictions y̆i = {b̆i, θi, ci},
where b̆i = {x, y, w, h} ∈ R4 represents the coordinates of
the Oriented Bounding Box (OBB in short) clockwise-rotated
by an angle of θi and ci ∈ Z+ is the object class. As
already mentioned, we leverage on a classical object detector,
which outputs a set of simpler predictions yi = {bi, ĉi}
where bi = {x, y,W,H} ∈ R4 represents the coordinates
of the unoriented Bounding Box (BB in short) and ĉi ∈ Z+

encodes, with our formulation, both the object class as well
as orientation information. In subsection III-A we will explain
how to transform an oriented prediction y̆i into an un-oriented
one, yi, while in subsection III-B we will describe the inverse
procedure. Finally, in subsection III-C we will explain how
to generate Oriented Bounding Box labels for an entire video
sequence by labeling just the first frame.

A. fo2u: The Oriented-to-Unoriented Function

As stated before, our approach is an extension of a classical
2D Object Detector to make it capable of estimating also
the orientation of a target object. We formulate the angle
estimation problem as a classification task by simply quantizing
the angular range into k bins and by expanding all the C
categories, managed by the object detector, into C ′ = kC new
classes. Thus, as shown in Figure 2, for each object instance,
we can compute its real-valued angle with θ = arccos(ux · vx),
as the angle between the unit vector vx, directed as the first
edge of the corresponding OOB, and the x axis of the image ux.
Obviously the theta angle so defined, only for illustrative intent,
is limited to the range [0, π], for this reason it is necessary to
calculate it using

θ =

{
atan2(vxy , vxx), if vxy >= 0

2π + atan2(vxy , vxx), if vxy < 0
(1)

where (vxy , vxx) are the components of the vx vector. The
real-valued angle θ is then converted into the corresponding bin
index Cθ, with Cθ = b θ

θ̂
e ∈ {0, ..., k}, where θ̂ is quantization

step so that k = d 2π
θ̂
e. In order to build an unique formulation

to obtain the final converted class we can write:

fo2u(ci, θ, θ̂) = cik + Cθ = cik + bθ/θ̂e = ĉi (2)

where fo2u (i.e. o2u: Oriented-to-Unoriented) is the function
used to convert the original object class ci in the expanded class
ĉi which encodes not only the object type but also its quantized
orientation. The corresponding BB is computed simply by
applying the minimum bounding box algorithm to the 4 vertices
of the original OOB.

B. fu2o: The Unoriented-to-Oriented Function

Assuming yi = {bi, ĉi} the generic prediction of the Object
Detector, where ĉi is the predicted class (built with the Equa-
tion 2) and bi the corresponding un-oriented bounding box,
the purpose of the fu2o function, as depicted in Figure 1, is
to produce an equivalent oriented prediction y̆i = {b̆i, θi, ci}
where ci is the original class, mapping the object of belonging

only, and b̆i is an oriented bounding box (when omitted in
images, the angle θi is represented, for simplification, with
the red arrow oriented as the longest axis of an OBB). This
procedure can be thought as the inverse of that described in
subsection III-A. The function to determine the original class,
ci, and the predicted angle θi is pretty simple:

fu2o(ĉi, θ̂) =

{
ci = b ĉik c
θi = θ̂i · (ĉ mod k)

(3)

where θ̂ is the same discretization step as used in the fo2u
counterpart. Conversely, the estimation of the OBB (b̆i) given
the simple BB (bi) and the corresponding angle θi is not a
trivial problem because of the infinite number of solutions with
no constraints. However, for each object in the dataset we can
compute the ratio r of its bounding box in a nominal condition
(e.g. when it exhibit 0◦ in an image) and use it as a constraint
to reduce the complexity of the procedure. If we define with
Pb̆i = {p0,p1,p2,p3} the set of OBB’s 4 expressed in the
reference frame Fbi centered in the bounding box bi (the
clockwise order, as depicted in the last frame of Figure 3, has
to be reliable in order to have that vx = p1−p0

||p1−p0|| ), the ratio
can be computed easily as r = p1−p0

p3−p0
. Thanks to the object

aspect ratio we can execute the pipeline depicted in Figure 3
to build an OBB: starting from the original BB and an angle θ,
we superimpose a small version of the corresponding OBB,
b̆smi (built only using the aspect ratio information), in the
center of the BB rotating it by the provided angle; we estimate
as d = |W2 + plmx | the distance between the leftmost vertex
of the OBB, plm, and the left edge of the original BB; we
enlarge b̆smi by a scaling factor s, in order to have d = 0.
Therefore, taking the example of Figure 3, if plm := p3, we
can simplify the above mentioned distance condition, obtaining
the new desired x coordinate of p3 as p̂3x = −W2 . And then
reformulating it as a scaling problem p̂3x = s · p3x we get that
s = − W

2p3x
. The factor s can be used to generate a scaling

matrix and transform all 4 vertices consistently.
As mentioned above, due to the error introduced by the

Object Detector in the estimation of bi instances, the con-
struction of a BB from an OBB is not perfectly invertible,
so the algorithm just proposed tries to minimize one of the
many possible constraints (the proximity of the left-most point).
Surely an optimization algorithm could take into account more
than one constraint (e.g. the proximity of all 4 vertices) but in
our case this approach is sufficiently precise and fast to test the
rest of the pipeline.

C. Automatic Dataset Generation

In section I we underlined that it is important to provide a
smart solution to collect training data for data-driven models
to be deployed in real industrial applications. For this reason,
we endowed LOOP with an automated labeling tool based on
video sequences. The hypotheses allowing the tool to work well
are:

1) the video sequence frames a tabletop scene with the
image plane as parallel as possible to the supporting
surface;
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Fig. 4. For each pair of consecutive frames Ii, Ii+1 it is possible to estimate
the rigid transformation A such that Ii+1 = AIi, by means of a 2D feature
matching pipeline, like e.g. ORB[26]. The same transformation A can be
applied to each OOB label.

2) camera movements have to be, as much as possible,
only rotational (Rotate around the camera z axis) and
translational (Lift along the z axis);

3) the height of target objects has to be mostly uniform.
Figure 4 exemplifies the above requirements by showing two
consecutive frames of a suitable video sequence. The figure
shows clearly how restricted camera movements (i.e. lift and
rotate) leads to a controlled rigid transformation A between
the two consecutive images Ii, Ii+1 such that Ii+1 = AIi. The
same rigid transformation A can be applied to each OOB b̆i
present in the image Ii so as to obtain a new set of OOB
such that b̆i+1 = Ab̆i. This procedure can be repeated for
each consecutive pair of images in the video sequence, it is
therefore clear how the sole human intervention is to create
the OOB labels in the first frame I0. To estimate the rigid
transformation A any 2D feature-based matching pipeline,
described in section II, may be used. We decided to use ORB
[26], a patent-free solution, to make our software completely
open-source1.

IV. RESULTS

In this section we will describe both data and models used
in our experiments in order to maximize reproducibility. In
subsection IV-A we will introduce a novel dataset, dubbed
the LOOP Dataset, used in our quantitative and qualitative
experiments. In subsection IV-B we will describe how the
core object detector has been trained over the LOOP Dataset
in order to obtain different declensions of the more complex
LOOP Detector. To prove the effectiveness of our solution, in
subsection IV-C we analyze the absolute LOOP’s performances,
while in subsection IV-D we present a detailed comparison
between LOOP and the state-of-the-art approaches based on
handcrafted features. Finally, in subsection IV-E, a qualitative
evaluation of our approach within a typical robotic task is
provided.

A. Experimental setup: LOOP Dataset

Thanks to the technique examined in subsection III-C, we
created our an experimental –public– dataset with 12 objects
equally divided into Textured and Untextured (as shown in
Figure 5), submerged in several challenging scenes, in order
to extensively compare our approach with classical ones. We

collected 15 tabletop scenes, with randomly arranged objects,
featuring different backgrounds: 3 scenes with homogeneous
background; 3 scenes with wood; 3 scenes with black back-
ground and 5 scenes with an high-clutter background (several
prints of Pollock’s painting). This increasing variability is
used in order to achieve Domain Randomization [27] during
training and very challenging scenes during the test. These 4
different scene categories are shown in Figure 6, where they are
intentionally presented in increasing order of complexity. We
collected a total of 7155 self-labeled images (strictly speaking,
we manually labeled only 15 images, one per scene). Moreover,
by using the ground truth coming from the whole dataset
we also built a Synthetic version of it just by stitching one
version of each model with the same arrangement proposed
by the original dataset (right column in Figure 6 illustrates
synthetic version of the real images in the left column). This
version of the dataset is built in order to reproduce a version
of the training data in which the distribution of the objects in
terms of position and orientation is identical to the real one
(also the backgrounds are intentionally similarly synthetized)
but the variance of objects semblance, in the images space, is
purposely kept low: i.e. stitching the same version of the object
synthetically rotated is, under our hypothesis, less effective
than produce real rotated viewpoints, especially dealing with
deep neural models, not to mention that even the variations of
light conditions and perspective are not correctly captured by
a synthetic dataset generated this way.

B. Deep Object Detector

As reference for our benchmarks we used YOLOv3 [22], a
state-of-the-art Object Detector based on CNNs. We fine-tuned
the YOLOv3 model, pretrained on ImageNet [28], with the
LOOP approach using 13 scenes of the LOOP Dataset (about
6200 labeled images) with a 80%/20% split for training and
test. The training strategy is to freeze weights of the network’s
feature extractor (namely, the backend), for 2 epochs training
only the object detection layers (namely, the frontend), then
fine-tuning the whole architecture for 50 further epochs, with
a learning rate of 0.001. The two remaining scenes of the
dataset (i.e. one with wood background, thought as a simple
testbench, and one with high clutter background thought as a
complex one), never used during the training phase are used
to evaluate the performance of the whole system. We will call
these two scenes Simple Scene (477 images) and Hard Scene
(477 images) in the rest of this section.

We trained several models using different θ̂ (i.e. angle
discretization parameter, as described in subsection III-A),
thereby producing different declensions of the detector useful
in understanding how the discretization factor goes to affect
performances. For the sake of convenience, we will adopt the
short nickname LOOPα to identify a LOOP model trained using
the discretization angle θ̂ = α (e.g. LOOP10 identifies a model
trained by quantizing the whole angle turn in 36 bins of 10◦

each). Moreover, we add the letter S to the above mentioned
notation (e.g. LOOPSα) to represent the same model trained with
the synthetic version of the LOOP Dataset.



Fig. 5. LOOP Dataset objects grouped in Textured and Untextured.

Fig. 6. In the left column: 4 samples coming from the LOOP Dataset one for
each background category. The right column shows the synthetic version of
each sample.

C. LOOP performances

In the claim of this work we said that with the LOOP
approach it is possible to build effortlessly an Object Detector,
based on CNNs suitable to real industrial applications. In this
section, indeed, we evaluate LOOP over the LOOP Dataset to
understand if its performances are good enough to embody it
into a reliable industrial system.

Figure 7 groups together several Precision/Recall curves
obtained by varying the threshold over the confidence output
of the YOLOv3 model. Figure 7 (a), (b) and (c) depict the
precision/recall of several detectors (i.e. each of which trained
with a different angle discretization θ̂) over the Simple Scene,
Hard Scene and both, respectively. In the same plots also
the LOOPS10 model, thus trained only over synthetic data,
is depicted in order to assess its performance compared to
its counterparty trained on real data (i.e. LOOP10). Table I
resumes the mean average precision for the considered models:
in this concise summary it is even clearer how deploying a
synthetic dataset is significantly less effective than leveraging
on real imagery, especially when it comes to very complex real
situations.

From these results we can conclude that LOOP10 is the
best version of our detector. The LOOP5 and LOOP20 ver-
sions resulted slightly worse. This analysis shows, clearly,
how the angle discretization parameter θ̂ affects performances
in both direction: too small a value may cause a dramatic
increase of detector categories C ′ (e.g. with θ̂ = 5 we
have C ′ = 360

5 12 = 864); on the other hand, if θ̂ is too high,
the angle prediction is subject to a large discretization error
producing low IoU scores. Moreover, training on synthetic data
only (LOOPS10), although acceptable, is worse than training
on real data. With regard to single objects precision/recall, as

Model Simple Hard Overall

LOOP5 0.96 0.96 0.96
LOOP10 0.99 0.98 0.99
LOOPS10 0.95 0.86 0.92
LOOP20 0.95 0.97 0.96
LOOP30 0.90 0.88 0.89
LOOP45 0.69 0.70 0.69

TABLE I
The mean average precision (mAP) computed for each model, across all

objects, for the Simple Scene, Hard Scene and both.

will be described in more detail later, symmetric objects are –
unsurprisingly – somewhat confusing the algorithm.

D. Hand-crafted features vs Deep Learning

We used our LOOP Dataset to test the LOOP approach
compared with the state-of-the-art algorithms based on hand-
crafted features. The first competitor is, certainly, SIFT [14],
one of the most used feature-based approach for Textured
objects detection. For the Untextured counterpart, we chose
BOLD [16], which uses highly repeatable geometric primitives
as 2D features in order to perform object detection also with
monochrome targets. Both methods are implemented in the
same object detection pipeline as described in [16]: 1) key-
points detection; 2) key-point description; 3) features corre-
spondences validated through Generalized Hough Transform
(as described in [14])and 4) Pose Estimation. The Pose Es-
timation in this case is modified in order to obtain a Rigid
Transform instead of a Full Affine (homography). In this way
we are sure that both detectors will yield predictions similar to
y̆i = {b̆i, θi, ci} without producing distorted bounding boxes,
as it is the case of homographies.

We compare the output of the previous two pipelines with
the output directly obtained with the LOOP approach. We
measured the performances with the classical precision/recall
metric computed taking into account the Intersection Over
Union (IoU) of the predicted OBB: each detection, of a generic
algorithm, is counted as True Positive if its IoU is > 0.5
compared with the corresponding ground truth OBB. With this
metric we can analyse: Precision, Recall, FScore and Aver-
age IoU for each algorithm. We introduce also an additional
term called Oriented Intersection Over Union (OIoU) which
measures the classical IoU commesurate to the effectiveness
of the algorithm in predicting the correct angle. Formally
OIoU = IoU × max

(
vx·v̂x
‖vx‖‖v̂x‖ , 0

)
, so the Oriented IoU is

inversely proportional to the angle between the two vx of the
ground truth and the predicted OBB; it is forced to be between
0 and 1, with the max operator, in order to discard a priori
opposed angles. The OIoU term is introduced to measure the
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Fig. 7. Precision/Recall curves for the LOOP approach. These plots have been produces by varying the threshold of the predictions confidence between 0.0
and 1.0 with a step of 0.05. The first column compares various discretization angles. The second column shows performances of the best version, LOOP10,
for each single object in the dataset.

capability of each algorithm in distinguishing quite symmetric
objects: in the LOOP Dataset, for instance, the two objects
artifact orange and box brown seems very symmetrical even
thought they are not. In such cases, if the angle prediction is
completely wrong, the IoU may be high but the OIoU is very
low.

Under the assumption that, as deduced in subsection IV-C,
the model with the best trade-off between precision and recall
is LOOP10, we used the latter to compete with the state-of-
the-art. In Table II and Table III several comprehensive results
are shown. The first table compares SIFT and BOLD with
LOOP10 and LOOPS10 dealing with the Simple Scene, i.e. the
scene with a low clutter background. The second table, instead,
deals with the Hard Scene containing an highly cluttered
background. Both tables contain performances dealing with
each object, a summary for Textured and Untextured objects
and an Overall index. As vouched by these experimental results,
LOOP outperforms both SIFT and BOLD in both scenarios: our
approach is able to cope with both Textured and Untextured
objects seamlessly and is very robust to the high level of
clutter in the Hard Scene. On the other hand, as pointed out
in Table II, the OIoU index shows a slight fall of LOOP when
dealing with symmetric objects (e.g. the box brown OIoU is
0). This conceptual problem can be easily resolved treating
symmetrical objects differently during the angle discretization

process, described in subsection III-A, with a formulation
similar to the one introduced in [6]. A qualitative evaluation
is present in Figure 9 featuring a real output of the LOOP
detector on two samples randomly picked between the Simple
and the Hard scenes subsets.

E. Real Robotic application

As a qualitative evaluation of our approach we designed
a proof-of-concept pick&place robotic application based on
the outcome of the LOOP detector. The setup consist in an
industrial robotic arm (COMAU smart six) with a parallel
gripper as end effector and an eye-on-hand camera on board.
The camera mounted in this way can be thought as the
secondary end-effector and than can be arbitrarily moved with
high precision. The image plane of the camera is kept parallel
to a table-top scene with randomly arranged objects belonging
to the LOOP Dataset (same camera-table configuration seen in
subsection III-C). The distance between camera and the table
plane is known. Given that the output of the pipeline is a
set of oriented prediction y̆i = {b̆i = {xi, yi, wi, hi}, θi, ci}
we exploit their position (xi, yi) and orientation (θi) to build
a simple control scheme, for robot guidance, in such a way
as to move the camera in order to align a target object with
the center of camera viewpoint, oriented as the canonical
x axis of the image. A proportional-only control scheme
is used, thus, to minimize et and eθ, the translational and



Index Precision Recall FScore IOU OIOU
Method Sift Bold LOOP10 LOOPS10 Sift Bold LOOP10 LOOPS10 Sift Bold LOOP10 LOOPS10 Sift Bold LOOP10 LOOPS10 Sift Bold LOOP10 LOOPS10
artifact black 0.50 0.84 0.99 0.97 0.00 0.81 0.96 0.98 0.00 0.82 0.97 0.97 0.75 0.77 0.85 0.84 0.75 0.75 0.85 0.84
artifact metal 0.00 0.00 0.97 0.95 0.00 0.00 0.98 0.86 0.00 0.00 0.97 0.90 0.00 0.00 0.77 0.77 0.00 0.00 0.77 0.77
artifact orange 0.54 0.96 0.91 0.78 0.12 0.96 0.91 0.88 0.20 0.96 0.91 0.83 0.71 0.86 0.86 0.86 0.62 0.43 0.78 0.37
artifact white 0.62 0.00 0.97 0.90 0.85 0.00 1.00 0.98 0.72 0.00 0.98 0.94 0.78 0.00 0.84 0.80 0.78 0.00 0.84 0.79
clip 0.78 0.60 0.95 0.91 0.63 0.60 0.93 0.92 0.70 0.60 0.94 0.91 0.76 0.76 0.81 0.75 0.76 0.74 0.81 0.74
screwdriver 0.76 0.58 0.95 0.97 0.05 0.58 0.85 0.89 0.10 0.58 0.89 0.93 0.71 0.73 0.81 0.79 0.71 0.72 0.81 0.79
Untextured 0.53 0.50 0.95 0.91 0.28 0.49 0.94 0.92 0.29 0.49 0.95 0.91 0.62 0.52 0.82 0.80 0.60 0.44 0.81 0.72
battery black 0.48 0.82 0.98 0.94 0.81 0.82 1.00 1.00 0.60 0.82 0.99 0.97 0.76 0.71 0.84 0.83 0.75 0.68 0.84 0.83
battery green 0.65 0.44 0.93 0.90 0.83 0.43 0.93 0.91 0.73 0.43 0.93 0.90 0.69 0.70 0.85 0.85 0.69 0.59 0.82 0.79
box brown 0.65 0.68 0.97 0.87 0.77 0.68 0.92 0.95 0.71 0.68 0.95 0.91 0.80 0.75 0.74 0.73 0.80 0.65 0.00 0.02
box yellow 0.49 1.00 0.98 0.98 1.00 1.00 0.98 0.59 0.66 1.00 0.98 0.73 0.82 0.81 0.86 0.80 0.82 0.81 0.86 0.79
glue 0.37 0.99 0.97 0.95 1.00 0.99 0.91 0.97 0.54 0.99 0.94 0.96 0.80 0.81 0.82 0.83 0.80 0.80 0.82 0.83
pendrive 0.78 0.91 0.98 0.92 0.36 0.91 0.94 0.85 0.49 0.91 0.96 0.89 0.75 0.74 0.76 0.73 0.74 0.73 0.76 0.71
Textured 0.58 0.79 0.97 0.92 0.75 0.78 0.94 0.86 0.61 0.78 0.95 0.88 0.77 0.76 0.81 0.79 0.77 0.71 0.67 0.64
global 0.54 0.72 0.96 0.91 0.54 0.65 0.94 0.90 0.54 0.68 0.95 0.91 0.77 0.77 0.82 0.80 0.77 0.70 0.75 0.69

TABLE II
Performances of our approach, compared to SIFT[14] and BOLD[16], in the Simple Scene scenario (boldface text highlights the best score in the related

pane). The overall Precision/Recall index of LOOP is about 96%/94% showing its flexibility in general purpose real applications.

Index Precision Recall FScore IOU OIOU
Method Sift Bold LOOP10 LOOPS10 Sift Bold LOOP10 LOOPS10 Sift Bold LOOP10 LOOPS10 Sift Bold LOOP10 LOOPS10 Sift Bold LOOP10 LOOPS10
artifact black 0.00 0.01 0.96 0.90 0.00 0.01 0.94 0.90 0.00 0.01 0.95 0.90 0.00 0.64 0.80 0.75 0.00 0.05 0.80 0.74
artifact metal 0.43 0.00 0.97 0.83 0.01 0.00 0.98 0.93 0.02 0.00 0.97 0.87 0.70 0.00 0.82 0.76 0.70 0.00 0.82 0.76
artifact orange 0.75 0.00 0.91 0.78 0.41 0.00 0.88 0.92 0.53 0.00 0.89 0.85 0.85 0.00 0.87 0.86 0.84 0.00 0.82 0.68
artifact white 0.73 0.00 0.96 0.80 0.10 0.00 0.96 0.98 0.18 0.00 0.96 0.88 0.68 0.00 0.80 0.80 0.68 0.00 0.79 0.76
clip 0.00 0.40 0.96 0.91 0.00 0.40 0.97 0.87 0.00 0.40 0.97 0.89 0.00 0.71 0.79 0.80 0.00 0.63 0.79 0.78
screwdriver 0.00 0.11 0.94 0.94 0.00 0.11 0.90 0.48 0.00 0.11 0.92 0.63 0.00 0.75 0.76 0.75 0.00 0.75 0.76 0.74
Untextured 0.32 0.09 0.95 0.86 0.09 0.09 0.94 0.85 0.12 0.09 0.94 0.84 0.37 0.35 0.81 0.79 0.37 0.24 0.80 0.74
battery black 0.59 0.91 0.98 0.91 0.58 0.91 0.99 0.97 0.58 0.91 0.98 0.94 0.74 0.61 0.84 0.81 0.74 0.24 0.84 0.81
battery green 0.67 0.04 0.94 0.84 0.90 0.04 0.87 0.50 0.76 0.04 0.90 0.63 0.68 0.62 0.80 0.75 0.68 0.54 0.75 0.71
box brown 0.37 0.24 0.78 0.74 0.99 0.24 0.84 0.46 0.54 0.24 0.81 0.57 0.80 0.70 0.74 0.69 0.80 0.69 0.51 0.23
box yellow 0.47 1.00 0.96 0.96 0.82 1.00 0.96 0.97 0.60 1.00 0.96 0.97 0.85 0.84 0.84 0.83 0.85 0.84 0.84 0.83
glue 0.59 0.94 0.99 0.94 0.81 0.94 0.95 0.79 0.68 0.94 0.97 0.86 0.78 0.79 0.84 0.79 0.78 0.79 0.84 0.79
pendrive 0.88 0.81 0.96 0.90 0.09 0.81 0.85 0.81 0.17 0.81 0.90 0.85 0.64 0.63 0.78 0.73 0.64 0.55 0.78 0.71
Textured 0.58 0.58 0.93 0.88 0.67 0.57 0.90 0.72 0.53 0.57 0.91 0.78 0.75 0.72 0.80 0.76 0.75 0.67 0.75 0.67
global 0.53 0.42 0.94 0.87 0.39 0.37 0.92 0.80 0.45 0.40 0.93 0.83 0.77 0.72 0.81 0.78 0.77 0.62 0.78 0.73

TABLE III
Performances of our approach, compared to SIFT[14] and BOLD[16], in the Hard Scene scenario (boldface text highlights the best score in the related pane).

Here, the overall Precision/Recall index of LOOP is about 94%/92% showing its robustness against high clutter backgrounds, a typical situation in real
industrial environments.

rotational error respectively et = {xi − cx, yi − cy} and
eθ = −sign(sin(θi))(cos(θi) − 1), with (cx, cy) the center of
the image. The control scheme will produce a linear velocity
v = KPtev and an angular velocity ω = KPθeθ to the end
effector, i.e. the camera reference frame (KPt and KPθ are
tunable proportional gains). The sign(·) function is simply the
sign function with sign(0) = 1 to avoid singularities. The
above simplified robot guidance scheme is used to lead the
robot in a easier condition suitable to estimate the 3D pose
of the object because: knowing the extrinsics parameters of the
mounted camera and the height of the table w.r.t. the robot base,
it is trivial to know the 3D coordinates of an object centered
in the camera viewpoint (an alternative solution to estimate
3D coordinates from multiple 2D CNN predictions can be
found in [29]). Figure 8 exemplifies the described procedure by
presenting a real execution of it. In the supplementary material
several runs of experiment are shown from the on-board and
off-board cameras. We have accomplished this task on 20
scenes with completely unseen backgrounds. The overall suc-
cess rate of the final grasp is 100% for each object, except for
artifcat orange and box brown, which instead scored 60% and
50% respectively. Hance, the success rate for the entire dataset
is 92.5%. As expected from the conclusions of subsection IV-D,
the grasp for highly symmetrical objects (like artifcat orange
and box brown) becomes very challenging, due to the difficulty
of estimating unambiguous orientation for these samples. In
these cases, the indecision of the detector combined with the
stateless nature of a CNN-based Object Detector (i.e. there is no
online tracking method like in [30], where a Recurrent Neural

Network is used in order to achieve a continuous estimate of
the pose) leads to a detrimental oscillation of the output in the
control module. Then, we corrected the model by modifying the
rotational error in such a way as to treat objects as symmetric,
with {

et = {xi − cx, yi − cy}
eSym
θ = sign(tan(θ))(|sin(θ)|)

. (4)

Accordingly, the robot guidance scheme leads the camera to
move towards the nearest horizontal configuration of the target
object (0◦ or 180◦ indifferently), reaching 100% of success rate
also for each object (the control schemes were tested again over
20 scenes).

V. CONCLUDING REMARKS

We proposed an extension of classical CNN-based Object
Detectors able to produce Oriented Bounding Boxes suitable for
the 3-DoF pose estimation task. We provided our detector with
a simplified procedure to gather a huge amount of training data
in the field, with trifling human intervention. With this work
we showed how it is possible, with the proposed techniques,
to effectively use Deep Learning in a real industrial setting,
exploiting a neural network as a module of a more complex
control scheme. We are already working to extend our approach
in order to deal also with occlusions ans symmetries together
with a set of more complex discretization functions beyond the
simple division into equal bins. An interesting future devel-
opment could be to remove completely human intervention in



Fig. 8. An exemplification of the pick-and-place system designed using LOOP
as a module of the control scheme. The first row depicts frames coming
from the on-board camera, with superimposed predictions, showing the robot
guidance control phases. The second row shows images coming from an
off-board camera framing the grasp sequence downstream of the alignment
procedure.

Fig. 9. This picture shows the real output of our software for the simple and
hard scene, respectively. The middle column shows Unoriented Predictions
(BB) coming from the generic object detector, while the right column shows
the derived Oriented Predictions (OBB).

the dataset generation stage in order to deliver a completely
automated, and reliable, industrial system.
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