Supplementary Information

Photoreactivity of Thiophene-based Core@Shell Nanoparticles: The Effect of Photoinduced Charge Separation on *In Vivo* ROS Production

Mattia Zangoli^{a‡}, Andrea Cantelli^{b‡}, Andrea Candini^{a*}, Anna Lewinska^c, Federica Fardella^d, Angela Tino^d, Giuseppina Tommasini^d, Maciej Wnuk^c, Matteo Moschetta^e, Sara Perotto^e, Marco Lucarini^b, Claudia Tortiglione^d, Guglielmo Lanzani^e, Francesca Di Maria^{a*}

§ Istituto per la Sintesi Organica e Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche, Via Gobetti 101, I-

40129 Bologna, Italy

⁰ Dpt of Chemistry Giacomo Ciamician, University of Bologna, Via Selmi 2, I-40126 Bologna, Italy

^AIstituto di Scienze Applicate e Sistemi Intelligenti "E. Caianiello", Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, I-80078 Pozzuoli, Italy

[‡]Department of Biotechnology, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland

[¶]Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy.

Nanoparticles	Hydrodynamic	Z-potential
	diameter (nm)	(mV)
P3HT-NPs	380 ± 26	-39.0
P3HT@PTDO _{0.5} NPs	390 ± 27	-43.4
P3HT@PTDO ₁ NPs	380 ± 28	-48.8
P3HT@PTDO _{1.5} NPs	385 ± 26	-52.8

Table S1. Size and Z-potential values of nanoparticles obtained by DLS.

Figure S2. Difference between Figures 1B - 1C. The outer corona present in Figures 1 B and C is absent or displays a dark contrast, indicating that during illumination the SP value of the shell is decreased less than the one of the core. Z-scale: 60 mV. Scale bar: 1 μ m.

Figure S3. Discrimination of the two radicals trapped by DMPO. On the left, marked in red, the signal of DMPO-OH adduct, isolated by delaying the measurement by a few seconds. On the right, marked in blu, the signals of DMPO-OOH, isolated by adding DMSO to quench the OH radical.

Figure S4. Histograms representing the distribution of the Pearson's correlation coefficient between NPs and CellBright. Co-localization analysis was performed with ImageJ, JACoP plugin. Kruskal-Wallis test with Dunn's correction; n=6, 10, 10 and 6 for P3HT NPs, P3HT@PTDO_{0.5} NPs, P3HT@PTDO₁ NPs, and P3HT@PTDO_{1.5} NPs, respectively.

Figure S5. Fluorescence imaging of living *Hydra* polyps treated with P3HT NPs and P3HT@PTDO_x NPs. Scale bars: 500 μ m.

Figure S6. Toxicological evaluation of P3HT NPs and P3HT@PTDO_x NPs on Hydra. A) control polyps morphology; scale bars 500 μ m. B) Representative images of polyps exposed to P3HT NPs and P3HT@PTDO_x NPs for 72 h, scale bars 1 mm. C) Dose-response curves showing median morphological scores after 72 h of continuous incubation with P3HT@PTDO_{1.5} NPs as a function of the NPs concentration (n=20). The morphology of animals was not affected by treatment with P3HT NPs and P3HT@PTDO_x NPs, up to 72 h of continuous incubation with 25, 50, 100 μ g mL-1, indicating the absence of dose-dependent toxicological effects.