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ABSTRACT
Latent time series models such as (the independent sum of) ARMA(p, q) models with additional stochastic
processes are increasingly used for data analysis in biology, ecology, engineering, and economics. Inference
on and/or prediction from these models can be highly challenging: (i) the data may contain outliers that can
adversely affect the estimation procedure; (ii) the computational complexity can become prohibitive when
the time series are extremely large; (iii) model selection adds another layer of (computational) complexity;
and (iv) solutions that address (i), (ii), and (iii) simultaneously do not exist in practice. This paper aims
at jointly addressing these challenges by proposing a general framework for robust two-step estimation
based on a bounded influence M-estimator of the wavelet variance. We first develop the conditions for the
joint asymptotic normality of the latter estimator thereby providing the necessary tools to perform (direct)
inference for scale-based analysis of signals. Taking advantage of the model-independent weights of this
first-step estimator, we then develop the asymptotic properties of two-step robust estimators using the
framework of the generalized method of wavelet moments (GMWM). Simulation studies illustrate the good
finite sample performance of the robust GMWM estimator and applied examples highlight the practical
relevance of the proposed approach.
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1. Introduction

As for many other fields of statistical research, time series
analysis is also facing different challenges due to the increas-
ing amounts of data being recorded over time within a wide
variety of contexts going from biology and ecology to finance
and engineering. Among others, these challenges include (i)
the need for more complex (parametric) models (e.g., to deal
with possible long-term non-stationary features, see below),
(ii) the need for computationally efficient (or simply feasible)
methods to analyze data and estimate such models as well as
(iii) the need to deal with the increased probability of observing
measurement errors in the form of contamination (outliers),
model deviations, etc. In this context, there is currently a large
variety of models and statistical methods available to analyze
and draw conclusions from time series (see, e.g., Percival and
Walden 2006; Durbin and Koopman 2012; Shumway and Stoffer
2013, for an overview). However, many of the existing methods
may become unfeasible, for example, when estimating even
slightly complex models on large time series data. Examples of
such complex models are those that are characterized by (the
independent sum of) ARMA and rounding error models, which
we refer to as latent time series models, which therefore include
a wide range of state-space models. Indeed, when dealing with
moderately large sample sizes and a relatively large number
of latent components, including models with long-term non-
stationary features (e.g., intrinsically stationary models such as
drifts and random walks), estimation and inference can become
very challenging. In addition, the use of robust methods to

CONTACT Maria-Pia Victoria-Feser maria-pia.victoriafeser@unige.ch Research Center for Statistics, GSEM, University of Geneva, Uni Mail, 40 Boulevard du
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perform inference when the data suffers from contamination
is often a daunting task even for relatively simple (parametric)
settings and moderate sample sizes, without considering more
complex models in larger data settings (for motivating examples
and robust inferential approaches, see, e.g., Maronna, Martin,
and Yohai 2006; Maronna et al. 2019).

In response to the above challenges and limitations, this
article proposes an alternative and general robust inference
framework for (complex) parametric time series models. This
framework is based on a two-step approach where the first (and
most important) step consists in the proposal of a robust estima-
tor of the Wavelet Variance (WV) (see, e.g., Percival 1995) with
adequate asymptotic properties based on minimal conditions,
while the second step integrates these results within the gener-
alized method of wavelet moments (GMWM) framework (see
Guerrier et al. 2013) for the purpose of inference on time series
models.1 With regard to the first step, the WV has been widely
used within the natural and physical sciences for analysis of
variance, model building and prediction (see, e.g., Percival and
Walden 2006, for an overview), and more recently within other
fields of research (see, e.g., Gallegati 2012; Xie and Krishnan
2013; Foufoula-Georgiou and Kumar 2014; Jia et al. 2015; Ziaja
et al. 2016; Abry et al. 2018, to mention a few). In this context,
the properties of the standard estimators of WV have been

1The method (with relative graphical tools) is implemented partly in the
simts R package on CRAN and in a more complete manner in an open
source R package, available at github.com/SMAC-Group/gmwm; see also
Clausen et al. (2018); Bakalli et al. (2018); Radi et al. (2019)
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developed (see Percival 1995; Serroukh, Walden, and Percival
2000) while their limitations in presence of contamination or
outliers have been underlined in Mondal and Percival (2012a)
where a robust estimator was also put forward for this purpose.
However, as explained further on, the use of an alternative M-
estimator is preferable in different settings, including the two-
step framework considered in the present paper.

With respect to parametric inference for time series, robust
methods (including two-step approaches) have been proposed
in abundance over the past decades and a detailed overview
of these can be found, for example, in Maronna, Martin, and
Yohai (2006), Maronna et al. (2019, chap. 8) while Appendix A
also provides a short literature review. More specifically, a gen-
eral approach in this context is to maximize asymptotic effi-
ciency of the resulting estimators with respect to a specific
model (or class of models). For this purpose, a traditional
approach consists in placing estimation (and inference) in the
framework of bounded-influence estimators that are obtained
by bounding the corresponding estimating equations (Hampel
et al. 1986), such as the maximum likelihood estimator (MLE)
equations or indeed those of other efficient (nonrobust) esti-
mators. In this setting, a correction factor is often required
to ensure consistency of the resulting robust estimator and
needs to be defined for each model considered for a given time
series. The computation of this model-dependent correction
factor generally requires numerical approximations of possibly
high-dimensional integrals or multiple one-dimensional inte-
grals (for conditionally unbiased estimators, see Künsch 1984a),
whose dimensions or number grow proportionally to the sample
size. These consistency corrections can therefore not only be
too burdensome to compute, relying on more computationally
intensive simulation-based procedures to approximate these
quantities, but also are rarely accounted for in the derivation of
the statistical properties of the resulting estimator. On the other
hand, robust two-step estimators (based for example on robust
filtering methods or on robust autocovariance/autocorrelation
estimators), while possibly paying a price in terms of asymptotic
efficiency, deliver not only computational advantages but also
allow to compare candidate models under a different perspec-
tive. Indeed, the first-step estimators provide a set of estimates
that remain common to all candidate models and are resistant
to outliers through weights (for weighted estimators) that are
computed only once independently from the candidate models.
Using these common estimates, aside from guaranteeing that
the second step estimators inherit their robustness property, the
consequence is that the model comparison in terms of fit (or
prediction accuracy) is made solely on the structural features
of the candidate models. This provides an alternative approach
to model comparison based on robust estimators since, in the
weighted estimating equation setting, the estimation weights are
relative to each model under consideration that is, by assump-
tion, the correct one. On the other hand, a two-step approach
alleviates the latter hypothesis in the computation of the robust
weights and hence provides an alternative route to robust model
comparison. Moreover, this allows to develop graphical robust
model selection tools which, in the context of this paper, rely
only on a few quantities (even for large samples as seen further
on and in Section 5) as well as to build robust model selection
criteria in a relatively straightforward manner.

However, while robust two-step approaches have noticeable
computational and model comparison advantages, these can
nevertheless suffer from some theoretical and practical draw-
backs. Indeed, when they are based on robust filtering, they
may lead to biased estimators and lack asymptotic theory in
order to perform adequate inference (see, e.g., Muler, Peña, and
Yohai 2009). Alternatively, in the case where two-step estimators
are based on robust moment estimators (e.g., autocovariance or
autocorrelation), these are often computed in the framework
of indirect inference (Smith 1993; Gourieroux, Monfort, and
Renault 1993) or, similarly, in that of the (simulated) method of
moments (McFadden 1989; Gallant and Tauchen 1996; Duffie
and Singleton 1993). In these settings, two-step estimators
can become computationally intensive in large samples since
the number of auxiliary moments that are available in prac-
tice increase linearly with the sample size, thereby requiring a
moment selection procedure which delivers additional uncer-
tainty in the successive inference phase (see, e.g., Andrews
1999). However, the GMWM framework considerably reduces
the latter drawback since its first-step moment is the WV which
adequately summarizes the information in the spectral density
(or autocovariance) function into J < log2(T) moments (with
T representing the sample size) thereby greatly reducing the
number of auxiliary moments, consisting in the WV scales,
even for large sample sizes while also allowing for inference
on intrinsically stationary models. Being a natural extension of
the GMWM framework, the Robust GMWM (RGMWM) relies
on the proposed robust estimator of WV and makes use of its
properties in order to derive the inferential properties of the
RGMWM so as to perform adequate estimation and general
inference procedures for a wide range of time series models
under slight model deviations (such as the presence of outliers)
in a computationally efficient manner.

Considering the above, the paper is organized as follows.
Section 2 proposes the robust WV estimator that constitutes the
first step of the RGMWM that is presented in Section 3. In both
sections, the necessary asymptotic results are developed in order
to perform robust estimation and inference for intrinsically
stationary time series. Section 4 presents a simulation study
where the robustness properties of the RGMWM estimator are
compared with other estimators and Section 5 demonstrates the
practical usefulness of the proposed method in an economic set-
ting while another applied setting is presented in supplemental
material E.

2. Robust WV

To introduce the WV, let us denote (Xt ∈ R), t = 1, . . . , T, as
an intrinsically stationary time series that is either stationary or
becomes so when a dth-order backward difference is applied to
it. Moreover, let

Wj,t :=
Lj−1∑
l=0

hj,lXt−l ,

denote the wavelet coefficients that result from a wavelet decom-
position of the time series, where (hj,t) is a known wavelet
filter of length Lj at scale τj (commonly, dyadic scale τj = 2j),
for j = 1, . . . , J and J < log2(T). Since the filter sequence
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(hj,t) has specific properties, the wavelet coefficients can be
seen as the result of a particular form of weighted moving-
average taken over a number of observations proportional to Lj
(which increases as j increases, see, for example, Percival and
Walden 2006, for a general overview). Moreover, if L1 ≥ d and
(Xt) is a dth-order stationary time series, the resulting wavelet
coefficients will be stationary. Based on the (stationary) wavelet
coefficients, for j = 1, . . . , J, the WV is defined as

ν2
j := var(Wj,t) > 0 ,

that is, the variance of the wavelet coefficients, which can be
expressed in vector form as ν := [ν2

j ]j=1,...,J . Throughout this
work, we require ν2

j > 0, that is, the wavelet coefficients are
nondegenerate, since we always normalize with ν2

j . Moreover,
we always consider νj = |νj|, that is, we only consider the
positive root. While this definition holds independently from a
possible parametric model underlying the time series (Xt), for
the purpose of this work let us assume that the latter is gener-
ated from the parametric family of models Fθ0 , with unknown
parameter vector denoted by θ0 ∈ � ⊂ R

p. In order to
make the link between the WV and an assumed stationary
parametric model Fθ explicit, an alternative representation of
this quantity is based on the Spectral Density Function (SDF)
and is as follows:

ν2
j (θ) =

∫ 1/2

−1/2
|Hj(f )|2SFθ

(f )df ,

with SFθ
(f ) denoting the theoretical SDF and Hj(f ) being the

Fourier transform of the wavelet filters (hj,t). The above equality
is valid also when considering the theoretical spectral density
of the wavelet coefficients themselves which, depending on the
length of the wavelet filter, is defined even when the original
time series (Xt) is intrinsically stationary (see, e.g., Percival and
Walden 2006). Although the results of the present section hold
without any parametric assumption for (Xt), in this paper we
will generally assume that the true WV will depend on a para-
metric family of models Fθ . Therefore, we will use the notation
ν for the true WV (making its link with Fθ implicit) while we
will make use of the notation ν(θ) whenever it is appropriate
to explicitly highlight the link with the underlying parametric
model.

Based on the above definitions, each parametric time series
model has a corresponding theoretical WV vector which sum-
marizes the information contained in the SDF or AutoCo-
variance Function (ACF) into few quantities (J < log2(T))
for a wide range of intrinsically stationary time series models
(e.g., SARIMA and many state-space models). Considering this,
when compared to the SDF or ACF, the information loss of
the WV can be offset by its ability to adequately represent a
considerably wide range of intrinsically stationary time series. In
this sense, aside from being discussed in Greenhall (1998) and
Guerrier et al. (2013), supplementary material B includes addi-
tional results discussing its capability of adequately recovering
the parameters for many time series models thereby supporting
the usefulness of this quantity.

For the rest of this section, however, let us disregard any
parametric assumption for (Xt) and simply assume that its
corresponding wavelet coefficients at each level are stationary.

With this in mind, several estimators have been proposed for
the WV, the main one being the standard unbiased estimator of
the WV proposed by Percival (1995) and defined as

ν̃2
j := 1

Mj

Mj∑
t=1

W2
j,t , (1)

where Mj is the length of the wavelet coefficient process (Wj,t)
at scale τj. The theoretical properties of this estimator were
further studied in Serroukh, Walden, and Percival (2000) in
which the conditions for its asymptotic properties are given.
However, as highlighted by Mondal and Percival (2012a), the
estimator of WV in (1) is not robust in the sense that it is
considerably biased in the presence of outliers or different forms
of data contamination. For this reason they put forward a
robust estimator of the WV (developed for Gaussian time series
specifically affected by scale-based contamination) by making
use of a log-transformation of the (squared) wavelet coefficients
to apply standard M-estimation theory for location parame-
ters, with a chosen bounded estimating function. However, due
to these transformations and the approximate corrections to
reverse them, the asymptotic properties of the final estimator
are also approximate. Therefore, considering the robustness
issues of the standard estimator ν̃2

j and the “limitations” of the
latter robust estimator, the following paragraphs put forward a
new M-estimator of WV that overcomes these issues and, as
shown in Appendix C, performs generally better in finite sample
settings.

2.1. M-Estimation of WV

Following the above discussion, this section generalizes the
standard estimator of WV proposed in Percival (1995) to an
M-estimator (Huber 1964) which can also be made robust
by choosing a bounded score function, thereby delivering
an appropriate framework for inference on this quantity. Let
us therefore re-express (1) as an M-estimator which, using
“argzero” to define the solution allowing a function to be equal
to zero, is defined as follows:

ν̂2
j := argzero

ν2
j ∈N

Mj∑
t=1

ψ(Wj,t , ν2
j ), (2)

where N ⊂ R
+ and ψ(·) is a score function (ψ-function)

which can be unbounded or bounded with respect to (Wj,t). For
bounded ψ-functions, popular choices include Huber’s function
and Tukey’s Biweight function (see, e.g., Hampel et al. 1986).
In order to determine the infinitisemal robustness of an M-
estimator we must study its Influence Function (IF) and, based
on standard properties of M-estimators in dependent data set-
tings (see, e.g., Künsch 1984b), the following proposition states
the sufficient conditions under which the WV estimator has a
bounded IF and is therefore robust.

Proposition 2.1. Assuming that (Wj,t) is a strictly stationary
process, the IF of the estimator of WV is bounded if ψ(·) is
bounded.

The proof of this proposition can be found in supplementary
material A.1 along with the definition of the IF.
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Remark 2.1. The property of a bounded IF ensures “infinites-
imal” robustness for any type of contamination. However,
depending on the chosen bounded function, the resulting esti-
mator may have a low breakdown point, which represents a
different measure of robustness (see, e.g., Genton and Lucas
2003). Depending on the type of outliers, especially the ones
that introduce a persistent effect (e.g., level-shift outliers), a high
breakdown estimator would be preferred (see, e.g., Maronna,
Martin, and Yohai 2006).

Given the intuitive result of Proposition 2.1, we therefore
intend to deliver an M-estimator of the form in (2) whose ψ-
function can be bounded and directly estimates the quantity
of interest ν2

j . The proposed approach is based on “Huber’s
Proposal 2” which was presented in Huber (1981) and was
aimed at the estimation of the scale parameter of the residuals in
the linear regression framework. Without loss of generality, we
assume that E[Wj,t] = 0 and consequently use this proposal by
defining rj,t := Wj,t/νj as the standardized wavelet coefficients,
thereby defining the proposed estimator as

ν̂2
j := argzero

ν2
j ∈N

⎡
⎣ 1

Mj

Mj∑
t=1

ω2
(

rj,t ; ν2
j , c
)

r2
j,t − a(ν2

j , c)

⎤
⎦ , (3)

where ω(·) represents the weight function implied by the chosen
ψ-function and a(ν2

j , c) is a correction term to ensure Fisher
consistency at the marginal distribution of the wavelet coeffi-
cients (Wj,t) (i.e. the true WV would be obtained if applying the
estimator to the population from which (Wj,t) is issued). Indeed,
this correction term is defined as

a(ν2
j , c) := E[ω2

(
rj,t ; ν2

j , c
)

r2
j,t],

where the latter expectation is taken over the marginal distri-
bution of (Wj,t) with variance ν2

j . It can be noticed that, if the
tuning constant c → ∞, we have that ω(·) → 1 and
a(ν2

j , c) → 1 such that ν̂2
j is the solution for ν2

j in the following
estimating equation:

1
Mj

Mj∑
t=1

W2
j,t

ν2
j

− 1 = 0,

thereby delivering the estimator in (1). This property implies
that the tuning constant c can be chosen to regulate the trade-
off between robustness and efficiency of the resulting estimator.
A discussion about the choice of the constant c can be found
in supplemental material A.2 which highlights how this con-
stant can be implicitly chosen by defining the level of statistical
efficiency required with respect to the standard estimator. As
mentioned, the term a(ν2

j , c) depends on the marginal distribu-
tion of the stationary process which is assumed for the wavelet
coefficients (Wj,t) and on the specific weight function ω(·). The
exact analytic form of this term therefore may be complicated to
derive when considering distributions other than the Gaussian
or other symmetric distributions.

Remark 2.2. In the case where the wavelet coefficients are
assumed to come from a Gaussian distribution, the correction
term a(ν2

j , c) can be expressed as aψ(c) since it only depends on

the value of the tuning constant c, and can be found explicitly
using the results of Dhrymes (2005). This is the case when
the time series is itself Gaussian (see, e.g., Percival 2016, for
a discussion) or can be assumed as an approximation given
the averaging nature of the wavelet filter. On the other hand,
if the marginal distribution of the wavelet coefficients is non-
Gaussian, the term a(ν2

j , c) could eventually be numerically
approximated once (based on the standardized simulated values
from the assumed distribution with known or estimated param-
eters) and used for all scales τj and would need to be accounted
for in the subsequent inference phase.

Having defined the M-estimator of WV in (3), let us now
list a set of conditions which allows us to derive the asymptotic
properties of this estimator. Firstly, letting ν2

j,0 represent the true
WV at scale τj, we define the following conditions for the ψ-
function:

(C1) The Bouligand derivative of ψ(·) is continuous almost
everywhere.

(C2) E[ψ(Wj,t , ν2
j )] = 0 if and only if ν2

j = ν2
j,0.

The first condition is a technical requirement that allows us to
perform an expansion in order to represent ν̂2

j in an explicit
form (in addition to the Tukey Biweight function, for example,
the Huber ψ-function also respects this condition, under a
stationary Gaussian assumption, as shown in Lemma B.1 in
Appendix B where the definition of Bouligand derivative is also
given). On the other hand, Condition (C2) requires the true WV
to be identifiable through the chosen ψ-function. This condi-
tion is verified when choosing the Huber and Tukey Biweight
ψ-functions and assuming the wavelet coefficient process (Wj,t)
is stationary and Gaussian as shown in supplementary material
A.3.

Given these technical conditions on the properties of the ψ-
function, we can now study the process-related conditions for
which we define the filtration Ft := (. . . , εt−1, εt) where εt
are iid random variables. With this definition we can now deliver
the first process-related condition.

(C3) (Wj,t) is a strictly stationary process and can be repre-
sented as

Wj,t = gj(Ft),

where gj(·) is an R-valued measurable function such that
Wj,t is well defined.

Although not necessarily expressed in this form, Condition (C3)
is commonly assumed when studying asymptotics within a time
series setting and is respected by a very general class of time
series models (see Wu 2005). In our case, this condition is
necessary in order to apply the functional dependence measure
defined in Wu (2011).

At this stage, we further denote W�
j,t = gj(F�

t )

as being the coupled version of Wj,t , where
F�

t := (. . . , ε−1, ε�
0 , ε1, . . . , εt), with ε0 and ε�

0 also being iid
random variables. Hence, the two processes (Wj,t) and (W�

j,t)

depend on filtrations that only differ by one element, that is, ε0
and ε�

0 , therefore implying that W�
j,t = Wj,t for t < 0. Based



2000 S. GUERRIER ET AL.

on this definition, we can define the functional dependence
measure given in Wu (2011)

δ
j
t,q := ‖Wj,t − W�

j,t‖q,

where ‖Z‖q := (E[|Z|q])1/q for q > 0. This dependence
measure can be interpreted as the expected impact of the inno-
vation ε�

0 on the moments of W�
j,t with respect to its “original”

path given by Wj,t . Using this definition, we provide the final
process-related condition.

(C4) The process (Wj,t) is such that
∑∞

t=0 δ
j
t,4 < ∞ for j =

1, . . . , J.

This condition can be interpreted as a requirement for the
difference in fourth moments between (Wj,t) and its coupled
version (W�

j,t) to be summable with respect to t, implying that
the innovation ε�

0 has a limited impact in time on how much
W�

j,t deviates from Wj,t and, hence, the process (Wj,t) is a “stable”
process (see Wu 2011). An example of how Conditions (C3) and
(C4) are verified using the Haar wavelet filter in the case where
(Xt) follows a causal ARMA process is given in Supplementary
Material A.4. It should finally be noted that Condition (C4),
which places constraints up to the fourth moments of the
process, could eventually be relaxed by using results such as
those presented in Fonseca, Mondal, and Zhang (2019) but this
investigation is left for future work.

Remark 2.3. In the case where the chosen filter for the
wavelet decomposition belongs to the Daubechies family, Con-
ditions (C3) and (C4) can be placed directly on the dth-order
difference of the process (Xt), that we will denote as 	t , instead
of the process (Wj,t). The advantage of this consists in the fact
that, if the length of the wavelet filter at the first level is such
that L1 ≥ d (where d is the required differencing such that
(	t) is stationary), then we only need (	t) to respect these
conditions to ensure that all levels of decomposition respect
them too. Indeed, in the case of a Daubechies wavelet filter with
N vanishing moments, all levels of wavelet coefficients simply
correspond to a deterministic linear combination of (	t) and
we would therefore have gj(·) = γjg(·) and δ

j
t,q = λjδt,q where

g(·) and δt,q would be uniquely related to 	t and constants γj
and λj only depend on the chosen wavelet filter. For example, the
process (Wj,t) in Conditions (C3) and (C4) would be replaced
by the process (	t = Xt − Xt−1) in the case of the Haar
wavelet filter and hence we would have 	t = g(Ft) and
δt,q = ‖	t − 	�

t ‖q. If other families of wavelet filters were
to be considered, then the verification of these conditions may
be less straightforward but can generally be assumed to hold if
the original process directly respects them.

We can now determine the asymptotic properties of the pro-
posed M-estimator of WV in (3). For this reason, let us further
define Wt := [Wj,t]j=1,...,J as the vector of wavelet coefficients
at time t and ν̂ := [ν̂2

j ]j=1,...,J as the vector of estimated WV
using the proposed M-estimator in (3). Moreover, we define the
projection operator (see Wu 2011) as

Pt· := E [·|Ft] − E [·|Ft−1] , t ∈ Z.
This operator therefore represents a measure of how much
the conditional expectation of a process can change once the

immediately previous information is removed. As for the pre-
viously defined functional dependence measure, intuitively the
projection operator should not be too sensitive if the underlying
process is stable (in the sense of Wu 2011). It must be underlined
that this operator can be applied to vectors: considering for
example Xt ∈ R

d where each dimension follows Condition (C3)
and with q ≥ 2, we have ‖P0Xt‖q ≤ ‖Xt − X∗

t ‖q.
Using the above definitions, we finally define the quantities

D0 := ∑∞
t=0 P0ψ(Wt , ν) and M := E[−∂/∂ν ψ(Wt , ν)] to

deliver the following theorem on the asymptotic distribution of
the proposed estimator ν̂.

Theorem 2.1. Under Conditions (C1) to (C4) and assuming that
the function ψ(·) is bounded, we have that the M-estimator ν̂ :=
[ν̂2

j ]j=1,...,J has the following asymptotic distribution:

√
T
(
ν̂ − ν

) D−→ N (0, V) ,

where ν := [ν2
j ]j=1,...,J and V = M E[D0D�

0 ] M�.

The proof of this theorem can be found in Appendix B where the
proofs for Condition (C2) (for Huber and Tukey Biweight func-
tions in the Gaussian setting) and consistency of ν̂2

j can also be
found. An extension of this result beyond intrinsically stationary
processes, such as for example to fractional stochastic processes
(see, e.g., Percival and Walden 2000), can be considered using
the uniform functional dependence measure suggested in Zhou
and Wu (2009) and Wu and Zhou (2011) but is left for future
research.

Remark 2.4. The asymptotic covariance matrix V is a long-
run covariance matrix which can be estimated via different
methods. For example, the moving block bootstrap can be used
applying the robust estimator ν̂ in (3) to the bootstrapped
samples thereby ensuring that the influence of potential outliers
is limited. Alternatively, V̂ can be chosen as being the empir-
ical version of V given in Theorem 2.1 which can be robustly
estimated by the robust version of batched-mean estimator (see
Zhang and Wu 2017) or the progressive batched-mean method
generalized from the idea in Kim, Lahiri, and Nordman (2013).
Moreover, when a parametric family Fθ for (Xt) is assumed (as
in the setting of this work), the parametric bootstrap could also
be considered.

Aside from studying the behavior of the proposed M-
estimator as a first-step estimator for the RGMWM (Section 4),
as an additional exercise in Appendix C we compare the
behaviour of ν̂2

j with the standard WV estimator ν̃2
j and the

median-type robust estimator in Mondal and Percival (2012b).
In the latter simulation, it appears clearly that the proposed M-
estimator is the best alternative to the standard estimator in the
uncontaminated setting and the best overall in the contaminated
setting. Based on the robustness properties of the proposed
estimator ν̂ (for bounded ψ-functions) and its asymptotic prop-
erties, this new estimator provides a suitable tool to perform
robust scale-based analysis of variance for time series (see, e.g.,
Percival and Walden 2006, and references therein). More impor-
tantly, it delivers a first-step estimator with adequate properties
based on which it is possible to perform robust parametric
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inference for a wide range of time series models as well as for
large datasets as discussed in the following section.

3. Robust GMWM

The properties of the proposed M-estimator of WV can be
directly carried over to the GMWM framework (see Guerrier
et al. 2013). Indeed, as suggested in Guerrier, Molinari, and
Victoria-Feser (2014), one can replace the standard estimator
used in the GMWM with a robust estimator which, in this
case, is the proposed M-estimator allowing us to deliver the
RGMWM defined as

θ̂ := argmin
θ∈�

(ν̂ − ν(θ))��(ν̂ − ν(θ)), (4)

where ν(θ) := [ν2
j (θ)]j=1,...,J and � is any symmetric positive-

definite weighting matrix (for example, one could choose a non-
random matrix �0 or choose an estimator �̂ for it, for example,
� := �̂ = V̂−1, where V̂ is a suitable estimator of V , see
Guerrier et al. 2013). A generally reasonable choice for �̂ is to
consider a diagonal matrix with elements equal to the diagonal
elements of V̂−1, where V̂ is obtained using one of the methods
proposed in Remark 2.4. Moreover, the robustness (bounded
IF) of the RGMWM estimator is inherited from the robustness
of ν̂ as shown in Genton and Ronchetti (2003) in the indirect
inference framework.

With this in mind, in the following paragraphs we list and
discuss the conditions for the consistency and asymptotic nor-
mality of the RGMWM which summarize and reduce those in
Guerrier et al. (2013) for the standard GMWM. Denoting || · ||S
as the matrix spectral norm, the conditions are as follows:

(C5) � is compact.

(C6) ν(θ) is continuous and differentiable for all θ ∈ �.

(C7) For θ1, θ2 ∈ �, ν(θ1) = ν(θ2) if and only if θ1 = θ2.

(C8) ||�̂ − �0||S p→ 0.

Condition (C5) is commonly assumed but could be replaced
by imposing other technical constraints if deemed more appro-
priate with respect to the parametric setting of reference (as
proposed, for example, in Theorem 2.7 of Newey and McFadden
1994). Condition (C6) is easy to verify and is respected for most
intrinsically stationary processes. However, Condition (C7) is
an essential one which is often hard to verify. In this case,
with respect to the Haar wavelet filter (which is one of the
most commonly used wavelet filters), the discussion in Guerrier
et al. (2013) and the results in Greenhall (1998) support the
identifiability of a large class of (latent) time series models and
are extended in supplementary material B as well as in Guerrier
and Molinari (2016) thereby suggesting that Condition (C7) can
hold in various settings. Finally, Condition (C8) addresses the
choice of the weighting matrix � and places conditions on an
estimator, denoted �̂, if this were chosen to define this matrix.
In this perspective, the RGMWM is consistent for any matrix
� that is symmetric positive definite and, therefore, one needs
to select an estimator �̂ that converges to the non-random

symmetric positive-definite matrix �0 chosen for �. A final
condition which has not been stated is the consistency of the
WV estimator ν̂ which is implied by Conditions (C2) to (C4) as
seen in Section 2. With these conditions we can now state the
consistency of the RGMWM estimator θ̂ .

Proposition 3.1. Under Conditions (C2) to (C8) we have that
θ̂

p→ θ0.

The proof of this proposition can be found in supplementary
material C.1. With this result, we can finally give the conditions
for the asymptotic normality of θ̂ . For this reason, let us define

A(θ0) := ∂

∂θ� ν(θ)

∣∣∣
θ=θ0

,

which, if using a Haar wavelet filter for example, exists for a wide
class of time series models (see, e.g., Zhang 2008). Using this
definition, we can state these final conditions.

(C9) θ0 ∈ Int(�).

(C10) H(θ0) := A(θ0)
��A(θ0) exists and is non-singular.

Condition (C9) is a standard regularity condition while Con-
dition (C10) is also usually assumed since it depends on the
specific parametric model Fθ from which the time series (Xt)
is generated and cannot therefore be verified in general. Since �

is non-singular by definition, we have that this condition relies
mainly on the non-singularity of (the first p rows of) A(θ0)
which is used, for example, to discuss Condition (C7) in supple-
mentary material B. Finally, as for the results of consistency in
Proposition 3.1, an additional condition for the asymptotic nor-
mality of the RGMWM is the asymptotic normality of ν̂ which
is stated in Theorem 2.1. Having discussed these conditions, we
can use them to state the following lemma.

Lemma 3.1. Under Conditions (C1) to (C10), the estimator θ̂

has the following asymptotic distribution:
√

T
(
θ̂ − θ0

) D−→ N
(

0, BVB�) ,

where B = H(θ0)
−1A(θ0)

��.

The proof of Lemma 3.1 is provided in supplemental material
C.2. With the above results on the asymptotic properties of
the RGMWM, the next paragraphs discuss some practical and
theoretical advantages of the proposed robust framework.

3.1. Discussion: Practical Properties and Extensions

The RGMWM delivers various advantages that are mainly due
to its two-step nature which allows it to benefit from the gener-
ality of the M-estimation framework presented in Section 2.1.
A first advantage resides in the fact that the correction term
needed to ensure Fisher consistency of the estimator defined
in (3) only depends on the marginal distribution of the wavelet
coefficients (Wj,t) which, if assumed to be Gaussian, can have
an explicit form (for common ψ-functions) and only needs to be
computed once for all levels j. A main advantage however resides
in the fact that the dimension of the auxiliary parameter vector
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is always reasonable since in general J < log2(T) which allows
to make use of all the scales of WV (the auxiliary moments
for the GMWM) without the need to select specific moments.
This is not the case, for example, for Generalized Method of
Moments (GMM) estimators where auxiliary moment-selection
is an important issue since, according to the model that is being
estimated, the choice should fall on all moments (which can be
highly impractical) or on moments that are more “informative”
than others (see, e.g., Andrews 1999). The RGMWM on the
other hand can make use of all the possible scales of WV even for
extremely large sample sizes, allowing it to preserve its statistical
efficiency while gaining in terms of computational speed which
is approximately of order O(T log2(T)) while for the MLE,
for example, it is roughly O(T3). Supplementary material D
shows results on the computational time required to estimate
the parameters of some (latent) models for sample sizes up to 10
million, confirming the considerable computational advantage
of the RGMWM over both standard and robust alternatives.
Moreover, the wavelet decomposition (and consequent variance
estimation) is computationally efficient based on well-known
algorithms (see, e.g., Rioul and Duhamel 1992) and more recent
approaches (see, e.g., Stocchi and Marchesi 2018) allowing the
RGMWM to be scalable. Nevertheless, a possible limitation of
this approach is that it requires a large enough sample size to
estimate more complex models although, for example, it can
already estimate four-parameter models with a sample size of
T = 20 if using a Haar wavelet filter (without however claiming
that such an estimate would be highly accurate).

For model comparison purposes, using its “model-
independent” nature based on the robust weights of the
proposed M-estimator in (3), the latter allows to graphically
compare potential candidate models on the basis of the
estimated WV as is routinely done, for example, with error
characterization in the field of signal processing (see, e.g., El-
Sheimy, Hou, and Niu 2008). Indeed, decreasing linear trends
in the log–log plot of the WV can indicate the presence of white
noise or rounding-error models while increasing linear trends
can indicate the presence of non-stationary components such
as drifts and random walks whereas slight “bumps” in the plot
can indicate the presence of ARMA components. In Section 5,
for example, the graphical display of the WV is used to detect
and check the fit of the model when analysing a real dataset
on personal saving rates. Moreover, continuing with its model
comparison advantages, the RGMWM estimator also delivers a
general framework for robust goodness-of-fit tests and model
selection. Indeed, the objective function in (4) can be used
as a statistic for a goodness-of-fit test (Sargan-Hansen test or
J-test) as proposed by Hansen (1982), where the asymptotic
distribution under the null hypothesis is chi-squared with J − p
degrees of freedom. Moreover, model selection criteria can
also be built based on the (penalized) GMM objective function
which in the RGMWM setting would be given by

T(ν̂ − ν(θ̂k))
��̂k(ν̂ − ν(θ̂k)) + 

(
θ̂k, �̂k

)
, (5)

where θ̂k and �̂k denote respectively the estimated parameter
vector and weighting matrix for the kth model within a set of K
candidate models, while 

(
θ̂k, �̂k

)
is a possible penalty term.

Penalized objective functions have been proposed for model and

moment selection for GMM estimators such as, for example,
Andrews (1999) and successively Andrews and Lu (2001) who
proposed penalty terms that reflect the number of moment
conditions or Zhang and Guerrier (2020) who derived a penalty
term using the covariance penalty criterion of Efron (2004).
Nevertheless, since these model selection criteria only rely on
a consistent estimator for the model’s parameters θk, a robust
version is (almost) readily available by using the RGMWM
framework. Moreover, the estimator �̂k in (5) can be made
model-independent by choosing �̂k := �̂ (e.g., based on
V̂−1 as proposed in Remark 2.4) making model comparison
computationally more efficient. While the J-test statistic will be
used in the analysis of real data in Section 5, the study of a
possible implementation of a robust model selection criterion
is left for further research.

Finally, aside from providing the basis for model-
independent outlier-detection (which can be of great
importance for fault-detection algorithms, see, for example,
Guerrier et al. 2012, and references therein), another advantage
of the RGMWM estimator is that it can easily be extended to
more complex settings such as multivariate time series (see,
e.g., Xu et al. 2019), locally stationary time series (see, e.g.,
Nason, Von Sachs, and Kroisandt 2000) or to random fields
(see, e.g., Mondal and Percival 2012b,a) thereby delivering a
computationally efficient framework for robust inference in
these settings as well.

4. Simulation Studies

The aim of this section is to show that the RGMWM has
a reasonable performance in settings where there is no data
contamination and has a better performance than the classical
(and possibly robust) alternatives when the data are contami-
nated (as mentioned in the previous sections, a simulation study
regarding the performance of the proposed robust WV can also
be found in Appendix C). In order to compare the proposed
framework with existing approaches, in this section we limit
ourselves to relatively short time series and stationary models
while we explore large and/or intrinsically stationary time series
in the applied examples in Section 5 and in the supplemental
material. Concerning the robust alternatives, there is a lack of
implemented and generally available (or usable) robust methods
for parametric inference on time series models. For this reason,
we were only able to successfully implement two robust estima-
tors with which to compare the proposed RGMWM estimator:
the Yule-Walker estimator based on the robust autocovariance
estimator (YW) (as used for example in Sarnaglia, Reisen, and
Lévy-Leduc 2010b) and the indirect inference estimator based
on the YW estimator (as proposed in Genton and Ronchetti
2003) using a Tukey Biweight function with tuning constant
c = 2.2 (chosen based on preliminary simulation studies in
order to be highly robust). In the latter case, AR(p∗) models
were used as auxiliary models with p∗ = p + 1 where, in
this case, p represents the number of parameters in the mod-
els of interest (excluding the innovation variance parameter)
and the number of simulated samples was 100. Since the YW
estimator is appropriate for autoregressive models while the
indirect inference estimator is used for all other models, we will
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denote both with a common acronym, that is, R-YW (for Robust
Yule-Walker based estimators). On the other hand, the GMWM
and RGMWM estimators are made available through the open-
source R package gmwm2 where the default options are the Haar
wavelet filter (at dyadic scales τj = 2j) and a diagonal matrix
for the weighting matrix �̂ with elements proportional to the
estimated variance of ν̂2

j (which was used for the simulations
also to make more reasonable comparisons with the indirect
inference estimators which were based on the identity matrix).
More details on this choice can be found in Appendix C. The
Tukey Biweight was used also for the RGMWM with tuning
constant based on an asymptotic efficiency of 60% thereby guar-
anteeing high robustness of the resulting estimator.

For the simulation studies different types of contamination
were used, going from scale-contamination to additive and
replacement outliers as well as patchy outliers and level-shifts.
Innovation-type contamination was not considered since it does
not affect the estimators much (see Maronna, Martin, and Yohai
2006; Maronna et al. 2019, for an overview of different con-
tamination settings). We denote the proportion of contaminated
observations with ε and the size of contamination (i.e., the vari-
ance of the observations which are added to the uncontaminated
observations) with σ 2

ε . Finally, when dealing with level-shifts,
we denote μεi as the size of the ith shift in level.

The performance of these estimators is investigated on the
following models and contamination settings:

• AR(1): a zero-mean first-order autoregressive model with
parameter vector [ρ1 υ2]� = [0.9 1]�, scale-based con-
tamination at level j = 3, ε = 0.01 and σ 2

ε = 100;
• AR(2): a zero-mean second-order autoregressive model

with parameter vector [ρ1 ρ2 υ2]� = [0.5 − 0.3 1]�,
replacement isolated outliers, ε = 0.05 and σ 2

ε = 9;
• ARMA(1,2): a zero-mean autoregressive-moving average

model with parameter vector [ρ �1 �2 υ2]� = [0.5 −
0.1 0.5 1]�, and level-shift contamination with ε = 0.05,
με1 = 5 and με2 = −3;

• ARMA(3,1): a zero-mean autoregressive-moving aver-
age model with parameter vector [ρ1 ρ2 ρ3 �1 υ2]� =
[0.7 0.3 − 0.2 0.5 2]�, patchy outliers, ε = 0.01 and
σ 2

ε = 100;
• SSM: a state-space model (Xt) interpreted as a composite

(latent) process in certain engineering applications. This
model is defined as

Y(i)
t =ρ(i)Y(i)

t−1 + W(i)
t , W(i)

t
iid∼ N (0, υ2

(i))

Xt =
2∑

i=1
Y(i)

t + Zt , Zt
iid∼ N (0, σ 2)

with parameter vector

[ρ(1) υ2
(1) ρ(2) υ2

(2) σ 2]� = [0.99 0.1 0.6 2 3]�,

additive isolated outliers, ε = 0.05 and σ 2
ε = 9.

2The gmwm package can be downloaded from https://github.com/SMAC-
Group/gmwm.

To measure the statistical performance of the estimators we
choose to use a robust and relative version of the root mean
squared error (RMSE) defined as follows:

RMSE* :=
√√√√med

(
θ̂i − θi,0

θi,0

)2

+ mad

(
θ̂i
θi,0

)2

,

with med(·) representing the median, mad(·) the median abso-
lute deviation and θ̂i and θi,0 representing the ith element of the
estimated and true parameter vectors, respectively. Finally, for
each simulation, the number of simulated samples is 500 while
the sample size is T = 103 which delivers J = 9 scales for the
GMWM-type estimators.

Figure 1 displays the (logarithm of the) RMSE* of the esti-
mators in both uncontaminated and contaminated settings for
all the models presented above. When considering the AR(1)
and AR(2) and ARMA(3,1) models, the RGMWM does not
lose much in uncontaminated settings while it performs gen-
erally as well or better than the R-YW estimator in contami-
nated ones, especially concerning the variance parameter υ2 in
the ARMA(3,1). As for the ARMA(1,2) model, the RGMWM
is not as efficient as the others in the uncontaminated case
while it adequately bounds the influence of outliers in con-
taminated ones, performing generally better than the R-YW
estimator, especially for the variance parameter υ2 as in the
case of the ARMA(3,1) model. For the SSM model, standard
estimators in their default implementation did not appear to
be numerically stable while, to the best of our knowledge,
robust alternatives have never been implemented. From Fig-
ure 1, it can be seen how the RGMWM is extremely close
to the GMWM in uncontaminated settings while it remains
more stable than the GMWM in the contaminated ones. When
considered jointly with the additional simulation study in sup-
plementary material D, this simulation exercise shows that the
RGMWM provides a computationally efficient and numerically
stable method to robustly estimate the parameters of many
linear state-space models which, to date, has been almost unfea-
sible in practice with alternative robust estimators. Indeed, sup-
plementary material D illustrates the computational efficiency
of the RGMWM for time series models with a moderately high
number of parameters for sample sizes of T = 107 for which
the RGMWM is computed in just over a minute, denoting the
added value of this approach since these models and sample
sizes are extremely common, for example, in the natural sciences
and engineering. As a final note, since this simulation study
does not use a full weighting matrix for �̂, the efficiency of
the (R)GMWM could be improved by choosing an alternative
matrix.

5. Application: Personal Saving Rates

Having highlighted the properties of the RGMWM in a con-
trolled simulated setting, in this section, we conclude this work
by presenting the results when using the RGMWM for an anal-
ysis on real data concerning personal saving rates. In addition,
in supplemental material E we present the results of an analysis
on the measurement error issued from an inertial sensor based
on a calibration sample of size T = 9 · 105 that requires the

https://github.com/SMAC-Group/gmwm
https://github.com/SMAC-Group/gmwm
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Figure 1. Top row: logarithm of the RMSE* of the estimators in an uncontaminated setting. Bottom row: logarithm of the RMSE* of the estimators in a contaminated
setting. R-YW represents the YW estimator for the AR(1) and AR(2) models while it represents the indirect inference estimator for the other models.

estimation of a state-space model with 6 parameters. Indeed,
the wide class of intrinsically stationary models for which the
RGMWM can be used allows it to be employed in a large
variety of applications where outliers and other types of data
contamination can often occur. As mentioned above, in this
section, the RGMWM will be used to analyse data consist-
ing in the monthly seasonally adjusted Personal Saving Rates
(PSR) from January 1959 to May 2015 provided by the Federal
Reserve Bank of St. Louis.3 The study of PSR is an essential
part of the overall investigation on the health of national and
international economies since, within more general economic
models, PSR can greatly impact the funds available for invest-
ment which in turn determine the productive capacity of an
economy. Understanding the behaviour of PSR is therefore an
important step in correct economic policy decision making.
In this sense, Slacalek and Sommer (2012) study the factors
behind saving rates and investigate different models which,
among others, are compared to the random-walk-plus-noise
(local level) model (RWN). As opposed to the latter model,
various time-varying models are proposed in the literature to
explain precautionary PSR together with risk aversion in the
light of different factors such as financial shocks or others (see,
for example, Owen and Wu 2007; Brunnermeier and Nagel
2008). Nevertheless, as emphasized in Pankratz (2012), mod-
elling the time series with a stationary model, or a dth-order
non-stationary model such as an ARIMA, can be useful under

3U.S. Bureau of Economic Analysis, Personal Saving Rate [PSAVERT], retrieved
from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/
series/PSAVERT

many aspects such as, for example, to understand if a dynamic
model is needed for forecasting and, if so, what kind of model is
appropriate.

In this example, we consider the RWN model and we use
the WV log-log plot and a J-test (see Section 3.1) to understand
what kind of model could fit the time series. Taking into account
the analysis in Slacalek and Sommer (2012) who, among others,
consider two main drivers to PSR (unemployment and interest
rates) in addition to fluctuating target wealth, we consider the
sum of two AR(1) processes (i.e., ARMA(2,1)) for the noise
component of the RWN model. Based on both the visual fit of
the WV of the candidate models in the plots as well as the p-
values of the J-tests (for which the null hypothesis is that the
model fits the data well), we find that a random walk plus an
ARMA(2,1) indeed appears to be a good fit (J-test p-values are
0.109 and 0.279 for GMWM and RGMWM, respectively). This
can be seen in Figure 2 where, in the top part, the saving rate
time series is represented along with the identified outliers and,
in the bottom part, we see the log–log representation of the
classic and robust estimated and model-implied WV respec-
tively. Indeed, for the bottom part, the diagonal plots show
the classic and robust estimations, respectively, each with the
estimated WV and the WV implied by the estimated RWN
model; when the difference in the two lines lies within their
confidence intervals, the chosen model can be considered as
adequate. The off-diagonal plots compare the classic and robust
estimated WV (upper off-diagonal) and the WV implied by the
GMWM and RGMWM model parameter estimates (lower off-
diagonal).

https://fred.stlouisfed.org/series/PSAVERT
https://fred.stlouisfed.org/series/PSAVERT
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Figure 2. Top figure: Saving rates time series with different types of points indicating outliers identified through the weights of the proposed M-estimator. Bottom figure:
log-log scale WV plots for saving rates series with classic estimated WV superposed with model-implied WV based on the parameters estimated through the GMWM (top
left); classic and robust estimated WV with respective confidence intervals superposed (top right); classic and robust model-implied WV based on the GMWM and RGMWM
estimates respectively (bottom left); robust estimated WV superposed with model-implied WV based on the parameters estimated through the RGMWM estimator (bottom
right).

Table 1. Random Walk plus ARMA(2,1) model estimates for the PSR data.

GMWM RGMWM

Estimate CI(·, 95%) Estimate CI(·, 95%)

γ 2 7.95 × 10−2 ( 3.67 × 10−2 ; 1.11 · 10−1) 5.85 × 10−2 (1.54 × 10−2 ; 9.97 × 10−2)

ρ1 1.64 × 10−1 ( 5.93 × 10−2 ; 2.89 × 10−1) 6.00 × 10−1 (4.48 × 10−1 ; 7.55 × 10−1)

ρ2 3.06 × 10−3 (−1.31 × 10−1 ; 1.48 × 10−1) 1.84 × 10−1 (3.10 × 10−2 ; 2.46 × 10−1)

� 2.43 × 10−1 ( 2.02 × 10−1 ; 2.81 × 10−1) 2.92 × 10−1 (2.28 × 10−1 ; 3.45 × 10−1)

σ 2 3.14 × 10−1 ( 2.59 × 10−1 ; 3.85 × 10−1) 1.32 × 10−1 (8.59 × 10−2 ; 1.80 × 10−1)

NOTE: Estimated parameters with GMWM and RGMWM estimators with γ 2 being the random walk parameter, ρi the ith autoregressive parameter, � the moving average
parameter and σ 2 the innovation variance of the ARMA(2,1) model. Confidence intervals (CI) based on the approach used in Guerrier et al. (2013).
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It can be seen how significant the difference is between the
standard and robust WV estimates, especially at the first scales
where the confidence intervals of the estimated WV do not
overlap (upper off-diagonal plot). This leads to a difference in
the model-implied WV whose parameters have been estimated
through the GMWM and RGMWM (lower off-diagonal plot).
It can also be noticed how the confidence intervals of the robust
WV estimator ν̂ are wider than those of the classical estimator
due to the trade-off between (bias) robustness and variance.

The estimated parameters of the RWN model using the
GMWM and RGMWM are given in Table 1 along with their
respective confidence intervals. There are two main differences
between the two estimations: (i) the estimates of the first autore-
gressive parameter ρ1 and innovation variance σ 2 are signifi-
cantly different; (ii) the second autoregressive parameter ρ2 is
not significant using the GMWM. These differences highlight
how the conclusions concerning parameter values and model
selection can considerably change when outliers are present in
the data. Indeed, the choice of the model would then affect
the decisions taken toward the selection of appropriate causal
and dynamic models to better explain the behaviour of saving
rates. The selected model based on the robust fit can in fact
be interpreted as a sum of latent models along the lines given
in Slacalek and Sommer (2012) where the ARMA(2,1) can be
seen as a sum of two AR(1) models (see Granger and Morris
1976) where each of them represents, for example, the reaction
of PSR to changes in uncertainty (affected by unemployment)
and interest rates, respectively, while the random walk describes
the continuous fluctuations of target wealth which also drives
PSR.

The additional benefit of the RGMWM, and more specif-
ically of the proposed M-estimator of WV, is also to deliver
weights that allow to identify outliers which may not be visible
simply by looking at the time series. As shown in the top part
of Figure 2, the outliers identified by the RGMWM can be
interpreted in the light of the national and global economic
and political events. Limiting ourselves to the major identified
outliers, the first one corresponds to a rise in the precautionary
savings in the aftermath of the OPEC oil crisis and the 1974
stock market crash. In the months following October 1987 we
can see an instability in the PSR with a rise and sudden fall
linked to the “Black Monday” stock market crash which added
to the savings and loans crisis which lasted to the early 1990s.
This period also saw an economic recession where a rise in the
saving rates, highlighted by the presence of high outliers, led to a
drop in aggregate demand and bankruptcies. Finally, the various
financial crises of the 21st century led to sudden and isolated
rises in PSR as indicated again by the outliers.

Norm Notation

Given the use of different types of norm considered in these appendices,
as a reference below we provide their notations and definitions:

• |a|q :=
(∑p

j=1 |aj|q
)1/q

represents the lq-norm where a =
(a1, . . . , ap)� ∈ R

p.

• ‖X‖q := (E[|X|q])1/q .

• ‖X‖S denotes the spectral norm of a matrix X.

Appendix A: Short Literature Review

A detailed discussion on robust estimation and inference methods for
time series models can be found in Maronna, Martin, and Yohai (2006),
Chapter 8. An important part of the literature in this domain has dealt
with time series models such as autoregressive and/or moving average
models. For example, Künsch (1984b) proposes optimal robust M-
estimators of the parameters of autoregressive processes by studying
the properties of their influence function (see also Martin and Yohai
1986). Denby and Martin (1979) develop a generalized M-estimator
for the parameter of a first-order autoregressive process whereas Bustos
and Yohai (1986), Allende and Heiler (1992) and de Luna and Genton
(2001); Genton and Ronchetti (2003) extend the research to include
moving average models using generalized M-estimation theory and/or
indirect inference (see, e.g., Gourieroux, Monfort, and Renault 1993).
Bianco et al. (1996) proposed a class of robust estimators for regression
models with ARIMA errors based on τ -estimators of scale (Yohai and
Zamar 1988). Ronchetti and Trojani (2001) developed a robust version
of the generalized method of moments (proposed by Hansen 1982)
for estimating the parameters of time series models in economics,
while Ortelli and Trojani (2005) further developed a robust efficient
method of moments and Cizek (2016) proposed a generalized method
of trimmed moments. Mancini, Ronchetti, and Trojani (2005) devel-
oped optimal bias-robust estimators for a class of conditional location
and scale time series models while La Vecchia and Trojani (2010)
developed conditionally unbiased optimal robust estimators for general
diffusion processes, for which approximation methods for computing
integrals are proposed. Cizek (2008) studies the properties of a two-
step least weighted squares robust time-series regression estimator and
Agostinelli and Bisaglia (2010) proposed a weighted MLE for ARFIMA
processes.

Two-step robust approaches can be built upon robust (Kalman)
filtering or robust moment estimation. Robust estimators of moments,
such as autocovariances, include Ma and Genton (2000), Lévy-Leduc
et al. (2011), and Chang and Politis (2016) (see also Rousseeuw and
Croux 1993), and for a review, see, for example, Dürre, Fried, and
Liboschik (2015). They have been used by for example, Molinares,
Reisen, and Cribari-Neto (2009) as plugin estimators for ARFIMA
models (see also Reisen and Molinares 2012), by Sarnaglia, Reisen, and
Lévy-Leduc (2010a) for the parameters of the periodic AR model with
the Yule–Walker equation and by Bahamonde and Veiga (2016) for the
GARCH(1,1). The idea of making the Kalman filter robust was orig-
inated with Masreliez and Martin (1977) and Cipra (1992) who pro-
posed robust modifications of exponential smoothing (see also Cipra
and Hanzak 2011 and Croux, Gelper, and Mahieu 2010 for a multivari-
ate version). For a robust version of the Holt-Winters smoother, see
Gelper, Fried, and Croux (2010), and other proposals can be found in
for example, Ruckdeschel, Spangl, and Pupashenko (2014) and Calvet,
Czellar, and Ronchetti (2015). Muler, Peña, and Yohai (2009) developed
a class of robust estimates for ARMA models that are closely related
to robust filtering. Robustness properties of wavelet filtering have been
studied for the identically and independently distributed (iid) case by
Renaud (2002). Several robust local filters have been proposed so far
since the median filter proposal from Tukey (1977): Bruce et al. (1994)
pre-process the estimation of the wavelet coefficients via a “fast and
robust smooth/cleaner;” Krim and Schick (1999) derived a robust esti-
mator of the wavelet coefficients based on minimax description length;
Härdle and Gasser (1984) develop a locally weighted smoothing using
M-estimation and Fried, Einbeck, and Gather (2007) propose a non-
parametric, weighted repeated median filter. Sardy, Tseng, and Bruce
(2001) proposed a robust wavelet-based estimator using a robust loss-
penalized function, for which appropriately choosing the smoothing
parameter is an important robustness issue as revealed, for example, by
Cantoni and Ronchetti (2001).
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Appendix B: Proof of Theorem 2.1

In this appendix we discuss the asymptotic normality of the proposed
WV estimator ν̂. Before proving Theorem 2.1, we need two additional
results which are namely, (i) the consistency of ν̂2

j as well as (ii) the
Bouligand differentiability of the Huber ψ-function if chosen for the
estimator ν̂ (which is needed for a Taylor expansion in the proof).
We start with the consistency of ν̂2

j which is stated in the following
proposition (followed by its proof).

Proposition B.1. Under Conditions (C2) to (C4), we have that

ν̂2
j

p−→ ν2
j .

Proof. We firstly verify the point-wise convergence

1
Mj

Mj∑
t=1

ψ(Wj,t , ν2
j )

p−→ E[ψ(Wj,t , ν2
j )]

for any ν2
j > 0. Since

(
ψ(Wj,t , ν2

j )
)

is a time-invariant function of(
Wj,t

)
, it is also a stationary process (see Wooldridge 1994) based on

Condition (C3). Recalling the notation ‖Z‖q := (E[|Z|q])1/q and

denoting A := 1/Mj
∑Mj

t=1 ψ(Wj,t , ν2
j ) − E[ψ(Wj,t , ν2

j )], by Markov
inequality we have

P (|A| ≥ ε) ≤ ‖A‖2
2

ε2 . (B.6)

Applying the definition of the projection operator Pt·, computations
show that

ψ(Wj,t , ν2
j ) − E[ψ(Wj,t .ν2

j )] =
∞∑

l=0
Pt−lψ(Wj,t , ν2

j ),

hence the numerator on the right side of the inequality in (B.6) can be
written as ∥∥∥∥∥∥

1
Mj

Mj∑
t=1

ψ(Wj,t , ν2
j ) − E[ψ(Wj,t , ν2

j )]
∥∥∥∥∥∥

2

= 1
Mj

∥∥∥∥∥∥
Mj∑
t=1

∞∑
l=0

Pt−lψ(Wj,t , ν2
j )

∥∥∥∥∥∥
2

.

Noticing that (Pt−lψ(Wj,t , ν2
j )) (for t = 1, . . . , Mj) forms a mar-

tingale difference sequence, by first applying the triangle inequality
and then Burkholder’s moment inequality for martingale differences
(Burkholder 1988), we have

1
Mj

∥∥∥∥∥∥
Mj∑
t=1

∞∑
l=0

Pt−lψ(Wj,t , ν2
j )

∥∥∥∥∥∥
2

≤ 1
Mj

∞∑
l=0

∥∥∥∥∥∥
Mj∑
t=1

Pt−lψ(Wj,t , ν2
j )

∥∥∥∥∥∥
2

≤ 1√
Mj

∞∑
l=0

∥∥∥P0ψ(Wj,l, ν2
j )

∥∥∥
2

.

We would therefore want to show that the latter term tends to zero to
prove consistency. For this reason, following the proof in Wu (2011),
we now write

P0ψ(Wj,t , ν2
j ) = E[ψ(Wj,t , ν2

j )|F0] − E[ψ(Wj,t , ν2
j )|F−1],

where, recalling that W�
j,t is a coupled version of Wj,t , we can notice

that

E[ψ(Wj,t , ν2
j )|F−1] = E[ψ(W�

j,t , ν2
j )|F−1],

since the filtrations Ft and F�
t are the same up to t = −1 (and are

different at t = 0). This implies that

E[ψ(Wj,t , ν2
j )|F−1] = E[ψ(W�

j,t , ν2
j )|F−1] = E[ψ(W�

j,t , ν2
j )|F0].

This allows us to rewrite∥∥∥P0ψ(Wj,t , ν2
j )

∥∥∥
2

=
∥∥∥E[ψ(Wj,t , ν2

j ) − ψ(W�
j,t , ν2

j )|F0]
∥∥∥

2
,

which, by Jensen’s inequality, gives us∥∥∥E[ψ(Wj,t , ν2
j )−ψ(W�

j,t , ν2
j )|F0]

∥∥∥
2
≤
∥∥∥ψ(Wj,t , ν2

j )−ψ(W�
j,t , ν2

j )

∥∥∥
2

.

Moreover, recall that

ψ(Wj,t , ν2
j ) = ω2

(
rj,t ; ν2

j , c
)

r2
j,t − a(ν2

j , c),

where ω(·) ∈ [0, 1] are weights (given for example by the Huber or
Tukey biweight functions) and rj,t = Wj,t/νj. Given this, we can denote
φ(Wj,t/νj, c) := ω

(
rj,t ; ν2

j , c
)

rj,t and, combining the above notations
and expansions we have

1√
Mj

∞∑
l=0

∥∥∥P0ψ(Wj,l, ν2
j )

∥∥∥
2

≤ 1√
Mj

∞∑
l=0

∥∥∥ψ(Wj,l, ν2
j ) − ψ(W�

j,l, ν
2
j )

∥∥∥
2

= 1√
Mj

∞∑
l=0

∥∥∥[φ(Wj,l/νj, c)]2 − [φ(W�
j,l/νj, c)]2

∥∥∥
2

= 1√
Mj

∞∑
l=0

∥∥∥[φ(Wj,l/νj, c) + φ(W�
j,l/νj, c)]

[φ(Wj,l/νj, c) − φ(W�
j,l/νj, c)]

∥∥∥
2

= 1√
Mj

∞∑
l=0

E

{
[φ(Wj,l/νj, c) + φ(W�

j,l/νj, c)]2

[φ(Wj,l/νj, c) − φ(W�
j,l/νj, c)]2

}1/2
.

By Hölder’s inequality we have that the last term is smaller or equal to

1√
Mj

∞∑
l=0

2
∥∥∥φ(Wj,l/νj, c)

∥∥∥
4

∥∥∥φ(Wj,l/νj, c) − φ(W�
j,l/νj, c)

∥∥∥
4

,

and, noticing that

|φ(Wj,t/νj, c) − φ(W�
j,t/νj, c)| ≤

∣∣∣∣∣
Wj,t − W�

j,t
νj

∣∣∣∣∣ ,

we can finally write

1√
Mj

∞∑
l=0

∥∥∥P0ψ(Wj,l, ν2
j )

∥∥∥
2

≤ 1√
Mjνj

∞∑
l=0

2
∥∥∥φ(Wj,l/νj, c)

∥∥∥
4

∥∥∥Wj,l − W�
j,l

∥∥∥
4

.

At this point, we can also underline that |φ(Wj,t/νj, c)| ≤ c implying
that, for all p > 0,

∥∥φ(Wj,t/νj, c)
∥∥

p ≤ k < ∞. Using Condition (C4)
we finally have

1√
Mj

∞∑
l=0

∥∥∥P0ψ(Wj,l, ν2
j )

∥∥∥
2

≤ 2 k√
Mjνj

∞∑
l=0

δ
j
l,4

= Op

(
1√
Mj

)
.
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Therefore, using these results in (B.6), we have

1
Mj

Mj∑
t=1

ψ(Wj,t , ν2
j )

p−→ E[ψ(Wj,t , ν2
j )], (B.7)

for every ν2
j . Based on the requirements of Lemma 5.10 of Van der Vaart

(2000), knowing that N ⊂ R
+ and using Condition (C2) we have that

ν̂2
j

p−→ ν2
j ,

thus concluding the proof.

Having proved consistency, we now deliver an additional technical
result that allows to perform an expansion in the case where the Huber
ψ-function is chosen. This result is provided in the following lemma
(followed again by its proof).

Lemma B.1. Assuming the wavelet coefficient process (Wj,t) is Gaus-
sian, the function ψ(Wj,t , ν2

j ) using Huber weights is Bouligand-
differentiable at ν2

j,0 as follows:

ψ ′(Wj,t , ν2
j,0) =

⎧⎨
⎩ − W2

j,t
ν4

j,0
if |rj,t| ≤ c

0 if |rj,t| > c

The proof of this lemma is given below.

Proof. Let us define r0 := Wj,t/
√

ν2
j,0 and r := Wj,t/

√
ν2 where ν2 =

ν2
j,0 + h. Let X ⊆ R

l be an open set and let f : X → R
m be a

function. By the definition in Christmann and Van Messem (2008), f
is Bouligand-differentiable (B-differentiable) at point x0 ∈ X if there
exists a positive homogeneous function4 f ′(x0; ·) such that f (x0 +h) =
f (x0)+f ′(x0; h)+o(h). Below are the computations of the B-derivatives
for the five cases of the Huber weight function, consider h be a value
close enough to 0:

1. Setting r0 = c we have:

• If h ≥ 0 (r ≤ c):

ψ ′(Wj,t , ν2
j,0)(h) + o(h)

= ψ(Wj,t , ν2
j,0 + h) − ψ(Wj,t , ν2

j,0)

= r2 − aψ(c) − r2
0 + aψ(c)

=
W2

j,t
ν2

j,0 + h
−

W2
j,t

ν2
j,0

=
W2

j,t
ν2

j,0

(
−h

ν2
j,0 + h

)

= −
W2

j,t
ν2

j,0

(
h

ν2
j,0

− h2

ν2
j,0(ν

2
j,0 + h)

)

= −
W2

j,t
ν4

j,0
h +

W2
j,th2

ν2
j,0(ν

2
j,0 + h)︸ ︷︷ ︸

o(h)

:= 	

4f : X → Z is called positive homogeneous if f (αx) = αf (x), for all α ≥ 0
and x ∈ X

• If h < 0 (r > c):

ψ ′(Wj,t , ν2
j,0)(h) + o(h)

ψ(Wj,t , ν2
j,0 + h) − ψ(Wj,t , ν2

j,0)

c2 − aψ(c) − r2
0 + aψ(c) = c2 − c2 = 0

2. Setting r0 = −c we have:

• If h < 0 (r < −c):

ψ ′(Wj,t , ν2
j,0)(h) + o(h)

= ψ(Wj,t , ν2
j,0 + h) − ψ(Wj,t , ν2

j,0)

c2 − aψ(c) − r2
0 + aψ(c) = 0

• If h ≥ 0 (r ≥ −c):

ψ ′(Wj,t , ν2
j,0)(h) + o(h)

ψ(Wj,t , ν2
j,0 + h) − ψ(Wj,t , ν2

j,0)

r2 − aψ(c) − r2
0 + aψ(c)

. . . = 	

3. Setting r0 > c and h is small enough such that r ≥ c, we have

ψ ′(Wj,t , ν2
j,0)(h) + o(h)

ψ(Wj,t , ν2
j,0 + h) − ψ(Wj,t , ν2

j,0)

c2 − aψ(c) − r2
0 + aψ(c) = 0

4. Setting r0 < −c and h is small enough such that r ≤ −c, we
have

ψ ′(Wj,t , ν2
j,0)(h) + o(h) = ψ(Wj,t , ν2

j,0 + h) − ψ(Wj,t , ν2
j,0)

= c2 − aψ(c) − r2
0 + aψ(c) = 0

5. Setting −c < r0 < c and h is small enough such that −c ≤ r ≤
c, we have

ψ ′(Wj,t , ν2
j,0)(h) + o(h) = ψ(Wj,t , ν2

j,0 + h) − ψ(Wj,t , ν2
j,0)

= r2 − aψ(c) − r2
0 + aψ(c)

= . . . = 	

We therefore have that the first B-derivative of the function
ψ(Wj,t , ν2

j ) at ν2
j,0 is given by

ψ ′(Wj,t , ν2
j,0)(h) = ψ ′(Wj,t , ν2

j,0)h =
⎧⎨
⎩ − W2

j,t
ν4

j,0
h if |rj,t| ≤ c

0 if |rj,t| > c,

and it is easy to see that ψ(Wj,t , ν2
j,0)(·) is positive homogeneous.

The approach used in this proof can be used to obtain expressions
for the B-derivatives of other piecewise differentiable weight functions
(see Scholtes 2012). It can be seen how it extends the classic derivative
for |r0| < c also to the points ν2

0 such that |r0| = c. However, the
Frechet differentiability of this function has also been discussed in
Clarke (1986).
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As mentioned earlier, Lemma B.1 is useful for the results on asymp-
totic normality of the proposed estimator to hold in case the choice
of the ψ-function corresponds to the Huber ψ-function, which is not
continuous differentiable with respect to ν2

j . Without such smoothness
condition, the classical proof based on the mean value theorem would
fail. However, in this case, we could apply Theorem 5.21 in Van der
Vaart (2000), which avoid the smoothness condition. However, we need
to verify two additional conditions. Firstly, the function ψ(Wj,t , ν2

j ) is
locally Lipschitz with respect to ν2

j . This is true since
∣∣ψ(Wj,t , ν2

j ) −
ψ(Wj,t , ν2 ′

j )
∣∣ ≤ W2

j,t
ν2

j ν2 ′
j

|ν2
j − ν2 ′

j | ≤ W2
j,t

C2 |ν2
j − ν2 ′

j | for all Wj,t ∈ R

and ν2
j ≥ C > 0. Secondly, we need to verify that Eψ(Wj,t , ν2

j ) is dif-
ferentiable at ν2

j,0, which is implied by Condition (C1). And Lemma B.1
leads directly to Condition (C1). Therefore, in the following proof we
only focus on the case when ψ(·, ν2

j ) is continuous differentiable with
respect to ν2

j . Since otherwise, we can apply Theorem 5.21 in Van der
Vaart (2000) by replacing Aj by mj and removing the steps of showing

Aj
p−→ mj, the rest are similar.

Proof of Theorem 2.1. Given Condition (C1), let us denote
ψ ′(Wj,t , νj2) = ∂/∂νj2 ψ(Wj,t , νj2) and apply the mean value theorem

to
∑Mj

t=1 ψ(Wj,t , ν̂2
j ) around ν2

j obtaining

Mj∑
t=1

ψ(Wj,t , ν̂2
j ) =

Mj∑
t=1

ψ(Wj,t , ν2
j ) +

Mj∑
t=1

ψ ′(Wj,t , ν∗
j

2
)(ν̂2

j − ν2
j ) = 0

where
|ν∗

j
2 − ν2

j | ≤ |ν̂2
j − ν2

j |. (B.8)

Rearranging the expansion and multiplying by
√

T yields

√
T(ν̂2

j − ν2
j ) =

√
T

Mj

⎡
⎢⎢⎢⎢⎢⎣− 1

Mj

Mj∑
t=1

ψ ′(Wj,t , ν∗
j

2
)

︸ ︷︷ ︸
Aj

⎤
⎥⎥⎥⎥⎥⎦

−1

1√
Mj

Mj∑
t=1

ψ(Wj,t , ν2
j )

︸ ︷︷ ︸
Bj

. (B.9)

Let us start from term Aj. We can rewrite this term as

− 1
Mj

Mj∑
t=1

ψ ′(Wj,t , ν∗
j

2
) = − 1

Mj

Mj∑
t=1

ψ ′(Wj,t , ν2
j ) −

1
Mj

Mj∑
t=1

[ψ ′(Wj,t , ν∗
j

2
) − ψ ′(Wj,t , ν2

j )︸ ︷︷ ︸
Cj

].

Since
(
ψ ′(Wj,t , ν2

j )
)

is a time-invariant function of
(
Wj,t

)
, it is also a

stationary process (see Wooldridge 1994) based on Condition (C3). Let
us start from the first term on the right side of the above equality and
define mj = E[−ψ ′(Wj,t , ν2

j )]. Then by Markov inequality, we have

P

⎛
⎝
∣∣∣∣∣∣

1
Mj

Mj∑
t=1

−ψ ′(Wj,t , ν2
j ) − mj

∣∣∣∣∣∣ ≥ ε

⎞
⎠

≤
∥∥∥ 1

Mj

∑Mj
t=1 −ψ ′(Wj,t , ν2

j ) − mj
∥∥∥2

2
ε2 ,

where, following the same reasoning as for the proof of Proposi-

tion B.1,
∥∥∥ 1

Mj

∑Mj
t=1 −ψ ′(Wj,t , ν2

j ) − mj
∥∥∥2

2
can be bounded by follow-

ing inequalities:

∥∥∥∥∥∥
1

Mj

Mj∑
t=1

−ψ ′(Wj,t , ν2
j ) − mj

∥∥∥∥∥∥
2

2

= 1
M2

j

∥∥∥∥∥∥
Mj∑
t=1

∞∑
l=0

Pt−lψ
′(Wj,t , ν2

j )

∥∥∥∥∥∥
2

2

≤ 1
M2

j

∞∑
l=0

∥∥∥∥∥∥
Mj∑
t=1

Pt−lψ
′(Wj,t , ν2

j )

∥∥∥∥∥∥
2

2

≤ 1
Mj

∞∑
l=0

∥∥∥ P0ψ ′(Wj,l, ν2
j )

∥∥∥2

2
.

Under Conditions (C1) to (C3), we can follow the same steps as the
proof of Proposition B.1 to deliver

1
Mj

Mj∑
t=1

−ψ ′(Wj,t , ν2
j )

p−→ E[−ψ ′(Wj,t , ν2
j )] = mj.

If the Bouligand derivative ψ ′(·) has discontinuous points (continuous
almost everywhere), then Theorem 5.21 in Van der Vaart (2000) can
be directly applied to the ψ-function under the same conditions and
deliver the desired result.

As for term Cj, since ν̂2
j is a consistent estimator of ν2

j , by (B.8)
so is ν∗

j
2. Moreover, since ψ ′(·) is continuous almost everywhere by

Condition (C1), using the continuous mapping theorem, we have

1
Mj

Mj∑
t=1

[ψ ′(Wj,t , ν∗
j

2
) − ψ ′(Wj,t , ν2

j )] p−→ 0,

which finally yields

Aj
p−→ mj.

Let us now focus on term Bj for which we intend to show convergence
to a normal distribution in order to make use of Slutsky’s theorem. For
this reason we verify the requirements of Theorem 7 in Wu (2011) most
of which have already been verified in the proof of Proposition B.1.
Indeed, based Condition (C3) we have that

(
ψ(Wj,t , ν2

j )
)

is a station-
ary process which can be represented as

ψ(Wj,t , ν2
j ) =

∞∑
l=0

Pt−lψ(Wj,t , ν2
j ),

where
(
Pt−lψ(Wj,t , ν2

j )
)

l=0,...,∞ is a martingale difference sequence.
Based on this, we verify the conditions of Theorem 3 in Wu (2011) such
that the martingale central limit theorem can be applied. Firstly we need
to show that

∞∑
l=0

∥∥∥ P0ψ(Wj,l, ν2
j )

∥∥∥2

2
< ∞ .

This requirement was verified in the proof of Proposition B.1 since it
was shown that, with k < ∞, we have

∞∑
l=0

∥∥∥ P0ψ(Wj,l, ν2
j )

∥∥∥
2

≤ 2 k
νj

∞∑
l=0

δ
j
l,4,
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Figure C.1. Top row: RMSE* of the estimators of WV in an uncontaminated setting. Bottom row: RMSE* of the estimators of WV in a contaminated setting.

thereby, based on Condition (C4), verifying the above requirement.
Hence, based on Theorem 3 in Wu (2011) we have that the term Bj
has the following asymptotic distribution

1√
Mj

Mj∑
t=1

ψ(Wj,t , ν2
j )

D−→ N
(

0,E[D2
0]
)

,

where D0 := ∑∞
t=0 P0ψ(Wj,t , ν2

j ). Since Mj = O(T), using all the
above results we apply Slutsky’s theorem to (B.9) to obtain

√
T(ν̂2

j − ν2
j )

D−→ N
(

0,
E[D2

0]
m2

j

)
.

Finally, employing the Crámer-Wold device we can deliver the final
result:

√
T
(
ν̂ − ν

) D−→ N (0, V) ,

where V = M E[D0D�
0 ] M� with D0 := ∑∞

t=0 P0ψ(Wt , ν) and
M := E[−∂/∂ν ψ(Wt , ν)].

Appendix C: Additional Simulation Studies: WV
Estimation

In this appendix we investigate the performance of the proposed M-
estimator of WV in (3) which we denote as RWV in this section. For this
purpose, we compare it with the standard estimator of WV, denoted as
CL, and with the the robust estimator proposed in Mondal and Percival
(2012a), denoted as MP. With respect to the latter estimator, we imple-
ment the median-type estimator for which most results were available
and which was actually used in the simulation studies presented in
Mondal and Percival (2012a) for which we specify in more detail below,
the outlier processes:

• “Isolated:” outliers occur for an ε-proportion of randomly sam-
pled variables from (Xt) by adding (additive) or replacing
(replacement) white noise with variance σ 2

ε .

• “Scale-based:” the process (Xt) has outliers for certain scales
of decomposition, meaning that their behaviour over certain
periods of time suffers from contamination. More specifically,
let (Wj,t) represent the wavelet coefficients from the level of
decomposition j. Then scale-based outliers occur by multiplying
an ε-proportion of random consecutive portions of (Wj,t) by σ 2

ε .

• “Level-shift:” a constant με is added to an ε-proportion of
random consecutive portions of (Xt).

• “Patchy:” white noise with variance σ 2
ε is added to an ε-

proportion of random consecutive portions of (Xt).

In order to assess the estimators’ performance, we test them in the same
settings as those used in Section 4 of the main manuscript and we make
use of the same measure of statistical performance which, as a reminder,
is the RMSE defined as follows:

RMSE* :=

√√√√√med

(
ν̂2

j − ν2
j,0

ν2
j,0

)2

+ mad

(
ν̂2

j
ν2

j,0

)2

,

where ν2
j,0 represents the true model-implied WV for scale τj. Fig-

ure C.1 represents the logarithm of this measure for all the considered
processes and estimators. As can be observed, in the uncontaminated
settings the best estimator is obviously the standard estimator CL
which is however, in many cases, closely followed by the proposed
estimator RWV while the alternative robust estimator MP is generally
less precise/efficient than the other two estimators. In the contaminated
settings, however, the standard estimator becomes highly biased as
expected while the two robust estimators are only marginally affected
by the different forms of contamination. Between the latter two, the
proposed estimator RWV is nevertheless the best since it reports a
lower RMSE* for almost all considered scales of WV.

To conclude, the simulation study highlights how the proposed
estimator RWV is the best alternative to the standard estimator CL in
the uncontaminated settings while it is overall the best estimator in all
the considered contaminated settings.
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Remark C.1. In order to estimate the asymptotic covariance matrix
of ν̂ (i.e., V), the simulation studies in Section 4 use the parametric
bootstrap since we assume to know the parametric model we want to
estimate. More specifically, for each simulation we

1. estimate the parameters of the model of interest using � = I,
i.e. the identity matrix;

2. use the estimated parameters to simulate H time series on which
we estimate the WV ν̂(h);

3. compute the covariance matrix of ν̂(h), for h = 1, . . . , H;

4. use the diagonal elements of this covariance matrix to deliver V̂
and define � := V̂−1.

Supplementary Material

The supplementary material contains (i) the proof of Proposition 2.1, (ii)
a discussion about the choice of the tuning constant, (iii) a formal investi-
gation on the identifiability of wavelet variances, (iv) a formal verification
of Conditions (C3) and (C4) for the Haar wavelet filter in causal ARMA
models, (v) the asymptotic properties of the RGMWM (consistency and
asymptotic normality), (vi) a simulation study to assess the computational
efficiency of the RGMWM and (vii) an additional application to inertial
sensor stochastic calibration.
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