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A Machine Learning-Based
Inter-Turn Short-Circuit Diagnosis

for Multi-Three-Phase Brushless Motors
Antonio Femia, Giacomo Sala, Member, IEEE, Luca Vancini, Gabriele Rizzoli, Michele Mengoni, Member, IEEE

Luca Zarri, Senior Member, IEEE, and Angelo Tani

Abstract—Over the past few years, Artificial Intelligence (AI)
techniques have become one of the most exciting technologies of
our age. This fascinating field paves the way for new possibilities
and extends to almost all areas of industry and research. This
paper illustrates a Short-Circuit (SC) diagnosis strategy for a
multi-three-phase brushless AC motor drive based on Machine
Learning (ML). A thorough model of the electrical machine is
obtained through specific finite-element simulations and used
to replicate various fault scenarios. This model quickly yields
a large amount of data, which is then employed for training
the ML algorithms. Once trained, the ML models are tested,
with experimental data directly obtained from a prototype of
multiphase drive, to verify the effectiveness of the diagnostic
algorithms. The ML algorithms allow monitoring the health
condition of the machine, distinguishing and localizing two types
of faults, i.e., inter-turn SCs and Extra Turns (ETs), placed in
different coils of the machine.

Index Terms—Artificial intelligence, circuit fault, fault diagno-
sis, fault location, machine learning, multiphase drives, neural
network.

I. INTRODUCTION

INTEREST in multiphase motors has significantly grown
in recent years due to a general increase in reliability

requirements for industrial drives in various applications [1]–
[3]. It has been proven that a multiphase drive can often
continue to operate under fault conditions, albeit at reduced
performance.

The advantages of multiphase drives, such as the fault
tolerance capability, combined with those of synchronous
machines, such as high efficiency, high power density, and
excellent dynamic performance, make multiphase synchronous
machines a promising technology.

Among the multiphase layouts, the multi-three-phase one
offers advantages in terms of simplicity and modularity of the
converter architecture, which is based on conventional three-
phase inverters.

The advancements in multiphase drives require increasingly
sophisticated control and diagnostic techniques to satisfy the
reliability and performance requirements. In this regard, Ar-
tificial Intelligence (AI) methods provide an excellent answer
to these problems [4].

Antonio Femia, Giacomo Sala, Luca Vancini, Gabriele Rizzoli, Michele
Mengoni, Luca Zarri, and Angelo Tani are with the Department of Elec-
trical, Electronic, and Information Engineering “Guglielmo Marconi”, Uni-
versity of Bologna, Italy (email: antonio.femia3@unibo.it, g.sala@unibo.it,
luca.vancini4@unibo.it, gabriele.rizzoli@unibo.it, michele.mengoni@unibo.it,
luca.zarri2@unibo.it, angelo.tani@unibo.it).

The analytical approach to fault diagnosis often requires
radical assumptions. It is necessary to know how the input
data and the results are related [5]. This requirement is
overcome by ML, in which the algorithm itself understands the
relationship between input and output data. This technology
can be advantageous in fault diagnosis, where determining the
analytical expressions describing a fault is often challenging.

Moreover, different faults can impact the electric drive with
similar effects. For instance, asymmetries in the windings,
such as resistance and inductance imbalances, or even an
unequal number of turns in the phases due to defects in the
manufacturing process, can exhibit effects similar to those of
an inter-turn short circuit. Whereas an SC could lead to the
failure of the drive, the effect of an ET in a phase is almost
negligible.

Inter-turn SCs have a prominent role in the critical faults of
electrical machines since they generate large uncontrolled cir-
culating currents which produce torque ripples and vibrations
and can quickly lead to high temperatures. Consequently, diag-
nosing intern-turn SC faults is essential to prevent catastrophic
failures [6]. Fig. 1 shows a schematic view of an inter-turn
SC. The magnitude of the short-circuit circulating current isc
depends on the number of short-circuited turns, their position
in the slot, the speed of the machine, and the electromagnetic
coupling among the various sub-windings.

Finally, it is worth identifying the phase in which a fault
occurs for prompt intervention and to help repair the machine
once it has been powered off. The fault localization is partic-
ularly useful in multi-three-phase drives, where the motor has
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Fig. 1. View of a short-circuit affecting 10 turns of the stator winding.
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Fig. 2. Scheme of the proposed fault diagnosis strategy.

different sets of three-phase distributed windings, and the one
in which the fault takes place can be disconnected to preserve
the integrity and partial functionality of the drive, depending
on the type of fault.
To ensure service continuity, it is necessary to implement a
post-fault control strategy. Recently, several strategies have
been proposed for a wide variety of faults, such as rotor faults
[7], broken bars in induction motors [8], [9], and inverter
faults [10]–[12]. Many of these have been developed using
an AI approach [12]–[15], which proves the flexibility of this
technology.
If an SC occurs, disconnecting the faulty phase does not
prevent the short-circuit current from circulating. However,
this current is an increasing function of the motor speed and
has the tendency to reach a constant value since the inductive
behavior of the short-circuited turns dominates at high speeds.
In some applications, such as electric propulsion, the reference
motor speed could be reduced by the control system as soon
as a fault is detected. The electric drive could still operate,
even with low performance. Hence, locating the fault allows
one to compensate for the resulting imbalance and keep the
motor running.

The key contributions of this work include the theoret-
ical derivation of a semi-analytical model for a six-phase
permanent magnet synchronous motor (6PMSM) under fault
conditions and the application of ML strategies for SC fault
diagnosis:

1) an effective finite element-based model able to simulate
several faults under different operating conditions in a
short amount of time is presented;

2) the faults are investigated with different ML algorithms;
3) the fault location is obtained by the ML strategies, which

identify the fault type and the faulty phase from the
experimental data;

4) the employed ML models distinguish an SC fault from
an ET fault and recognize when they occur together.

Section II illustrates the developed methodology, based on
a model of a multi-three-phase motor used to train the ML
algorithm, and identifies the most significant variables for the
fault diagnosis. Section III comments on the performance of

the ML algorithm, and Section IV presents the experimental
results carried out to validate the effectiveness of the developed
diagnostic method.

II. DIAGNOSTIC METHODOLOGY

A methodology for diagnosing faults and asymmetries,
whose workflow is shown in Fig. 2, is presented in the follow-
ing. Section II.A illustrates a general approach for the machine
model, valid in faulty conditions, and identifies the parameters
that affect the short-circuit current. Section II.B introduces
a space vector representation that decouples the variables
related to different harmonics of the airgap magnetic field and
allows choosing the output variables for the ML model. The
diagnostic strategy requires identifying specific harmonics in
the phase voltage setpoints to classify the machine fault. Since
an ML model involves a training process, Section II.C explains
how the training data is generated. The learning algorithm
finds patterns in the training data that relate the attributes of the
input data to the target (the machine healthy-faulty condition
to be predicted) and outputs a machine-learning model that
captures these patterns.

A. Machine Model and Equations

This Section introduces the fundamental phase voltage
equations that describe the behavior of an electrical machine
under healthy and faulty conditions, including a possible
asymmetry in the stator winding. These equations are used in
the following to identify relevant variables for the diagnostics
and are solved to build a training dataset for the proposed
algorithms. Although the techniques illustrated in this paper
are valid for a generic multi-three-phase machine with m
phases, the focus is on a specific case study for the sake of
simplicity.
The electric motor considered in this Section is the prototype
used for the experimental tests, which is a 6PMSM with two
sets of three-phase distributed windings spatially shifted by 30
electrical degrees. The two windings are star connected and
have an independent neutral point each. The machine has four
poles with two slots per pole per phase, and the coil pitch is
shortened by one slot. Overall, 48 coils of 10 turns in series are
distributed in 48 slots (8 coils in series per phase) and arranged
as illustrated in Fig. 3, where phases 1, 2, 3, 4, 5, and 6 are
respectively referred to as A1, B1, A2, B2, A3, and B3. Fig. 4
shows the 6PMSM electric circuit. The lumped parameters Rk

and Lkk refer to the phase resistance and self-inductance of the
kth winding, while ek is the electromotive force induced in the
same winding by the rotor magnets. The mutual inductances
Lz,k between phases k and z are not illustrated to make the
figure simpler but are considered in the equations.

In general, to model winding asymmetries such as an ET
and imbalances, these parameters must differ for all the phases.
Furthermore, in case of an SC fault, an additional parallel
ohmic branch Rsc appears in the electric circuit for the faulty
phase (A3 in Fig. 4). Also, the short circuit halves the faulty
phase. The phase current flows in the healthy portion, while the
SC current adds up to the phase current in the short-circuited
portion. The resistance Rsc in the SC branch is included to
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Fig. 3. Stator winding layout of the proposed 6PMSM. The phases A3 and
B3 are highlighted.

consider a non-ideal short circuit (this parameter can also be
set to zero). In a motor without SC faults, the voltage equation
for the xth phase can be written as follows:

vx = Rxix +

m∑
z=1

Lz,x
diz
dt

+ ex (1)

In case of a short circuit in the yth phase (A3 in Fig. 4),
the resulting set of equations is composed of the equations of
the healthy phases (x = 1, 2, ...,m and x ̸= y), an equation
(whose quantities are denoted by the superscript ′) for the
healthy portion of the yth phase, and an equation (whose
quantities are denoted by the superscript ∗) for the short-
circuited portion y∗ of the same phase y:

vx = Rxix +
m∑

z=1
z ̸=y

Lzx
diz
dt + Ly′x

diy
dt + Ly∗x

diy∗

dt + ex

vy′ = Ry′iy +
m∑

z=1
z ̸=y

Lzy′
diz
dt + Ly′y′

diy
dt + Ly∗y′

diy∗

dt + ey′

vy∗ = −Rscisc =

= Ry∗iy∗ +
m∑

z=1
z ̸=y

Lzy∗
diz
dt + Ly∗y∗

diy∗

dt + Ly′y∗
diy
dt + ey∗

(2)
where iy∗ is the current flowing through the short-circuited
portion of the faulty phase, and vy is the phase voltage at the
terminals of the phase y:

iy∗ = iy + isc, vy = vy′ + vy∗ . (3)

Equations (1)-(3) are general for any permanent magnet
motor with an isotropic rotor and negligible saturation of the
magnetic circuits. They can be used to perform both transient
and steady-state simulations of a multiphase drive while con-
sidering the possibility of asymmetries or faults. Hereafter,
only steady-state operations are considered to quickly identify
a large dataset containing sufficient information about the state
of the motor in many working conditions and fault scenarios.
Also, it is assumed that the control system of the motor is
ideal, and it can maintain the waveform of the phase currents
sinusoidal even in case of a fault. Under these assumptions,
each variable of the electric drive can be expressed as a time
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Fig. 4. Circuital model of an SC inserted in the phase A3.

Fourier series. In particular, the electromotive forces, voltages,
and currents of the kth phase can be written as follows:

ek =
∞∑
h=1

ℜ{Ekh ejhωt}, vk =
∞∑
h=1

ℜ{V kh ejhωt},

ik = ℜ{Ik ejωt}, isc =
∞∑
h=1

ℜ{Isc,h ejhωt}
(4)

where j is the imaginary unit, h is the harmonic order, and
ω is the electrical angular speed of the motor. The term
representing the rotor electromotive force, Ekh = jhωϕkh,
is proportional to the phasor ϕkh of the hth harmonic of the
flux linkage due to the magnets through the kth phase.

It is possible to separately consider the effects associated
with the fundamental spatial harmonic of the magnet flux
distribution at the airgap (h = 1) and those related to the
higher-order harmonics. By substituting (4) in (2), assuming
Ly′x + Ly∗x = Lyx, and considering (3), the set of output
voltage equations for the fundamental component (h = 1)
becomes:

V x1 = RxIx + jω[

m∑
z=1

LzxIz + Ly∗xIsc1 + ϕx1] (5)

V y1 = V y∗1 + V y′1 = −RscIsc1 +Ry′Iy+

+jω[
m∑

z=1

Lzy′Iz + Ly∗y′Isc1 + ϕy′1].
(6)

Considering the identity Ly∗y∗ + Ly′y∗ = Lyy∗ , Isc1
becomes as follows:

Isc1 = −
Ry∗Iy + jω[

m∑
z=1

Lzy∗Iz + ϕy∗1]

Rsc +Ry∗ + jωLy∗y∗
. (7)

Equation (7) shows that the fundamental time harmonic
of the SC current is a function of the phasor ϕy∗1 of the
fundamental flux linkage due to the magnets through the
short-circuited portion of the yth phase, the rotor speed, and
the phasors of the phase currents Iz (z = 1, 2, ...,m). The
electromotive force induced in the short-circuited turns rises
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Fig. 5. Layout of the proposed 6PMSM drive.

as the motor speed increases, but the circulating current tends
to a constant value since the reactive part of the impedance
prevails on the resistive part.

Equations (5) and (6) show that the resulting phase volt-
age for the healthy and faulty phases depends on the same
quantities through Isc1. The higher-order time-harmonic con-
tributions can be calculated in a similar manner. The following
set of equations can be written for the hth time harmonic:

V xh = jhω[Ly∗xIsc,h + ϕxh] (8)

V yh = −RscIsc,h + jhω[Ly∗y′Isc,h + ϕy′h] (9)

Isc,h = −
jhωϕy∗h

Rsc +Ry∗ + jhωLy∗y∗
. (10)

It is worth observing that, for a given set of motor parameters
and speeds, (8)-(10) are functions of the motor asymmetry
and fault condition. This result can be used to develop fault
diagnosis strategies for multiphase drives, where the harmonic
contributions of the motor variables (currents, voltages, etc.)
can be mapped in different vector spaces, as described in
Section II-B.

B. Space Vector Representation for Training Dataset

This Section illustrates an approach to the modeling of
multiphase drives. It focuses on the particular case of the
6PMSM under study but can be easily extended to other
multiphase layouts.

The considered 6PMSM is fed by a two-level dual three-
phase voltage source converter, as shown in Fig. 5. The
converter is connected to a single dc-link providing 26 = 64
possible switching states [16]. The two three-phase sub-
windings are star-connected to two independent neutral points.

Through the Vector Space Decomposition (VSD) approach,
the six quantities of the dual three-phase motor can be fully
represented in terms of space vectors, which can be calculated
by applying an extended Clarke transformation. The space
vectors vAρ and vBρ of the phase voltages of windings A
and B are defined for ρ = 0, 1, ...,∞ as follows:

vAρ = 2
3 [vA1

+ vA2
αρ + vA3

α2ρ]

vBρ = 2
3 [vB1 + vB2α

ρ + vB3α
2ρ]

(11)

where α is a unit vector equal to ej
2
3π , representing the

electrical phase shift between the magnetic axes of the phases
in the same three-phase winding. When ρ is a multiple of
3, vAρ and vBρ are usually referred to as zero-sequence
components vA0 and vB0 of the phase voltages.
Vectors vAρ and vBρ are used to define the voltage space
vectors of the multiphase machine as follows:

vρ = 1
2vAρ +

1
2vBρβ

ρ
(12)

where β is a unit vector equal to ej
π
6 , representing the

electrical angular shift between the two three-phase windings.
The following equations can be demonstrated:

v12k+ρ = vρ
v12k−ρ = v∗ρ

(13)

where k is any real integer number. As a general result, only
the space vectors with ρ = 1, 3, and 5 are independent
and sufficient to unequivocally represent the set of variables
vA1

, vA2
, vA3

, vB1
, vB2

, and vB3
.

Equations (11) and (12) can be applied to the other machine
quantities, such as currents and fluxes. However, space vector
i3, calculated by applying (12) to the phase currents, is
associated with the zero-sequence component of the currents,
which is zero due to the star connection of windings A and
B (i3 = iA0 + jiB0 = 0). Consequently, only voltage vectors
v1 and v5 must be used to control the current vectors i1 and
i5. In particular, space vector i1 is controlled to produce the
desired torque and flux, while space vector i5 is kept equal to
zero.
At steady-state operating conditions, when the motor rotates
at constant angular speed ω, the current space vectors are:

i1 = irefe
jωt

i5 = 0.
(14)

For a healthy motor, without asymmetries, the voltage and
flux vectors (ρ = 1, 5) can be expressed as complex Fourier
series as follows:

vρ =
∞∑
h=1

vh+ρ ejhωt +
∞∑
h=1

vh−ρ e−jhωt

φρ =
∞∑
h=1

φh+
ρ ejhωt +

∞∑
h=1

φh−
ρ e−jhωt

(15)

where the notation h+ and h− is used to identify the hth
harmonic component of the positive and negative sequences,
respectively.
The stator voltage equation of the healthy machine can be
written in terms of space vectors as follows:

vρ = Rsiρ +
dφρ

dt
. (16)

If (14) and (15) are combined with (16), the balance of the
fundamental harmonic (1+) for ρ = 1 yields:

v 1+
1 = Rsiref + jωφ1+

1 (17)
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while the other harmonic components are as follows:

v h+
1 = jhωφh+

1

v h−
1 = −jhωφh−

1

v h+
5 = jhωφh+

5

v h−
5 = −jhωφh−

5 .

(18)

In contrast, additional voltage contributions are required to
keep the current waveform sinusoidal if a fault occurs or an
asymmetry is present. In the case of asymmetrical windings,
the main additional voltage contributions are expected to
affect the positive and negative sequences at the fundamental
frequency (v 1+

1 , v 1−
1 , v 1+

5 , v 1−
5 ). Instead, in case of an

extra turn in a phase or a short-circuit fault, the unbalanced
electromotive forces produced by the rotor magnets cause time
harmonics with an order higher than 1. The most important
ones are often at three times the fundamental frequency (v 3+

1 ,
v 3−
1 , v 3+

5 , v 3−
5 ). Furthermore, since an SC current produces

a pulsating airgap flux and, consequently, a torque ripple, the
speed regulator is expected to partially compensate for this
unexpected torque disturbance by generating distortion in both
the current vector i1 and the voltage vector v1, while v5 is
controlled to keep the current i5 at zero.
A change in v5 is a necessary but not sufficient condition to
detect the presence of a fault. To diagnose the fault, the v5 har-
monic components of order -1, +1, -3, and +3 are monitored.
The other harmonics of v5 are not used as diagnostic indices
due to their lower magnitudes and because they are mainly
caused by magnet-induced back-emf harmonics and slotting
effects.

Fig. 6 illustrates the harmonics that arise in v5 in case of a
particular short-circuit fault.

Therefore, it seems reasonable to develop a Diagnosis
Strategy (DS) focusing on the 1st and 3rd time harmonic

TABLE I
MOTOR PARAMETERS

Motor data Values Units
Rated speed 1500 RPM
Rated torque 25 Nm
Pole pairs, p 2 -

Fundamental harmonic of the magnets flux 0.393 Wb
Magnetic airgap thickness (including magnets) 7 mm

Magnet thickness 5 mm
Number of slots 48 -

Conductors per slot 20 -
Phase resistance, Rs 0.36 Ω

Inductance of the first Clark space, L1 0.0056 H
Inductance of the fifth Clark space, L5 0.00081 H

Axial active length 70 mm
Stator inner radius 75 mm

components of v5:

v5,DS = v 1+
5 ejωt+v 1−

5 e−jωt+v 3+
5 ej3ωt+v 3−

5 e−j3ωt. (19)

The contributions to the diagnostic space vector v5,DS in (19)
are zero in the case of a healthy machine with sinusoidal
back-emfs due to the rotor magnets, according to (18). In
contrast, the components v 1+

5 and v 1−
5 are expected in case of

asymmetries in the phase inductances and resistances. Finally,
v 3+
5 and v 3−

5 arise from an unequal number of turns in the
phases (ET), or a short-circuit (SC).
These four complex vector contributions represent the diag-
nostic variables used to train the ML algorithms described in
Section III.

C. Finite Element-Based Parameter Extrapolation

Several machine parameters, such as the self and mutual
inductances, are required to evaluate the expected values of the
diagnostic variables in (19). Motor suppliers do not provide
enough parameters to calculate these values, especially in case
of asymmetries and faults. Hence, analytical or numerical
models must be developed to calculate them. In this paper, an
approach based on finite-element analysis is presented. The
motor turns are considered independent circuits. Each turn is
characterized by resistance, self-inductance, mutual inductance
with all the other turns, and flux linkage of the magnet field.
Lastly, the inductances and resistances of each phase in (8) and
(9) are calculated according to the parallel/series connections
of the turns that constitute each sub-winding, and the short
circuit resistance Rsc is simply added as an extra motor
parameter.

The considered 6PMSM motor, whose main parameters are
listed in Tab. I, has 8 coils per phase in a dual layer layout
with 11 turns per coil (10 turns plus 1 possible ET), which
corresponds to a total of 528 turns simulated in the finite-
element model. A 528x528 inductance matrix is built. Then,
the flux linkage due to the excitation field through the 528
turns must be calculated for each rotor position.

Calculating the flux linkage of each turn for every rotor
position is time-consuming and can cause a significant compu-
tational effort. However, the flux linkage of a single turn can
be easily calculated for every angular position of the rotor.
Then, the spatial periodicity of the slots, as shown in Fig.
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Fig. 7. Finite-element result: flux density distribution when a turn (i.e., 2 slot
conductors) is supplied with current, and the magnets are fully demagnetized.

3, allows one to evaluate the flux linkage of the other turns
without additional calculations. The flux linkage of a turn as
a function of the rotor position is equal for all turns except
for a phase shift, which depends on the position of the slots
where the considered turns are placed.

Fig. 7 shows the flux density distribution when the current
flows in only one turn. This numerical approach has been
chosen to increase the accuracy in the definition of the dataset
used to train the ML models.

A dataset of the selected outputs (v 1+
5 , v 1−

5 , v 3+
5 and v 3−

5 )
for various conditions, including asymmetries and faults, for
different values of id, iq , and speed can be quickly evaluated
by using the model presented in II-A. The contributions to the
voltage vector v5,DS are calculated as presented in II-B.

The proposed approach can generate a dataset with the
outputs of about one million asymmetries, faults, and operating
scenarios in about 1.5 hours of numerical simulation in Matlab
software and an AMD Ryzen 9 5900X Desktop Processor
(12 CPU Cores, 3.7 GHz base clock frequency, 64 Gb RAM,
NVIDIA QUADRO PNY P2000 Graphic Card). This compu-
tational time is low enough to consider this methodology as
a valid solution for this research activity, and it can be easily
adapted to motors with a different number of phases and other
winding layouts.

III. MACHINE LEARNING MODELS

To test the effectiveness of the proposed diagnostic strategy,
five ML models (Fig. 8) have been implemented [17]:

1) The Support Vector Machine (SVM) model aims to find
a hyperplane in an N-dimensional space (N is the number
of features) able to separate data points so that they can
be correctly classified;

2) The K-Nearest Neighbors (KNN) model classifies each
data point according to the similarity with those previ-
ously stored;

3) The Multilayer Perceptron (MPL) model is a feedforward
algorithm including input and output layers, and one or
more hidden layers with many neurons stacked together.
Therefore, it is a “deep method”, and its classification
ability is based on the back-propagation mechanism;

4) The eXtreme Gradient Boosting (XGBoost) model is a
decision-tree-based algorithm, which applies the principle
of “boosting weak learners”, using the gradient descent
architecture to carry out the classification task;

5) The Gaussian Naive Bayes (GNB) model uses the Bayes
theorem for the classification, assuming that each class
follows a Gaussian distribution and the independence of
the features.

Before starting the training task, the dataset was preprocessed
to reduce its dimensionality. This is a common approach in
Machine Learning as it allows a smaller dataset size to be used
without losing the information needed for classification. Since
the data are not separable in a linear way, Kernel Principal
Component Analysis (KernelPCA) is used for dimensional-
ity reduction. KernelPCA employs a spectral decomposition
to determine the directions (eigenvectors) of the maximum
variance, i.e., the directions where more information about
the data frame is contained. This allows obtaining a smaller
set of “artificial” orthogonal variables, starting from a set
of correlated numerical variables, without losing information.
Moreover, the variables are normalized in advance to prevent
their variability from affecting the results of the KernelPCA.
Fig. 9 displays the variance of the variables in the data frame
along the new orthogonal directions. This result shows that
eight directions (eigenvectors) are sufficient to describe 100%
of the total data frame variance. Obviously, for a graphical
representation, just three directions are needed. Fig.10 shows
the samples of the training data frame in a space with lower
dimensionality defined by the first three principal components.
Although these three directions account for just 60% of the
total variance, it is worth noting that some of the attributes are
separable in the 3D space. For example, samples reflecting
ET in different phases are distinctly represented by separable
lines. This makes it easier for Machine Learning algorithms to
perform the classification task. Once pre-processed, the data
frame is used for training (Fig. 11).

Another essential aspect of an ML model concerns the
hyperparameters, which directly control the learning process
and determine the values of the model parameters that a
learning algorithm ends up learning. The hyperparameters of
each ML model are optimized with the Grid-Search technique
in order to customize the models for the training task. The
data frame used for the training task includes the following
variables:

• Targets: labels for each class to be classified (Tab. II);
• ωωω: mechanical speed of the rotor;
• ididid: d−axis current (directly correlated to the stator flux);
• iqiqiq: q−axis current (directly correlated to the torque);
• v5,DSv5,DSv5,DS : harmonics contributions, in magnitude and phase,

due to SC and ET.

Fig. 8. Employed machine learning models.
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Fig. 10. Samples of the training data frame mapped in a space defined by
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IV. EXPERIMENTAL RESULTS

Considering the nomenclature for a general multi-class
confusion matrix shown in Fig. 12, the performance of the
ML models is evaluated through the following metrics (Tab.
III):

• Training accuracy: accuracy of the model on actual data
used for training (70% of the data frame obtained with
Matlab/FEMM simulations);

• Test accuracy: accuracy of the model on data never
used for training (30% of the data frame obtained with
Matlab/FEMM simulations);

• Test bench accuracy: accuracy of the model on data
directly obtained from the test bench acquisitions;

• k-fold accuracy: accuracy of the model on a limited set

TABLE II
TARGETS EXPLANATION

Target Short circuit (SC) Extra turn (ET)
0 No No
1 In phase A1 No
2 In phase B1 No
3 In phase A2 No
... ... ...
7 No In phase A1

8 No In phase B1

... ... ...
13 In phase A1 Yes (phase not predicted)
14 In phase B1 No (phase not predicted)
... ... ...

TN
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Fig. 12. General confusion matrix for a multi-class model. The generic
predicted class is labeled with Ck .
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Fig. 13. ROC (OvR strategy) curves obtained from the KNN model consid-
ering the test data.

of data obtained by dividing the overall Matlab/FEMM
data frame into k non-overlapping folds. Each kth fold
can be used as a retained test set, while all other bends
are collectively used as a training dataset;

• Precision (PRE): the number of instances that are rel-
evant, out of the total instances the model retrieved,
calculated as PRE = TP

TP+FP ;
• Recall (REC): the number of instances that the model
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Fig. 14. Confusion matrix obtained from the test data frame with the SVM
technique.

correctly identified as relevant out of the total significant
instances, calculated as REC = TP

TP+FN ;
• AUC: the area under the Receiver Operator Charac-

teristic (ROC), which are probability curves that plot
the True Positive Rate (TPR) against the False Positive
Rate (FPR), which are respectively defined as TPR =

TP
FN+TP and FPR = FP

FP+TN . AUC measures the ability
of an ML model to distinguish among classes and is
usually adopted for binary classification. AUC may be
interpreted as the likelihood that a randomly chosen
sample would be properly classified for various thresholds
of the decision boundary. A model whose predictions are
100% wrong has an AUC equal to zero, whereas the AUC
is one when the predictions are 100% correct.

• F1-score: it combines the precision and recall of a clas-
sifier into a single metric by taking their harmonic mean,
calculated as F1 = 2PRE×REC

PRE+REC .

Since the problem involves 19 classes, the last four metrics
(PRE, REC, AUC, and F1-score) are determined using a ”One
vs Rest” (OvR) approach. It entails choosing one class and
treating it as positive while treating the remaining (”the rest”)
as negative. This allows each class to be compared against all
the others at the same time. For instance, Fig. 13 shows the
ROC curves obtained with the OvR strategy considering the
K-Nearest Neighbors (KNN) algorithm. OvR approach leads
to consider the percentages in Tab. III as a macro average
value.

Fig. 14 shows the confusion matrix resulting from the
classification that the SVM model performs on the test data
frame. As can be seen, almost all values are on the diagonal.
This implies a match between predicted and actual values.
Choosing the correct number of instances (rows of the data
frame) for the training task is always an important matter. In
fact, a wrong choice could lead to problems such as overfitting
(too many parameters in the model and a high variability

TABLE III
METRICS ADOPTED FOR EVALUATING THE ML MODELS

Model Training

accuracy

Test

accuracy

Test bench

accuracy
...

SV M 99.5% 97.3% 96.2% ...

KNN 96.6% 93.5% 93% ...

MLP 99.9% 95% 66.6%

XGB 99.9% 95% 66%

GNB 90.5% 88.1% 38.5%

... k-fold

(k=5)
Precision Recall ...

... 97± 2% 92.8% 95.2% ...

... 93± 1% 80.9% 78.9% ...

... 94± 1% 81.3% 82%

... 94± 2% 90.9% 82.6%

... 89± 2% 72.9% 74.1%

... AUC F1-measure

... 99.9% 93.7%

... 78.9% 79.68%

... 82% 80.7%

... 82.6% 84.7%

... 74.1% 72%

of the classification) and underfitting (few parameters in the
model and a high discrepancy in classification). In the first
case, the model is too complex and sensitive to training data
(high variance and low bias). In the second case, the model
can accomplish a good classification since it has insufficient
complexity (high bias and low variance). Thereby, the sus-
picion of overfitting arises when training accuracy and test
accuracy curves are too far from each other. In contrast, when
the models suffer from underfitting, both the mentioned curves
drop rapidly to very low levels of accuracy.
A good ML model must reach a trade-off between variance and
bias. Fig. 15 shows the accuracy curves and the optimal point
representing the chosen number of instances of the training
data frame for the Support Vector Machine (SVM) model. This
approach allows one to find the optimal number of instances
for each ML model, avoiding overfitting and underfitting.

The performance of the proposed AI-based fault detec-
tion strategies has been verified by experimental tests on
the 6PMSM prototype shown in Fig. 16. The main motor
parameters are listed in Tab. I.

A. Experimental Setup and Data Collection

The control system is implemented by using a dSPACE plat-
form (MicroLabBox, DS1104), which manages the six-phase
power converter through fiber-optic cables. The switching
frequency of the converter is 8.8 kHz. An Elektro-Automatik
power supply (EA-PS 9500− 20) provides the drive DC link
voltage, and a DC generator is employed as a mechanical load.
Experimental tests are performed at reduced speed to avoid
damaging the electric motor under test (e.g., overheating and
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Fig. 15. Accuracies obtained from SVM model by varying the training data
frame number of instances.

demagnetization). In particular, the maximum speed of the
tests is set to about 700 r/min to maintain the short circuit
current below 60 A.
A short circuit of 10 turns coincides with a short circuit
of a coil. This means shorting 1/8 of the machine (12.5%).
Conversely, 1 extra turn represents a variation of 1/81, that is
1,234%.
Fig. 17 shows a comparison between experimental and semi-
analytical results when the motor features an SC of 10 turns
in phase B3 and an ET in phase A3, while rotating at 700 rpm
and controlled with a current id1 of −5 A and a current iq1 of
2 A. The results show that the phase and short circuit currents
have similar waveforms, whereas the diagnostic vectors (v 1+

5 ,
v 1−
5 , v 3+

5 and v 3−
5 ) match the predicted values less precisely

but still represent the signature of the motor asymmetrical
behavior. The mismatch between the simulation and experi-
mental results is relatively small, and it is not simple to identify
the primary cause. Some improvements may be expected if a
more accurate system model is used. Also, the motor control
algorithm cannot perfectly track the current references.

The SC resistance Rsc was updated to match the SC current
with the measured value.
Three significant operating conditions are considered: no short
circuit, a short circuit of 10 series turns in phase A3 and a short
circuit of 10 series turns in phase B3. Furthermore, the motor
has an ET in one coil (not affected by short circuit faults) of
the phase A3.
All the operating conditions mentioned above have been sim-
ulated to derive a wide experimental dataset (504 instances).
Each instance is labeled with a target index, depicting the
operating condition, according to the training data frame
structure. Thus, the test bench data is employed to assess the
effectiveness of the proposed strategy in correctly classifying
the type of fault and its localization.
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Fig. 16. Test bench.
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Fig. 17. Experimental results in the case of a short circuit in phase B3:
currents iA1 , iB1 , iA2 , iB2 , isc and diagnostic vectors v h+

5 (red) and v h−
5

(blue). The semi-analytical results are in dashed lines.

B. Localization and Classification of the Fault

Tab. III illustrates the results of each ML model imple-
mented in this research work. This comparative study clearly
shows that the best of the investigated techniques, in terms
of metrics, is the SVM. It reaches an accuracy of 96.2% on
the experimental data, which means that the ML algorithm can
almost flawlessly predict the health state of the machine among
all the 504 operating conditions. The KNN model exhibits
good performance, although the precision and recall metrics
differ by about 10% from the SVM. The MLP and XGB
models show very similar performance and are both unable
to reach high accuracy when assessed with the test bench data
frame. Finally, GNB exhibits the poorest performance among
all the metrics.

V. CONCLUSIONS

This paper presents a diagnostic method to detect and
localize a short circuit fault in a 6PMSM using five machine-
learning models. Moreover, the proposed strategy distinguishes
a short circuit fault from an unbalance due to an additional
turn.

Several techniques can be used to detect these faults,
and machine learning does not automatically provide better
diagnostic accuracy compared to existing methodologies since
it depends on the type of machine learning model, its training,
and the analyzed variables. However, artificial intelligence is
promising because it may replace several specific tests or
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techniques, usually performed at different stages and requiring
different competence, with a single methodology. It is worth
noting that an extra turn corresponds to a variation of 4 mΩ
in the test machine (about 1% of the rated resistance), which
is relatively small and comparable to the contact resistance
of the terminals. Since the accuracy required to diagnose the
extra turn must be better than 1%, the problem cannot be
solved with a simple resistance test in industrial practice, and
probably not even with the analysis of the electromotive forces
of the machine.

The contribution of this paper is the development of ma-
chine learning algorithms to diagnose different types of faults,
even occurring simultaneously. A semi-analytical model, based
on a preliminary finite-element analysis to estimate the motor
inductances, is developed. This model allows to obtain a large
amount of data in a brief amount of time, corresponding
to both healthy and faulty conditions for different operating
points of the electric motor.

Once the data have been pre-processed and after choosing
the correct number of instances to avoid overfitting and
underfitting, 70% of the derived dataset is used for training
purposes, while the remaining 30% is for testing. Thereby,
the ML models are stored and tested with the experimental
dataset.

Five ML algorithms were evaluated according to eight
different metrics. Although they all showed high training
and test accuracy, the SVM and KNN techniques performed
significantly better. Specifically, the SVM was found as the
best solution for correctly classifying these types of faults. The
experimental validation demonstrates its effectiveness with an
accuracy of 96.2%.

Further extension of the presented methodology is underway
for other types of faults and motors.
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