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Abstract
In recent years, the research into cluster-weighted models has been intense. However, esti-
mating the covariance matrix of the maximum likelihood estimator under a cluster-weighted
model is still an open issue. Here, an approach is developed in which information-based esti-
mators of such a covariance matrix are obtained from the incomplete data log-likelihood of
the multivariate Gaussian linear cluster-weighted model. To this end, analytical expressions
for the score vector and Hessian matrix are provided. Three estimators of the asymptotic
covariance matrix of the maximum likelihood estimator, based on the score vector and Hes-
sian matrix, are introduced. The performances of these estimators are numerically evaluated
using simulated datasets in comparison with a bootstrap-based estimator; their usefulness
is illustrated through a study aiming at evaluating the link between tourism flows and
attendance at museums and monuments in two Italian regions.

Keywords Gaussian mixture model · Hessian matrix · Linear regression ·
Model-based cluster analysis · Sandwich estimator · Score vector

1 Introduction

Cluster-weighted models constitute an approach to regression analysis with random covari-
ates in which supervised (regression) and unsupervised (model-based cluster analysis)
learning methods are jointly exploited (Hastie et al., 2009). In this approach, a given ran-
dom vector is assumed to be composed of an outcome Y (response, dependent variable)
and its explanatory variables X (covariates, predictors). Furthermore, sample observations
are allowed to come from a population composed of several unknown sub-populations.
Finally, the joint distribution of the outcome and the covariates is modelled through a finite
mixture model specified so as to account for a different effect of the covariates on the
response within each sub-population. Thus, cluster-weighted models are useful to perform
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model-based cluster analysis in a multivariate regression setting with random covariates and
unobserved heterogeneity.

Since the introduction of this approach (Gershenfeld, 1997), the research into cluster-
weighted models has been intense, especially in the last 8 years. Models for continuous
variables under normal mixture models have been proposed by Ingrassia et al. (2012) and
Dang et al. (2017). Robustified solutions have been developed by Ingrassia et al. (2014)
and Punzo and McNicholas (2017), based on the use of Student t and contaminated normal
mixture distributions, respectively. Punzo and Ingrassia (2013), Punzo and Ingrassia (2016),
Ingrassia et al. (2015) and Di Mari et al. (2020) have introduced models for various types of
responses. Models able to deal with non-linear relationships or many covariates have been
proposed by Punzo (2014), Subedi et al. (2013) and Subedi et al. (2015).

By focusing the attention on Gaussian cluster-weighted models in which the effects
of the covariates on the response within each sub-population are linear, model parame-
ters are generally estimated through the maximum likelihood (ML) method by resorting
to the expectation-maximisation (EM) algorithm (Dempster et al., 1977), which is widely
employed in incomplete-data problems. In these models, the observed data S = {(xi , yi),
i = 1, . . . , I } are incomplete because the specific component density that generates the
I sample observations is missing. This missing information is modelled through an unob-
served variable coming from a pre-specified multinomial distribution and is added to the
observed data so as to form the so-called complete data. Then, the ML estimate is computed
from the maximisation of the complete data log-likelihood. A description of the EM algo-
rithm for the linear Gaussian cluster-weighted model can be found in Dang et al. (2017).
Specific functions implementing such algorithm for models with a univariate response are
available in the package flexCWM (Mazza et al., 2018) for the R software environment (R
Core Team, 2020).

A by-product of this estimating approach is a set of K estimated posterior probabili-
ties that each sample observation comes from the K Gaussian distributions of the mixture.
Thus, a by-product of fitting a linear Gaussian cluster-weighted model is a clustering of the
I sample observations, based on a rule that assigns an observation to the distribution of the
mixture to which it has the highest posterior probability of belonging. However, an estimat-
ing approach based on the use of an EM algorithm has the drawback of not automatically
producing any estimate of the covariance matrix of the ML estimator. The assessment of the
sample variability of the parameter estimates in a linear Gaussian cluster-weighted model is
a necessary step in the subsequent development of inference methods for the model param-
eters, such as asymptotic confidence intervals, tests for the significance of the effect of any
covariate on a given response within any sub-population and tests for the significance of the
difference between the effects of the same covariate on a given response in two different
sub-populations. Thus, additional computations are necessary to obtain an assessment of the
sample variability of model parameter estimates. To the best of the author’s knowledge, the
only solution currently available for the linear Gaussian cluster-weighted models is imple-
mented in the flexCWM package, where approximated standard errors are only provided
for the intercepts and regression coefficients according to an approach in which a number
of separate linear regression analyses with random covariates are carried out (one for each
component of the mixture), and the sample observations are weighted with their estimated
posterior probabilities of coming from the different components of the mixture. However,
this approach only partially exploits the sample information about the parameters under a
linear normal cluster-weighted model. Thus, other approaches could be investigated and
detected. A solution can be obtained by resorting to bootstrap methods (see, e.g., Newton
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& Raftery 1994; Basford et al. 1997; McLachlan & Peel 2000). However, the overall com-
putational process associated with the use of bootstrap techniques can become particularly
time-consuming and complex because of difficulties typically associated with the fitting of
finite mixture models (e.g. label-switching problems, possible convergence failures of the
EM algorithm on the bootstrap samples). These inconveniences could be avoided through
an approach in which the observed information matrix is obtained from the incomplete data
log-likelihood and employed to compute information-based estimators of the covariance
matrix of the ML estimator (see e.g. McLachlan & Peel 2000). This task has been success-
fully carried out under normal mixture models (Boldea & Magnus, 2009) and clusterwise
linear regression models (Galimberti et al., 2021).

In order to make it possible to properly assess both the variability of and the covariance
between ML estimates of all the parameters under multivariate linear normal cluster-
weighted models with a multivariate response, the gradient vector and second-order
derivative matrix of the incomplete data log-likelihood for these models are explicitly
derived here. Then, these results are used to obtain three estimators of the observed infor-
mation matrix and the covariance matrix of the ML estimator. Properties of such estimators
are numerically investigated using simulated datasets in comparison with the paramet-
ric bootstrap and the approach implemented in flexCWM. A numerical evaluation of the
relationships between the estimators introduced here and those described by Boldea and
Magnus (2009) is also provided. The practical usefulness of the proposed estimators is illus-
trated in a study aiming at evaluating the link between tourism flows and attendance at
museums and monuments in two Italian regions.

The remainder of the paper is organised as follows. Section 2 provides the defini-
tion of multivariate Gaussian linear cluster-weighted model together with some quantities
employed in the derivation of the score vector and the Hessian matrix. Section 3 describes
the estimators of the information matrix and the covariance matrix of the ML estimator.
Sections 4 and 5 summarize the main results obtained from the analysis of simulated and
real datasets, respectively. The analytical expressions of the score vector and the Hessian
matrix are reported in Appendix. Technical details and additional results from the analysis
of simulated datasets can be found in a separate document as supplementary materials.

2 Score Vector and HessianMatrix of Gaussian Linear
Cluster-WeightedModels

Let X = (X1, ..., Xp)′ and Y = (Y1, ..., Yq)′ be two continuous random vectors with joint
probability density function (p.d.f.) f (x, y). The response vector Y and the covariate vector
X take values in R

q and R
p , respectively. Following Dang et al. (2017), (X′,Y′)′ follows a

cluster-weighted model of order G if

f (x, y) =
G∑

g=1

πgf (x|�g)f (y|x, �g), (1)

where �1, . . . , �G denote the G unknown sub-populations (�g ∩ �j = ∅ ∀g �= j ),
πg = P(�g), πg > 0 ∀g,

∑G
g=1 πg = 1, f (x|�g) is the conditional p.d.f. of X given

�g , f (y|x, �g) is the conditional p.d.f. of Y given X and �g . A Gaussian linear cluster-
weighted model is obtained from Eq. 1 by additionally assuming that the distributions of
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X|�g and Y|(X = x, �g) are Gaussian for g = 1, . . . , G and the effect of X on Y for any
�g is linear. By embedding all these assumptions into model (1), f (x, y) becomes

f (x, y; ϑ) =
G∑

g=1

πgφp(x; μXg
,�Xg )φq(y|x;B′

gx
∗, �Yg ), (2)

where φd(·; μ,�) represents the p.d.f. of a normal d-dimensional random vector with
expected value μ and positive definite covariance matrix �,

B′
gx

∗ = E(Y|X = x, �g), g = 1, . . . , G, (3)

with Bg ∈ R
(1+p)×q , x∗ = (1, x′)′, and ϑ is the vector of the unknown parameters. It has

been proved that linear Gaussian cluster-weighted models of orderG define the same family
of probability distributions generated by mixtures of G Gaussian models for the random
vector Z = (X′,Y′)′ (Ingrassia et al., 2012). However, it is important to stress that this latter
type of mixtures cannot be employed to account for local linear dependencies between X
and Y.

The score vector and Hessian matrix of model (2) are derived by taking account of the
fact that the weights π1, . . . , πG sum to one and the covariance matrices are symmetric.
The first constraint is introduced in the maximization of the likelihood function by differ-
entiating with respect to π = (π1, . . . , πG−1)

′ and by setting πG = 1 − π1 − · · · − πG−1.
The constraints on the covariance matrices are dealt with by using the operators vec(·), v(·)
and the duplication matrix. Namely, vec(B) is the column vector obtained by stacking the
columns of matrix B one underneath the other. v(�) denotes the column vector obtained
from vec(�) by eliminating all supradiagonal elements of a symmetric matrix � (thus, v(�)

contains only the lower triangular part of �). The duplication matrix G is the unique matrix
which transforms v(�) into vec(�) (Gv(�) = vec(�)) (see e.g. Magnus & Neudecker
1988). Using this notation, the vector of the unknown parameters in model (2) can be

denoted as ϑ = (π ′, θ ′
1, . . . , θ

′
G)′, where θg =

(
μ′
Xg

, v
(
�Xg

)′
, vec

(
Bg

)′
, v

(
�Yg

)′)′
.

Suppose that the observed data S = {(xi , yi), i = 1, . . . , I } is composed of I indepen-
dent and identically distributed observations. Then, the incomplete log-likelihood function
under the model (2) is

l(ϑ) =
I∑

i=1

ln

( G∑

g=1

πgφp

(
xi; μXg

, �Xg

)
φq

(
yi |xi;B′

gx
∗
i ,�Yg

))
. (4)

Each sample observation provides its own contribution to the gth term of the sum that
defines the mixture (2). As far as the contribution of the ith observation is concerned, it is
given by:

pgi = πg(2π)−
p
2 det(�Xg )

− 1
2 exp

[
−1

2
(xi − μXg

)′�−1
Xg

(xi − μXg
)

]

(2π)−
q
2 det(�Yg )

− 1
2 exp

[
−1

2
(yi − B′

gx
∗
i )

′�−1
Yg

(yi − B′
gx

∗
i )

]
. (5)

By exploiting properties of the logarithm and trace, the following equality holds true:

lnpgi = lnπg − p

2
ln(2π) − 1

2
ln det(�Xg ) − 1

2
tr

[
�−1

Xg
(xi − μXg

)(xi − μXg
)′
]

+

−q

2
ln(2π) − 1

2
ln det(�Yg ) − 1

2
tr

[
�−1

Yg
(yi − B′

gx
∗
i )(yi − B′

gx
∗
i )

′
]
. (6)
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The explicit forms of the score vector and Hessian matrix, as developed here, require the
introduction of some additional notation. Namely, let

αgi = pgi∑G
j=1 pji

, (7)

ag = 1

πg

eg, g = 1, . . . , G − 1, (8)

aG = − 1

πG

1G−1,

where eg denotes the gth column of the identity matrix of order G − 1 and 1G−1 is the
(G−1)×1 vector having each element equal to 1. The following quantities are also required:

ogi = �−1
Yg

(yi − B′
gx

∗
i ), (9)

Ogi = �−1
Yg

− ogio′
gi , (10)

fgi = �−1
Xg

(xi − μXg
), (11)

Fgi = �−1
Xg

− fgif′gi . (12)

The explicit forms of the score vector S(ϑ) and Hessian matrix H(ϑ) for a Gaussian linear
cluster-weighted model are provided in Theorems 1 and 2 (see Appendix). Proofs can be
found in the document with the supplementary materials.

3 Covariance Matrix Estimation of theML Estimator

In the ML approach, the information matrix I(ϑ) plays a crucial role, as it is used to
asymptotically estimate the covariance of the ML estimator of the model parameters. Under
regularity conditions and if the model is correctly specified, I(ϑ) is given either by the
covariance of the score function E

(
S(ϑ)S(ϑ)′

)
or the negative of the expected value of the

Hessian matrix −E (H(ϑ)). Clearly, an analytical evaluation of the expectations required
to obtain I(ϑ) under model (2) is quite complex. By exploiting some asymptotic results
concerning ML estimation (White, 1982), it is possible to obtain the following asymptotic
estimators of I(ϑ):

I1 =
I∑

i=1

Si (ϑ̂)Si (ϑ̂)′, I2 = −
I∑

i=1

Hi (ϑ̂),

where Si (ϑ̂) and Hi (ϑ̂) denote the contribution of the ith sample observation to the score
function and Hessian matrix evaluated at the ML estimate ϑ̂ , respectively. They can be used
to obtain the following asymptotic estimators of Cov(ϑ̂), the covariance matrix of ϑ̂ :

Ĉov1(ϑ̂) = I−1
1 , (13)

Ĉov2(ϑ̂) = I−1
2 . (14)

Under suitable conditions (see e.g. Newey & McFadden 1994; Ritter 2015, for a general
discussion and some results specifically dealing with finite mixture models, respectively),
Ĉov1(ϑ̂) and Ĉov2(ϑ̂) can be considered consistent estimators of Cov(ϑ̂) when the model
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is correctly specified. By exploiting the so-called sandwich approach (see e.g. White 1980),
the following robust estimator can also be employed:

Ĉov3(ϑ̂) = I−1
2 I1I−1

2 . (15)

It is worth noting that for the existence of the estimators Ĉov2(ϑ̂) and Ĉov3(ϑ̂) it is required
that matrix I2 is positive definite and well conditioned. The same requirements have to be
fulfilled by matrix I1 in order to guarantee that Ĉov1(ϑ̂) exists. With large-scale covariance
matrices and small sample sizes, I1 and/or I2 could be ill-conditioned. These situations can
be managed by resorting to procedures able to produce improved estimators of I(ϑ) from
either I1 or I2. For example, the algorithm by Higham (1988) computes the nearest positive
definite matrix of a given symmetric matrix by adjusting its eigenvalues. Other approaches
which exploit techniques of variance reduction could also be adopted (see e.g. Schäfer and
Strimmer 2005).

4 Experimental Results from Simulated Datasets

4.1 Numerical Study of the Properties of the Proposed Estimators

In order to evaluate the properties of Ĉov1(ϑ̂), Ĉov2(ϑ̂) and Ĉov3(ϑ̂) in comparison with the
estimators based on the parametric bootstrap and the approach implemented in flexCWM,
five Monte Carlo studies have been performed. In the first study, the artificial datasets have
been generated under a model defined by Eqs. 2–3 where G = 2, q = 1 and p = 2. As far
as the model parameters are concerned, the following values have been employed: π1 = 0.7,
π2 = 0.3, �Y1 = 1.5, �Y2 = 1, B′

1 = (5, 2, 2), B′
2 = (1, −2,−2), μ′

X1
= (−2, −2),

μ′
X2

= (2, 2), �X1 = (
1.0 0.2
0.2 1.0

)
, �X2 = (

1.0 0.4
0.4 1.0

)
. Such values have been chosen so as to

produce two well-separated groups of observations (see the upper panel of Fig. 1, with the
pairwise scatterplots of the variables X1, X2 and Y1 for a sample of size I = 500 generated
as just described). In this way, problems of label switching across simulations are less likely
to occur. Furthermore, the ML estimates of ϑ are expected to be accurate enough to let the
analysis be focused on the different ways of estimating the standard error of ϑ̂ . Using these
parameter values, R = 10, 000 datasets (of size I ) have been generated as follows:

1. For the rth dataset (r = 1, . . . , R), a sample of size I is drawn from the standard
p-dimensional normal distribution; this gives the vectors ε1r , . . . , εIr ;

2. For the rth dataset (r = 1, . . . , R), a sample of size I is drawn from the standard
q-dimensional normal distribution; this gives the vectors η1r , . . . , ηIr ;

3. For the rth dataset (r = 1, . . . , R), a sample of size I is drawn from the Bernoulli
distribution with parameter π1; this produces the 0-1 vector zr = (z1r , . . . , zIr )

′;
4. For the ith observation (i = 1, . . . , I ) of the rth dataset, vectors xir and yir are obtained

as follows:

xir = μX1
+ AX1εir , yir = B′

1xir + AY1ηir if zir = 1,

xir = μX2
+ AX2εir , yir = B′

2xir + AY2ηir if zir = 0,

whereAXg andAYg are matrices obtained from the spectral decompositions of�Xg and
�Yg , respectively. Such matrices are constructed such thatAXgA

′
Xg

= �Xg ,AYgA
′
Yg

=
�Yg , for g = 1, 2.
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Fig. 1 Pairwise scatterplots of X1, X2 and Y1 for four samples of size I = 500 generated in the first four
studies. Upper and lower panels refer to the first and fourth studies, respectively; intermediate panels refer to
the second and third ones. Black circles and red triangles correspond to g = 1 and g = 2, respectively

In the second study, the datasets have been obtained through the same procedure used in the
first one except from the computation of vectors εir and ηir . Namely, a sample of size I ·p is
drawn from the uniform distribution in the interval (0,1) for the rth dataset (r = 1, . . . , R);
this produces a vector ε∗

r , whose elements are transformed as follows: εjr = √
12(ε∗

jr −
0.5), j = 1, . . . , I · p; the vector εr resulting from this transformation has zero mean and
unit variance; partitioning εr into I p−dimensional vectors leads to ε1r , . . . , εIr . The same
process has been applied to obtain vectors η1r , . . . , ηIr . The second panel of Fig. 1 provides
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the pairwise scatterplots of X1, X2 and Y1 for a sample of size I = 500 from this second
study.

In the third and fourth studies, the datasets have been generated as in the first and sec-
ond studies, respectively, but using the following model parameters: μX1

= (−1, −1)′,
μX2

= (1, 1)′. This change in the values of μX1
and μX2

leads to overlapping groups of
observations (see the pairwise scatterplots of X1, X2 and Y1 for samples of size I = 500
in third and fourth panels of Fig. 1). The total number of model parameters in the first four
studies is 19.

The fifth study has been carried out with the same settings of the first study but with p =
8 explanatory variables. The model parameters pertaining to X which have been employed
to generate the datasets are as follows: μX1

= −2 · 18, μX2
= 2 · 18, V (Xj |�g) = 1 ∀j for

g = 1, 2, Cov(Xj ,Xh|�1) = 1 − |j−h|
8 ∀j �= h, Cov(Xj ,Xh|�2) = 1 − |j−h|

4 ∀j �= h.
As far as the effects of the regressors on Y1 are concerned, they have been set as follows:
B1 = (5, μ′

X2
)′, B2 = (1, μ′

X1
)′. In this latter study, the total number of model parameters

is 109.
In all studies, Monte Carlo experiments have been performed with two different sample

sizes: I = 250, 500 in the first four studies, I = 300, 500 in the last study. In all experi-
ments, it has been assumed that the rth dataset {(x1r , y1r ), . . . , (xIr , yIr )} is generated from
a model defined by Eqs. 2–3 with G = 2. Thus, the maximum likelihood estimate ϑ̂ r of
ϑ has been computed for r = 1, . . . , R under such an assumption. Parameter estimation
has been carried out through the EM algorithm as implemented in the function cwm of the
package flexCWM. As far as the initialisation of the parameters is concerned, an option
has been employed, which executes 5 independent runs of the k-means algorithm and picks
the solution maximising the observed-data log-likelihood among these runs. The maximum
number of iterations of the EM algorithm has been set equal to 400. A convergence crite-
rion based on the Aitken acceleration has been used, with a threshold ε = 10−6 (for further
details, see Mazza et al. 2018).

The R independent estimates of ϑ are used to approximate the true distribution of ϑ̂ and,
in particular, the true standard errors of all the elements of ϑ̂ . Estimates of these standard
errors have been computed using the three information-based estimators and the parametric
bootstrap for R1 = 2000 datasets obtained as described above. For each bootstrap estimate,
100 bootstrap samples have been employed. For the ML estimates of the model intercepts
and regression coefficients, the standard errors estimated by the function cwm of the pack-
age flexCWM using the approach illustrated in the introduction have been included in the
comparison. The performances of these strategies have been evaluated on the basis of an
estimate of their biases and root mean squared errors (RMSE). A comparative evaluation of
such approaches has been carried out also through the coverage probabilities (CP) of 90%
and 95% confidence intervals based on the examined standard errors’ estimates and the
standard normal quantiles. In this latter comparison, the attention is focused on the expected
mean values of the regressors (i.e. μX1

and μX2
) and the regression coefficients (all the

entries in the first column of B1 and B2 except the first one).
Tables 1, 2, 3 and 4 contain the biases and RMSEs for the first four Monte Carlo studies

with samples of size 250. The same information for the last study and the sample size
I = 300 can be found in Table 5. The corresponding values for the CPs are summarised
in Tables 6, 7, 8, 9 and 10. In all the tables, the results obtained using the function cwm of
the package flexCWM, the bootstrap and the estimators defined in Eqs. 13–15 are denoted
as cwm, Boot , C1, C2 and C3, respectively. From now on, Bg[j, k] is used to denote the
element on the j -th row and k-th column of matrix Bg; μg[j ] represents the j -th element
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of μg . Due to the large number of parameters pertaining to the regressors in the fifth study,
Table 5 provides the mean values of the biases and RMSEs of the ML estimates over the
elements of each of the following vectors of model parameters: μXg

, v(�Xg ), Bg[−1, 1] for
g = 1, 2, where Bg[−1, 1] is the vector obtained by dropping the first element from the first
column of Bg . Thus, Bg[−1, 1] comprises the regression coefficients of the p covariates on
Y1 given �g . In a similar way, Table 10 contains the mean values of the CPs of 90% and
95% confidence intervals over μXg

and Bg[−1, 1] for g = 1, 2.
Under the experimental conditions considered in the first Monte Carlo study, biases are

generally small for all the estimated standard errors (see Table 1). The overall best perfor-
mance in terms of accuracy seems to be achieved by means of the estimator Ĉov2(ϑ̂). The
bootstrap approach appears to provide the most precise estimates of the standard errors of
�̂Yg . The sandwich method is slightly more accurate than the bootstrap approach in esti-
mating the standard errors of the ML estimates of the expected values of the regressors; the
opposite result holds true when dealing with the estimation of the standard errors of �̂Xg .
The highest root mean square errors are mostly obtained using either the function cwm of
the package flexCWM or the estimator Ĉov1(ϑ̂), which are therefore not recommended.
These results confirm both the best performance of an estimator based on the Hessian and
the poor performance of an estimator based on the gradient vector under correctly speci-
fied models registered in a study dealing with multivariate normal mixture models (Boldea
& Magnus, 2009). It is also worth noting that the accuracy of the approach implemented in
flexCWM sharply deteriorates when the ML estimates of the intercept and regression coef-
ficients of the second group (B2) are considered. As far as the effective confidence levels for
the parameters μXg

, Bg[2, 1] and Bg[3, 1] are concerned (Table 6), the obtained results are
generally similar to one another and quite close to the nominal confidence levels for all the
examined methods except the one implemented in flexCWM. With this latter method, the
effective confidence levels for the regression coefficients clearly deviate from the nominal
ones, especially in the second group of observations. All these results have been employed
to run tests for the hypotheses of equality between effective and nominal confidence levels.
This task has been carried out through asymptotic two-tailed normal tests for a propor-
tion at a 0.00125 significance level (the Bonferroni correction 0.01/8 has been adopted to
account for multiple tests performed for each estimation method and each nominal con-
fidence level). All the effective CPs of the confidence intervals for the model regression
coefficients obtained using both the estimator based on the gradient and the approach imple-
mented in flexCWM appear to be significantly different from the corresponding nominal
ones (see the entries in italics in Table 6). As far as the results from the bootstrap-based
and Hessian-based estimators are concerned, the null hypothesis of equality between effec-
tive and nominal confidence levels should be rejected for two regression coefficients at
both examined confidence levels; the same null hypothesis has to be rejected for only one
regression coefficient when using the the sandwich approach.

In the second Monte Carlo study, a substantial increase in the biases of the estimated
standard errors of �̂Xg and �̂Yg has been registered with all the examined estimators except
for the sandwich method (Table 2); this latter method is also the most accurate. Using a
Gaussian cluster-weighted model for the analysis of datasets generated under a uniform
cluster-weighted model seems to have a little impact on the confidence intervals for both
the expected values of the regressors and the regression coefficients (Table 7).

When the data are obtained from two overlapping groups of observations drawn from
Gaussian distributions (third study), the resulting biases and RMSEs (see Table 3) are quite
similar to the ones from the first study; the main effect of the reduction in the separation
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of the two groups is a general slight increase in the RMSEs with all the examined meth-
ods. The best accuracy is still achieved by the estimator Ĉov2(ϑ̂) for all model parameters,
with the exception of �̂Yg , whose standard errors are more accurately estimated by the
bootstrap approach. As far as the effect of this reduction on the effective CPs of the confi-
dence intervals is concerned (Table 8), the most remarkable result is an increase in the gap
between nominal and effective CPs associated with the use of the approach implemented in
flexCWM for the regression coefficients in the second group of observations.

When the two overlapping groups of observations are generated from the uniform dis-
tribution (fourth study), both biases and RMSEs of B̂1 results remarkably increased with
all the examined methods (see Table 4). However, it is worth noting that the lowest of such
increases has always been associated with the use of Ĉov3(ϑ̂), which is also the estimator
with the best accuracy for the ML estimate of variances and covariances of the regressors in
both groups and the majority of the model parameter estimates. Furthermore, the sandwich
estimator shows the best performance in terms of effective CPs that are not significantly
different from the nominal ones (Table 9).

In the presence of datasets generated under a Gaussian cluster-weighted model with p =
8 regressors (fifth study), the most remarkable effects of a larger number of covariates on
the performance of the examined estimators with samples of size I = 300 appear to be (see
Table 5 in comparison with Table 1) a sharp decrease in the accuracy of the estimates of
the standard errors produced by the method based on the gradient for all the parameters of
the second group of observations and a deterioration in the performances of the bootstrap
approach in reference to all the parameters of the conditional distribution of Y given X and
�g , especially Bg[1, 1], for g = 1, 2. As far as the methods Ĉov2(ϑ̂) and Ĉov3(ϑ̂) are
concerned, biases and RMSEs result to be quite similar to the ones from the first study for
all parameter estimates except the intercepts for both groups. Thus, the best overall accuracy
is still achieved by the estimator Ĉov2(ϑ̂).

The results from the five studies with samples of size 500 (see Tables A–J in the separate
document with the supplementary materials) are generally in line with those just described.
It is worth noting that using a larger sample size leads to a reduction in the RMSEs for
all the examined estimators. With datasets containing two separated groups of observa-
tions (first and second studies), all the effective CPs of the confidence intervals obtained
using the sandwich approach appear to be not significantly different from the correspond-
ing nominal ones. When overlapping groups are considered (third and fourth studies), the
estimator Ĉov3(ϑ̂) has produced confidence intervals whose effective levels are the closest
to the nominal ones. Thus, overall, the obtained results show the robustness of the sandwich
method.

4.2 A Comparison with Some Estimators Under Normal Mixtures

As already mentioned in the “Introduction”, three information-based estimators of the
covariance matrix of the ML estimator for finite normal mixture models were developed by
Boldea and Magnus (2009): two of them are based on the gradient vector and the Hessian
matrix of the incomplete log-likelihood under a normal mixture model; the third estimator
exploits the sandwich approach. From now on, these three estimators will be denoted as
BM1, BM2 and BM3, respectively. Furthermore, it has been already highlighted that finite
mixtures of Gaussian distributions and linear Gaussian cluster-weighted models define the
same family of probability distributions (Ingrassia et al., 2012). Thus, it could be interesting
to obtain an evaluation of the relationships between the estimators described in Section 3
and the estimators developed by Boldea and Magnus (2009). This task has been numerically
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performed by means of two additional simulation studies. The model employed to generate
the simulated datasets is:

f (x, y; ψ) =
G∑

g=1

πgφ2(x, y; μg, �g), (16)

where p = q = 1, G = 2, ψ = (π1,ψ
′
1, ψ

′
2)

′, ψ1 = (μ′
1, v(�1)

′)′, ψ1 = (μ′
2, v(�2)

′)′,
π1 = 0.7, π2 = 0.3, μ′

1 = (0, 0), μ′
2 = (ε, ε), �1 = (

1.0 0.0
0.0 1.0

)
, �2 = (

2.0 1.0
1.0 2.0

)
. The two

studies have been carried out using 5 and 10 as values of ε so as to obtain two different
levels of separation between μ1 and μ2. In each study, 100 datasets have been generated for
each of two sample sizes: I = 100, 250. The R packages mclust (Scrucca et al., 2016) and
flexCWM have been employed to compute theML estimates ofψ in model (16) withG = 2
and the ML estimates of ϑ in model (2) with G = 2, respectively. Furthermore, the standard
errors of ϑ̂ have been estimated using Eqs. 13–15. As far as ψ̂ is concerned, estimated
standard errors have been computed according to the solutions described in Boldea and
Magnus (2009).

Models (16) and (2) are characterised by the same value of π1. Furthermore, as illus-
trated by Ingrassia et al. (2012), some elements in ϑ coincide with some elements in
ψ ; namely, μX1

[1] = μ1[1], �X1 [1, 1] = �1[1, 1], μX2
[1] = μ2[1], �X2 [1, 1] =

�2[1, 1]. Thus, the comparison between the estimators described in Section 3 and the
estimators developed by Boldea and Magnus (2009) has been focused on the follow-
ing two subvectors of model parameters: ϑ̄ = (π1,μX1

[1], �X1 [1, 1], μX2
[1], �X2 [1, 1]),

ψ̄ = (π1,μ1[1], �1[1, 1], μ2[1], �2[1, 1]). Let sem( ˆ̄ϑr [j ]) be the standard error of the

j -th element of ˆ̄ϑ computed using the estimator Cm and the r-th dataset. Furthermore,

let sem( ˆ̄ψ r [j ]) be the standard error of the j -th element of ˆ̄ψ obtained from the estima-
tor BMm. In order to compare such estimated standard errors, the following differences

have been computed: drm(j) = sem( ˆ̄ψ r [j ]) − sem( ˆ̄ϑr [j ]), j = 1, . . . , 5, m = 1, 2, 3,
r = 1, . . . , 100. The results obtained for ε = 5 and ε = 10 with samples of size I = 100
are graphically represented in Figs. 2 and 3, respectively. The distributions of the differ-
ences drm(j) for almost all the examined parameters appear to be centred around 0 and
highly homogeneous, thus highlighting a general equivalence between the standard errors
resulting from the two models. This result holds true especially for the estimators based on
the Hessian matrix and the sandwich approach (m = 2, 3) when the separation between the
two groups is larger (ε = 10), and for the estimator based on the gradient vector (m = 1)
when the separation is low (ε = 5). However, it is also worth noting that with both levels
of separation the differences in the standard errors of π̂1 computed using the two estimators
based on the gradient vector show a median value slightly below 0 and a distribution with
negative skewness. Similar results have been obtained with samples of size I = 250 (see
Figures A and B in the supplementary material).

5 Analysing Regional Tourism Data in Italy

Similar to other studies (see e.g. Cellini & Cuccia 2013), the analysis summarised here
aims at evaluating the link between tourism flows and attendance at museums and mon-
uments, with a focus on two Italian regions: Emilia Romagna (ER) and Veneto (Ve).
For both regions, three variables have been examined: tourist arrivals (denoted Arriv),
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Fig. 2 Boxplots of the differences drm(j) with samples of size I = 100 and ε = 5

tourist overnights (Overn) and visits to State museums, monuments and museum networks
(Visit). Measurements for such variables are available with a monthly frequency over the
period January 1999 to December 2017. The source for Visit is the website of the Italian
Ministry of Cultural Heritage (http://www.statistica.beniculturali.it). Data on Arriv and

Fig. 3 Boxplots of the differences drm(j) with samples of size I = 100 and ε = 10
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Table 11 Maximised
log-likelihood and Bayesian
information criterion of eight
cluster-weighted models fitted to
the tourism dataset

G l(ϑ̂) BIC

1 −8596.886 17,340.36

2 −8056.517 16,411.65

3 −7803.084 16,056.80

4 −7692.981 15,988.62

5 −7593.141 15,940.96

6 −7539.561 15,985.82

7 −7456.020 15,970.76

8 −7401.414 16,013.57

Overn have been obtained from the websites of Emilia-Romagna1 and Veneto2 regional
governments. Overall, the analysed dataset is composed of I = 228 monthly observations
for six variables. Because of the goal of the analysis, these variables have been partitioned
as follows: Y = (Visit ER, Visit Ve)′, X = (Arriv ER, Overn ER, Arriv Ve,
Overn Ve)′. The analysed data are expressed in thousands.

Models obtained from Eqs. 2–3 have been fitted to the dataset for G from 1 to 8. To
this end, a function written for the R software environment which implements an EM algo-
rithm for the ML estimation of multivariate Gaussian cluster-weighted linear models has
been employed. In order to prevent problems due to the presence of singular or nearly
singular matrices during the iterations, all covariance matrices have been required to have
eigenvalues greater than 10−20; furthermore, the ratio between the smallest and the largest
eigenvalues of such matrices is required to be not lower than 10−10. Model parameters are
initialised according to a two-step strategy. In the first step, the joint distribution of the
covariates and responses is estimated using a mixture of G Gaussian models through the
mclust package. This produces the required starting values for the G weights, mean vec-
tors and covariance matrices for the predictors. In the second step, the initialisation of Bg

and �Yg is obtained from the fitting of a Gaussian linear regression model to the sample
of observations that have been assigned to the gth component of the mixture model esti-
mated in the first step. The R package systemfit (Henningsen & Hamann, 2007) has
been exploited to perform this task. The maximum number of iterations of the EM algo-
rithm has been set equal to 500. A convergence criterion based on the Aitken acceleration
has been used, with a threshold ε = 10−8.

Table 11 shows the values of the maximised log-likelihood (l(ϑ̂)) and the Bayesian
information criterion (BIC) (Schwarz, 1978) for the eight fitted models, where BIC =
2l(ϑ̂) − npar ln(I ), and npar denotes the number of model parameters. According to this
criterion, the model with the best trade-off between the fit and complexity seems to be the
one with G = 5 clusters of months. With this model, there is a perfect correspondence
between some clusters and some months (see Table 12): cluster 2 only contains observa-
tions in April and May; cluster 4 only contains observations in June, July and August;
cluster 5 only contains observations in January, February, November and December. As far
as the remaining months are concerned, observations in September for the years 2005–2017
have been assigned to cluster 1; cluster 3 comprises the remaining observations in Septem-
ber together with all the observations in March and October. The obtained cluster structure

1https://statistica.regione.emilia-romagna.it/turismo
2https://www.veneto.eu/web/area-operatori/statistiche
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Table 12 Cross-classification of the observations from the tourism dataset, based on their variable time
identified by month and maximum posterior probability estimated from the cluster-weighted model with
G = 5

g Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1 0 0 0 0 0 0 0 0 13 0 0 0

2 0 0 0 19 19 0 0 0 0 0 0 0

3 0 0 19 0 0 0 0 0 6 19 0 0

4 0 0 0 0 0 19 19 19 0 0 0 0

5 19 19 0 0 0 0 0 0 0 0 19 19

clearly reflects seasonal patterns characterising tourism flows. Observations in cluster 4
(June, July and August) are characterized by the highest mean values of tourist arrivals and
overnights in both regions, followed by those in cluster 1 (September 2005–2017), cluster 2
(April and May), cluster 3 (March, October and September 1999–2004) and cluster 4 (from
November to February) (see the μ̂g[j ] in Table 13). In all clusters, Veneto is characterised
by mean values of both regressors which are always higher than those of Emilia-Romagna.
During the examined period of time, there seems to be heterogeneity also on the effects of
the tourist arrivals and overnights on the number of visits in both regions (see the B̂g[j, k]
in Table 13). Such effects do not result to be always positive. Furthermore, an increase in
the tourist arrivals and overnights in one region does not necessarily have a positive impact
on the number of visits to State museums, monuments and museum networks of the other
region.

Estimates of the standard errors for the parameter estimates of the selected cluster-
weighted model have been computed by the boostrap approach, using 100 bootstrap samples
generated from the selected model. Furthermore, Cov(ϑ̂) has been estimated by resorting to
Eqs. 13–15. The algorithm by Higham (1988), as implemented in the R package corpcor,

Table 13 Estimated πg , μXg
and Bg of the cluster-weighted model with G = 5 fitted to the tourism dataset

g 1 2 3 4 5

π̂g 0.057 0.168 0.192 0.250 0.333

μg[1] 848.1 766.9 515.6 1327.0 338.5

μg[2] 3654.3 2158.4 1573.2 7765.1 864.7

μg[3] 1634.4 1250.6 908.2 2095.6 561.6

μg[4] 6867.7 3906.2 2852.5 11420.1 1587.0

Bg[1, 1] 47.771 197.894 5.204 −0.408 −2.183

Bg[2, 1] −0.173 0.229 0.447 0.138 0.171

Bg[3, 1] 0.021 −0.037 −0.089 0.008 −0.020

Bg[4, 1] 0.141 −0.124 −0.215 −0.061 0.013

Bg[5, 1] −0.018 0.007 0.063 −0.005 −0.008

Bg[1, 2] 95.694 85.555 23.956 36.059 −19.050

Bg[2, 2] −0.121 0.002 0.181 0.132 −0.425

Bg[3, 2] 0.022 0.025 −0.007 −0.010 0.141

Bg[4, 2] 0.114 0.071 0.020 −0.053 0.172

Bg[5, 2] −0.024 −0.029 −0.013 0.005 −0.004

617Journal of Classification  (2021) 38:594–625



Table 14 B̂g[j, k], estimated standard errors, zgjk values and p-values obtained using the bootstrap (columns
5–7) and Eq. 13 (columns 8–10)

g j k B̂g[j, k] se(B̂g[j, k]) zgjk p-value se(B̂g[j, k]) zgjk p-value

1 2 1 −0.173 0.318 −0.545 0.586 2.090 −0.083 0.934

1 3 1 0.021 0.078 0.262 0.793 0.305 0.067 0.946

1 4 1 0.141 0.172 0.820 0.412 0.648 0.217 0.828

1 5 1 −0.018 0.055 −0.328 0.743 0.133 −0.134 0.893

1 2 2 −0.121 0.330 −0.366 0.715 1.472 −0.082 0.935

1 3 2 0.022 0.080 0.278 0.781 0.196 0.113 0.910

1 4 2 0.114 0.175 0.652 0.515 0.474 0.240 0.810

1 5 2 −0.024 0.045 −0.538 0.590 0.053 −0.457 0.648

2 2 1 0.229 0.167 1.373 0.170 0.328 0.698 0.485

2 3 1 −0.037 0.044 −0.827 0.408 0.101 −0.364 0.716

2 4 1 −0.124 0.111 −1.121 0.262 0.196 −0.633 0.527

2 5 1 0.007 0.030 0.216 0.829 0.052 0.125 0.901

2 2 2 0.002 0.178 0.009 0.993 0.136 0.012 0.991

2 3 2 0.025 0.047 0.532 0.595 0.029 0.848 0.396

2 4 2 0.071 0.071 1.002 0.316 0.072 0.993 0.321

2 5 2 −0.029 0.021 −1.395 0.163 0.016 −1.868 0.062

3 2 1 0.447 0.148 3.023 0.003 0.168 2.663 0.008

3 3 1 −0.089 0.040 −2.224 0.026 0.037 −2.437 0.015

3 4 1 −0.215 0.094 −2.282 0.022 0.083 −2.570 0.010

3 5 1 0.063 0.028 2.299 0.022 0.028 2.270 0.023

3 2 2 0.181 0.195 0.927 0.354 0.145 1.251 0.211

3 3 2 −0.007 0.047 −0.154 0.878 0.036 −0.204 0.838

3 4 2 0.020 0.074 0.265 0.791 0.076 0.260 0.795

3 5 2 −0.013 0.018 −0.710 0.478 0.028 −0.456 0.648

4 2 1 0.138 0.088 1.565 0.118 0.058 2.384 0.017

4 3 1 0.008 0.024 0.343 0.732 0.011 0.778 0.436

4 4 1 −0.061 0.055 −1.100 0.271 0.035 −1.748 0.080

4 5 1 −0.005 0.013 −0.363 0.717 0.006 −0.737 0.461

4 2 2 0.132 0.200 0.657 0.511 0.032 4.130 0.000

4 3 2 −0.010 0.054 −0.195 0.846 0.008 −1.350 0.177

4 4 2 −0.053 0.084 −0.635 0.526 0.018 −2.941 0.003

4 5 2 0.005 0.015 0.337 0.736 0.004 1.155 0.248

5 2 1 0.171 0.082 2.078 0.038 0.069 2.489 0.013

5 3 1 −0.019 0.019 −1.017 0.309 0.018 −1.056 0.291

5 4 1 0.013 0.049 0.265 0.791 0.033 0.385 0.701

5 5 1 −0.008 0.008 −0.972 0.331 0.012 −0.647 0.517

5 2 2 −0.425 0.260 −1.635 0.102 0.108 −3.925 0.000

5 3 2 0.141 0.070 2.026 0.043 0.029 4.919 0.000

5 4 2 0.171 0.094 1.824 0.068 0.049 3.472 0.001

5 5 2 −0.004 0.013 −0.340 0.734 0.016 −0.280 0.779
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Table 15 B̂g[j, k], estimated standard errors, zgjk values and p-values obtained using Eqs. 14 (columns 5–7)
and 15 (columns 8–10)

g j k B̂g[j, k] se(B̂g[j, k]) zgjk p-value se(B̂g[j, k]) zgjk p-value

1 2 1 −0.173 0.141 −1.234 0.217 0.157 −1.106 0.269

1 3 1 0.021 0.029 0.712 0.477 0.026 0.794 0.427

1 4 1 0.141 0.061 2.319 0.020 0.070 2.012 0.044

1 5 1 −0.018 0.015 −1.191 0.234 0.012 −1.478 0.139

1 2 2 −0.121 0.077 −1.570 0.116 0.070 −1.719 0.086

1 3 2 0.022 0.016 1.404 0.160 0.013 1.761 0.078

1 4 2 0.114 0.033 3.442 0.001 0.029 3.909 0.000

1 5 2 −0.024 0.008 −2.975 0.003 0.006 −4.254 0.000

2 2 1 0.229 0.162 1.411 0.158 0.148 1.545 0.122

2 3 1 −0.037 0.045 −0.817 0.414 0.037 −0.986 0.324

2 4 1 −0.124 0.098 −1.261 0.207 0.091 −1.366 0.172

2 5 1 0.007 0.024 0.268 0.789 0.022 0.302 0.763

2 2 2 0.002 0.090 0.017 0.986 0.091 0.017 0.986

2 3 2 0.025 0.025 1.004 0.315 0.027 0.916 0.360

2 4 2 0.071 0.055 1.302 0.193 0.057 1.254 0.210

2 5 2 −0.029 0.014 −2.146 0.032 0.015 −1.944 0.052

3 2 1 0.447 0.107 4.164 0.000 0.125 3.570 0.000

3 3 1 −0.089 0.027 −3.245 0.001 0.029 −3.110 0.002

3 4 1 −0.215 0.058 −3.691 0.000 0.060 −3.568 0.000

3 5 1 0.063 0.022 2.889 0.004 0.022 2.865 0.004

3 2 2 0.181 0.094 1.927 0.054 0.108 1.683 0.092

3 3 2 −0.007 0.025 −0.296 0.767 0.024 −0.306 0.759

3 4 2 0.020 0.052 0.381 0.704 0.052 0.379 0.705

3 5 2 −0.013 0.020 −0.660 0.509 0.019 −0.679 0.497

4 2 1 0.138 0.034 3.994 0.000 0.025 5.423 0.000

4 3 1 0.008 0.007 1.135 0.256 0.007 1.104 0.270

4 4 1 −0.061 0.021 −2.858 0.004 0.016 −3.751 0.000

4 5 1 −0.005 0.004 −1.051 0.293 0.004 −1.056 0.291

4 2 2 0.132 0.026 5.083 0.000 0.027 4.954 0.000

4 3 2 −0.010 0.005 −1.914 0.056 0.005 −2.015 0.044

4 4 2 −0.053 0.016 −3.346 0.001 0.017 −3.052 0.002

4 5 2 0.005 0.003 1.527 0.127 0.003 1.511 0.131

5 2 1 0.171 0.055 3.132 0.002 0.056 3.069 0.002

5 3 1 −0.019 0.016 −1.240 0.215 0.017 −1.156 0.247

5 4 1 0.013 0.024 0.540 0.589 0.022 0.576 0.564

5 5 1 −0.008 0.008 −0.920 0.357 0.008 −1.016 0.310

5 2 2 −0.425 0.075 −5.695 0.000 0.075 −5.684 0.000

5 3 2 0.141 0.022 6.561 0.000 0.022 6.271 0.000

5 4 2 0.171 0.033 5.261 0.000 0.028 6.032 0.000

5 5 2 −0.004 0.012 −0.379 0.704 0.011 −0.391 0.696
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has been employed to adjust the eigenvalues of I1 and I2 so as to obtain their nearest pos-
itive definite matrices. Then, the estimated standard errors have been employed to run tests
for the hypotheses H0 : Bg[j, k] = 0 for j = 2, . . . , p, k = 1, . . . , q, g = 1, . . . , G. Such
tests have been run under an asymptotic normal distribution for the zgjk statistics, where

zgjk = B̂g [j,k]
se(B̂g [j,k]) , with se(B̂g[j, k]) denoting the estimated standard error of B̂g[j, k].

Table 14 summarises the results obtained using the parametric bootstrap-based estimates
and the score-based estimates; the results derived from the use of the other two estimators
are reported in Table 15. According to all the examined methods and using α = 0.05, the
four examined regressors show a significant linear effect on the visits to State museums,
monuments and museum networks in Emilia Romagna over the period 1999 to 2017 in
March, October and over the period 1999 to 2004 in September (cluster 3); furthermore, in
the central months of the winters from 1999 to 2017 (cluster 5), there are positive signifi-
cant effects of Arriv on Visit in Emilia Romagna and of Overn on Visit in Veneto.
According to the estimator based on I1, five additional regression coefficients (three within
cluster 4, two within cluster 5) result to be significantly different from zero; the same con-
clusion is obtained from the use of Ĉov2(ϑ̂) and Ĉov3(ϑ̂). The results obtained using the
three methods illustrated in Section 3 suggest that tourist arrivals in Emilia Romagna have a
positive significant effect on the visits to State museums, monuments and museum networks
both in Emilia Romagna and in Veneto in June, July and August. Arriv ER has a sig-
nificant and negative effect on Visit Ve in January, February, November and December.
Furthermore, Arriv Ve seems to significantly affect Visit Ve, with a positive effect in
January, February, November and December and a negative effect in June, July and August.
The tests based on the estimators Ĉov2(ϑ̂) and Ĉov3(ϑ̂) lead to a rejection of H0 for fur-
ther five regression coefficients, three of which concern the effect of tourist arrivals and
overnights in Veneto in September for the years 2005–2017 (cluster 1). As far as cluster 2 is
concerned, all regression coefficients seem to be not significantly different from 0 accord-
ing to all approaches except for the effect of Overn Ve on Visit Ve, which results to
be significant only when standard errors are estimated from the Hessian matrix.

By exploiting the results contained in the non-diagonal elements of matrices Ĉov1(ϑ̂),
Ĉov2(ϑ̂) and Ĉov3(ϑ̂), it is also possible to run tests for the significance of the difference
between the effects of two different predictors on the same response in a given cluster or
tests for the significance of the difference between the effects of the same predictor on the
same response in two different clusters. For any given pair of regression coefficients in the
model, the null hypothesis can be expressed as follows: H0 : Bg1 [j1, k1] = Bg2 [j2, k2].
Three illustrative examples of hypotheses for the analysis of the tourism dataset are sum-
marised in Tables 16 and 17, where δ̂(g1,j1,k1)(g2,j2,k2) = B̂g1 [j1, k1] − B̂g2 [j2, k2]. These
examples have been obtained from the following questions:

Table 16 Values of δ̂(g1,j1,k1)(g2,j2,k2) for testing three examples of H0 : Bg1 [j1, k1] = Bg2 [j2, k2] in the
tourism data

Example (g1, j1, k1) (g2, j2, k2) δ̂(g1,j1,k1)(g2,j2,k2)

1 (4, 2, 1) (4, 2, 2) 0.0061

2 (5, 2, 1) (5, 4, 2) −0.0007

3 (3, 2, 1) (5, 2, 1) 0.2757
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Table 17 Estimated standard errors (se) of δ̂(g1,j1,k1)(g2,j2,k2), z values and p-values obtained using Eqs. 13
(columns 2–4), 14 (columns 5–7) and 15 (columns 8–10) for testing three examples of H0 : Bg1 [j1, k1] =
Bg2 [j2, k2] in the tourism data

Example se z p-value se z p-value se z p-value

1 0.057 0.107 0.915 0.039 0.155 0.877 0.034 0.177 0.859

2 0.101 −0.007 0.995 0.079 −0.008 0.993 0.079 −0.008 0.993

3 0.181 1.522 0.128 0.120 2.292 0.022 0.137 2.015 0.044

(a) In June, July and August (cluster 4), do tourist arrivals in Emilia Romagna have a dif-
ferent effect on Visit ER and Visit Ve (first example)?
(b) In January, February, November and December (cluster 5), is the effect of tourist arrivals
in Emilia Romagna on Visit ER different from the effect of tourist arrivals in Veneto on
Visit Ve (second example)?
(c) Is the effect of tourist arrivals in Emilia Romagna on Visit ER in January, February,
November and December (cluster 5) different from the one in March, September 1999–
2004 and October (cluster 3) (third example)?
For each of these illustrations, Table 17 summarises the results of the z tests run using the
three estimated covariance matrices (the non-diagonal elements are not reported). For the
first two examples, the compared methods lead to results which are all in favour of the null
hypothesis. In the third illustration, the null hypothesis should be rejected (α = 0.05) when
variances and covariances are estimated using both the Hessian and sandwich approaches.

6 Conclusions

Three information-based estimators of the asymptotic covariance matrix of the ML esti-
mator under multivariate Gaussian linear cluster-weighted models have been illustrated.
For their computation, formulae for the score vector and Hessian matrix of the incomplete
log-likelihood have been derived. Properties of these estimators have been numerically eval-
uated using simulated samples in comparison with the parametric bootstrap-based estimator.
For the ML estimates of the model intercepts and regression coefficients, the comparison
has included an approach implemented in the package flexCWM in which estimated stan-
dard errors are computed by fitting G separate linear weighted regression models using
the estimated posterior probabilities as weights. With correctly specified models, the most
accurate estimator of the standard error of the ML estimator is the one based on the Hes-
sian matrix. When Gaussian cluster-weighted models are fitted to datasets generated from
a uniform distribution, the best accuracy is achieved with the sandwich estimator. Overall,
the obtained results show the robustness of this latter method. Through these information-
based estimators, the tasks of computing approximated confidence intervals and running
tests concerning pairs of parameters can be easily carried out, as illustrated through a study
aiming at evaluating the link between tourism flows and attendance at museums and monu-
ments in two Italian regions. Asymptotic properties of the estimators introduced here could
also be studied from a theoretical point of view. For example, suitable regularity conditions
can be defined so as to provide a general assessment of their consistency (see for example
Galimberti et al. (2020) for a similar study in the context of clusterwise regression models).
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Appendix

Theorem 1 The score vector S(ϑ) for a cluster-weighted model of order G contains the
following subvectors:

∂l(ϑ)
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āi ,
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g=1 αgiag , L and J denoting duplication matrices with dimensions q2 × q(q+1)

2
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2 , respectively.

Theorem 2 The Hessian matrixH(ϑ) for a cluster-weighted model of order G contains the
following submatrices:
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