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Abstract

We consider a Minskyan type model of a closed economy with autonomous public

expenditure formulated in a discrete time framework, where an endogenous debt

adjustment process is considered and where income variations account for real

world physical and social constraints. The model is characterized by a unique

nontrivial fixed point matching the economic equilibrium. We study its stability

properties in terms of the constant factor that fixes the firms’ desired debt level

at a certain proportion of the current income. The stability loss of the fixed

point is associated with either a subcritical flip or a supercritical Neimark-

Sacker bifurcation. The latter implies occurrence of self-sustained oscillations

interpreted as business cycles. We present three possible dynamic scenarios right

after the Neimark-Sacker bifurcation: in a generic case and in two resonant cases.

We also describe modifications of the attractor when propensity of firms to get

into debt grows. In addition, we highlight that the increase of instabilities and

complexities of dynamic outcomes is paired with the rise of the so called financial

fragility indicator, which is a measure of fragility of the financial structure of

the economy.

Keywords: Minsky hypothesis, financial fragility, business cycle,

Neimark-Sacker bifurcation, critical lines.

Preprint submitted to Elsevier August 30, 2019

*Manuscript
Click here to view linked References



1. Introduction

Minskyan type macroeconomic models are considered in [1] where the au-

thors survey several mathematical formulations of the Minsky theory of eco-

nomic crises based on the financial fragility concept, which explains how tran-

quil growth periods can be followed by speculative activities that lead to deep

recessions and unstable economies (see [2–4]). This survey distinguishes the var-

ious models based on their focus on the key features characterizing the Minsky

theory. In particular, we turn our attention to the circumstance where growing

private debt to income ratio, describing firms’ activities, increases the financial

fragility and facilitates the emergence of economic instability.

Within this cluster and, in particular, in the stream of target debt-income

ratio models, the contribution once presented at the 27th PKSG Annual Work-

shop1 (see [5] and also the description in [1, p. 1319]) is placed. The authors

consider a system in a continuous time framework, involving linear mechanisms

for endogenous adjustments of income and debt levels. The debt alteration pro-

cess is driven by the displacement of the current debt from the desired debt

level, with the latter depending on the current economic scenario. In particular,

in economic prosperity conditions, characterized by high income levels, the de-

sired debt is high, thus reflecting low risk perceptions. Vice versa, in economic

depression conditions, characterized by low income levels, the desired debt is

low, thus reflecting high risk perceptions. In the model so formulated, the eco-

nomic equilibrium is placed at the origin due to the lack of an autonomous

component in the aggregate demand. Noteworthy, the authors showed that the

debt to income proportionality coefficient has a destabilizing effect and that the

fixed point can undergo a Hopf bifurcation beyond which limit cycles can be

observed.

In the present work we reformulate the model proposed in [5] by making two

methodological changes. First, we place our model in a discrete time frame-

1Held on June 1, 2017, at University of Greenwich.
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work. This is suitable for future developments that include dependencies of

income and debt adjustments to expectation formation and learning processes

on incoming economic scenarios. Second, we introduce a nonlinear adjustment

mechanism for income variations to adhere to real world circumstances. Indeed,

material constraints in the production side of the economy as well as social

bounds prevent unbounded growth variations.

Our map is characterized by a nontrivial fixed point, a circumstance oc-

curring due to the introduction of an exogenous component in the aggregate

demand given by the public expenditure. The stability properties of the fixed

point are, as expected, affected by the proportionalty coefficient relating the

desired debt level and the current income. Depending on the other parame-

ter configurations, this constant factor can (i) have a destabilizing effect, (ii)

can induce unconditional instability of the fixed point, or finally, (iii) have an

ambiguous role, thus implying a double stability threshold. In particular, we

shall see that, in the meaningful range of parameter values, the fixed point can

lose stability either via a subcritical flip or via a supercritical Neimark-Sacker

bifurcation. The latter leads to dynamics oscillating around the repelling focus

and the map is capable of describe business cycle scenarios. It is also discovered

that growing propensity of firms to get into debt can cause the rise of short term

fluctuations that perturb the long term oscillatory behavior. We show that this

occurs due to the intersection of the attracting invariant curve and the set of

merging preimages. We further find out that if the desired proportion between

debt and income is sufficiently high, an attractor is a chaotic area, which is

confined by critical sets of different rank. Such complex behaviors are charac-

terized by the persistence of high/low income and debt levels along extended

time periods, which may be interpreted as chaotic business cycles. Finally, we

consider the financial fragility indicator, defined as the ratio between the inter-

est payments and the flow of profits, in terms of which the financial structure of

the economy is characterized. In the framework of this model, we highlight the

existing connection between increasing values of the financial fragility indicator

and the increase of the dynamic instabilities and complexities.
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The paper is organized as follows. In Section 2 the model is formulated and

we show that debt and income variations are described by a two dimensional

discrete time map. In Section 3 we prove the existence and uniqueness of the

fixed point and we provide local asymptotic stability conditions. In Section 4,

we perform a more detailed analysis of bifurcation structure of the parameter

space. In particular, we provide three examples of the dynamics right after

the Neimark-Sacker bifurcation: in generic case and in two resonant cases. In

Section 5 numerical simulations are presented to outline the dynamic features

of business cycles and the dynamic behavior of the financial fragility indicator

is considered. Section 6 concludes.

2. A Minskyan type model

We consider a model of a closed economy with public intervention where

the strictly positive government expenditure Ḡ is exogenously given and where

the consumption C is increasing with the income Y . Investments I are entirely

determined by both the income Y and the debt stock D in a way that will be

expressed in an analytic form after the discussion on the firms’ debt modeling.

The aggregate demand Z is given by

Z = Ḡ+ C + I.

In the discrete time framework we consider, the consumption at period t results

from the actual state of the economy, namely Ct = cYt, where c ∈ (0, 1) denotes

the marginal propensity to consume. In addition, we assume that the investment

level at time period t results from the current income and the debt levels and we

set It = I(Yt, Dt). With this, the demand at time t is given by Zt = Ḡ+Ct+It.

The dynamics of the real economy is driven by the excess demand

Et = Zt − Yt = Ḡ+ Ct + It − Yt

by means of an adjustment mechanism according to which the income at time

period t+ 1 is given by

Yt+1 = Yt + αg(Et), (2.1)
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where α > 0 is a parameter that regulates the speed of adjustment. Recurrence

(2.1) describes how the increase or decrease of the production depends on excess

Et. In particular, as usual in standard macroeconomic models, we require that

an increase (decrease) of the income occurs at a positive (negative) demand

excess. This is realized by requiring that the function g : R → R is increasing

and with g(0) = 0. We stress that the origin corresponds to the macroeconomic

equilibrium at which the demand excess vanishes, namely Zt = Yt. In Fig. 1 two

examples of functional forms of g are provided. In order to adhere to real world

Figure 1: Function g(E) of (a) linear and (b) sigmoid form.

circumstances, we avoid unbounded growth of income variations Yt+1 − Yt by

introducing a saturation mechanism that accounts for the presence of material

constraints in the production side of an economy. Indeed, when the demand

excess increases, the capacity constraints will reasonably lead to lower increases

in income, due to the limited expansion from time to time of capital and labor

stock. On the other hand, when the demand excess decreases, capital cannot

be destroyed proportionally as the only factors that may reduce productivity

are attrition of machines from wear, time, and innovations. Motivated by the

previous arguments, we consider that the adjustment mechanism of income is

expressed through the sigmoid shaped continuous function g given by

g(E) = a2

�
a1 + a2

a1e−E + a2
− 1

�
,

where a1 and a2 are positive parameters. As required, the sigmoid function g
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is increasing and vanishing at the origin with slope

g�(0) =
a1a2

a1 + a2
.

Moreover, the function g is bounded from below and from above by the hori-

zontal asymptotes −a2 and a1 respectively, thus producing gradual changes of

income variations. With this, the stepwise variation of income values cannot

exceed the amplitude 2αmax{a1, a2}.
In the present model, we consider that at each period firms adjust their debt

towards a certain desired level DT
t determined by the constant factor v > 0

according to the relation DT
t = vYt. In such a modeling framework, the positive

parameter v describes the aggregate action of firms, which are the more inclined

to get into debt the higher the income level is. With this, we consider debt

adjustments according to the following recurrence

Dt+1 = Dt + γ(vYt −Dt), (2.2)

where the positive parameter γ regulates the speed of adjustment.

If we denote by ζ a fixed share of profits in total income, then total profits

are equal to ζY . Without loss of generality we assume c = 1 − ζ, that is the

total consumption is equal to total wage income. By introducing the positive

interest rate r, the debt use is expressed by the following equation

Dt+1 −Dt = It − ((1− c)Yt − rDt). (2.3)

Such equation shows that the component of investments which is not financed

by earnings must be financed by issuing new debt. The explicit expression of

the investments is obtained plugging together equations (2.2) and (2.3) for debt

variations, which leads to the following equation

It := I(Yt, Dt) = γ(vYt −Dt) + (1− c)Yt − rDt. (2.4)

The previous relation highlights that, as expected, investments are increasing

with income and, at the same time, high debt levels discourages firms to invest.
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Time variations of income and debt levels are provided respectively by re-

currence (2.1) combined with (2.4) and by recurrence (2.2). This defines the

two dimensional discrete time map T such that T : (Yt, Dt) �→ T (Yt, Dt) :=

(Yt+1, Dt+1) where

Yt+1 = T1(Yt, Dt) = Yt + αa2

�
a1 + a2

a1e−(γ(vYt−Dt)+Ḡ−rDt) + a2
− 1

�
,

Dt+1 = T2(Yt, Dt) = Dt + γ(vYt −Dt).

(2.5)

Remark 1. We mention that the quadrant R2
+ := [0,+∞) × [0,+∞) is not in-

variant under map T . This implies that certain componentwise positive initial

conditions may be iterated outside the region R2
+, thus having no economic

significance. In order to preserve the model capability of representing meaning-

ful economic scenarios, we will limit our analysis to those orbits along which

income, debt and investments maintain positive values.

Following the Minsky theory, we focus on the characterization of the financial

structures of the economy in terms of the capability of firms to pay their debts.

This concept is understood in terms of the so called financial fragility indicator

ft, defined as the ratio between the amount of interest payments rDt and the

flow of profits Πt, that is

ft :=
rDt

Πt
.

Whenever the ratio ft assumes values lower than the unity, the expected cash

flows are sufficient to cover the existing financial obligations for period t, firms

are financed at low risk. This is the case of hedge finance. Instead, when ft

assumes approximately unitary values, physical assets are financed at high risk,

being the portion of cash flows owed to cover the payment of interests just

sufficient to cover the payment of interests and the reimbursement of principal

debt require new borrowing by firms. This is the case of speculative finance.

The extreme occurrence where the financial fragility indicator exceeds unitary

values represents high risky method of external financing, being profits not

sufficient to cover even the interest due on outstanding debt. This is the case

of ultra-speculative or Ponzi finance.
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In the present model, where profits can be expressed as Πt = (1− c)Yt, the

financial fragility indicator ft can be rewritten as

ft =
rDt

(1− c)Yt
. (2.6)

3. Local bifurcation analysis of the fixed point

In this Section we provide the local analysis of the discrete time model. The

existence and uniqueness of the fixed point of map T are stated in the following

proposition.

Proposition 1. The unique componentwise positive equilibrium of map T is

given by

F ∗ = (Y ∗, D∗) =
Ḡ

r

�
1

v
, 1

�
. (3.1)

Proof. It basically follows by imposing the stationary conditions Yt+1 = Yt and

Dt+1 = Dt.

The level of income at fixed point F ∗ is, as expected, increasing with the

public expenditure Ḡ while it is inversely proportional with respect to the factor

v. Similarly, the debt equilibrium level is increasing with the public expenditure

Ḡ. Differently from the equilibrium configuration of the model formulated in

[5], where both income and debt vanish, the fixed point F ∗ is characterized by

strictly positive income and debt, a circumstance that follows from the aggregate

demand including an autonomous component. Noteworthy, the fixed point F ∗

has an economic significance whenever it describes positive investments. Since

at F ∗ investment are given by

I∗ := I(Y ∗, D∗) = Ḡ

�
1− c

rv
− 1

�
,

it holds I∗ > 0 whenever

v <
1− c

r
.

Moreover, the financial fragility (2.6) computed at F ∗ is given by

f∗ :=
rD∗

(1− c)Y ∗ =
rv

1− c
. (3.2)
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This shows that, at equilibrium, the state of the financial structure of the econ-

omy depends on both the factor v and the interest rate r through a linear

relation.

The following proposition highlights stability properties of F ∗ in terms of

the parameter v.

Proposition 2. The fixed point F ∗ is locally asymptotically stable provided

that

vf < v and v < vns,

where

vf : =
2γ − 4

αγ(2 + r)

a1 + a2
a1a2

, vns :=
1

α(1 + r)

a1 + a2
a1a2

.

At v = vf , F ∗ undergoes flip bifurcation while, at v = vns, it undergoes

Neimark-Sacker bifurcation.

Proof. The trace and the determinant of the Jacobian matrix J∗ of map T

computed at fixed point F ∗ are given respectively by

trJ∗ = 2− γ + αγv
a1a2

a1 + a2
, detJ∗ = 1− γ + αγv(1 + r)

a1a2
a1 + a2

.

The characteristic polynomial p(λ) of the Jacobian J∗, defined as p(λ) = λ2 −
trJ∗ + detJ∗, computed at λ = ±1 gives

P (1) = αγrv
a1 + a2
a1a2

, P (−1) = 4− 2γ + αγv(2 + r)
a1a2

a1 + a2
.

Jury’s conditions for the asymptotic stability of F ∗ read as

P (1) > 0 always satisfied,

P (−1) > 0 iff v > vf :=
2γ − 4

αγ(2 + r)

a1 + a2
a1a2

,

detJ∗ < 1 iff v < vns :=
1

α(1 + r)

a1 + a2
a1a2

and the thesis follows.

Proposition 2 marks an important difference between the model here formu-

lated and that provided in [5] where the factor v has just destabilizing effects.
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Figure 2: (Color online) Bifurcation structure of the (v, γ) parameter plane of T . Distinct

colors correspond to different periods of cycles. Areas shown gray are related to divergent

dynamics. The other parameters are α = 1, a1 = 4, a2 = 5, Ḡ = 10, r = 0.02. The horizontal

arrow corresponds to γ = 17.

Differently, for map T the nonlinear saturation effects on income variations give

to the parameter v an ambiguous role in determining the stability of the fixed

point and a double stability threshold may be present.

Fig. 2 presents a 2-dimensional bifurcation diagram in (v, γ)-parameter plane,

where bifurcation curves related to both flip, ηf , and Neimark-Sacker, ηns, bifur-

cations are shown by solid lines. In particular, we identify three regimes where

variations of v have different dynamic consequences. The first regime is charac-

terized by the impossibility for the flip bifurcation to occur, being vf < 0, which

is possible provided that γ < 2. In this case, the parameter v has a destabilizing

role and the fixed point F ∗ loses its stability through the Neimark-Sacker bifur-

cation whenever v is increased beyond the threshold vns. The second regime is

characterized by the presence of a double stability threshold, that is, both the

flip and the Neimark-Sacker bifurcations can occur, being 0 < vf < vns, which

is possible provided that 2 < γ < 4(1/r+1). In this second regime, an increase
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of v from below to above the threshold vf determines the stability retrieval of

F ∗ via the flip bifurcation and a further increase of it beyond the threshold vns

causes the stability loss of F ∗ via the Neimark-Sacker bifurcation. The third

regime is characterized by unconditional instability of F ∗ due to nonexisting

v satisfying both the stability conditions, being vns ≤ vf , which is the case if

4(1/r + 1) ≤ γ.

The Fig. 3 shows bifurcation diagrams of income (a), debt (b) and invest-

ments (c) varying the ratio v with other parameters kept fixed, which cor-

responds to the horizontal arrow shown in Fig. 2. We note that, along the

mentioned bifurcation path, dynamic variables as well as investments maintain

positive values. The represented dynamical scenario is placed in the second

regime where both flip and Neimark-Sacker bifurcations can occur. However,

we choose the range of v’s that are mostly related to nontrivial dynamics. As

follows from expressions of equilibrium levels Y ∗, D∗ and I∗ (and confirmed by

the plot in Fig. 3), when F ∗ is stable both income and investments decrease

at increasing values of v while the debt is not affected. Then, when v exceeds

the threshold vns, the fixed point F ∗ undergoes Neimark-Sacker bifurcation and

orbits are attracted to the newly born invariant curve surrounding F ∗. We also

Figure 3: One-dimensional bifurcation diagrams versus v of (a) income Y , (b) debt D and

(c) investments I for the same parameter set as in Fig. 2. The adjustment speed γ = 17 (the

respective parameter path is shown in Fig. 2 by the black arrow) and the marginal propensity

is c = 0.7.

remark here the existing connections between the local stability properties of

the fixed point F ∗ and the fragility of the financial structure of the economy.

To this purpose, we exploit relation (3.2), that expresses the value f∗ of the
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fragility at F ∗ as a linear function of the constant factor v. From this, it follows

that an increase of v implies an increase of f∗ that is further accompanied by

the dynamic stability loss of F ∗ whenever v crosses the threshold value vns, at

which the Neimark-Sacker bifurcation occurs.

4. More detailed analysis of flip and Neimark-Sacker bifurcations

In this section we provide a more detailed analysis of the map dynamics

occurring after stability loss of the fixed point, as the parameter v crosses the

flip or the Neimark-Sacker bifurcation value (for exhaustive description of these

bifurcations the reader may refer to classical texts, for instance, [6–8]). In Fig. 2,

one can see that for values v < vf the map exhibits only divergent orbits. As

for the Neimark-Sacker bifurcation value ηns, one observes the typical famous

structure consisting of multiple regions related to attracting cycles of different

periods emerging from ηns (see, for instance, [9–11] to cite a few). Such regions

are often called Arnold tongues or mode-locking tongues. They may also be

observed in a certain class of circle maps and in 1D discontinuous piecewise

increasing maps [12–14].

As already mentioned, when F ∗ loses stability through flip bifurcation at v =

vf (with decreasing v), we observe no stable dynamics emerging. It means that

for the chosen parameter set the flip bifurcation is subcritical. To understand

whether it is always the case we need to construct the so called normal form

for v = vf . To simplify computation, we can get rid of the parameter Ḡ,

which influences only scaling of the variables Y and D. Indeed, the map T is

topologically conjugate to the map �T = �Tv : (Yt, Dt) �→ (Yt+1, Dt+1) with

Yt+1 = Yt + αa2

�
a1 + a2

a1e−γvYt+(γ+r)Dt + a2
− 1

�
,

Dt+1 = γvYt + (1− γ)Dt

(4.1)

through the homeomorphism h(Y,D) = (Y − Y ∗, D − D∗). The map �T has a

unique fixed point (0, 0), which undergoes a flip bifurcation at v = vf .
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Proposition 3. If 2 < γ < 4(1/r+1), then there exists a neighborhood U(vf )

such that for any v ∈ U(vf ) map �T given in (4.1) has a local one-dimensional

invariant manifold Wv such that Wvf is the central manifold at the moment

of bifurcation. The restriction of map �T = �Tvf to its center manifold Wvf is

locally topologically conjugate near the fixed point (0, 0) to the normal form

η → −η + c(0)η3 +O(η4), (4.2)

where

c(0) =
2(γ − 2)(r + 2)3(a21 + a22 − a1a2)

3(a1 + a2)2(rγ − 4r − 4)
. (4.3)

Proof. Proof is presented in Appendix A.

The immediate implication from Proposition 3 is the following: provided

that 2 < γ < 4(1/r + 1), the flip bifurcation, which the fixed point F ∗ of the

initial map T undergoes at v = vf , is subcritical. Indeed, all the terms (4.3)

except for (γ − 2) and (rγ − 4r − 4) are always positive (given that all the

parameters are positive). Hence, for the mentioned range of γ the coefficient

c(0) is negative. It guarantees that for v > vf , which are at least sufficiently

close to the bifurcation value, along with the stable fixed point F ∗, there also

exists a saddle 2-cycle C2, whose stable set confines the basin of attraction of the

fixed point (see Fig. 4). At v = vf the cycle C2 collides with F ∗ and disappears.

Then for v < vf the point F ∗ becomes a saddle and almost all orbits diverge.

Note that if γ < 2, then the flip bifurcation type changes to supercritical,

but the value vf becomes then negative (as has been already mentioned in the

previous section), which is meaningless from the economic viewpoint.

Now we turn to deeper investigation of Neimark-Sacker bifurcation, whose

main properties are described by

Proposition 4. If

C1. γ �= k(1/r + 1), k = 2, 3, 4,

then map �T , for values of v sufficiently close to vns, is locally topologically

conjugate near the fixed point (0, 0) to the normal form

z → r(v)eiθ(v)z + c(v)z|z|2 +O(|z|4), (4.4)

13



Figure 4: (Color online) Phase space of the map T with γ = 17, v = 0.43. Basin of attraction

of the fixed point F ∗ is shown light-blue and is confined by the stable set (shown by blue

arrows) of the saddle 2-cycle C2 (red points). Gray region is related to divergent orbits. The

other parameters are as in Fig. 2.

where z ∈ C, c(v) ∈ C and r(vns) = 1. Moreover, there holds

�
�
e−iθ(vns)c(vns)

�
= −rγ2((a1 − a2)

2γ + 2a1a2)

4(1 + r)α2a21a
2
2

. (4.5)

Proof. Proof is presented in Appendix B.

Since all parameters of the map T are positive, the expression in (4.5) is

always negative. It means that when v increases over the threshold v = vns,

regardless the other parameter values, the fixed point (0, 0) of map �T , as well as
the fixed point F ∗ of the initial map T , loses stability through the supercritical

Neimark-Sacker bifurcation. Recall that, such a stability loss is related to the

appearance of an attracting closed invariant curve surrounding the unstable

fixed point F ∗. In the applied context this is associated with occurrence of a

business cycle, for which the economic interpretation is given in Sec. 5.

The structure of orbits right after the bifurcation differs depending on the

parameters. Namely, the orbits can either be everywhere dense on the invariant

curve or be attracted to a stable node cycle CI
n of period n, which exists together

with a saddle cycle CII
n of the same period. The unstable set Wu

�
CII
n

�
composes

then the invariant curve. Generically, in the space of parameters there exist an
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infinite number of regions Pn (Arnold tongues) associated with cycle pairs CI
n,

CII
n . For parameter values being close to the Neimark-Sacker bifurcation curve,

the boundaries of Pn are related to fold bifurcations at which the two respective

cycles appear/disappear. In Fig. 2, one can clearly distinguish a sequence of

tongues Pn, n ≥ 4, corresponding to so called basic cycles. With decreasing γ

the period n increases and the regions Pn extend to larger values of v.

Let us consider as an example a generic tongue P5 related to a 5-cycle shown

in Fig. 5(a). The upper and lower boundaries, ηfd,15 and ηfd,25 , are related to fold

bifurcations at which a stable node CI
5 and a saddle CII

5 appear/disappear, while

at the third boundary ηfl5 the stable node cycle CI
5 undergoes a supercritical flip

bifurcation leading to an attracting 10-cycle.

For parameter pairs located inside P5 sufficiently close to the Neimark-Sacker

bifurcation curve, in the phase space of the map T there exists an invariant

curve Γ composed by the unstable set Wu
�
CII
5

�
of the saddle CII

5 , all branches

of which end up at points of the stable CI
5 . In Fig. 5(b) we present an area

of the phase space of T with γ = 70.7, v = 0.4413 containing the cycles CI
5

(blue points) and CII
5 (red points) together with the invariant curve Γ (red

line). The parallelepiped area (which is outlined black in Fig. 5(b)) with vertices

(1132.92, 499.959), (1133.08, 500.033), (1133.095, 500.033) and (1132.935, 499.959)

is shown scaled in Fig. 5(c). The basin of attraction of CI
5 is confined by the

stable set of some saddle cycle, whose exploration is beyond the scopes of the

current paper.

With increasing further the value of v, a sequence of flip bifurcations asso-

ciated with the cycle CI
5 occurs, due to which narrow regions related to cycles

of period 5 · 2k, k ≥ 1, may appear. At a certain moment a 5 · 2k-piece chaotic

attractor is observed, whose pieces then merge pairwise with increasing v. At

a certain “critical” value of v, this chaotic attractor is destroyed due to the

boundary crisis, that is it collides with the boundary of its basin of attraction

and for larger v almost all orbits diverge.

We remark here that even if the phenomena related to the periodicity tongue

associated with period 5, described above, occur when the value of adjustment
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Figure 5: (Color online) (a) Periodicity region P5 related to period 5 in the (v, γ) parameter

plane. (b) Phase space for the point marked ‘b’ in (a) with γ = 70.7, v = 0.4413. (c) Scaled

parallelepiped area (with vertices (1132.92, 499.959), (1133.08, 500.033), (1133.095, 500.033),

(1132.935, 499.959)), which is outlined black in (b). Other parameters are as before.

speed γ is large, this value is still relatively small with respect to the values of

income, Yt, and debt, Dt. Also the term γ(vYt − Dt) in the debt adjustment

recurrence (2.2) remains at small values (not exceeding 0.5 in magnitude) along

asymptotic orbits and, hence, there are no drastic changes in Dt. Moreover, the

fragility indicator ft, computed along asymptotic orbits with c = 0.7, equals

approximately 0.03, which corresponds to the case when firms are financed at

low risk, as indicated in Sec. 2.

Now we discuss the case when the condition C1 in Proposition 4 is not satis-
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fied and the related Neimark-Sacker bifurcation is degenerate. What is the result

of such a bifurcation needs deeper analysis (for details see, e. g., [8, Chapter 9]

and references therein). In fact, three critical values of γ are associated with

three strong resonances and represent bifurcation points of codim-2. The value

γ = 4(1/r + 1) is related to strong resonance 1:2, when both the multipliers of

the fixed point e±iθ(vns) = −1. The value γ = 3(1/r + 1) =: γ1:3 is associated

with strong resonance 1:3, when θ(vns) = 2π/3. And for γ = 2(1/r + 1) =: γ1:4

strong resonance 1:4 occurs, that is, θ(vns) = π/2. In general, there may oc-

cur also 1:1 strong resonance for which e±iθ(vns) = 1, but this cannot happen

for the fixed point F ∗. Below we consider only cases of strong resonances 1:3

and 1:4, leaving the third case (1:2), which corresponds to intersection of flip

and Neimark-Sacker bifurcation curves, for further studies. The dynamics of

the map T in the mentioned two cases is described only numerically for the

particular chosen set of parameters. For different parameter set, the general

dynamical picture can be different, especially in case of strong resonance 1:4,

which is much more tricky than the case 1:3.

Let us first fix γ = γ1:3. As already visible in Fig. 2, there is no tongue

related to a 3-cycle as one could expect. Fig. 6(a) shows the enlarged part of

the (v, γ) parameter plane near the codim-2 bifurcation point R1:3 = (vns, γ1:3).

Though the complete picture of dynamics that can occur in the neighborhood

of the point R1:3 is unknown, certain common features can be described. For all

parameter values close enough to R1:3, the Neimark-Sacker bifurcation produces

a closed invariant curve Γ surrounding the fixed point F ∗ and there also exists

a saddle 3-cycle C3, which is located outside Γ and whose stable set confines its

basin of attraction. In Fig. 6(b) the related part of the phase space is shown.

Note that we use here the same trick as in Fig. 5(c), plotting in scale the

parallelepiped area with vertices (1133.3095, 499.9935), (1133.3397, 500.0072),

(1133.3405, 500.0072), (1133.3103, 499.9935). With increasing v, the curve Γ

becomes larger and finally is destroyed through boundary crisis (that is, colliding

with the boundary of its basin of attraction). In the (v, γ) parameter plane, the

curve related to the boundary crisis of Γ touches the Neimark-Sacker bifurcation
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curve at the codim-2 point R1:3 (see Fig. 6(a)). We notice that for such a large

adjustment speed γ, debt changes more sharply; however, the fragility indicator

ft computed along asymptotic orbits is still about 0.03.

Figure 6: (Color online) (a) 2D bifurcation diagram in the (v, γ) parameter plane

near the codim-2 bifurcation point R1:3. (b) Scaled parallelepiped area (with vertices

(1133.3095, 499.9935), (1133.3397, 500.0072), (1133.3405, 500.0072), (1133.3103, 499.9935)) of

the phase space corresponding to the point marked ‘b’ in (a) with v = 0.44118, γ = 148.

Other parameters are as before.

Let us now turn to the region related to stable 4-cycle emerging from the

point R1:4 = (vns, γ1:4), at which strong resonance 1:4 occurs (see Fig. 7(a)).

This case appears to be much more tricky than the strong 1:3 resonance. De-

tailed description of dynamics that can occur in the neighborhood of the related

parameter point can be found, e. g., in [8]. Here we briefly describe the bifur-

cation scenario associated with the codim-2 point R1:4 = (vns, γ1:4) for map T

with the particular parameter set. As one can see in Fig. 7(a), showing a 2D

bifurcation diagram in the (v, γ) parameter plane, for the values of γ < γ1:4

being sufficiently close to γ1:4, there are two regions related to multistability,

P1&4 (shown pink) and PΓ&4 (shown orange). In the region P1&4 a stable fixed

point F ∗ coexists with a stable 4-cycle CI
4 . The latter appears due to the fold

bifurcation together with a saddle 4-cycle CII
4 . In Fig. 7(b) (which corresponds

to the parameter pair marked ‘b’ in Fig. 7(a)) we plot in scale the parallelepiped
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Figure 7: (Color online) (a) 2D bifurcation diagram in the (v, γ) parameter plane

near the codim-2 bifurcation point R1:4. (b)–(d) Scaled parallelepiped area with ver-

tices (b) (1133.21, 499.94), (1133.447, 500.047), (1133.459, 500.047), (1133.222, 499.94);

(c) (1133.038, 499.92), (1133.347, 500.06), (1133.359, 500.06), (1133.05, 499.92); (d)

(1132.635, 499.89), (1133.038, 500.07), (1133.049, 500.07), (1132.646, 499.89) of the phase

space corresponding to the respective points marked in (a) with γ = 99 and (b) v = 0.44117,

(c) v = 0.44122, (d) v = 0.44135. Other parameters are as before.

area of the phase space with vertices (1133.21, 499.94), (1133.447, 500.047),

(1133.459, 500.047) and (1133.222, 499.94), where CI
4 is shown by blue points,

CII
4 by red points and its unstable set by red line. The stable set W s(CII

4 ) (not

shown explicitly in Fig. 7(b)) separates the basins of attraction of F ∗ (light-

blue) and CI
4 (violet). One branch of the unstable set of CII

4 is attracted to the
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node CI
4 , while the other branch asymptotically approaches F ∗.

With increasing v when a parameter point crosses Neimark-Sacker bifurca-

tion boundary and enters the region PΓ&4, the fixed point F ∗ becomes un-

stable and an invariant curve Γ appears still coexisting with the stable 4-

cycle. In Fig. 7(c) (which corresponds to the parameter pair marked ‘c’ in

Fig. 7(a)) we show scaled the parallelepiped area of the phase space with vertices

(1133.038, 499.92), (1133.347, 500.06), (1133.359, 500.06) and (1133.05, 499.92),

where Γ is plotted by green line. The stable set W s(CII
4 ) (not explicitly shown),

as before, separates the basins of two attractors.

With further increasing v, the invariant curve Γ disappears due to boundary

crisis, colliding with W s(CII
4 ). The cycle CI

4 remains the only attractor, but

now both cycles are located on the closed invariant curve Γ� composed by the

unstable set Wu(CII
4 ). In Fig. 7(d) (which corresponds to the parameter pair

marked ‘d’ in Fig. 7(a)) there is shown the scaled parallelepiped area of the phase

space with vertices (1132.635, 499.89), (1133.038, 500.07), (1133.049, 500.07) and

(1132.646, 499.89), where Γ� is plotted by red line.

For the values of γ > γ1:4, the scenario with varying v is the same as for

any generic tongue. That is, with increasing v the fixed point F ∗ undergoes

the Neimark-Sacker bifurcation and the invariant curve Γ appears around F ∗.

With further increasing v the cycles CI
4 (stable) and CII

4 (saddle) are born on Γ

due to fold bifurcation. Then there follows the bifurcation sequence described

above for the tongue related to period 5.

Note that if we fix v close to vns and increase γ starting from the value

below γ1:4 where the invariant curve Γ is the only attractor, the scenario is the

following. First a pair of 4-cycles, CI
4 and CII

4 , appear due to fold bifurcation

outside Γ. Then Γ undergoes boundary crisis and disappears, but the unstable

set Wu(CII
4 ) composes now a new (wider) invariant curve Γ�. Finally, CI

4 and

CII
4 disappear due to another fold bifurcation and there remains an attracting

Γ�. For a detailed description of similar scenarios of bifurcations associated with

invariant curves we refer to [11] and references therein.
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5. Dynamic features of business cycles

As shown above the model can describe business cycle scenarios through

self-sustained oscillations taking place along stable attractors that arise as the

stability condition in Proposition 2 is violated on the Neimark-Sacker bifur-

cation side (e. g., for increasing values of v beyond the threshold vns). The

presence of such stable attractors surrounding the fixed point F ∗, at least just

after the bifurcation, follows from the fact that, according to Proposition 4,

the mentioned bifurcation when non degenerate is of supercritical type. In this

section we uncover economic mechanism for occurrence of such self-sustained

oscillations and discuss the relation between dynamical complexities and the

financial fragility indicator ft defined in (2.6).

In order to highlight the economic reasons underlying the occurrence of

oscillations, let us focus on the difference between the desired debt and the

current debt, a term which will be denoted as δt in the sequel and given by

δt = vYt −Dt.

The difference δt influences the value of investments It at the same time step.

Let us describe the business cycle starting from the configuration where the

economy is characterized by low investment, income and debt levels. An illus-

trative example of such a cyclic behavior for v = 0.47, γ = 2.4 and the other

parameters being as before is reported in Fig. 8. In this situation, sufficiently

high (and positive) values of the difference δt contribute to investments, making

them capable to support a positive demand excess. This causes, in the next step

t+1, the rise of income which in its turn determines a further rise of investments

in the subsequent steps. Further, the positiveness of δt determines positive debt

adjustments at time t+1 through recurrence (2.2) and its positive trend is sup-

ported in subsequent steps due to the income increases. Along this stage of the

business the variables undergo positive variations such that the difference δt is

maintained on the positive side and investments are increasing. This occurrence

is clearly distinguishable in Figs. 8(c),(d), where positive values of δt correspond
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to increasing investments. This is in line with the usual economic interpretation

according to which an increasing debt results in increasing investments, since

investments come from a part of the debt use.

Figure 8: (Color online) (a)–(d) Time series of income (Yt), debt (Dt), investments (It) and

difference δt = vYt −Dt, respectively. (e) Scaled parallelepiped area of the phase space with

vertices (1045, 492), (1070, 504), (1074, 504), (1049, 492), containing the attracting invariant

curve Γ (green). The parameters are v = 0.47, γ = 2.4,α = 1, a1 = 4, a2 = 5, Ḡ = 10, r =

0.02, c = 0.7.

The positive variations of income and debt proceed along the time line main-

taining the positiveness of δt until the saturation mechanism is involved. At this

stage, income increments become negligible with respect to positive debt varia-

tions. Then, income contributions to investments are no more sufficient to keep

them growing, thus no more compensating the negative term due to high debt

levels. This causes the sign change of the difference δt, as well as the decrease

of investments and determines negative values of the aggregate demand excess.

From this stage forward the income begins to drop down together with debt.
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The negative variations of the dynamic variables along the cycle maintain the

negativity of δt and the decreasing trend of investments. Again one can see in

Figs. 8(c),(d), that negative values of δt are paired with the decreasing trend of

investments. The economic recession proceeds until the saturation mechanism is

involved and income decrements become negligible with respect to the negative

debt variations. At this stage, the debt level is small with respect to income

and the sign of δt changes from the negative to the positive side, thus favoring

the spread of investments. This reactivates positive variations of income and

debt and the business cycle is played again.

Another example of cyclic dynamics is reported in Fig. 9, obtained with the

same parameter set as in Fig. 8, except for the value of the constant factor v,

which is increased from 0.47 to 0.706. In this case, the fundamental oscillatory

behavior is supported by the same dynamic mechanism described above. How-

ever, now the invariant curve becomes “wavy” (see Fig. 9(e)). This means that

the business cycle is perturbed by short term fluctuations due to the increased

value of v (see, in particular, Figs. 9(c),(d)). To understand the nature of these

deformations, one should consider the critical set of the map T and its images,

as explained, for example, in [16].

Recall that the notion of critical set is typical for non-invertible maps (see

[6, 15, 17–19] to cite a few). A critical set LC is defined as a geometric locus

of points in the phase space having at least two coincident preimages. These

coincident preimages are located on the set LC−1, also referred to as the set of

merging preimages. In the case of the considered map T (being continuously

differentiable) LC−1 is the set of points (Y,D) such that2

detDT (Y,D) = 0. (5.1)

Equation (5.1) allows for analytical solution:

D =
ln s± + Ḡ

γ + r
+

γv

γ + r
Y, (5.2)

2Note that in general LC−1 is only included in the set of points at which the determinant

of the Jacobi matrix vanishes.
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where

s± =
a2
2a1

�
A±

�
A2 − 4

�
, A =

αγ(a1 + a2)v(1 + r)

γ − 1
− 2.

Note that (5.2) produces real values only for γ > 1 and, hence, for γ ≤ 1 the

set LC−1 = ∅. The critical set is then LC = T (LC−1) = ∅ for γ ≤ 1, while for

γ > 1 it is given as

�
(Ȳ , D̄) : Ȳ = Y + αa2

�
a1 + a2

a1s± + a2
− 1

�
,

D̄ =
(ln s± + Ḡ)(1− γ)

γ + r
+

γv(1 + r)

γ + r
Y

�

Y ∈R
.

(5.3)

Clearly, (5.3) defines in the phase space two parallel lines, say, L+ and L−.

The lines L+ and L− divide the phase space into three subregions, namely, two

half-planes

Π+ =

�
(Y,D) : D >

(ln s+ + Ḡ)(1− γ)

γ + r
+

γv(1 + r)

γ + r
Y

�
,

Π− =

�
(Y,D) : D <

(ln s− + Ḡ)(1− γ)

γ + r
+

γv(1 + r)

γ + r
Y

�
,

each point of which has only one preimage and the band

B =

�
(Y,D) :

(ln s+ + Ḡ)(1− γ)

γ + r
+

γv(1 + r)

γ + r
Y > D

>
(ln s− + Ḡ)(1− γ)

γ + r
+

γv(1 + r)

γ + r
Y

�
,

each point of which has three preimages. That is, map T is of type Z1−Z3−Z1.

Let us turn back to comparing Figs. 8 and 9, where set of merging preimages

LC−1 is shown with dark-gray line and the critical set LC is shown with light-

blue line. For smaller value of v (in Fig. 8) the invariant curve Γ does not have

any contacts/intersections neither with LC−1, nor with LC. With increasing

v, the curve Γ expands towards both branches of LC−1 and at some v = v̄ it

becomes first tangent to the lower branch of LC−1. For v slightly greater than

v̄, the curve Γ has two intersections with LC−1 at points A1 and A2 (shown

white in Fig. 9). As shown in [16], it then follows that Γ is tangent to LC at

points Bi = T (Ai), i = 1, 2 (shown blue in Fig. 9). When v becomes even larger,
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Figure 9: (Color online) (a)–(d) Time series of income (Yt), debt (Dt), investments (It) and

difference δt = vYt −Dt, respectively. (e) Scaled parallelepiped area of the phase space with

vertices (639, 453), (749, 533), (757, 533), (647, 453), containing the attracting invariant curve

Γ (green). The constant factor v = 0.706, the other parameters are as in Fig. 8.

the curve Γ expands more and another two intersections occur, now with the

upper branch of LC−1, at points A3 and A4. This produces another two points

of tangency between Γ and LC, namely, Bi = T (Ai), i = 3, 4. Consequently,

Γ is also tangent to critical lines of higher rank at the successive images of

Bi (see, for instance, the points T (B1) and T 2(B1) located at LC1 and LC2,

respectively). In such a way, Γ starts to have smooth oscillations in its shape.

Note that the slope of Γ at points Ai changes as v varies. It may happen that

at some v = ṽ this slope becomes collinear to the eingenvector corresponding

to zero eigenvalue3. After this occurrence (that is, for v > ṽ) the curve Γ has

3Recall that at the points of LC−1 the determinant detDT (Y,D) = 0 and, hence, along

LC−1 one of the eigenvalues is always zero.

25



self-intersections and is not smooth any more. The interested reader can refer

to [16] for more details.

Further increase of the constant factor v may lead to the rise of complex

dynamics due to a homoclinic tangle and the attractor becomes a chaotic area

confined by segments of critical lines of different rank. To justify this we report

in Fig. 10 the maximum Lyapunov exponent λmax computed along the orbits

at increasing values of v. The simulation shows that, up to the approximate

Figure 10: The maximum Lyapunov exponent versus the constant factor v. The other pa-

rameters are as in Fig. 8. The dashed lines correspond to values of v in Figs. 8, 9 and 11.

value v ≈ 0.72, the exponent λmax either stays at zero level or is negative. This

indicates that asymptotic dynamics belongs to an attracting invariant curve or

a cycle. However, when v is sufficiently high (here, approximately v > 0.72)

λmax is placed at positive values, except for several very small intervals where

it is negative, thus attesting for the rise of chaotic behaviors.

The dynamic scenario related to the value v = 1.7, at which the maximum

Lyapunov exponent λmax is positive and the model is at a chaotic regime, is rep-

resented in Fig. 11. The time series (see Fig. 11(a)–(d)) show that fluctuations

of economic variables no longer occur at regular intervals and the determinis-
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Figure 11: (Color online) (a)–(d) Time series of income (Yt), debt (Dt), investments (It) and

difference δt = vYt −Dt, respectively. (e) Scaled parallelepiped area of the phase space with

vertices (115, 210), (405, 710), (425, 710), (135, 210), containing the attracting chaotic area

(green). The constant factor v = 1.7, the other parameters are as in Fig. 8.

tic dynamics seems to be stochastically driven. We observe that, for v being

large enough, income, debt and investments remain at high or low levels along

extended time periods, during which short-term perturbations with lower inten-

sities take place. In this scenario we can interpret the abrupt switching between

the long term trends as a chaotic business cycle.

Finally, we point out the existing connections between the constant factor

v, the financial fragility indicator ft and the global dynamical properties of the

system. Indeed, increasing values of the constant factor v determine both the

increase of the dynamic complexities arising from the model and the increase

of the financial fragility indicator. A first feeling of such an occurrence comes

from the linear relation holding between the fragility f∗ computed at the fixed
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Figure 12: (a) Bifurcation diagram of financial fragility indicator ft versus v. (b)–(d) Time

series of ft at (b) v = 0.47, (c) v = 0.706, (d) v = 1.7, corresponding to Figs. 8, 9 and 11 resp.

The other parameters are as before.

point and the parameter v (see equation (3.2)). In Fig. 12(a), the bifurcation

diagram of the financial fragility versus v is provided, thus showing that a similar

relation between ft and v is maintained, on average, also along nonstationary

orbits. It is clearly visible that with larger v the value of ft grows and its

deviations from the fragility f∗ (shown by green line) become more significant.

The Figs. 12(b)–(d) show time series of ft for the parameter values as in Figs. 8,

9 and 11 respectively, which attests increasing complexity of dynamics as well.

Note, however, that even for larger values of v the fragility indicator is ft � 1,

which corresponds to the case of hedge finance, when the firms are financed at

low risk.
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6. Conclusion

We have considered a modified version of the model formulated in [5] and sur-

veyed in [1], where a Minskyan type macroeconomic model with an endogenous

debt adaptation mechanism is investigated. Our contribution is the reformu-

lation of the above mentioned model within a discrete time framework, which

is suitable for future developments that can involve expectation formation and

learning processes. In addition, we have introduced a nonlinear adjustment

mechanism of income to account for real world physical and social constraints.

With those methodological actions, we have constructed a 2D map characterized

by a nontrivial fixed point that matches the economic equilibrium.

We have studied the stability properties of the fixed point in terms of a

constant factor v that describes the firms’ aggregate behavior determining the

desired level of debt as a certain proportion of the current income. Variations

of parameter v can give rise to a flip or a Neimark-Sacker bifurcation of the

fixed point. We have proved that, regardless of the other parameter values, the

flip bifurcation is always subcritical, while the Neimark-Sacker bifurcation is

supercritical. The structure of orbits right after the occurrence of the Neimark-

Sacker bifurcation differs depending on the other parameters. In generic case,

the attractor is either an invariant curve or a stable cycle of period n, n ≥ 5,

existing in a certain parameter region, often called the Arnold tongue. In both

cases such asymptotic dynamics can be interpreted as a business cycle.

In addition, we have described two nongeneric cases of the Neimark-Sacker

bifurcation, namely, the cases related to 1:3 and 1:4 resonances. In the former

case, there is no attracting cycle of period 3, only an invariant curve. And in

the parameter space instead of Arnold tongue related to period 3 one observes

that the region associated with divergent orbits touches the Neimark-Sacker

bifurcation curve at the codim-2 point R1:3. It means that in the neighborhood

of this parameter point, even for small deviations of v from the bifurcation value,

the market becomes unstable with unbounded growth of income and debt. In

the neighborhood of the other codim-2 point R1:4, for some parameter values
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one observes coexistence of a stable cycle of period 4 with either a stable fixed

point or an attracting invariant curve. This implies that depending on initial

condition the market may end up at two different business cycles.

As the propensity of firms to get into debt increases and the parameter v

becomes distant from the Neimark-Sacker bifurcation curve, the attractor un-

dergoes further modifications. In particular, at some level of v, the attracting

invariant curve starts having “crinkles” in its form, that is the large business

cycle is perturbed by short term fluctuations, thus attesting increasing com-

plexity of dynamics. We show that this happens due to intersection of the

invariant curve with the set of merging preimages. For even larger values of the

bifurcation parameter, chaotic dynamics arises. Namely, the invariant curve is

destroyed through a homoclinic tangle and the attractor becomes a chaotic area,

which is confined by segments of critical lines of different rank.

Finally, along the line marked by the Minsky theory, the so called financial

fragility indicator was considered, which provides a measure of the fragility of

the financial structure of the economy. We have shown that increasing propen-

sity of firms to get into debt is paired with increasing values of the financial

fragility indicator as well as of instabilities and complexities characterizing dy-

namic outcomes.
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Appendix A. Proof of Proposition 3

The proof is merely technical and uses the well-known projection method for

center manifold computation, described in detail in [8]. Therefore only a sketch

is provided.
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We decompose the map �T into Taylor series in the neighborhood of the fixed

point (0, 0):

�T (x) = �Jx+ F (x) = �Jx+
1

2
B(x, x) +

1

6
C(x, x, x) +O(�x�4), (A.1)

where4 x = (Y,D)T, �J is the Jacobian matrix of �T evaluated at (0, 0) and

Bi(x, y) =

2�

j,k=1

∂2 �Ti(0, 0)

∂ξj∂ξk
xjyk, Ci(x, y, u) =

2�

j,k,l=1

∂3 �Ti(0, 0)

∂ξj∂ξk∂ξl
xjykul, i = 1, 2.

Clearly B2(x, y) ≡ 0 and C2(x, y, u) ≡ 0. Let us denote as q the eigenvector

of �J corresponding to the eigenvalue µ = −1. We also compute the adjoint

eigenvector p such that �JTp = µp and �p, q� = 1.5 Then the center manifold

Wvf
of �Tvf is represented by a function whose Taylor series starts from quadratic

terms and the restriction �Tvf |Wvf
takes the form

u �→ −u+ a(0)u2 + b(0)u3 +O(u4), (A.2)

where the expressions for coefficients a(0) and b(0) include �J , q, p, B(q, q) and

C(q, q, q). By the Theorem about the normal form for the flip bifurcation (see,

[8, p. 121]), the map (A.2) is topologically conjugate to

ξ �→ −ξ + c(0)ξ3 +O(ξ4),

where

c(0) = a2(0) + b(0) =
1

6
�p, C(q, q, q)� − 1

2
�p,B(q, ( �J − Id)−1B(q, q))�

with Id being the identity matrix. Direct computation gives c(0) in the form

(4.3).

Appendix B. Proof of Proposition 4

Again the proof is simply technical and based on the known method de-

scribed in [8]. Hence, only a sketch is provided.

4Here the upper index T denotes the transpose operator
5The function �·, ·� denotes the scalar product.
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We again decompose the map �T into Taylor series (A.1) in the neighbor-

hood of (0, 0). For v = vns the Jacobian matrix �J has two complex conjugate

eigenvalues µ = eiθ0 and µ̄ = e−iθ0 , θ0 = θ(vns), located at the unit circle. Let

us denote as q the eigenvector of �J related to µ, then q̄ corresponds to µ̄. Let p

be the adjoint eigenvector such that �JTp = µ̄p and �p, q� = 1.6 Any real-valued

vector x = (Y,D)T can be represented as x = zq+ z̄q̄ for some complex z. The

new complex variable is then defined by z = �p, x� and the map �T in terms of

this new variable becomes

z �→ µz + g(z, z̄, p), g(z, z̄, p) = �p, F (zq + z̄q̄)�. (B.1)

The Taylor series of the function g with respect to (z, z̄) starts with quadratic

terms and has coefficients denoted gkl, k + l ≥ 2. Taking into account the

decomposition of F (·) into sum of B(·, ·), C(·, ·, ·) and higher order terms (see

(A.1)), the coefficients gkl with k + l ≤ 3 are computed as scalar products of p

and functions B and C over arguments q, q̄. Omitting further technical details,

we recall that by an invertible smooth change of complex coordinate map (B.1)

can be transformed into (4.4).

Note that to have the suitable transformation, the non-degeneracy conditions

(i) r�(vns) �= 0 and (ii) eikθ0 �= 1, k = 1, 2, 3, 4 are required. By straightforward

computation we get that

r(v) =

�
αa1a2γv(1 + r)

a1 + a2
+ 1− γ,

from which the condition (i) follows. As for the condition (ii), it is always true

for k = 1, while the values k = 2, 3, 4 imply the restriction C1.

6Recall that for complex valued vectors the scalar product is defined as �p, q� = p̄1q1+p̄2q2.
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