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Abstract

We describe a linear equivariant isomorphism K from the enveloping
algebra U(gl(n)) to the algebra C[My ] = Sym(gl(n)) of polynomials in
the entries of a “generic” square matrix of order n.

The isomorphism K maps any Capelli bitableau [S|T] in U(gl(n)) to
the (determinantal) bitableau (S|T') in C[Mny, ] and any Capelli *-bitableau
[S|T]" in U(gl(n)) to the (permanental) *-bitableaw (S|T)* in C[Mn,n].

These results are far-reaching generalizations of the pioneering result
of J.-L. Koszul [19] on the Capelli determinant in U(gl(n)) (see, e.g. [24],
i27]).

We introduce column Capelli bitableaux and *-bitableaux in Section 6}
since they are mapped by the isomorphism K to monomials in C[Mp x],
this isomorphism can be regarded as a sharpened version of the PBW
isomorphism for the enveloping algebra U(gl(n)).

Since the center {(n) of U(gl(n)) equals the subalgebra of invariants
U(gl(n))*st») | then

K[¢(n)] = C[Mi,n] 9t

Keyword: Enveloping algebras; Young tableaux; Lie superalgebras;
central elements; Capelli determinants.

1 Introduction

The starting points of the present work are ([5], [6]):

— The linear operator B : C[M,, ,] = U(gl(n)) that maps any (determinan-
tal) bitableau (S|T') in C[M, ] to the Capelli bitableau [S|T] in U(gl(n)).
— The linear operator B* : C[M, ] — U(gl(n)) that maps any (perma-
nental) bitableau (S|T)* in C[M,,,] to the Capelli *-bitableau [S|T]* in
U(gl(n))-
The map
K:U(gl(n)) = C[Mp,n] = Sym(gl(n))

introduced by Koszul in 1981 [19] is proved to be the inverse of both B and B*.
Then B, B*, K are vector space isomorphisms and B = B*.


http://arxiv.org/abs/1906.02516v3

Since the set of standard bitableaux is a basis of C[M,, ] ([16], [I5], [14],
[17]), then the set of standard Capelli bitableaux is a basis of U(gl(n)). Since the
set of costandard *-bitableaux is a basis of C[M,, ], then the set of costandard
Capelli *-bitableaux is a basis of U(gl(n)).

Some of these topics were treated in a sketchy way in the present author’s
notes [5], [6] (in the more general setting of superalgebras), in a rather cum-
bersome notation and almost without proofs. The main novelty of the present
approach is the major role played by column Capelli bitableaur and column
Capelli *-bitableauz; although they are far from being “monomials” in the en-
veloping algebra U(gl(n)), their images with respect to the Koszul isomorphism
K are indeed monomials in the polynomial algebra C[M,, ,]. Therefore, col-
umn Capelli bitableaux and column Capelli *-bitableaux play the same role in
U(gl(n)) that monomials play in C[M,, ,,] and this leads to a new and transpar-
ent presentation.

The expressions of column Capelli bitableaux and column Capelli *-bitableaux
as elements of U(gl(n)) can be simply computed.

Capelli bitableaux and Capelli *-bitableaux expand - up to a global sign - into
column Capelli bitableaux just in the same way as determinantal bitableaux and
permanental *-bitableaux expand into the corresponding monomials in C[M,, ,]
(Laplace expansions).

The isomorphism B = K~! maps any right symmetrized bitableau (S |) €
C[M,.,) (3], []) to the right Young-Capelli bitableau [S| in U(gl(n)). The
basis of standard right Young-Capelli bitableaux acts in a remarkable way on
the Gordan-Capelli basis of standard right symmetrized bitableaux. Moreover,
the elements of the Schur-Sahi-Okounkov basis of the center ¢(n) of U(gl(n))
(quantum immanants [25], [21], [22], [23]) admit quite effective presentations
as linear combinations of right Young-Capelli bitableaux as well as of Capelli
immanants [8] and [7].

The Koszul map K is proved to be an equivariant isomorphism with respect
to the adjoint representations of gl(n) on U(gl(n)) and C[M, ] (polarization
action), respectively. Since the center ¢(n) of U(gl(n)) is the subalgebra of
Ad gy (y-invariants of U(gl(n))*%s:x | then

K [C(”)] = C[Mn,n]adgl(") )

where C[M,, )% is the subalgebra of adgy,)-invariants of C[M, ;).

2 Determinantal Young bitableaux, permanental Young
*_bitableaur and right symmetrized bitableaux in the
polynomial algebra C[M,, ,,]

Let
C[Mp,5] = C[(i])]ij=1,..n



be the polynomial algebra in the (commutative) “generic" entries (i|j) of the

matrix:
1y ... (1n)
Mn,n = [(i|j)]i,j:1 ..... n
Given the standard basis {eij; i,j =1,2,.. .,n} of the general linear Lie
algebra gl(n), the map e;; — (i|j) induces an isomorphism Sym(gi(n)) =
C[My,n)-
Let w =d1ig - -+ ip, W = j1j1 - - - jp be words on the alphabet {1,2,...,n}.
Following [17] and [3], the biproduct of the two words w and w
(wl@) = (iriz- - -ipljrja - - jp) (1)
is the signed minor:
=) = (1)) det( (irljs) ) € C[My).
r,s=1,2,...,p
Let S = (w1,ws,...,wp) and T = (w1, w2, ..., wp) be Young tableaux on
{1,2,...,n} of the same shape .
Following again [I7] and [3], the (determinantal) Young bitableau
w1 w1
w2 w2
(S|T) =] . : (2)
wp | wp
is the signed product of the biproducts of the pairs of corresponding rows:
(SIT) = (1@ (wal2) -+~ (), )
where
s = (_1)4(0-’2)5(@1)+€(w3)(€(w1)+€(w2))+“'+f(wp)(f(w1)+€(w2)+"'+5(wp—1))’ (4)
and the symbol ¢(w) denotes the length of the word w.
The *-biproduct of the two words w and w
(wlew)* = (iniz - iplrja -~ Jp)" ()
is the permanent:
(@l=)” = per( (irljs) ) € C[Myn.
r,s=1,2,...,p
Let S = (w1,ws,...,wp) and T = (w1, wy,...,w,) be Young tableaux on

{1,2,...,n} of the same shape A.



Following again [17] and [3], the (permanental) Young *-bitableau

*

w1 w1

. w2 w2
(S| = | . : (6)

Wp | @p

is the product of the *-biproducts of the pairs of corresponding rows:
(SIT)" = (wrloo1)" (walw2)" - - - (wp|wp)™ (7)

A column Young tableau of depth h is a tableau of shape (1*). Then for a
column Young bitableau, we have:

i1 | 51
2 = 0O @i ki) - (inlin) (8)
| Jn

and for a column Young *-bitableau, we have:

*

11| J1
iz | J2 o L

= (i1]1) (32lg2) - - - (inldn)- 9)
th | Jn

We recall the definition of the right symmetrized bitableau (S |)) (see, e.g.

I3]):
S =>" sI7), (10)

T

where the sum is extended over all T column permuted of 7' (hence, repeated
entries in a column give rise to multiplicities).

Example 2.1.
1 3 1 2 9 1 3 2 311 3
2 4 1 3 o 2 4|1 3 411 2 )
We recall same elementary definitions and notational conventions. Given a

partition (shape) A= (A > X > - > X ) Fn,let A=A, e > > X)) Fn
denote its conjugate partition, where Ay = #{t; \s > s}. Similarly, given a

—_
N—
+
[N}
/N
N =

Young tableau S of shape sh(S) = A, let S denote its conjugate (dual) Young
tableau. In plain words, S is the tableau whose rows are the columns of S and
whose shape is sh(S) = A\. A Young tableau X on the (linearly ordered) set
L={1<2<---<n} is said to be standard whenever its rows are increasing



from left to right and its columns are non decreasing downwards. In a dual

way, a Young tableau Y is said to be costandard whenever its conjugate Young
tableau Y is standard.

We recall the basis theorems for standard determinantal bitableauz (see, e.g.

[16], [15], [I4]), costandard permanental *-bitableauz [17] and right symmetrized
bitableauz [3], respectively.

Proposition 2.2. The sets

- {(S|T); sh(S)=sh(T)=X, M1 <n, S,T stcmdard},
- {(U|V)*; sh(U)=sh(V)=pu, p1 <n, U,V costandard},

- {(S|); sh(S) = sh(T) =\, \i <n, S,T standard}

are linear bases of C[M,, ).

3 Polarization operators and Lie algebra repre-
sentations of gl(n) on C[M,,,] and U(gl(n))

Giveni,j =1,2,...,n, the left polarization operator (of j to 4) ij is the linear
operator from C[M,, ,] to itself defined by the conditions:

- ij is a derivation
- DfJ((h|k)) = 0,1 (i|k) for every k.

Similarly, the right polarization operator (of i to j) D7; is the linear operator
from C[M,, ,,] to itself defined by the conditions:

— Dj; is a derivation
~ Dj;((hlk)) = 6ix(hlj) for every h.
In the following, we consider three Lie algebra representations
gl(n) — Endc [C[Mnm}]
and the corresponding Lie modules.
1. The left (covariant) representation p' is defined by setting
I €ij — ij.
2. The right (contravariant) representation p” is defined by setting

p" e =Dy,



3. Notice that ijD,TZ,C = D,leij. The adjoint representation adyy) is
defined by setting
l r
adgl(n) D€ Dij — Dji'

Given 4,j = 1,2,...,n, consider the linear operator T;; from U(gl(n)) to
itself defined by setting

Tij(M) = e;jM — Me;,
for every M € U(gl(n)).
We recall that T;; is the unique derivation of U(gl(n)) such that

Tij(est) = jseir — Oiesj = [e4j, est]
for every s,t =1,2,...,n. Hence
Tij o Thie — Thi © Tij = 0jn Tk — 85k Thj-
The Lie algebra representation
Adgy(n) : gl(n) — Endc[U(gl(n))]
eij = Tjj;

is the adjoint representation of U(gl(n)) on itself.

4 The superalgebraic approach to the enveloping
algebra U(gl(n))

In this Section, we provide a synthetic presentation of the superalgebraic method
of virtual variables for gl(n).

This method was developed by the present authors for the general linear Lie
superalgebras gl(m|n) [I8], in the series of notes [I], [2], [3], [4], [5], [6].

The technique of virtual variables is an extension of Capelli’s method of
variabili ausilarie (Capelli [12], see also Weyl [27]).

Capelli introduced the technique of wariabili ausilarie in order to manage
symmetrizer operators in terms of polarization operators and to simplify the
study of some skew-symmetrizer operators (namely, the famous central Capelli
operator).

Capelli’s idea was well suited to treat symmetrization, but it did not work
in the same efficient way while dealing with skew-symmetrization.

One had to wait the introduction of the notion of superalgebras (see,e.g.
[26], [18]) to have the right conceptual framework to treat symmetry and skew-
symmetry in one and the same way. To the best of our knowledge, the first
mathematician who intuited the connection between Capelli’s idea and super-
algebras was Koszul in 1981 [19]. In particular, Koszul proved that the classical
determinantal Capelli operator can be rewritten - in a much simpler way - by



adding to the symbols to be dealt with an extra auxiliary symbol that obeys to
different commutation relations.

The superalgebraic method of virtual variables allows us to express remark-
able classes of elements in U(gl(n)) as images - with respect to the Capells
devirtualization epimorphism - of simple monomials and to obtain transparent
combinatorial descriptions of their actions on irreducible gi(n)—modules.

This method is very well suited for the study of the polarization action of
U(gl(n)) on C[M,,,] and for the study of the center of U(gl(n)).

4.1 The superalgebras C[M,m,+n,n) and gl(mo|m; + n)
4.1.1 The general linear Lie super algebra gl(mg|m1 + n)

Given a vector space V,, of dimension n, we will regard it as a subspace of a
Zo—graded vector space W = Wy @ W1, where

Wo =V, Wi =V, @V,

The vector spaces Vi, and V,,, (we assume that dim(V,,,,) = mo and dim(V,,,) =
myq are “sufficiently large”) are called the positive virtual (auziliary) vector space,
the negative virtual (auxiliary) vector space, respectively, and V,, is called the
(negative) proper vector space.

The inclusion V,, C W induces a natural embedding of the ordinary general
linear Lie algebra gl(n) of V,, into the auziliary general linear Lie superalgebra
gl(molmy +n) of W =Wy @ Wy (see, e.g. [18], [26]).

Let Ao = {oa,...,mo}s A1 =1{51,- -, Bm, }, L ={1,2,...,n} denote fized
bases of Vg, Vim, and V,,, respectively; therefore |as| = 0 € Zg, and |G| = |i| =
1€ Zs.

Let

{eap;a,be Ay UAL UL}, lea,n| = |al +|b] € Zq

be the standard Z;—homogeneous basis of the Lie superalgebra gl(mg|mi + n)
provided by the elementary matrices. The elements e, € gl(mo|mi + n) are
Zs—homogeneous of Zy—degree |eqp| = |a| + |b].

The superbracket of the Lie superalgebra gl(mg|my + n) has the following
explicit form:

[ea,bvec,d] = 6bc €a,d — (*1)(|a‘+|b‘)(‘cl+‘d‘)(sad €c,by

a,b,c,de€ AgUA; UL.
In the following, the elements of the sets Ag, A1, L will be called positive vir-
tual symbols, negative virtual symbols and negative proper symbols, respectively.

4.1.2 The supersymmetric algebra C[M,, |, 4]

We regard the commutative algebra C[M,, ] as a subalgebra of the “auziliary”
supersymmetric algebra

(C[Mmo\m1+n,n} = (C[(Cks‘j), (6t|.7)’ (Z|j)]



generated by the (Zy-graded) variables (as|7), (Btl4), (17), 5 = 1,2,...,n, where
((asli) = les| =1 € Za,  [(Beld)|l = [Bel +1 =0 € Zy
and |(i|7)| = |i] + |§] = 0, subject to the commutation relations:
(alh)(blk) = (=)W (k) (aln),

for a,b € {1, ..., Qme t U{B1,-.-, B J U{L,2,...,n}.
In plain words, all the variables commute each other, with the exception of
pairs of variables (a;|j), (at]j) that skew-commute:

(asl) (i) = —(aeli)(asli)-
In the standard notation of multilinear algebra, we have:

C[Mmo\mlJrn,n] = A[WO ® Pn} & Sym [Wl ® Pn]
- A[‘/mg ® Pn] ® Sym[(le 3] Vn) ® Pn]

where P, = (P,)1 denotes the trivially Zs—graded vector space with distin-
guished basis {j; |j| =1, j=1,2,...,n}.

The algebra C[an\m1+n,n] is a supersymmetric Zy—graded algebra (super-
algebra), whose Zs—graduation is inherited by the natural one in the exterior
algebra.

4.1.3 Left superderivations and left superpolarizations

A left superderivation D' (Zs—homogeneous of degree |D!|) (see, e.g. [26], [18])
on C[Mp|m,+n,n] is an element of the superalgebra Endc[C[M,,|m,+n,n]] that
satisfies "Leibniz rule"

DYp-q) = D(p)-q+ (-1)/P1Plp. Di(q),

for every Zs—homogeneous of degree |p| element p € C[M,;,q 1, 4n,nl-
Given two symbols a,b € Ag U Ay U L, the left superpolarization Dé,b of b

to a is the unique left superderivation of C[M,, |, 4n,n] of Zz—degree |Dé’b| =
la| + |b| € Z3 such that

D(ll7b((c|j)) = 0pe (alj), c€ ApUAJ UL, j=1,...,n.

Informally, we say that the operator D(Iz, , annihilates the symbol b and creates
the symbol a.

4.1.4 The superalgebra C[M,, |, n,n] as a U(gl(mg|m: + n))-module

Since

D!,D! , — (~1)(al+BDiel D pt Dl — 5, DL — (~1)(al+BDAel+dDg, Dt



the map
€ap > Dby, a,be AgUA UL

is a Lie superalgebra morphism from gl(mg|mi + n) to Endc [C[Mmo‘mﬁn,n]]
and, hence, it uniquely defines a representation:

0 : U(gl(mo|my +n)) = Endc[C[My,gjm, 4nnl]-

In the following, we always regard the superalgebra C[M,,|m,4n,n] as a
U(gl(mo|m1 + n))—supermodule, with respect to the action induced by the
representation o:

€ab P = Dé,b(p)v

for every p € C[Mgjm,4n,nl-

We recall that U(gl(mo|m1 + n))—module C[M,,;|m,4n,n] is a semisimple
module, whose simple submodules are - up to isomorphism - Schur supermodules
(see, e.g. [3], [4], [1]. For a more traditional presentation, see also [I3]).

Clearly, U(gl(0|n)) = U(gl(n)) is a subalgebra of U(gl(mg|m1+n)) and the
subalgebra C[M,, ,] is a U(gl(n))—submodule of C[M,, m,+n,nl-

4.2 The virtual algebra Virt(mg + my,n) and the virtual
presentations of elements in U(gl(n))

We say that a product
€apby, " Carby € U(gl(molmi +n)), ai,b; € ApUAIUL, i=1,...,m
is an irregular expression whenever there exists a right subword

€a;,b; """ €az,by€ay by

1 < m and a virtual symbol v € Ag U A; such that
#{7;b; = 7,7 < i} > #{jsa; = 7,7 < i}. (11)

The meaning of an irregular expression in terms of the action of U(gl(mg|m1+
n)) by left superpolarization on the algebra C[M,,,|m,n,n] is that there exists
a virtual symbol v and a right subsequence in which the symbol ~ is annihilated
more times than it was already created and, therefore, the action of an irregular
expression on the algebra C[M,, ,] is zero.

Example 4.1. Let v € Ao U A; and z;,x; € L. The product

€25 €,y Caj,yCr ;i
is an irregular expression.

O
Let Irr be the left ideal of U(gl(mo|m1+n)) generated by the set of irregular
expressions.



Proposition 4.2. The superpolarization action of any element of Irr on the
subalgebra C[Mp ] C C[Mpgjm,+4n,n] - via the representation o - is identically
zero.

Proposition 4.3. ([, [2]) The sum U(gl(0|n)) + Irr is a direct sum of vector
subspaces of U(gl(mo|m1 + n)).

Proposition 4.4. ([5], [2]) The direct sum vector subspace U(gl(0|n)) & Irr is
a subalgebra of U(gl(mo|m1 + n)).

The subalgebra
Virt(mo +ma,n) = U(gl(0n)) @ Irr C U(gl(mo|m1 + n)).

is called the wirtual algebra.
The proof of the following proposition is immediate from the definitions.

Proposition 4.5. The left ideal Irr of U(gl(mo|mi + n)) is a two sided ideal
of Virt(mo + mq,n).

The Capelli devirtualization epimorphism is the surjection
p : Virt(mo +mq,n) = U(gl(0|n)) & Irr — U(gl(0|n)) = U(gl(n))

with Ker(p) = Irr.

Any element in M € Virt(mg + mi,n) defines an element in m € U(gl(n))
- via the map p - and M is called a virtual presentation of m.

Since the map p a surjection, any element m € U(gl(n)) admits several
virtual presentations. In the sequel, we even take virtual presentations as the
true definition of special elements in U(gl(n)), and this method will turn out
to be quite effective.

Recall that U(gl(mg|m1 + n)) is a Lie module with respect to the adjiont
representation Adg(mg|m,+n). Since gl(n) = gl(0|n) is a Lie subalgebra of
gl(mo|mi +n), U(gl(mo|mi +n)) is a gl(n)—module with respect to the adjoint
action Adgy of gl(n).

The following results follow from the definitions.

Proposition 4.6. The virtual algebra Virt(mg + mi,n) is a submodule of
U(gl(mo|my +n)) with respect to the adjoint action Adgy) of gl(n).

Proposition 4.7. The Capelli epimorphism
p : Virt(mo + ma,n) - U(gl(n))
is an Adgyn)—equivariant map.

Corollary 4.8. The isomorphism p maps any Adg,)—invariant element m €
Virt(mo + ma,n) to a central element of U(gl(n)).

Balanced monomials are elements of the algebra U(gl(mg|m1 4+ n)) of the
form:

10



T Cirvpy T Cikvpy C Cyprdn T Cvpy i

- €y a7 eikﬁqk ’ egql ey eeqk o e’Ypl g1t e’ka. Ik

— and so on,

where i1,...,k, 1, ..,k € L, i.e., the 41,... .4k, j1,..., ] are k proper (nega-
tive) symbols, and the vp,, ..., Vpe,r--->0q,---, 0, - .. are virtual symbols. In
plain words, a balanced monomial is product of two or more factors where the
rightmost one annihilates (by superpolarization) the & proper symbols j1, ..., jk
and creates (by superpolarization) some virtual symbols; the leftmost one an-
nihilates all the virtual symbols and creates the k proper symbols i1, ..., x;
between these two factors, there might be further factors that annihilate and
create virtual symbols only.

Proposition 4.9. ([3], [], [, [2]) Every balanced monomial belongs to Virt(mo+
ma,n). Hence, the Capelli epimorphism p maps balanced monomials to elements

of U(gl(n)).
Let S and T be the Young tableaux

Tpp oovenennn ipy, Jogoeeveenn. Jsx,
gy e i oy e 2

§=| 'n 2 , T=| " Itz . (12)
py «onlipy, Jur - Jua,,

To the pair (S,T), we associate the bitableau monomial:

€s,T = eipl sy T eizu\l 7js,\1 eiql e T eiqAZ -,jt>\2 eiTl T ei")\p’j“kp

in U(gl(mo|m1 + n)).
Let B1,...,0x € A1, 0u,...,ap € Ag be sets of negative and positive virtual
symbols, respectively. Set

ﬁl ......... 6>\1 [0 a7
...... ag......«Q
D)\ _ /81 ﬁ/\z , C/\ _ 2 2
B1-.- B, Qp...Qp

The tableaux D) and C)\ are called the wvirtual Deruyts and Coderuyts
tableaux of shape A, respectively.

Given a pair of Young tableaux S,T of the same shape A on the proper
alphabet L, consider the elements

es,cy ecy,r € U(gl(mo|mi +n)), (13)
¢s,p. ¢p..r € Ulgl(molmi +n)), (14)
€s.05 €0y.Dy €py, 7 € Ulgl(molmy +n)). (15)

11



Since elements (I3)), (I4) and (I0]) are balanced monomials in U(gl(mg|m1 +
n)), they belong to the subalgebra Virt(mgo + mq,n).
We set

p(escn ecnr) = [SIT) € Ulgi(n),

and call the element [S|T] a Capelli bitableau [5], [6].
We set

p(es,H; eﬁ;,T) = [SIT]* € U(gl(n)),
and call the element [S|T]* a Capelli *-bitableau [5], [6].

We set
p(escn corny epyr) = [S[T] € Ulgi(n).

and call the element [S |} a right Young-Capelli bitableau [4].

5 The bitableaux correspondence maps B and B*
and the Koszul map K

Theorem 5.1. The bitableaux correspondence map
B: (S|T) = [S|T]
uniquely extends to a linear map
B : C[My, ] = Sym(gl(n)) — U(gl(n)).

Proof. We recall that bitableaux and Capelli bitableaux satisfy the same (deter-
minantal) straightening laws in C[M,, ,] and U(gl(n)), respectively ([5], Proposi-
tion 7). The straightening laws imply that standard (determinantal) bitableaux
span C[M,, ] (see, e.g. [16], [I4], [I5]); furhermore, standard bitableaux are lin-
early independent. Then, the map B is a uniquely defined linear operator. [

Theorem 5.2. The *-bitableaux correspondence map
B*: (S|T)" — [S|T]"
uniquely extends to a linear map
B* : C[My,n] = Sym(gl(n)) = U(gl(n)).

Proof. The proof is essentially the same as the proof of Theorem BTl just by re-
placing the determinantal straightening laws with the permanental straightening
laws, and standard (determinantal) bitableaux with costandard (permanental)
bitableaux. Notice that both arguments are special cases of the superalge-
braic version of the straightening laws and of the standard basis theorem ([I7],
). 0
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Giveni,7=1,2,...,n, let
pij : C[Mp ] — C[M,, 5]
be the linear operator
pij(pP) = ij(p) + (i|l§) - p, for every p € C[My, ).
Proposition 5.3. We have:

[0ijs Phi] = PijPrk — PrkPij = OjhPik — OikPhj-

By the universal property of U(gl(n)), Proposition implies -
Proposition 5.4. The map
eij = pij, ey € gl(n)
defines an associative algebra morphism
7:U(gl(n)) = Endc|[C[M,,,]].
O

Let €1 be the linear map evaluation at 1
1 : Endc[C[M,, ,]] — C[M, ,],
ei(p) = p(1) € C[M,, ], for every p € Endc|C[M,_,]].
The Koszul map [19] is the (linear) composition map
K :U(gl(n)) = C[Mp,,] = Sym(gl(n)),
K=¢e1o07.
Proposition 5.5. We have:
1. K(€i1jy €ings " Cingn) = Pirji Pinga ~ " Pingn (1), €inj, € gl(n), p=12,... h.
2. K(eijP) = pij(KK(P)), for every P € U(gl(n)), ei; € gl(n).
O

6 Expansion formulae for column Capelli bitableaux
and column Capelli *-bitableaux

Consider the column Capelli bitableau

i1 g1
i | Jo

= p(ehal ©CipapCangy 'eahjh) € U(gl(n))’
ih | Jn

13



(where o, ..., ap are arbitrary distict positive virtual symbols) and the column
Capelli *-bitableau

i1 N
iz | J2
. = p(eilﬁl © i B8r,CB1G 'eﬁh,jh> € U(gl(n))
ih | Jn
(where 31, ..., By are arbitrary distict negative virtual symbols).
Remember that the proper symbols i1,...,ip, j1,...,5n € L={1, 2, ..., n}

are assumed to be negative.
From the definitions, it follows

1| N | N
i2 | Jo w2 | J2

= (1) . (16)
ih | Jn th | Jn

From the definitions, we infer

Proposition 6.1. Column Capelli bitableauz and column Capelli *-bitableaux
are row-commutative as elements of U(gl(n)):

! Z:1 j1 [ Z:a(l) .7:0'(1) 1
S Rl Ry
th | Jn L to(r) | Jo(n)

2' . . * ro. . - %
Z’1 21 Z.a(l) jo(l)
12 J2 _ lan) ]0‘(2)  seS
ih | Jn L to(h) .ja.(h) i

|

We provide two basic expansion formulae that describe the effect of picking
out (on the left hand side) the first row of column Capelli bitableaux and column
Capelli *-bitableaux. These formulae play a crucial role in the theory of the
Koszul map I, and provide a simple way to compute the actual forms of column
Capelli bitableaux and column Capelli *-bitableaux as elements of U(gl(n)).

Proposition 6.2. We have:

14



i | 71
22 J2
th | Jn
iz | J2
2] J2 h : :
_ h—1 . . h—2 . .
= (D" ey | 2| 0 [ +EDPY] S | i | gk | € U(gl(n)).
ih | Jn k=2 : :
ih | Jn
2.
. . *
u J1
i2 | Jo
ih | Jn
. . *
22 J2
o . *
12 J2 h : :
—enj |t ot | =0 Gug | 0| Gk | €U(gl(n).
; ; k=2
Th Jh :
ih | Jn
Proof. By definition,
i1 7
22 J2
th—1 | Jh-1
th Jh
=p [eil,aleiz,oéz © €y _g,an_1Cin,an T €an,giCas,ga T eah—l,jh—leahyjh:l =
=p [ — Ciy,a1Cig,az T Cip_y,an_1C01,51Cin,an  Caz,ga T Cap_t,in—1Can,gn
+ €iy 00 €izyan "7 Cip g0 6ih,j1€a1,ah€az7j2 T eah—lyjh—leahvjh} =
=p [ = Ciy,a1Cig,az T Cip_g,an_1Ca1,51 Cin,an  Caz,ga T Can_i,in—1Can,in

+ €iy,01Cig,an " Gy an_g 5ih,jlea2’j2 e eah—lajh—leal’jh] .

Notice that

diy, g1 €ir,a1Cig,an * 7 Cip_q,an-1 " Canyga T Cap_t,jn_1Cor,in =

15



h—2
5ih,j1 (_1) Ciy,a1Cig,as " Cip_y,an_1 " Ca1,jnCaz,ja " Can_1,4n-1

as elements of the algebra U(gl(mo|m1 + n)).
Therefore, the summand

p [eil,aleimow iy _yapoy 6ih~,j1 Casz,jo """ eah—lxjh—lealvjh:l

equals
i1 Jn
12 Jo
(71)h_2 6ih7j1

th—1 | Jh—1

By repeating the above procedure of moving left the element e,, ;, - using the
commutator identities in U(gl(mo|m1 + n)) - we finally get

h—1
p [(_1) Ciy,a1€an,j1Ciz,an " Cip_q,ap_1Cip,an T Caz,j2 T Cap_1,in—1Can,in

h—2
7: —_—
+ E (_1) Ciy,ay " ° '5ih/—i,j1 Cip_i,an—iCor,an_; """ Cipan Caggy T 'eah,jh,]
=0

h—1
p [(_1) €i1,001€a,51Ciz,a0 " Cip_y,ap_1Cin,an T Caz,ge " Cap_1,jn_1Can,jn
h—2

i
+ E (71) Ciy,ay .6ih7i7j1 ©Cinap  Cag,ga T Carga—g 'eamjh]'
=0

Notice that the summand
i
(71) 6ih—i7j1 Ciy,an '(Sihfivjl © €Ly Casyga Can g Can,gn

equals
(71)1‘ 61 p (71)h_i_2><
h—isJ1
—_— —_—
Cir,ar *Cip_yan_y " Cipsan T Can,gn_iCasz,ge T Can_iygn_i -+ Can,in

as elements of the algebra U(gl(mg|m1 + n)).
Hence

[(_1)i5, Iy e e e ce e ]
p th—isJ1 ~11,01 th—i,Xh—i " Q1,&p—; 1h,Oh Q2,72 AnsJh

16



equals

i1 Jh—i
12 J2
h—2 ) .
(71) 5ih—i7j1 Lh—i—1 Ih—i—1
Th—i Jh—i
Th—it1l | Jh—it1l
L in Jh

Furthermore

h—1 _
p [(_1) €i1,01€an,51Ciz,a0 "7 Cip_q,an_1Cin,an " Caz,ge T eah—lv]h—leah’]h] -

=(=D"" e

Since column Capelli bitableaux are row-commutative, by setting k = h — 4
we proved the first expansion identity. The second expansion identity can be

proved in a similar way. O
Example 6.3.
; § (2] 3] 1] 3 2| 3
3 4 = —ej9 3 4 + 3 4 + 3 4
9| 3 | 2] 3] 21 3 1] 3
[ 2] 37 1] 3
=—en| 3| 4]+2]|3]|4
| 2] 3] 2| 3
31 4 2| 4
- _612<623 21 3| |2/ 3 )

coles[ 3] 2]-TE A
Blo | 3 2| 3
= e19€23€34€23 — €12€24€23 — 2€13€34€23 + 2e14€23 € U(gl(4)).

a
Notice that, for h = 1, [i|j] = [éi|j]* = ei;- Then, from Proposition [6.2] it
follows

Corollary 6.4. The family of column Capelli bitableauz (*-bitableauz) is a sys-
tem of linear generators of U(gl(n)).
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7 Main results

Proposition 7.1.

i1 | 7 1| N1
12 | Jo 12 | Jo
K(| . D=l .
ih | Jn ih | Jn
h . . . . . . ~
= (=1)E)(i]j1)(ialj2) - - (inlin) € C[My ) = Sym(gi(n).
Proof.
| N
2 | Jo
K( ) =
ih | Jn
12 | Jo
i2 | Jo h : :
= (D" lewg | 2| 2 [)HEDTRYS Gy | i |k
ih | Jn k=2 : :
th | Jn
2 | Jo
i2 | Jo h : :
= (_1)h71pilj1 (]C( )) + (_1)h72lc(z Oisja i1 Jk
th | Jn k=2 : :
ih | Jn
12 | J2 12 | J2
= (=D"'Dj; (| - ) A D ) |
th | Jn in | Jn

h : :
F DY g | |

k=2 ;

th | Jn
12 | J2 “ J:l
hel/: | ) . 12 J2

= oty | || = |
h Jh i n
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Example 7.2. Consider the column Capelli bitableau

1] 2

2 1 1 1
21 1| =en — = —egezies; +erresr € Ugl(n)).
3 1 3 1 3 1
‘We have
1 2
IC( 20 11) :/C(*€12€21€31+611631)
3 1
1 2
= 2 1
3 1
= —(1]2)(21)(3[1) € C[M,,,,] = Sym(gl(n))
Proposition 7.3.
in | g 17 i |\
i2 | Jo i | Jo
k(| %)=
ih | Jn ih | Jn
= (i1|j1)(i2[52) - - - (inldn) € C[Mp,n] = Sym(gl(n)).
Proof.
a | al
12 | Jo
K( RS
ih | Jn
in | g2 1"
i | G2 ] h S
= ,C(ehjl ) - ’C( Z 6ikj1 i1 Jk )
in | Jn k=2 : :
ih | Jn

19



()

. h :
= Piija (IC( )) _IC(Z Oirjn i1
th | Jn k=2 :
Z'h
io | ja \ i2 | J2
l . . .
_Diljl( : )+(Zl|-71) :
th | Jn th | Jn
io | 32\
h
- Z irja i1 | Jk
k=2 : :
ih | Jn
. * (2 / *
12 J2 .1 ].1
o . 12 J2
=(i1]j1) : =
7 ] . .
h Jh in n
Notice that Theorem [5.1] specializes to
| 51 i1 | 71
2 | J2 i2 | J2
sl 21 D=l
th | Jh th | Jn
and, Theorem specializes to
i |\ i | a1
. iQ j2 i2 j2
B ( : : ) -
in | Jn th | Jn

Theorem 7.4. We have:
1. B=K1,
2. B*=K"1,

20
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3. B, B*, K are linear isomorphisms,
4. B=B*.

Proof. From Corollary 6.4l and Eqs. () and (8], it follows that the operators
B and B* are surjective. Since column bitableaux span C[M,, ], Propositions
[Tl and imply that B and B* are injective and B = K~! and B* = K~L.
Then B = B*. O

By combining Theorems [0.1] and 5.2l with Theorem [7-4] it follows
Corollary 7.5. We have:

- K [SIT] = (SIT),

- K [S|T]* — (S|T)*.

O
The Koszul isomorphism K well-behaves with respect to right symmetrized
bitableaux and right Young-Capelli bitableaux.

Proposition 7.6. We have:

K:[SI[T] ~ (S[T).

Proof. We notice that

szl =315, (s[Th) =3 (81T,

where the sum is extended over all T column permuted of T (hence, repeated
entries in a column give rise to multiplicities). The proof of the first equality
easily follows from the definition, by applying the commutator identities in the
superalgebra U(gl(mo|m1 + n)). The second equality is the definition of the

right symmetrized bitableau (S |)), Eq. (I0). d
From Proposition 221 Corollary [[5 and Proposition [7.8] it follows

Corollary 7.7. The sets of standard Capelli bitableaux, of costandard Capelli
*_bitableauz and of standard Young-Capelli bitableauz:

- {[S|T]; sh(S) = sh(T) =\, \y <n, 8,T standard},
- {[U|V]*; sh(U) =sh(V)=pu, p1 <n, UV costandard},

- {[S|}, sh(S)=sh(T)=X, M1 <n, S,T standard}
are linear bases of U(gl(n)).

Furthermore, we have
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Theorem 7.8. The Koszul isomorphism K is equivariant with respect to the
adjoint representations (Adgl(n),U(gl(n))) and (adgl(n),(C[Mn,n]).

Proof. We recall that the action of en;, € gl(n) on U(gl(n)) through the ad-
joint representation Adg,) is implemented by the derivation Tp; such that
Thk (est) = Ops€it — Ontes;. From the definition of column Capelli bitableau and
Proposition 7, we infer

) . Z.1 jl ’i1 j1
11 n
in | o : : : :
Thk( ) =D Ok, | B G | =D G| B | K
. ; p=1 : : p=1 : :
ih Jh . ; . ;
s Ih ih Jh

We recall that the action of eps, on C[M,, ,] through the adjoint representation
adgy(n) is implemented by the derivation D}, — Dj,. Then

. . i | J1
1 n

. , A : :
22 J2 : )
(Dhy, — D;h)( ) = Z Ok, | P | Jp
) ; p=1 : :
th Jh . .
1h Jh

i1 | J1

h : :

=S Gm| i | K

p=1 : :
ih | Jn

Since column Capelli bitableaux span U(gl(n)) and column bitableaux span
C[M,, 5], the assertion follows from Proposition [l O

Since
¢(n) = U(gl(n)) e,

the preceding Theorem implies:

Corollary 7.9. We have
elet] =i s,

In the left representation (p', C[M,,,]) (i.e. p': e;; — Déj)7 standard Young-
Capelli bitableaux [S[T]|, sh(S) = sh(T) = A F k, act on right symmetrized
bitableaux (U\)7 sh(U) = sh(V) = pF h, in a quite remarkable way.

Proposition 7.10. [4 We have:

22



- If h < k, the action is zero.
— If h =k and X # pu, the action is zero.

- If h =k and XA = p, the action is nondegenerate triangular (with respect
to a suitable linear order on standard tableaux of the same shape).

For details and proof, see [I] Theorem 10.1. Clearly, similar results hold for
the right and the adjoint representations.

8 Laplace expansions

8.1 Laplace expansions in C[M, ]
Recall that
(ivia - inlguja -~ jn) = (1)) det[(is]ji)]smr,2,...n € C[My ),

and, therefore, the biproduct (i1iz - - - ip|j1j2 - - - jn) € C[Mpy n] expands into col-
umn bitableaux as follows:

ie1) | J1
o o . - 15(2) J2
(iviz - inljijz -+ jn) = Z (_1)‘ | : :
€Sy . .
Lo(h) Jh
1 ja(l)
D IRl B e
oceSy . .
th Jo(h)

Notice that, in the passage from monomials to column bitableaux, the sign
h
(—1)(2) disappears.
Recall that
(d1iz -~ inljrgz - jn)" = per((is|ie)ls,t=1,2,...n € C[Mny n],

and, therefore, the *-biproduct (i1is---in|j1je - jn)* € C[M,, ] expands into
column *-bitableaux as follows:

ie(1) | J1
o R s Z’O’(Q) j2
(ivig -+ inljrda- - dn)" = . .
oESy, o ;
Lo(h) Jh
i | dey \
B Z i2 | Jo(2)
oes, | - B
th Jo(h)
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The preceding arguments extend to bitableaux and to *-bitableaux of any
shape A\, A\; < n. Given the Young tableaux

Tpg eveenenn. ips, Jogeveeennnn Jsxy
Ty evvenn ) Tty oeeen- Jt
— q1 qx — 1 A
S = 2 , T = 2
(2 N Juy « - Jus,,

From a simple sign computation, it follows

Proposition 8.1.

Zpal(n jsl
Yoy an) Jsxa,
(SIT)= 3 (Tl | 2P
O1,-.,0m Y:Tgm<1) j’Ul
ZT"M,(Am) ']v>‘m
py Jsoy 1y
ZPM '75010\1)
= E (_1)2221 lok| : : ,
015--,0m iTl jvamu)
Uam | T ()
where the multiple sums range over all permutations 01 € Sx,,...,0m € Sx,, -

Notice that, in the expansions with respect to column bitableax, only the
signs of permutations will remain.
Similarly, we have

Proposition 8.2.

Zpal(l) Js1

"Poran) Jsxy
(S‘T)* _ 2 : . .
O1yeens0 : .

1,0m iry o) o

Uomam) | J0am
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ipy Jsor )
'px, Jsoran)
T1,4eeey O . -
' " by TV (1)
tram TV (Am)

8.2 Laplace expansions in U(gl(n))
Let S and T be the Young tableaux

Ipy evveeennn prl Jsp v js)\l
gy o ovv- 7 Jtq eeeees .jt
— q1 qx — 1 A
S = 2 , T = 2
Tpy - ZTAm Juy - - 'JUA",,

Propositions Bl and and Theorems [5.1] and imply to the following
Laplace expansions of Capelli bitableaux into column Capelli bitableaux and of
Capelli *-bitableaux into column Capelli *-bitableaux.

Corollary 8.3. We have

Zpal(l) jSl
ZPUI(AI) ]5/\1
[S|T] = E (—1)2k=1 lowl : :
Thm g (1) Ju
L Z'Tamum) j”km 4

Ips Jsor )
tpx, Jsoy )
= E (_1)2;::1 lokl .
O1,.ey0m . .
! Zrl j’”:rm(l)
L ram, ]Ugm(xm) _
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Corollary 8.4. We have

Z13al(1) jsl
"poyan) Jsx,
ST =) :
O1,ye0s0m . .
1y-+0m ZTU,,”(l) j’Ul
L ZTamum) j’”Am 4
_ . -
py Jsor )
oy | Jseion
T1,..es0 . .
" ry o (1)
L " | Jvomoum)

By combining the expansions of Corollaries B3 and R4 with the results of
Proposition[i.2 one gets explicit expansions of Capelli bitableaux and of Capelli
*_bitableaux as elements of U(gl(n)).

Example 8.5. The Capelli bitableau (of shape A = (2,2))

B (19)
equals
1] 2 1] 3 1] 2 1] 3
2| 3 2] 2 2| 3 2| 2
ol 3| 12 3| |2lalT|2] 4]
4| 4 4| 4 4] 3 4] 3
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where

1 2
2 3
2 3 = e12€23€23€44 — 2€13€23€44,
4 4
o .
2 2
2 3 = €13€22€23€44 — €13€23€44,
4| 4
o 5 ]
2 3
9 4 = €12€23€24€43 — €12€23€23 — €13€24€43 + €13€23 — €23€14€43 + €23€13,
41 3
o 37
2 2
9 4 = €13€22€24€43 — €13€22€23 — €13€24€43 T €13€23.
41 3

This example can be used to enlighten the difference between the PBW
Theorem and Theorem [7.4]
The PBW Theorem establishes an isomorphism ¢ from the graded algebra

UM (gl(n
GrlUGln)] = B G

heZ+

associated to the filtered algebra U(gl(n)) to the algebra Sym(gl(n)) = C[M, »].
Clearly, the isomorphism ¢ maps the projection to Gr [U(gl(n))] of the Capelli

bitableau (I9)) - as an element of the quotient space % - to the product
determinants
(112)  (1[3) ) ( (23) (2]4) )
det x det € C[ My 4. 2
( (22) (213) (4[3)  (4]4) [Maa] (20)

The Koszul isomorphism K (injectively) maps the Capelli bitableau (I9) -
as an element of U(gl(4)) - to the product of determinants (20). Similarly, the
isomorphism K maps the Capelli *-bitableau

1 2] 2 3]
R
to the product permanents
(12) (113) (23) (214)
rer (Gl (el ) *Per () ) ) Stk
In the following, we will discuss some implications of Corollary [7.91
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Proposition 8.6. (Koszul [19]) Consider the row Capelli bitableau
[n---21]12---n] € U(gl(n)).

We have:
1.
e11 + (’I’L — 1) €12 ... €E1n
€921 €99 + (n — 2) ... €2
[n---21]12---n] = cdet ,
enl €n2 N Y

the Capelli column determinantl] in U(gl(n)).

2.
1y ... (An)
K([n---21[12---n]) = det : : € C[M,,n).
Proof. We have
"y
[n---21]12---n] = Z (=1)l! U(n:— )
€S, g'(]_) n
= Z (=1)lelx
oES,
on—=1) | 2
on—2) | 3
((*1)” €o(n)1 ;
(1) n
on—1) ] 2
+ (—1)"_22 O (n—k+1)1 U(.”) k )
k=2 : :
0(.1) n
on—1) | 2
on—2)| 3
0 Y 0 e 0 D) | TP
oc€ES, ; )
o(1) n

1The symbol cdet denotes the column determinat of a matrix A = [a;;] with noncommu-
tative entries: cdet(A) =3 (=1)lel U (1),100(2),2 """ Go(n),n-
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from Proposition
By iterating the same argument,

n---21]12---n] =

= (1)) x
Z (_1)‘0‘ (ea'(n)l + (TL - 1)50(n)1> (ea'(n—l)Q + (7’1 - 2)50(n—1)2) T Co()n
oeS,
= > (=D (e + (0= 1)6-1)1) (er@2 + (0 = 2)8:2)2) -+ €r(n
TES,
el + (n — 1) €12 AT
€21 e+ (n—2) ... eap
= cdet ) . . € U(gl(n)),
€enl €n2 oo Enn

the Capelli column determinant in U(gl(n)).

Then
e11 + (Tl — 1) €12 ... €E1n
€21 €99 + (n — 2) ... €e2p
lC(cdet ) ) o ) = K([n---21)12--
€nl €n2 e Enn

that equals

1) ... (1n)
(n---21|12---n) = det : : € C[Mpn),

by Corollary

’Il]),

In the enveloping algebra U(gl(n)), given any integer k = 1,2,...,n, con-

sider the k—th Capelli element:

Hk(n) = E [ik'--i2i1|i1i2---ik].
1<ii<---<ip<n
By the same argument of Proposition 8.6,

€iy iy T (k - 1) Ciy iz cee Gy

Cig iy €igip T+ (k - 2) s Cigyiy

Hy(n) = E cdet ) ) )
1<y < <ip<n
Ciy iz Ciyia cee Cigig,

29
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and the operator X maps Hy(n) to the polynomial

hk(n) = Z (ZkZ221|Z122Zk)

1<i1 < <ip<n
(inlin) ... (ialin)
Z det : : € C[M, ).
1< < <i<n Grliy) ... (ixlin)

Notice that the polynomials hy(n)’s appear as coefficients (in C[M, ]) of
the characteristic polynomial:

Py

n,n

(t) =det(tI — My,) =t" + i (=1)" hy(n) "%

=1

Clearly, hy(n) is adg ) —invariant in C[M, ] and, therefore, Hy(n) is a
central element of the enveloping algebra U(gl(n)).
In passing we recall Capelli’s Theorem ([9] and [10], see also [6]):

Proposition 8.7.
¢(n) = C[Hy(n),Ha(n),..., Hy(n)].

Moreover, the Hi(n)’s are algebraically independent.

In general, given a partition A = (A1, A2,...,Ap), A1 < n, consider the sum
of Capelli bitableaux
Ki(n) =Y [S]5],
s

where the sum is extended to all row-increasing tableaux S, sh(S) = A (the
K (n)’s are called shaped Capelli elements in [7]). Notice that the elements
K (n) are radically different from the elements Hx(n) = Hy, (n) ---Hy, (n).

From Corollary [75 Egs. (@) and {@)) and row skew-symmetry of bitableaux,
we infer

Proposition 8.8. We have

K(Km) = (<1 by, (mhay ()b, (m). A= A

Hence, the elements K, (n) are central. By Corollary [[9, the following
statements are equivalent:

— The K, (n)—basis theorem for ¢(n) [7]:

Proposition 8.9. The set
{KA(n); A < n}

is a linear basis of {(n).
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Notice that the elements Ky (n) are radically different from the quantum
immanants of [21], [22] and [8].

The well-known theorem for the algebra of invariants C[M,, ,,]%dst
Proposition 8.10.
C[My )" = C[hy(n), ha(n),... . ha(n)].

Moreover, the hy(n)’s are algebraically independent.

Proposition is usually stated in terms of the algebra C[M,, ,,]¢*() =
(C[an}‘“l!ﬂ(m7 where C[Mn)n]GL(") is the subalgebra of invariants with
respect to the conjugation action of the general linear group GL(n) on
C[My 5] (see, e.g. [20], [14], [24]).
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