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Abstract: We introduce several spatially adaptive model order reduction approaches tailored to non-
coercive elliptic boundary value problems, specifically, parametric-in-frequency Helmholtz problems.
The offline information is computed by means of adaptive finite elements, so that each snapshot
lives in a different discrete space that resolves the local singularities of the analytical solution and
is adjusted to the considered frequency value. A rational surrogate is then assembled adopting either
a least-squares or an interpolatory approach, yielding a function-valued version of the the standard
rational interpolation method (V-SRI) and the minimal rational interpolation method (MRI). In the
context of building an approximation for linear or quadratic functionals of the Helmholtz solution,
we perform several numerical experiments to compare the proposed methodologies. Our simulations
show that, for interior resonant problems (whose singularities are encoded by poles on the real axis),
the spatially adaptive V-SRI and MRI work comparably well. Instead, when dealing with exterior
scattering problems, whose frequency response is mostly smooth, the V-SRI method seems to be the
best-performing one.
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1. Introduction

Many engineering applications, e.g., in structural dynamics, geophysics, seismology, acoustics or
vibro-acoustics, require the numerical approximation of solutions to time-harmonic wave propagation
problems over a range of frequencies. Due to oscillations in the analytical solutions, accurate numerical
approximations of frequency responses are computationally expensive and time-consuming, already
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for moderate frequencies. Therefore, in the multi-query context, when multiple solves of the model
have to be performed for different frequency values, the “naive” approach of discretizing the original
problem as many times as needed is usually unaffordable.

Let us denote by u(z) the exact solution to the time-harmonic problem under consideration for a
given wavenumber z ∈ C. Model order reduction (MOR) methods aim at alleviating the computational
cost by producing an approximation of the solution map z 7→ u(z) or the frequency response map of
a quantity of interest (QoI), usually given by some functional of the solution z 7→ y(z) := F(u(z)).
The produced approximation (the so-called surrogate) has to be close to the QoI and, at the same
time, should be cheap to evaluate. Customarily, MOR methods rely on a two-phase procedure. The
offline phase consists in the computation of a finite-dimensional basis of snapshots, entailing numerical
solutions of the original boundary value problem for a set of frequency values (the sample points).
Based on the offline information, the surrogate for the QoI is then assembled. These steps often require
a considerable computational effort. However, they are performed only once, and the surrogate is then
stored for later use during the online phase, where the surrogate is evaluated (in real-time) at any new
frequency value of interest.

In the mathematical and engineering literature we can distinguish two families of MOR methods
for frequency response problems. Projection-based techniques (see [6]), e.g., proper orthogonal
decomposition (POD), the reduced basis method (RB), and the multi-moment matching method, are
widely employed and extremely powerful; however, they require access to the original problem,
particularly, to the stiffness and mass matrices as well as the forcing term. In contrast, the so-called
non-intrusive MOR methods produce a surrogate relying only on the precomputed set of snapshots.
We mention, e.g., the Loewner framework [30], Padé-based techniques [2, 10], and minimal rational
interpolation (MRI) [36, 38]. Non-intrusive MOR methods usually display great flexibility, since, in
principle, they allow one to construct a surrogate starting from snapshots obtained via a black-box
solver (e.g., commercial closed-source software). The price to pay might be a reduced accuracy
(compared to intrusive methods) for a fixed set of samples.

We underline that, for frequency response problems like the Helmholtz equation (which is the main
focus of this work), the analytical solution u(z) can be proven to be a meromorphic function of the
complex wavenumber z. It is therefore sensible to look for its surrogate in the class of rational X-
valued maps (here X = H1(Ω) with Ω being the physical domain), as all the above-mentioned MOR
approaches do. Moreover, if the QoI is a linear functional of the solution field, e.g., y(z) = F(u(z)) with
F ∈ X′, then it inherits a meromorphic structure from u(z). The case of quadratic functionals (e.g., the
energy-norm of the frequency response) is more involved, and needs to be treated separately.

In standard MOR techniques, the snapshots of the “truth model” are all computed on one
discretization of the considered physical domain. In the specific framework we are handling, this
might represent a big drawback. Indeed, the analytical solution of the Helmholtz equation oscillates
more and more as the frequency increases, and it may exhibit local features, namely, a local
resonance-type behavior, depending on the shape of the physical domain and the considered
frequency values. Therefore, when a wide range of frequencies is considered, accuracy is guaranteed
only by using a uniformly refined mesh, which must be sufficiently accurate for all frequency values
of interest. This can potentially entail a waste of computational resources during the offline phase.
Moreover, the a-priori identification of one grid yielding small FE errors for all samples of the
wavenumbers is a challenging task.
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In contrast, in spatially adaptive MOR approaches, each snapshot is taken on a mesh adapted to
the local features at a given parameter (i.e., wavenumber) value, and belongs to a problem-adapted
finite element (FE) space that contains the “optimal” number of degrees of freedom (DoFs) required to
obtain a certain accuracy. Spatially adaptive MOR methods for coercive parametric partial differential
equations (PDEs) have been the subject of recent mathematical research. In particular, we refer to [4],
where the finite dimensional subspace for a greedy RB method consists of snapshots computed via
an adaptive wavelet scheme. Adaptive FEs have been coupled with POD and greedy RB in [26, 46]
and [50], respectively.

The novelty of the present contribution resides in the introduction of spatially adaptive MOR
methods for non-coercive elliptic boundary value problems, specifically, the parametric-in-frequency
Helmholtz equation. The offline information, upon which the surrogate construction relies, is a set of
snapshots computed by means of an h-adaptive FE method (here, h > 0 refers to the so-called mesh
size, the maximum diameter of the elements of the FE mesh). The motivation that drives us to
adaptive MOR methods is twofold. First, the use of h-adaptive FE snapshots, each living on a
different mesh of the domain, allows one to save computational resources during the offline phase.
Second, it presents an additional advantage: standard MOR methods aim at the approximation of the
high-fidelity FE solution residing in an a-priori chosen mesh, not investigating how large the error
between the high-fidelity solution and the analytical solution of the PDE is, but rather assuming such
error to be small (uniformly over the parameter range). On the other hand, spatially adaptive MOR
methods set the analytical solution as approximation target, bounding the FE error by means of
a posteriori estimators. Notably, this framework allows one to balance the FE error (related to the
choice of the mesh at each parameter value) and the MOR error (related to the number of snapshots
and to the MOR strategy), resulting in an improved overall approximation efficiency.

On the other hand, the adaptive approach implies intrinsic difficulties: for instance, linear
combinations of snapshots cannot be easily computed. In principle, to circumvent this issue, one
could express all the snapshots as elements of some common FE space. However, for adaptive mesh
refinement based on newest vertex bisection (NVB) [32, 43], this would entail the construction of the
so-called global mesh overlay [19,42], i.e., the smallest common refinement of all adapted meshes. In
many cases, this entails a prohibitive computational effort and, more importantly, it goes against the
main purpose of h-adaptivity. Therefore, in all the algorithms that we propose in this work, we strive
to never construct the global mesh overlay. On the contrary, we will only require the evaluation of
scalar products of pairs of snapshots, which is equivalent to building overlays of pairs of meshes. See
also [26, 46].

In principle, any numerical scheme well-suited for the Helmholtz equation at fixed accuracy (other
than the h-adaptive FEM) can be employed offline during the sampling phase, and coupled with all
the MOR techniques here presented. Typical examples are the hp-FEM, multiscale and extended
schemes. However, from the algorithmical point of view, we are limited to numerical schemes for
which the computation of scalar products of pairs of snapshots is feasible. This issue becomes
particularly challenging when non-nested meshes or non-nested spaces are employed. Therefore, for
simplicity, in the present work we choose to compute the snapshots by means of the piecewise affine
adaptive FEM, for which we know how to compute the aforementioned scalar products.

When the QoI is a scalar, one possible way to avoid dealing with snapshots on different meshes is
to construct a rational surrogate for the output itself by means of standard rational interpolation (SRI)
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methods. Off-the-shelf rational approximation methods like AAA [34], the Loewner framework [1,30],
or vector fitting [27] can be applied to this aim. We summarize this class of approaches in Section 4.1.

On the other hand, the present contribution is dedicated to the development of MOR methodologies
providing surrogates for function-valued QoI. With this aim:

• We extend the SRI approach to function-valued QoIs, particularly, traces and/or restrictions of
the form v(z) = u(z)|ω ∈ L2(ω) with ω being a part of the physical domain Ω or of its boundary
∂Ω, or possibly even coinciding with the entire domain Ω. We refer to the resulting method asV-
SRI. In the finite-dimensional “vector” case, this approach can be related to vector-valued rational
approximation methods like set-valued AAA [33] or the MIMO Loewner framework [1]. Still, we
focus here on the infinite-dimensional case, where the quantity to approximate is function-valued.
• We considerably improve the MRI method [36,38] by (i) formulating it in barycentric coordinates,

which allow for enhanced numerical stability properties; (ii) extending it to the h-adaptive FE
setting. The resulting method is also referred to as h-adaptive MRI.

The rest of the paper is organized as follows. In Section 2, the parametric-in-frequency
time-harmonic wave problems of interest for our discussion (interior and scattering problems) are
introduced, and their meromorphic structure is highlighted. In Section 3, we recall the h-adaptive FE
method (FEM). The core of the paper is Section 4. There, the h-adaptivity in the space variable is
combined with the use of several rational-based MOR techniques. In Section 5, the h-adaptive POD is
presented. In Section 6, we discuss the case in which the quantity of interest is a real-quadratic
functional of the analytic solution. Finally, in Section 7, several numerical results are provided, to
discuss the performance and highlight advantages and disadvantages of the considered approaches.

2. Representative problems of interest

For a given complex wavenumber k2, we look for u(k2) ∈ X := H1
ΓD

(Ω), the weak solution of the
following interior Helmholtz boundary value problem

−∆u(k2) − k2u(k2) = f , in Ω,

u(k2) = 0, on ΓD ⊂ ∂Ω,

∂νu(k2) = gN , on ΓN = ∂Ω \ ΓD.

(2.1)

In Eq (2.1), Ω ⊂ Rd (d = 1, 2, 3) denotes a bounded domain, whose boundary is partitioned into the
(possibly empty) subsets ΓD and ΓN . We denote by ν the outward-pointing normal to ΓN and we assume
that f ∈ X′ = H−1(Ω) and gN ∈ H−1/2(ΓN). Problem (2.1) admits a unique weak solution u(k2) for all
k2 ∈ C \ Λ, Λ being the set containing all (real, positive) eigenvalues of the Laplace operator with
mixed Dirichlet-Neumann boundary conditions (see [10]).

Our ultimate target is the approximation of a quantity of interest (QoI) that depends on the weak
solution u(k2), for all values of the (complex) parameter k2 sweeping a given range of interest Z. In
particular, let F : X → C represent a goal functional over X. Then, the target quantity for fixed k2 ∈ Z
is the scalar

y(k2) = F(u(k2)) ∈ C. (2.2)
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We will consider linear as well as real-quadratic functionals. For instance, we may take

F(v) =

∫
ω

v, (2.3)

or
F(v) =

∫
ω

|v|2, (2.4)

(or weighted versions of them) withω ⊂ Ω being, for example, an arbitrary subdomain or curve. Linear
and real-quadratic functionals are quite often of interest in applications, representing, e.g., average
displacements and vibrational energy, respectively.

For simplicity, we restrict our presentations to a k-independent forcing term f , k-independent
Neumann datum gN , and homogeneous Dirichlet boundary condition on ΓD. If an inhomogeneous
Dirichlet datum is given, by its lifting one falls back to a Helmholtz equation with homogeneous
Dirichlet boundary conditions but with k-dependent right-hand side. As we showcase in our
numerical examples, our discussion extends in a straightforward way to k-dependent forcing terms
and Neumann data. However, one should note that, as the complexity of the forcing term and/or
Neumann datum (particularly, with respect to k) increases, a surrogate of higher order – thus entailing
a higher computational cost – is usually necessary to attain a prescribed approximation accuracy.

The interior Helmholtz problem Eq (2.1) can be extended to model exterior scattering problems.
Indeed, let D ⊂ Rd (d = 1, 2, 3) denote a compact scatterer, whose surface has impedance ζ ∈ C ∪ {∞}
and inward-pointing normal ν, and define Ω = Rd \ D. For a given wavenumber k ∈ C, the solution
u(k) ∈ X = H1(Ω) of 

−∆u(k) − k2u(k) = 0, in Ω,(
∂ν + ι k

ζ

)
u(k) =

(
∂ν + ι k

ζ

)
eιkx1 , on ∂D,

lim|x|→∞ |x|(d−1)/2 (
∂|x| − ιk

)
u(k) = 0,

(2.5)

models (in frequency domain) the wave scattered by D when it is hit by the horizontal plane wave eιkx1 .
In practice, one can truncate Ω: for instance, given R > 0 large enough, one can set Ω′ = Ω ∩ B(0,R),
with B(0,R) denoting a ball of radius R (see Figure 1), or Ω′ = Ω ∩ [−R,R]d (see Section 7.3). When
writing the boundary value problem on the truncated domain Ω′, the Sommerfeld radiation condition
at infinity (the third equation in Eq (2.5)) is replaced by some approximation on the boundary ∂Ω′ \∂D,
e.g., the first-order absorbing boundary condition ∂νu(k) = ιku(k). The obtained variational problem
admits a unique weak solution for all k ∈ C, with Im(k) ≥ 0 (see [12]).

D

Ω
′

�e
ιkx1 ν

Figure 1. Schematic of the representative scattering problem.
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We note that, in the exterior case, we are writing u(k), as opposed to the notation u(k2) that we used
for the interior case, because the wavenumber k appears also with the first power in Eq (2.5) (and also
in the first-order absorbing boundary condition). This will allow us to use a common framework (with
the argument z of the solution map u(z) denoting either k2 or k) in describing the features of the solution
map in the two cases (see Section 2.1).

To conclude this section, we underline that, while it is usually quite difficult to extend theoretical
results from interior to exterior problems, our methods can be applied to scattering problems without
the need for any modifications.

2.1. Meromorphicity of the solution map

Given the parametric-in-frequency interior boundary value problem Eq (2.1), it is natural to
introduce the solution map (or frequency response map) u : C → X that associates to each complex
wavenumber squared z = k2 the weak solution u(z) of the corresponding Helmholtz boundary value
problem. In [10] it was proven that the solution map is meromorphic over C, i.e., u is holomorphic
over the whole complex plane, except at a set of isolated points Λ = {λi}

∞
i=1, where it displays

pole-type singularities. In particular, Λ is the set of eigenvalues of the (minus) Laplace operator on Ω

with the considered boundary conditions. Moreover, each pole has order 1, regardless of its
multiplicity as Laplace eigenvalue. More precisely, we have the following expansion:

u(z) =

∞∑
i=1

fiϕi

λi − z
, (2.6)

with ϕi ∈ X, −∆ϕi = λiϕi, for all i, and { fi}i ⊂ C being coefficients depending on the forcing term and
boundary conditions of the problem.

This result (except for the pole order) was extended to scattering problems Eq (2.5) in [12], where,
in contrast, the solution map u(z) is a function of the wavenumber, i.e., z = k. In this case, all the
poles have strictly negative imaginary part. However, a characterization as precise as in formula (2.6)
is not available: the poles might have order larger than 1, and the corresponding residues will not be
X-orthogonal. Still, the use of rational X-valued surrogates is justified also in this setting.

Using a notation that encompasses both cases (interior and scattering problem), the frequency
response map can be expressed as

u(z) =

∞∑
i=1

µi∑
`=1

ζi,`

(λi − z)`
=

∞∑
i=1

∑µi
`=1 ζi,`(λi − z)µi−`

(λi − z)µi
=:

∞∑
i=1

ζi(z)
(λi − z)µi

, (2.7)

where, for all i, λi ∈ C is a pole of u with (finite) multiplicity µi, and {ζi,`}
µi
`=1 ⊂ X are its corresponding

generalized residues.
The meromorphicity of the frequency response map is inherited by QoIs y that are linear functionals

of u. The poles of y are a subset of the poles of u. In particular, λi is a pole of y if at least one of its
residues ζi,` satisfies F(ζi,`) , 0, i.e., if ζi,` is not in the kernel of F. Real-quadratic functionals, see,
e.g., Eq (2.4), are more involved, and are discussed in Section 6. Due to the added difficulties described
there, unless otherwise specified, from here onward we will assume that the QoI y is a linear functional
of the solution u.

Before proceeding, it is important to make the following observation.
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Remark 2.1. Ritz- and Petrov-Galerkin projections of the problems above preserve the meromorphicity
of the solution with respect to z. As a consequence, when, e.g., FEs are employed to discretize the PDE
over a fixed mesh of Ω, the FE discrete solution is meromorphic in z. However, the (countably) infinite
analytic poles and eigenfunctions in Eq (2.6) are replaced by finite dimensional FE counterparts.

3. Solution with h-adaptive FEM

In this section, we describe the h-adaptive FEM used to compute the snapshots that serve as inputs
to the proposed MOR methods.

3.1. Problem formulation and its FE discretization

Let us consider the boundary value problem
−∆u − k2u = f in Ω,

u = 0 on ΓD,

∂νu = gN on ΓN ,

∂νu − ιku = gR on ΓR,

(3.1)

where f ∈ L2(Ω), gN ∈ L2(ΓN) and gR ∈ L2(ΓR), with ΓD, ΓN , ΓR being relatively open and pairwise
disjoint subsets of the boundary ∂Ω forming a partition of it, i.e., ∂Ω = ΓD ∪ ΓN ∪ ΓR. This problem
covers both Eq (2.1) (corresponding to the case ΓR = ∅) and (2.5) with first-order absorbing boundary
conditions (after truncation of the infinite exterior domain). The variational formulation of Eq (3.1)
reads as follows: find u ∈ X = H1

ΓD
(Ω) such that

b(u, v) =

∫
Ω

f v +

∫
ΓN

gNv +

∫
ΓR

gRv for all v ∈ X, (3.2)

where the sesquilinear form b : X × X → C is given by

b(w, v) =

∫
Ω

∇w · ∇v − k2
∫

Ω

wv − ιk
∫

ΓR

wv for all w, v ∈ X.

The variational problem is well-posed for k ∈ R, if ΓR , ∅ or if ΓR = ∅ and k2 is not an eigenvalue of
the Laplace operator with mixed Dirichlet-Neumann boundary conditions.

To approximate u, we consider a standard X-conforming FEM, namely, we perform the Galerkin
projection on a finite dimensional subspace of X spanned by FE functions. (Note that this requires
∂Ω to be polygonal.) Let T• be a regular simplicial mesh of Ω. We assume that the partition of ∂Ω

is resolved by T• and denote by E• the set of facets (edges in 2D) of T•. We consider the space of
globally continuous and T•-piecewise affine functions (P1-FEM), i.e.,

X• := {vh ∈ C(Ω) : v|T is affine for all T ∈ T•} ∩ X.

Then, the approximation u• ∈ X• of u is the solution of the following finite-dimensional variational
problem: find u• ∈ X• such that

b(u•, v•) =

∫
Ω

f v• +

∫
ΓN

gNv• +

∫
ΓR

gRv• for all v• ∈ X•. (3.3)
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It is well-known that Eq (3.3) can be ill-posed even if Eq (3.2) is well-posed. However, if Eq (3.2) is
well-posed and T• is sufficiently fine, then Eq (3.3) admits a unique solution; see,
e.g., [7, Proposition 1].

3.2. A posteriori error estimation and adaptive algorithm

Error estimation techniques and mesh adaptive methods are powerful tools to accelerate the
convergence of the FEM. Starting with the pioneering works [15, 16], several error estimation
strategies for the FEM have been proposed; see, e.g., the monograph [3]. For works focused on
a posteriori error estimation for the Helmholtz equation, we refer, e.g., to [8, 9, 17, 21, 44].

In this work, to estimate the error between u and u•, we consider the classical residual-based
a posteriori error estimator, i.e.,

η2
• =

∑
T∈T•

η•(T )2,

where, for all T ∈ T•, the computable local refinement indicators are given by

η•(T )2 = h2
T

∥∥∥ f + k2u•
∥∥∥2

L2(T )
+ hT ‖~∂νu•�‖2L2(∂T∩Ω)

+ hT ‖gN − ∂νu•‖2L2(∂T∩ΓN ) + hT ‖gR + ιku• − ∂νu•‖2L2(∂T∩ΓR) . (3.4)

In Eq (3.4), hT = diam(T ), while ~∂νu•� denotes the jump of the normal derivative of u• over the
interface of two interior elements. If Eqs (3.2) and (3.3) are both well-posed, standard arguments in
a posteriori error analysis (see, e.g., [3, Sections 2.2–2.3]) reveal that η• is reliable and efficient in the
sense that

C−1
rel ‖∇(u − u•)‖L2(Ω) ≤ η• ≤ Ceff

(
‖∇(u − u•)‖L2(Ω) + osc( f , gN , gR)

)
. (3.5)

Here, Crel and Ceff are positive constants, while

osc( f , gN , gR)2 =
∑
T∈T•

h2
T ‖ f − fT ‖

2
L2(T ) +

∑
e∈E•∩ΓN

he

∥∥∥gN − gN,e

∥∥∥2

L2(e)

+
∑

e∈E•∩ΓR

he

∥∥∥gR − gR,e

∥∥∥2

L2(e)

collects the so-called data oscillations, where fT denotes the integral mean of f in T , while gN,e (resp.,
gR,e) denotes the integral mean of gN (resp., gR) in e ∈ E•. The positive constants Crel and Ceff in Eq
(3.5) depend on the shape-regularity of the mesh and on the problem data. They notably also depend
on k.

Efficient error estimation is the fundamental ingredient to steer adaptive algorithms of the form

SOLVE → ESTIMATE → MARK → REFINE. (3.6)

In such h-adaptive algorithms, the regions of the domain characterized by large values of the local
error indicators are selected for further refinement. This mechanism automatically produces meshes
that resolve the features of the solution and reduces the number of DoFs necessary to achieve a certain
accuracy (compared to a uniform triangulation). For the Helmholtz equation, this results in meshes that
resolve the local singularities of the analytical solution and are adjusted to the considered frequency
value.
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During the last twenty years, the (optimal) convergence of the adaptive FEM have been the subject
of intense research; see, e.g., the recent review [18]. Such results guarantee that h-adaptive algorithms
generate approximations with the desired accuracy in a finite number of iterations and that,
asymptotically, the convergence has the best possible rate for the considered discretization. We refer
to the recent work [7] for the proof of optimal convergence of an adaptive FEM for compactly
perturbed elliptic problems such as the Helmholtz equation.

In the present work, for mesh refinement, we employ NVB [32, 43]. Given a mesh T• and a subset
M• ⊆ T• of marked elements, we denote by T◦ := refine(T•,M•) the coarsest NVB refinement of T•
such thatM• ⊆ T• \ T◦. Furthermore, we assume that any mesh used to discretize Ω can be obtained
by applying a finite number of NVB refinements to a given initial mesh T0.

Given the parameters 0 < θ ≤ 1, tolh > 0, and Nmax > 1, we consider the following algorithm
(see [7, Algorithm 7]):

Algorithm 1 h-adaptive FEM for the Helmholtz equation
Require: z, ` = 0, initial mesh T0

loop
if Eq (3.3) does not admit a unique solution in X` then

set u` := 0, η` := 1, andM` := T`
else

compute the unique solution u` ∈ X` of Eq (3.3)
compute the refinement indicator η`(T ) in Eq (3.4) for all T ∈ T`
if η` ≤ tolh or dimX` > Nmax then

break
end if
determineM` ⊆ T` of minimal cardinality satisfying (?)

θ η2
` ≤

∑
T∈M`

η`(T )2 (3.7)

end if
define T`+1 := refine(T`,M`), increase ` by 1

end loop
return approximation uh := u` of u.

Apart from the outer if-statement, introduced in [7] to ensure that after a finite number of iterations
the mesh becomes sufficiently fine to have well-posedness of Eq (3.3), Algorithm 1 is the standard
adaptive algorithm of the form Eq (3.6). In step (?), the selection of the elements to be marked for
refinement, modulated by the parameter 0 < θ ≤ 1, is based on the Dörfler marking criterion Eq (3.7)
from [20]. Algorithm 1 delivers an approximation uh = uh(z) ≈ u(z) such that either the corresponding
error estimate ηh satisfies ηh ≤ tolh or the dimension of the underlying FE space satisfies dimXh > Nmax.
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3.3. Computing bi-/sesquilinear forms across different meshes

The construction of the surrogate via the MOR methods discussed below will require the evaluation
of scalar products of pairs of snapshots uh(z) and uh(z′) associated with different frequencies z and
z′. This leads to some difficulties, since, in general, they belong to the different FE spaces Xh(z) and
Xh(z′). As such, it is necessary to assemble stiffness and mass matrices “across” different meshes Th(z)
and Th(z′). Exploiting the fact that Th(z) and Th(z′) are NVB refinements of the same fixed initial
mesh T0 and the binary tree structure of NVB, it is possible to compute the matrix entries efficiently
and exactly, although the meshes are, in general, different and not even nested. For more details, we
refer to [14, Section 6.2]; see also Section 7.

4. Combining MOR with h-adaptivity

In the present section, we describe our proposed rational-based MOR methods for the
approximation of h-adaptive quantities. First, we recall the SRI method in barycentric coordinates,
which is suited for rational approximation of scalar-valued QoIs. Then, we extend the method to
function-valued QoIs. Finally, we focus on the MRI method, and we specialize it to the adaptive
framework of the present work.

4.1. Standard rational interpolation (SRI) for scalar QoIs

When constructing the surrogate for a fixed QoI, a simple way to avoid dealing with snapshots on
different meshes altogether is to approximate the (scalar) output yh(z) = F(uh(z)) directly. As observed
in Section 2.1, linear functionals of u are meromorphic, so that a rational approximation of yh is natural
(see Section 4.4 for a further discussion on this):

yh(z) ≈ yh,[N](z) =
P[N](z)
Q[N](z)

, (4.1)

with P[N],Q[N] ∈ PN(C). Rational interpolation of scalar functions has been object of research for
quite some time. A popular strategy entails the search of numerator and denominator of the rational
approximant by minimization of the (weighted) linearized interpolation error at the sample points
{z j}

S
j=1 ⊂ C, i.e.,

PN(C) × PN(C) 3 (P,Q) 7→
S∑

j=1

w j

∣∣∣Q(z j)yh(z j) − P(z j)
∣∣∣2 ∈ R+, (4.2)

with suitable weights {w j}
S
j=1 ⊂ R

+. A normalization constraint (usually on Q[N]) must be imposed to
avoid the trivial solution P[N] = Q[N] = 0. A key property of rational interpolation (in this form) is
that at least 2N + 1 samples are necessary. We note that, in the most general formulation of rational
approximation, the numerator and denominator might have different polynomial degree. We ignore
this here by allowing them to have defective degrees.

In the interest of numerical stability, a very useful representation of the polynomials P[N] and Q[N]

can obtained in the so-called barycentric form:

P[N](z) =

 N∏
i=0

(z − ζi)

 N∑
i=0

pi

z − ζi
and Q[N](z) =

 N∏
i=0

(z − ζi)

 N∑
i=0

qi

z − ζi
, (4.3)
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where {ζi}
N
i=0 ⊂ C are given distinct support points, and {pi}

N
i=0 ∪ {qi}

N
i=0 ⊂ C. Henceforth, we will

refer to π(z) =
∏N

i=0(z − ζi) as nodal polynomial. Whenever a support point ζi coincides with a sample
point z j, interpolation at that point is guaranteed by setting pi = qiyh(ζi), and the j-th addend can (and
should) be removed from Eq (4.2). With this choice of basis, it is common to weigh the interpolation
problem by nodal polynomial values: w j = |π(z j)|−2. This allows to express Eq (4.2) in an extremely
simple form.

Definition 4.1 (SRI). Let (distinct) sample points {z j}
S
j=1 and (distinct) support points {ζi}

N
i=0 be given,

with S ≥ 2N + 1. The (barycentric) standard rational interpolant (SRI) of type [N] of yh based on such
sample and support points is a ratio ySRI

h,[N] = PSRI
[N]

/
QSRI

[N] , with PSRI
[N] and QSRI

[N] of the form Eq (4.3). The
coefficients {pi}

N
i=0 ∪ {qi}

N
i=0 ⊂ C are chosen so that they minimize

S∑
j=1

z j<{ζi}
N
i=0

∣∣∣∣∣∣∣
N∑

i=0

qiyh(z j) − pi

z j − ζi

∣∣∣∣∣∣∣
2

(4.4)

under the constraints 
∑N

i=0 |qi|
2 = 1,

pi = qiyh(ζi) for all i = 0, . . . ,N such that ζi ∈ {z j}
S
j=1.

(4.5)

(For more information on the barycentric rational form, see, e.g., [31, 34], and the references therein.)

Similar (sometimes, equivalent) definitions yield some of the state-of-the-art algorithms for rational
approximation, e.g., AAA [34], the Loewner framework [1], and vector fitting [27].

Remark 4.2. Let i be such that qi , 0. It is not difficult to see from Eq (4.3) that ySRI
h,[N](ζi) = pi/qi. In

particular, this means that, if ζi ∈ {z j}
S
j=1 and qi , 0, then we have interpolation of the target function at

ζi: ySRI
h,[N](ζi) = yh(ζi). This provides an intuitive justification for choosing the support points as a subset

of the sample points {ζi}
N
i=0 ⊂ {z j}

S
j=1, as done, e.g., in the AAA method [34].

Remark 4.3. In Definition 4.1, we have imposed a normalization on the Euclidean norm of the
coefficients of the denominator QSRI

[N] to exclude the trivial solution PSRI
[N] = QSRI

[N] = 0. This choice has
been observed to be more numerically robust than the standard one, based on the normalization of a
single coefficient of the denominator, and is the de facto standard in rational approximation; see,
e.g., [24, 34].

Before proceeding, we outline here a practical algorithm for building SRIs. In the most common
collocation case ({ζi}

N
i=0 ⊂ {z j}

S
j=1), the coefficients qi can be found from the SVD of the Loewner matrix

G ∈ C(S−N−1)×(N+1), defined entry-wise as

G( j−N−2)i =
yh(z j) − yh(zi+1)

z j − zi+1
for j = N + 2, . . . , S and i = 0, . . . ,N. (4.6)

For more details, we refer either to [23, 30, 34], to Algorithm 2 in the next section, or to Remark B.2.
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4.2. SRI for function-valued quantities

The construction above can be easily generalized to vector quantities of interest, e.g.,
yh(z) =

(
y1

h(z), . . . , yO
h (z)

)>
. To this aim, two changes are necessary: first, while the denominator

remains C-valued, the numerator must become CO-valued, i.e., {pi}
N
i=0 ⊂ C

O; second, the absolute
value in Eqs (4.2) and (4.4) must be replaced by the Euclidean norm over CO, yielding

S∑
j=1

z j<{ζi}
N
i=0

∥∥∥∥∥∥∥
N∑

i=0

qiyh(z j) − pi

z j − ζi

∥∥∥∥∥∥∥
2

CO

=

S∑
j=1

z j<{ζi}
N
i=0

O∑
l=1

∣∣∣∣∣∣∣
N∑

i=0

qiyl
h(z j) − (pi)l

z j − ζi

∣∣∣∣∣∣∣
2

. (4.7)

We note that, in the collocation case ({ζi}
N
i=0 ⊂ {z j}

S
j=1), this strategy is closely related (in fact, mostly

equivalent) to the “set-valued AAA” and “fast-AAA” algorithms introduced in [33] and [29],
respectively. An SVD-based solution is possible here as well, but we skip the details, since we
provide them below in the more general framework of function-valued rational approximation, which
includes this as special case. Alternatively, the MIMO Loewner framework [23,30] solves this kind of
approximation problem by tangential interpolation, effectively recasting it as modified scalar problem.

More interesting and definitely less trivial is the extension to “infinite-dimensional” function-valued
QoI. In the following, taking inspiration from Eqs (2.3) and (2.4), we focus on the case

v(z) = u(z)|ω ∈ L2(ω) =: V. (4.8)

However, as we describe in more detail in Section 4.4, we note that our discussion applies also to the
case ω = Ω, i.e., v = u. We obtain the following definition by extending Eq (4.7) from CO toV.

Definition 4.4 (V-SRI). Let (distinct) sample points {z j}
S
j=1 and (distinct) support points {ζi}

N
i=0 be

given, with S ≥ 2N + 1. The (barycentric) V-SRI of type [N] of vh : C → V based on such sample
and support points is a ratio vV-SRI

h,[N] = PV-SRI
[N]

/
QV-SRI

[N] , with PV-SRI
[N] and QV-SRI

[N] being of the form Eq (4.3).
The coefficients {pi}

N
i=0 ⊂ V and {qi}

N
i=0 ⊂ C are chosen so that they minimize

S∑
j=1

z j<{ζi}
N
i=0

∥∥∥∥∥∥∥
N∑

i=0

qivh(z j) − pi

z j − ζi

∥∥∥∥∥∥∥
2

V

(4.9)

under the constraints 
∑N

i=0 |qi|
2 = 1,

pi = qivh(ζi) for all i = 0, . . . ,N such that ζi ∈ {z j}
S
j=1.

(4.10)

Remark 4.5. In Eq (4.8), we have setV = L2(ω) with the objective of approximating some restriction
of uh to ω ⊂ Ω. However, Definition 4.4 may be applied also in more general spacesV. For instance,
we may setV = X (the space where the solution u lives) to define X-SRI.

It is crucial to observe that the following property (whose proof is deferred to Appendix A) holds
true.

Lemma 4.6. The coefficients of the V-SRI numerator PV-SRI
[N] belong to the span of the snapshots:

{pi}
N
i=0 ⊂ span{vh(z j)}Sj=1.
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Accordingly, there exists a matrix P̊ ∈ CS×(N+1) of expansion coefficients:

pi =

S∑
j=1

P̊ jivh(z j) for i = 0, . . . ,N, (4.11)

and theV-SRI admits the expansion

vV-SRI
h,[N] (z) =

 N∑
i=0

∑S
j=1 P̊ jivh(z j)

z − ζi

 /  N∑
i=0

qi

z − ζi

 . (4.12)

An algorithm for computingV-SRIs can be obtained as an extension of that for SRI. Notably, as we
detail in Appendix B, the minimization of Eq (4.9) can be carried out through an SVD-like procedure
in the “vectorized”V⊗CS metric. As a practical way to do this, we introduce aV-orthonormalization
step: given {vh(z j)}Sj=1 ⊂ V, we compute aV-orthonormal (〈ψ j, ψ j′〉V = δ j j′) basis {ψ j′}

T
j′=1 ⊂ V and a

T × S matrix R such that

vh(z j) =

T∑
j′=1

R j′ jψ j′ for j = 1, . . . , S . (4.13)

(The value T ≤ S is the rank of the snapshots, i.e., the dimension of their span as a subspace of V.)
The basis {ψ j′}

T
j′=1 can be constructed, e.g., by Householder triangularization of the snapshot quasi-

matrix [vh(z1)| · · · |vh(zS )], see [45]. Alternatively, one can obtain R from a Cholesky decomposition of
a suitable Gramian matrix, cf. the proof of Lemma B.1.

Algorithm 2V-SRI

Require: sample points {z j}
S
j=1 ⊂ C and denominator degree N ≤ S−1

2
Require: target function vh : C→V

compute vh(z1), . . . , vh(zS )
orthonormalize the snapshots to obtain R ∈ CT×S , see Eq (4.13)
assemble the (vectorized) Loewner matrix G defined in Eq (4.14)
compute the SVD of G = UΣVH, with Σ ∈ CT (S−N−1)×(N+1)

define (q0, . . . , qN)> = V:N , the last column of V
return surrogate

(∑N
i=0

qivh(zi+1)
· −zi+1

)
/
(∑N

i=0
qi

· −zi+1

)
We summarize the overall method in Algorithm 2. For simplicity, we only consider the framework

where the support points are a subset of the sample points, with ζi = zi+1 for i = 0, . . . ,N. We note that
the algorithm relies on the Loewner matrix G ∈ CT (S−N−1)×(N+1), defined entry-wise as

G(T ( j−N−2)+ j′)i =
R j′ j − R j′(i+1)

z j − zi+1
(4.14)

for j = N + 2, . . . , S , j′ = 1, . . . ,T , and i = 0, . . . ,N, which is just a vectorized version of Eq (4.6).
The general case ({ζi}

N
i=0 1 {z j}

S
j=1) allows for a similar algorithm, where, however, the coefficients

of the numerator are not necessarily scalar multiples of snapshots. We provide a strategy to compute
V-SRIs in Appendix B.
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4.3. Minimal rational interpolation (MRI) for state estimation

As we will motivate in Section 4.4, the approximation of the full state u(z) is a topic that deserves
particular attention per se. Due to its importance, several MOR techniques start by computing a
surrogate for the state u and only afterwards derive from it an approximation for the quantity of
interest y. Among these, we can find projective approaches (see Section 5 and the references therein),
least-squares Padé-based approaches (see [11]) and the previously mentioned X-SRI. This last
technique has been further developed in [38] under the name of minimal rational interpolation (MRI),
with the objective of reducing the number of snapshots S needed to achieve a certain rational type [N]
(or, vice versa, maximizing the rational type for a given number of snapshots). In particular, the MRI
methodology allows constructing a rational approximant of type [S − 1], given only S samples of u
(as opposed to the 2S − 1 that would be necessary in, e.g., SRI). In the following paragraphs, we not
only extend MRI to the h-adaptive setting but we also formulate it in barycentric coordinates.

Definition 4.7 (MRI). The (barycentric) MRI of uh based on (distinct) sample points {z j}
S
j=1 is the ratio

uMRI
h,[S−1](z) =

PMRI
[S−1](z)

QMRI
[S−1](z)

=

π(z)
S∑

j=1

q j−1uh(z j)
z − z j

 /
π(z)

S∑
j=1

q j−1

z − z j

 ,
π being the nodal polynomial π(z) =

∏S
j=1(z − z j), where {qi}

S−1
i=0 ⊂ C minimizes∥∥∥∥∥∥∥

S∑
j=1

q j−1uh(z j)

∥∥∥∥∥∥∥
2

X

(4.15)

under the constraint
∑S−1

i=0 |qi|
2 = 1.

Remark 4.8. As seen in the previous sections, the choice of coefficients of PMRI
[S−1] ensures interpolation

of uh at all support points, which here coincide with all the sample points. Moreover, we observe that
the target quantity Eq (4.15) corresponds to the X-norm of the leading coefficient of the numerator:

1
(S − 1)!

dS−1PMRI
[S−1]

dzS−1 =

S∑
j=1

1
(S − 1)!

dS−1

dzS−1

(
π(z)

z − z j

)
q j−1uh(z j) =

S∑
j=1

q j−1uh(z j).

It is interesting to note that the MRI approximant may be cast in the form Eq (4.12) used for X-SRI
(or L2(Ω)-SRI), where the coefficient matrix P̊ ∈ CS×S is given by:

P̊ ji = δ(i+1) jqi for i = 0, . . . , S − 1 and j = 1, . . . , S .

In fact, MRI could be interpreted as an extension of X-SRI with an “unnatural” choice S = N + 1.
The characterization of the denominator coefficients q = (q0, . . . , qS−1)> in the definition of MRI

can be equivalently stated as: q is a minimal eigenvector of the snapshot Gramian

G(u)
h =


‖uh(z1)‖2

X
· · · 〈uh(zS ), uh(z1)〉X

...
. . .

...

〈uh(z1), uh(zS )〉X · · · ‖uh(zS )‖2
X

 ∈ CS×S , (4.16)

cf. Eq (B.1). This helps in designing a numerical strategy to compute the MRI surrogate, which we
report in Algorithm 3.
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Algorithm 3 MRI

Require: sample points {z j}
S
j=1 ⊂ C and target function uh : C→ X

compute uh(z1), . . . , uh(zS )
assemble the snapshot Gramian G(u)

h defined in Eq (4.16)
compute the SVD of G(u)

h = VΣVH

define (q0, . . . , qS−1)> = V:(S−1), the last column of V
return surrogate

(∑S
j=1

q j−1uh(z j)
· −z j

)
/
(∑S

j=1
q j−1

· −z j

)
4.4. Some considerations onV-SRI and MRI in the h-adaptive case

In the h-adaptive setting, samples of the quantities vh (see Section 4.2) at different parameter
values live on potentially different meshes. The same holds for samples of the solution uh. This
represents an additional difficulty with respect to standard MOR (where the snapshots are all
computed using the same mesh), which we must take it into account when defining, building, and
evaluating the surrogate. For instance, evaluating the L2(ω)-SRI surrogate requires combining
snapshots over all the (potentially different) meshes discretizing ω, resulting in an overly high online
cost due to a global mesh overlay. Unfortunately, this issue is intrinsic to the task of approximating a
non-local quantity and cannot be easily mitigated. On the other hand, once vL2(ω)-SRI

h,[N] ≈ u|ω has been
computed, it is easy to derive a posteriori (without training a new surrogate) surrogates for arbitrary
linear functionals of u(z), provided their support lies in ω. One possible example is

y(z) = F(u(z)) =

∫
ω

wu(z),

with w : ω→ C some weight function. In such cases, it suffices to extract the scalar samples {yh(z j)}Sj=1

from the infinite-dimensional ones {vh(z j)}Sj=1, and then replace∗ vh by yh in Eq (4.12). Since the support
of F is contained in ω, this can be done without using the full state uh(z).

In view of this, computing the X-SRI (or the MRI, or even the L2(Ω)-SRI) of u(z) is quite powerful,
since it allows to obtain a posteriori a surrogate for any linear functional of u(z), without the need to
repeat the training phase. As we will see in our numerical experiments in Section 7, the main price to
pay for this flexibility is the offline computational cost needed to build the snapshot Gramian matrix
Eq (B.1), which is necessary to find R. Indeed, each of its N(N−1)

2 independent non-diagonal entries
requires building a (potentially different) pairwise mesh overlay over the whole Ω, cf. Section 3.3.

Before proceeding further, we wish to mention that, while MRI has the advantage of using the
samples optimally (and of being extremely simple to implement), it has one main drawback: its
theoretical foundations hold only when the target of the surrogate admits a simple partial fraction
decomposition whose residues are linearly independent. More explicitly, the following must hold true
for the theory in [38] (particularly, the convergence of uMRI

[S−1] to u in the X-norm as S → ∞) to apply:

1) u is of the form Eq (2.7), with simple poles, i.e., µi = 1 for all i; note that the expansion has to
hold only for z in a (large enough) neighborhood of the target wavenumber range Z;

∗Note that, in general, this yields a different rational surrogate from the one that would be obtained by SRI of y directly. Indeed, the
coefficients of the L2(ω)-SRI approximant (which we propose to reuse to obtain an approximation for y) are computed from information
on v. On the other hand, the coefficients of the SRI surrogate of y rely on information on y only, which can be interpreted as a “filtered-
down” version of v-information. This means that, while L2(ω)-SRI approximation followed by y-filtering is sure to be more versatile,
approximating y directly (by SRI) will likely be more accurate.
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2) the S sample points {z j}
S
j=1 are judiciously placed on the wavenumber range of interest (good

Lebesgue constant);
3) the N + 1 = S most relevant residues (relevance is determined according to the Green’s potential

of Z, see [38]) should be linearly independent.

The first point is quite relevant to our discussion, since, in our setting, u is of the required form, see
Eq (2.6), but uh is not. A way to formalize this issue is the following: we take as approximation target
the analytic solution u, whose snapshots are, however, affected by the noise uh−u. From this viewpoint,
an analysis of the properties of h-MRI could be based on the stability of MRI approximation with
respect to noise. A theoretical discussion on this issue is planned to appear in a forthcoming paper. In
the present work, we only observe the (sometimes adverse) effects of the h-FEM noise in our numerical
experiments in Section 7. Of course, due to the adaptive nature of the snapshots, these noise-related
issues are intrinsic to the problem at hand. As such, they may affect all the presented methods. Still,
the LS-based formulations of SRI andV-SRI have a regularizing effect that is missing in MRI.

5. Projective MOR alternatives

In the literature, many MOR approaches have been proposed to approximate (functionals of) the
solution of the Helmholtz equation. So-called projective methods build an approximation of the
solution u, rather than of y directly, through a restriction of the state problem (the Helmholtz equation)
onto a suitably chosen subspace of X, called “reduced space”. Then the surrogate for y is extracted
from that of u, usually at small computational cost. The main feature characterizing a projective MOR
technique is how such subspace is selected.

In POD, u is evaluated at some prescribed parametric values, building a collection of snapshots. A
principal components analysis of the snapshots is performed (e.g., by a generalized SVD), allowing the
identification of their dominant modes. The reduced space is then defined as the span of such modes.
We refer to [39] for an extensive discussion of POD. Then, the restriction of the original problem
onto the reduced space is performed by (Petrov-)Galerkin projection onto X̃ = span{ψ j} j, with {ψ j} j

the reduced basis of choice. Notably, this relies on a so-called affine decomposition of the original
problem: Find u(z) ∈ X such that

nA∑
`=1

φ`(z)A`u(z) =

nb∑
`=1

ψ`(z)b`, φ`, ψ` : C→ C, A` : X → X, b` ∈ X, (5.1)

gets projected onto X̃ as: Find ũ(z) =
∑

j u j(z)ψ j ∈ X̃ such that

∑
j

nA∑
`=1

φ`(z)〈A`ψ j, ψi〉Xu j(z) =

nb∑
`=1

ψ`(z)〈b`, ψi〉X ∀i. (5.2)

Obviously, this procedure requires access to each term A` and b` of the decomposition†. Strategies are
available to compute affine approximations of non-affine problems (see, e.g., [40]). In our h-adaptive
setting, additional difficulties arise, since snapshots on different meshes are incompatible at the discrete

†As is evident from Eq (5.2), access to the (discretized) operator A` is usually necessary only through “matrix-vector multiplies”, i.e.,
it must be possible to query A`ψ for an arbitrary ψ ∈ X.
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level. Consequently, each of the operators A` appearing in Eq (5.1) must undergo a treatment similar
to the one described in Section 3.3, see, e.g., [46].

In the scope of this paper, we can highlight three main differences between MRI and POD:

• Approximation quality: for a fixed number of snapshots, Galerkin projection identifies a quasi-
optimal approximation on their span, whereas for general problems no guarantee on the accuracy
of MRI is available. In specific cases, e.g., for all Helmholtz problems of the form Eq (2.1), a
theory for MRI can be derived, leading to quasi-optimality guarantees [38]. In such situations, the
two approaches are often very comparable, cf. our numerical results in Section 7. In comparison,
SRI orV-SRI usually require twice as many snapshots to achieve a certain approximation order‡.
• Unfavorable problems: being based only on snapshots of u, MRI is somewhat oblivious to the

structure of the underlying problem, which has u as solution. As a consequence, some problems
are inherently not amenable to approximation by MRI, while POD, being extremely structure-
aware, manages to work well for them. This is an intrinsic difficulty for non-intrusive methods.
• Affinity requirements: the necessity for an affine (or affinely approximable by, e.g., EIM [39])

problem structure limits the applicability of POD. This is particularly relevant for scattering
problems like Eq (2.5). Indeed, an affine decomposition of the impinging wave eιkx1 must
necessarily include many terms, especially if the wavenumber range is large, thus hindering
either online efficiency or surrogate accuracy (or both).

A schematic comparison of the presented algorithms, and of their computational costs, is included
in Table 1.

‡By “approximation order”, for rational interpolation we mean the degree of the surrogate denominator plus one. For POD/RB, we
mean the size of the reduced basis.
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Table 1. Summary of described MOR algorithms (with snapshot locations fixed a priori) and
corresponding complexities. For simplicity, we assume N ∼ S/2 for SRI andV-SRI, leading
to “optimal” snapshot usage in such methods. In the offline-online steps, for simplicity we
assume that y is a linear functional with support in ω ⊂ ∂Ω. In some cases, the online phase
for POD may be reduced to O(S nb) complexity at O(S 3) offline cost.

SRI V-SRI MRI POD

Ta
rg

et Linear functional
Real-quadratic functional

Restriction to sub-domain or (sub-)boundary

Pr
ob

le
m Affine and meromorphic

Non-affine Non-meromorphic

O
ffl

in
e

ph
as

e

Compute snapshots uh and meshes, extract outputs yh

O(S ah)
Build G(y)

h Build G(v)
h Build G(u)

h Project affine
as in Eq (B.1) as in Eq (B.1) as in Eq (4.16) LHS terms
O(S 2) O(S 2n2

h,ω) O(S 2n2
h) O(S 2nAn2

h)
Build Loewner Build vectorized Project affine
matrix Loewner matrix RHS terms
O(S 2) O(S 3) O(S nbnh)

Build rational approximant by SVD
O(S 3)
Extract approximation of y

O(S 2)

O
nl

in
e

ph
as

e

Build surrogate
O(S 2nA + S nb)

Evaluate rational approximant Solve surrogate
O(S ) O(S 3)

Apply functional
O(S )

Legend:
S = number of snapshots taken
nh = representative number of FE DoFs of uh

nh,ω = representative number of FE DoFs of uh|ω (∼ n1−1/d
h )

ah = representative complexity for computing uh (. n2
h)

nA, nb = number of affine terms in Eq (5.1)
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6. Rational interpolation for real-quadratic outputs

The case of real-quadratic functionals differs from that of linear ones because the meromorphic
dependence on z of the state is not inherited by real-quadratic outputs. Indeed, complex conjugation is
not an analytic operation. For instance, consider the functional in Eq (2.4), applied to a solution map u
of the form Eq (2.7). We obtain

y(z) =

∫
ω

|u(z)|2 =

∞∑
i,i′=1

∫
ω
ζi(z)ζi′(z)

(λi − z)µi(λi′ − z)µi′
. (6.1)

The quantity of interest y(z) behaves like a meromorphic function for real wavenumbers only in special
cases, namely, if the resonances λ j are real. Still, even in such situations, it is not meromorphic in the
usual sense, since there is no complex neighborhood of the real axis where it is meromorphic.

In the more general case, we may ask whether it is possible to find a surrogate for the exact quadratic
functional Eq (6.1) using any of the methods proposed above. The answer is actually positive for
L2(ω′)-SRI (provided ω ⊂ ω′), MRI, and (in many cases) POD. For the sake of simplicity, in the
following paragraphs we restrict our attention to L2(ω′)-SRI, with ω ⊂ ω′, but our discussion applies
also to MRI.

Let Eq (6.1) be the quantity of interest, and let Eq (4.12) be the L2(ω′)-SRI surrogate of vh = uh|ω′ .
Then, we observe that, by sesquilinearity,∫

ω

|u(z)|2 ≈
∫
ω

|uh(z)|2 =

∫
ω

|vh(z)|2 ≈
∫
ω

|vL2(ω′)-SRI
h,[N] (z)|2

=

 N∑
i,i′=0

∑S
j, j′=1 P̊ jiP̊ j′i′

∫
ω

vh(z j)vh(z j′)

(z − ζi)(z − ζi′)

 /
∣∣∣∣∣∣∣

N∑
i=0

qi

z − ζi

∣∣∣∣∣∣∣
2

=

 N∑
i,i′=0

∑S
j, j′=1 P̊ jiP̊ j′i′

(
G[y]

h

)
j′ j

(z − ζi)(z − ζi′)

 /
∣∣∣∣∣∣∣

N∑
i=0

qi

z − ζi

∣∣∣∣∣∣∣
2

,

where we have defined the y-representative Gramian G[y]
h as

G[y]
h =


∫
ω
|uh(z1)|2 · · ·

∫
ω

uh(zS )uh(z1)
...

. . .
...∫

ω
uh(z1)uh(zS ) · · ·

∫
ω
|uh(zS )|2

 ∈ CS×S .

In practical terms, this means that an online-efficient surrogate for y can be built from the L2(ω′)-
SRI one, as long as the y-representative Gramian is assembled offline. Such assembly can be carried
out by exploiting the strategy described in Section 3.3. Notably, we remark that G[y]

h can be built in
conjunction to the L2(ω′)-Gramian G(v)

h in Eq (B.1): in this case, the same overlay of two meshes can
be used to compute (G(v)

h ) j j′ , (G(v)
h ) j′ j, (G[y]

h ) j j′ , and (G[y]
h ) j′ j, for 1 ≤ j < j′ ≤ S .

Note that other similar approaches for handling real-quadratic outputs have been considered in
“system theory” literature, e.g., (for projection-based MOR) in [47].
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7. Numerical results

In this section, we showcase the described methods in three numerical examples, where features
and limitations of the different techniques emerge. We ran our code in MATLAB R© R2019b on a
desktop computer with an 8-core 3.60 GHz Intel R© processor. The computation of the snapshots via
the h-adaptive FEM is performed using p1afem [22]. The assembly of stiffness and mass matrices
associated with pairs of different meshes is carried out using [14, Section 6.2], with a computational
complexity that is quadratic in the number of elements of the meshes. However, since NVB is a binary
refinement rule, it should be possible to design an algorithm that performs this task in at most log-linear
complexity with respect to the number of elements. This artificially inflates the computational times
displayed below for the MRI and POD methods. Numerical testing with more efficient versions of the
algorithm is planned for the upcoming future.

7.1. Toy example on a triangle

We consider a triangular domain Ω =
{
x ∈ R2, 0 < x2 < x1 <

π
2

}
, whose boundary is partitioned into

Γ1 ∪ Γ2 ∪ Γ3. We are interested in the solution u = u(z) ∈ H1
Γ1

(Ω) = {v ∈ H1(Ω), v|Γ1 = 0} of the
Helmholtz equation with uniform forcing term

−∆u(z) − zu(z) = 1, in Ω,

u(z) = 0, on Γ1 =
]
0, π2

[
× {0},

∂νu(z) = ∂x1u(z) = 0, on Γ2 = {π2 } ×
]
0, π2

[
,

∂νu(z) = 1
√

2

(
∂x2u(z) − ∂x1u(z)

)
= 0, on Γ3 = ∂Ω \ {Γ1 ∪ Γ2}.

(7.1)

The eigenproblem for the minus Laplacian over Ω with the above boundary conditions can be solved
explicitly. The eigenvalues are

λm,n = m2 + n2, m, n ∈ N odd,m ≤ n, (7.2)

and the corresponding L2(Ω)-orthonormal eigenfunctions are

φm,n(x) =

 4
√

2
π

sin(mx1) sin(nx2), if m = n,
4
π

(sin(mx1) sin(nx2) + sin(nx1) sin(mx2)) , if m < n.
(7.3)

Accordingly, the solution u admits the closed-form infinite series expression

u(z)|x =
∑

m=1,3,...

2
√

2φm,m(x)
πm2(λm,m − z)

+
∑

m,n=1,3,...
m<n

4φm,n(x)
πmn(λm,n − z)

=
∑

m,n=1,3,...

16
π2mn(m2 + n2 − z)

sin(mx1) sin(nx2), (7.4)

where the series coefficients have been obtained by L2(Ω)-projection of the forcing term onto the
eigenspaces. Hence, in the scope of evaluating the FEM and MOR errors in post-processing, the
reference solution u(z) is available to arbitrary precision by truncation of Eq (7.4). Below, we truncate
the series by removing all terms in the sum whose coefficients 16

π2mn(m2+n2−z) are smaller than 10−8.
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7.1.1. Adaptive FEM approximation for fixed frequency

In our first experiment, we present the computation of a snapshot using the h-adaptive FEM
described in Section 3. To this end, we fix z = k2 = 51 and run Algorithm 1 with θ = 0.1,
tolh = 5 · 10−2, and Nmax = |Ω|k4

4tol2h
. With this choice, we are heuristically trying to guarantee that the

finest possible mesh used by the algorithm satisfies a “resolution condition” of the form
h̃•k2 ∼ 2tolh [8], where h̃2

• = |Ω| /N• is the mesh size of a 2D uniform mesh made of right triangles. In
this specific case, we have Nmax ≈ 3.2 · 106, but the adaptive algorithm stops beforehand at
N143 ≈ 1.9 · 105, since tolh is attained at the 143rd iteration. Note that z = 51 is not of the form
Eq (7.2), and its closest resonance is λ1,7 = λ5,5 = 50.

In Figure 2, we compare the analytical solution (Figure 2d) with the FE approximations at the 50th

(Figure 2a) and at the 143rd iteration (Figure 2c). In Figure 2b, we show the evolution of the error
estimator η• and the true error e•(z) = ‖∇(u•(z) − u(z))‖L2(Ω) as the mesh gets adaptively refined. Note
that, in Algorithm 1, the h-adaptive loop stops as soon as η• becomes smaller than the tolerance tolh.
In Figure 2b, we are also including points that correspond to further adaptive steps of refinement only
for illustrative reasons.

(a) uFEM
50 (z)

100 101 102 103 104 105 106

10−2

100

102

O(N −1/2• )

tolh

N
m

ax

DoFs N•

η•(Ω)
e•(Ω)

(b) η•(Ω) and e•(Ω) vs. FEM DoFs

(c) uFEM
143 (z)

(d) Exact u(z)

Figure 2. h-adaptive FEM results for z = 51.

Several peaks appear before the asymptotic (optimal) convergence regime is reached. Such peaks
are caused by resonances of the discrete problem at the chosen value of z. Indeed, since z is not a
resonance of the continuous problem Eq (7.1), we know that the discrete problem will not have a
resonance at z for a fine enough mesh. Still, resonances of the discrete problem may occur at z if the
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mesh is too coarse. For accuracy, it is crucial that the adaptive algorithm stops after all peaks. We
showcase this in Figure 2a, where we show the intermediate FEM solution after 50 iterations, i.e., just
to the left of the final peak in Figure 2b. We observe that the approximation of u is rather poor, because
the discrete resonance closest to z is placed on the wrong side of z.

Instead, when the convergence enters the asymptotic regime, the error estimator and the true error
decay with the same (optimal) rate. This is in agreement with the equivalence established in Eq (3.5)
(note that here the oscillation terms vanish, because f and gN are constant in this example).

Given u and its FE approximation, we introduce the QoI

y(z) =

∫
Γ2

u(z) = (u(z), 1)L2(Γ2) (7.5)

and the restriction v(z) := u(z)|Γ2 to Γ2 (the domain of integration in Eq (7.5)). In Figure 3, we
compare v(z) with its FE approximation obtained by restricting uFEM

51 (z) and uFEM
143 (z) to Γ2. We observe

a complete mismatch between the exact solution and the coarse approximation, confirming our
qualitative observations from the previous paragraphs. In Table 2, we make our conclusions
quantitative by looking at the relative approximation error in the approximation of the QoI.

0 0.5 1 1.5
−1

0

1

2

x2

v(
51

)| x
2

exact v50 v143

Figure 3. u(51)|( π2 ,x2).

Table 2. QoI and relative FEM errors.

exact rel. err. rel. err.
value on T50 on T143

y(51) 1.47e-1 1.76e+1 3.19e-3

7.1.2. Surrogate model for a linear quantity of interest

Now, we move to the approximation of the linear QoI y(z) in Eq (7.5) over the range z ∈ Z = [1, 100].
First, we build a rational surrogate of type [14/14] by SRI, using snapshots at S = 29 uniformly spaced
sample points in Z. Specifically, we compute the snapshots by using the h-adaptive FEM with the same
parameters (θ, tolh, and Nmax) as in the previous section. Note, in particular, that Nmax increases with z.
When computing the snapshots at z ≈ 25.75, we run into an issue: the h-adaptive loop in Algorithm 1 is
terminated before the prescribed tolh is attained, because the maximum number of elements is reached.
This is caused by the nearby presence of the eigenvalue λ1,5 = 26, which slows down the convergence
of the FEM error. At this point, we are faced with a choice:

• We can use the inaccurate non-converged snapshot as it is. This is the simplest option, but might
result in a poor surrogate, in particular near the affected sample point.

Mathematics in Engineering Volume 5, Issue 4, 1–38.



23

• We can discard the non-converged snapshot and build the surrogate without it. This is the
“wasteful” option, since we are ignoring the results of valuable offline computations.
• We can (temporarily) increase Nmax, e.g., multiplying its value by 10, and restart the h-adaptive

iterations in the hope of convergence. If the increased Nmax leads to convergence, we use the
snapshot. Otherwise, we discard it. This is the most robust, but potentially expensive, option.
Here, we follow this approach.

Note that it is not necessarily a good idea to ditch Nmax altogether, or, equivalently, to set its value to
∞. Indeed, due to the a priori unknown location of the poles, it might happen that a sample point is
extremely close to a pole of u. Correspondingly, the h-adaptive loop will necessarily take a long time
to converge there. As such, we believe it more appropriate to be conservative, by setting a reasonably
large (but finite) Nmax, if necessary retrying with 10Nmax, and throwing away the snapshot in case of
non-convergence.

In addition to the type [14/14] SRI, we also build a type [14/14] MRI and a type [15/15] POD
surrogate. Building the latter two reduced models requires only 15 snapshots, as opposed to the 29
needed for SRI. We take such snapshots at 15 uniformly spaced values of z ∈ Z. Note that, obviously,
the issue of non-converging snapshots can appear also in MRI and POD. We deal with it as described
above.

We show the results of the approximation in Figure 4. Note that the approximation error is computed
with respect to the analytic solution Eq (7.4), so that, in particular, the error does not vanish at the
sample points even though all approaches are interpolatory. This is due to the baseline FEM error,
which acts as noise. We see that the approximations yielded by the three approaches are quite similar,
with MRI behaving only slightly worse (on average) than the other two methods.

10−6

10−2

102

|y
(z

) |

SRI MRI
POD analytic

20 40 60 80 100

10−4

10−2

100

z

|̃y
(z

)−
y(

z)
|/
|y

(z
) |

10−3

10−1

101 SRI
MRI
POD

analytic

33 33.5 34 34.5 35

10−4

10−2

100

102

z

Figure 4. Surrogate |y| with analytic validation points (top row) and relative approximation
error (bottom row). The plots in the right column are a zoom on z ∈ [33, 35]. On the top of
the bottom left plot, we show with stars and pluses the locations of the sample points (pluses
are exclusive to SRI).

Looking locally around the (arbitrarily chosen) pole at λ3,5 = 34, we see that SRI approximates
best the location of the pole. This should be expected, due to the higher sampling resolution. Indeed,
locally around λ3,5, SRI uses samples at both z ≈ 32.82 and z ≈ 36.36 while MRI and POD only have
the one at z ≈ 36.36.

In Table 3 we show the offline time of the three approaches. The computation of the snapshots in
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SRI takes considerably longer than for MRI/POD due to the non-converging samples discussed above.
More generally, if the S MRI/RB snapshots are a subset of the (2S −1) SRI ones, the sampling for SRI
will obviously take more time, but not necessarily twice as much. Overall, we see that building the SRI
and MRI surrogates is about 20% faster than POD. Note that, if the SRI samples had all converged at
the first try, we could have expected the offline phase of SRI to be, overall, about 4 times faster than
that of MRI.

Table 3. Timings in seconds for the construction of ỹ.

Method SRI MRI POD
Snapshots 8.21e+2 1.06e+2

Build
snapshot ------- 7.00e+2 1.04e+3

Gramian(s)
Assemble

3.90e-2 1.81e-2 1.60e-2
surrogate
Total 8.21e+2 8.07e+2 1.15e+3

7.2. Vibrations of a non-convex elastic plate

We consider a rectangular domain with a square hole

Ω = ]0, 0.5[ × ]0, 1[ \ ]0, 0.25[ × ]0.2, 0.45[ .

We denote by Γ1 = ]0, 0.5[× {0} and Γ2 = ]0, 0.5[× {1} the bottom and top sides of Ω, respectively, see
Figure 5. We are interested in the solution u = u(z) ∈ H1

Γ2
(Ω) = {v ∈ H1(Ω), v|Γ2 = 0} of the Helmholtz

equation 
−∆u(z) − zu(z) = 0, in Ω,

∂νu(z) = g(z), on Γ1,

u(z) = 0, on Γ2,

∂νu(z) = 0, on ∂Ω \ {Γ1 ∪ Γ2}.

(7.6)

The solution u corresponds to the transverse displacement field of a thin membrane Ω in the “small
deformation” regime, when the membrane, clamped at Γ2, is subject to a time-harmonic excitation.
The Neumann forcing term

g(z)|x = −0.15i
√

z exp
3
√

3
2

i
√

zx1


denotes the force exerted on the membrane by the plane wave uinc(z)|x = 0.1 exp

(
3i
√

zx · x̂
)

(with
x̂ = (cos(π6 ), sin(π6 ))> being the direction of propagation of the wave) that impinges on Γ1 from below.
Note that g is not affine in z, cf. Eq (5.1), preventing a straightforward application of POD. We set the
localized real-quadratic QoI

y(z) =

∫
Γ1

|u(z)|2 = ‖u(z)‖2L2(Γ1), (7.7)
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i.e., the mean-square displacement on Γ1, as target of the approximation endeavor. This leads us to the
definition of the intermediate quantity v(z) = u(z)|Γ1 ∈ L2(Γ1).
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v70(50) v90(55)

(d) u(z)|(x1,1)

Figure 5. h-adaptive FEM results for z = 50 and z = 55.

To obtain the FEM solution, we employ the h-adaptive FEM strategy described in Section 7.1.1.
We show a sample FEM solution in Figure 5. For the approximation with respect to z, we employ
L2(Γ1)-SRI and MRI, using 2S − 1 and S uniformly spaced samples of z ∈ [10, 200], respectively, with
S = 15 and S = 25. This allows us to build rational approximations of the same type ([S − 1]) with
both methods.

The results are shown in Figure 6. There, we can observe that, for a given rational type, L2(Γ1)-SRI
and MRI seem to achieve similar approximation errors. Notably, both approaches appear to struggle
for low frequencies z ≈ 10, especially in the cases where fewer snapshots are used.

A comparison of the corresponding runtimes can be found in Table 4. We can see that, for a given
rational type, building the MRI method is more costly than the L2(Γ1)-SRI one, due to the computation
of the snapshot Gramian. This is the case despite the lower amount of snapshots required by MRI.
Note, in particular, that building the L2(Γ1)-Gramian is considerably faster than computing the H1

0(Ω)

Mathematics in Engineering Volume 5, Issue 4, 1–38.



26

one, due to the reduced dimensionality of the domain of integration.
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Figure 6. Surrogates for y with high-fidelity h-FEM validation points (left column) and
relative approximation errors |̃y − y| /y (right column). On top of the right plots, we show
with stars and pluses the locations of the sample points (pluses are exclusive to L2(Γ1)-SRI).
The rational type increases moving down the plots.

Table 4. Timings in seconds for the construction of ỹ.

Method L2(Γ1)-SRI MRI
Value of S 29 49 15 25
Snapshots 2.74e+2 7.74e+2 1.83e+2 3.04e+2

Build snapshot Gramian 1.27e+0 3.21e+0 2.43e+2 7.24e+2

Assemble surrogate 1.42e-2 2.25e-2 9.45e-3 1.18e-2

Total 2.76e+2 7.77e+2 4.27e+2 1.03e+3

7.3. Acoustic scattering of a “trapping” cavity

We consider a domain of the form Ω = Ω′ \ D, where Ω′ = [0, 1]2 is a square and D ⊂ Ω′ is a
leftward-facing cavity, in the shape of a slanted “C”, see Figure 7a. We are interested in the solution
u = u(z) ∈ H1(Ω) of the following Helmholtz equation with impedance boundary conditions (we set
z = k here): 

−∆u(z) − z2u(z) = 0, in Ω,

∂νu(z) = −∂νuinc(z), on ∂D,

∂νu(z) = ιzu(z), on ∂Ω′.

(7.8)

The solution u corresponds to the (time-harmonic) wave scattered by the sound-hard scatterer D subject
to a horizontal unit plane wave uinc(z) = eιzx1 incoming from the left. The impedance condition on ∂Ω′

serves as approximation of the Sommerfeld radiation condition at infinity, cf. Eq (2.5). Note that,
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as in the previous example, the Neumann datum is not affine in z. As approximation target, we take
the trace v(z) = u(z)|ω, with ω ⊂ ∂D being the trapping boundary of D, i.e., the “interior” portion of
the scatterer’s boundary, see Figure 7b. Additionally, we consider the (squared) L2(ω)-norm of v, i.e.,
y(z) =

∫
ω
|v(z)|2.

∂Ω′

Ω

∂D

(a) Ω

ω

(b) Zoom on the scatterer

(c) Re(uFEM
89 (25))

(d) Re(uFEM
89 (25) + uinc(25))
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)
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η
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)

z = 25

(e) η•(Ω) vs. FEM DoFs

(f) |uFEM
89 (25) + uinc(25)|

Figure 7. h-adaptive FEM results for z = 25.

For a given z, we compute u(z) via the h-adaptive FEM strategy described in Section 7.1.1, but with
tolh = 0.5. We show a sample FEM solution in Figure 7. As in the previous example, we employ
L2(ω)-SRI and MRI for the approximation of v(z) (and consequently y(z)) as z varies in the interval
of interest Z = [10, 30]. For both methods, we use 19 uniformly spaced snapshots, allowing for the
construction of rational approximations of types [9] and [18], respectively.

Before proceeding further, we note that, both with L2(ω)-SRI and with MRI, the approximation of
v(z) ∈ L2(ω) will require linear combinations of the snapshot traces {v(z j)}19

j=1, which live on different
discretizations of ω. Still, since ω is a 1D curve, it is not too expensive to extend all the snapshot traces
onto a common discretization of ω, whose vertices are obtained as the union of the locations of all the
DoFs of {v(z j)}19

j=1. See also the discussion in Sections 4.2 and 4.3.
In Figure 8, we display the approximation of the scalar real-quadratic QoI y(z) over the range of

frequencies z ∈ Z. While the L2(ω)-SRI surrogate approximates the exact y fairly well, we note the
appearance of some oscillations in the MRI approximation, especially for z ≈ 30. This behaviour is
due to two compound effects: on one hand, MRI mistakenly places a surrogate pole quite close to the
real axis, at z ≈ 29.1−0.14ι. On the other hand, modest Runge oscillations can be observed throughout
the wavenumber range. We believe that the observed instabilities are due to the “interpolation” nature
of the h-MRI method. Indeed, the employed offline information is a set of snapshots computed via the
h-adaptive FEM, which are affected by the h-adaptivity-induced numerical noise (uh − u). Since the
MRI surrogate interpolates the (noisy) snapshots, it is impacted by numerical instabilities. In contrast,
the L2(ω)-SRI relies on a least-squares formulation, which helps in filtering out (part of) the numerical
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noise due to h-adaptivity.

In Figure 9, we show the approximation of v(z′) at the arbitrarily chosen frequency z′ = 25, which
is not one of the wavenumbers that are sampled for the construction of the surrogates. For the two
rational surrogates, ṽ is obtained simply by evaluating the rational approximations at z′. Looking at the
error, we see that the L2(ω)-SRI surrogate is about one order of magnitude more accurate than the MRI
one.

We show in Table 5 the timings corresponding to the two approaches. Our observations for the
previous example hold true also here: overall, due to the necessity to compute the snapshot Gramian,
building the approximant is more costly for MRI than for L2(ω)-SRI.
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Figure 8. Surrogate of y (top) and corresponding error (bottom). In the top plot, high-fidelity
h-FEM validation points are also included. On top of the bottom plot, we show with crosses
the locations of the sample points.
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Table 5. Timings in seconds for the construction of ỹ.

Method L2(ω)-SRI MRI
Snapshots 3.35e+3

Build snapshot Gramian 2.75e+0 6.62e+3

Assemble surrogate 1.43e+0 9.49e-1

Total 3.35e+3 9.97e+3

8. Conclusions

In the present paper, we have presented several rational-based spatially adaptive MOR methods for
the (non-coercive) parametric-in-frequency Helmholtz PDE endowed with mixed
Dirichlet/Neumann/Robin boundary conditions. In particular, we have treated (i) SRI, which is useful
in case of scalar-valued QoIs; (ii)V-SRI, which pertains toV-valued QoI (V being a Hilbert space);
(iii) MRI, which provides a surrogate for the solution map u(z) itself. The offline phase of each of the
above-mentioned methods entails the solution of the considered problem for a set of values of the
wavenumber. The snapshots are computed by means of the spatially adaptive FEM, and, as such, they
reside in different discrete spaces, which are adapted to the value of the wavenumber and to the local
features of each snapshot. As a projection-based alternative, we have also considered an h-adaptive
version of POD.

With the target of comparing the methods, we have performed three numerical experiments. In the
first example, we have observed that building the SRI and MRI surrogates is about 20% faster than
POD. The PDEs in the second and third example are both endowed with boundary conditions that
depend non-affinely on z, preventing a straightforward application of POD. In the second example,
the two methods are comparable, in the sense that they achieve similar approximation errors, with
the L2(ω)-SRI method being faster than MRI. In our third example, the L2(ω)-SRI surrogate displays
higher accuracy. Indeed, the MRI surrogate is affected by the presence of spurious poles and by
numerical instabilities (Runge oscillations) due to the interplay between the two main features of the
method, namely, h-adaptivity and interpolation of (noisy) snapshots. In contrast, the L2(ω)-SRI is more
stable, since it produces an approximant in the least-square sense.

We remark that, in this work, the snapshots are computed via an h-adaptive algorithm designed
to approximate the full state u at optimal rate with respect to the energy norm. Another possibility,
particularly appropriate if the functional representing the QoI is fixed, is to consider so-called goal-
oriented adaptive algorithms, which aim at approximating at optimal rate the QoI directly; see, e.g.,
[25, 35].

Moreover, all the algorithms are applied with sample points that are fixed a priori. In contrast, it
is often desirable to follow a z-adaptive approach, where the selection of the sample points is driven
by a suitable a posteriori estimator (note that this estimator would act on z, and not on the spatial
domain, as η• does). In the framework of projective MOR methods, this can be achieved with the
weak-greedy RB technique. In some cases, the greedy selection of snapshots is also possible in the
rational-based setting, e.g., in MRI, by means of the a posteriori estimator introduced in [36, 37]. The
derivation of novel MOR methodologies that combine z- and h-adaptivity is subject of a forthcoming
work. In particular, with such an approach, we expect to be able to counteract some of the showcased
instabilities (mainly, the spurious poles) of the h-MRI method.
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An interesting further topic to be investigated is the extension of the presented h-adaptive MOR
methods to the multi-parametric setting, i.e., Helmholtz-like problems where additional parameters
(geometry, materials, etc.) are present on top of the wavenumber. This more general framework
would be based on the parametric-MOR strategy presented in [36], and is of practical interest for
several important applications, e.g., inverse problems, uncertainty quantification and optimal control
problems, where non-h-adaptive multi-parametric MOR methods have been mostly employed so far
(for instance, we mention [5, 13, 28, 48, 49]).
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reconstruction method and an efficient iterative solver, Int. J. Numer. Meth. Eng., 69 (2007), 2848–
2875. https://doi.org/10.1002/nme.1879

3. M. Ainsworth, J. T. Oden, A posteriori error estimation in finite element analysis, New York: John
Wiley & Sons, 2000. https://doi.org/10.1002/9781118032824

4. M. Ali, K. Steih, K. Urban, Reduced basis methods with adaptive snapshot computations, Adv.
Comput. Math., 43 (2017), 257–294. https://doi.org/10.1007/s10444-016-9485-9

5. U. Baur, P. Benner, A. Greiner, J. G. Korvink, J. Lienemann, C. Moosmann, Parameter preserving
model order reduction for MEMS applications, Mathematical and Computer Modelling of
Dynamical Systems, 17 (2011), 297–317. https://doi.org/10.1080/13873954.2011.547658

6. P. Benner, S. Gugercin, K. Willcox, A survey of projection-based model reduction methods for
parametric dynamical systems, SIAM Rev., 57 (2015), 483–531. https://doi.org/10.1137/130932715

Mathematics in Engineering Volume 5, Issue 4, 1–38.

http://dx.doi.org/https://doi.org/10.1137/1.9780898718713
http://dx.doi.org/https://doi.org/10.1002/nme.1879
http://dx.doi.org/https://doi.org/10.1002/9781118032824
http://dx.doi.org/https://doi.org/10.1007/s10444-016-9485-9
http://dx.doi.org/https://doi.org/10.1080/13873954.2011.547658
http://dx.doi.org/https://doi.org/10.1137/130932715


31

7. A. Bespalov, A. Haberl, D. Praetorius, Adaptive FEM with coarse initial mesh guarantees optimal
convergence rates for compactly perturbed elliptic problems, Comput. Method. Appl. Mech. Eng.,
317 (2017), 318–340. https://doi.org/10.1016/j.cma.2016.12.014
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26. C. Gräßle, M. Hinze, POD reduced-order modeling for evolution equations utilizing
arbitrary finite element discretizations, Adv. Comput. Math., 44 (2018), 1941–1978.
https://doi.org/10.1007/s10444-018-9620-x

27. B. Gustavsen, A. Semlyen, Rational approximation of frequency domain responses by vector
fitting, IEEE Trans. Power Deliver., 14 (1999), 1052–1061. https://doi.org/10.1109/61.772353

28. M. W. Hess, P. Benner, Fast evaluation of time-harmonic Maxwell’s equations using
the reduced basis method, IEEE Trans. Microw. Theory, 61 (2013), 2265–2274.
https://doi.org/10.1109/TMTT.2013.2258167

29. A. Hochman, FastAAA: A fast rational-function fitter, In: 2017 IEEE 26th Conference on
Electrical Performance of Electronic Packaging and Systems (EPEPS), San Jose, CA, USA, 2017,
1–3. https://doi.org/10.1109/EPEPS.2017.8329756

30. A. C. Ionita, A. C. Antoulas, Data-driven parametrized model reduction in the Loewner framework,
SIAM J. Sci. Comput., 36 (2014), A984–A1007. https://doi.org/10.1137/130914619

31. G. Klein, Applications of linear barycentric rational interpolation, PhD thesis, University of
Fribourg, 2012.

32. M. Karkulik, D. Pavlicek, D. Praetorius, On 2D newest vertex bisection: optimality
of mesh-closure and H1-stability of L2-projection, Constr. Approx., 38 (2013), 213–234.
https://doi.org/10.1007/s00365-013-9192-4
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A. Proof of Lemma 4.6
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Proof of Lemma 4.6. Without loss of generality, we assume that N > 0, and that sample and support
points are sorted in such a way that there exists s ∈ {0, . . . ,N + 1} such that z j = ζ j−1 for j ≤ s, while
{z j}

S
j=s+1 ∩ {ζi}

N
i=s = ∅.

For all i = 0, . . . ,N, consider aV-orthogonal decomposition pi = p′i + p′′i , with p′i ∈ span{vh(z j)}Sj=1
and 〈p′′i , vh(z j)〉V = 0 for all j = 1, . . . , S . First, we observe that, for all i < s, pi = qivh(zi) by Eq (4.10),
i.e., p′′i = 0. So, if s = N + 1, the claim is automatically proven. Otherwise, it remains to prove that
p′′s = · · · = p′′N = 0.

By the Pythagorean theorem, Eq (4.9) reads

S∑
j=s+1

∥∥∥∥∥∥∥
N∑

i=0

qivh(z j) − p′i
z j − ζi

∥∥∥∥∥∥∥
2

V

+

S∑
j=s+1

∥∥∥∥∥∥∥
N∑

i=s

p′′i
z j − ζi

∥∥∥∥∥∥∥
2

V

. (A.1)

For the sake of contradiction, assume that the optimal p′′s , . . . , p′′N are not all equal to 0. By
inspection of Eq (A.1), we see that setting all of them to zero cannot increase the value of the target,
i.e., by optimality, the second sum must equal 0. However, this is absurd, since the Cauchy matrix

(zs+1 − ζs)−1 · · · (zs+1 − ζN)−1

...
. . .

...

(zS − ζs)−1 · · · (zS − ζN)−1

 ∈ C(S−s)×(N−s+1)

(which has more rows than columns) has full rank [41], so that

N∑
i=s

p′′i
z j − ζi

= 0 ∀ j = s + 1, . . . , S iff p′′i = 0 ∀i = s, . . . ,N.

�

B. General algorithm for theV-SRI method

In Section 4.2 we have detailed theV-SRI algorithm in the particular case where the support points
are a subset of the sample points. A similar algorithm may be written even in the general case, where
no relation between the set of sample points and support points is assumed.

Lemma B.1 (V-SRI algorithm). Define the v-snapshot Gramian

G(v)
h =


‖vh(z1)‖2

V
· · · 〈vh(zS ), vh(z1)〉V

...
. . .

...

〈vh(z1), vh(zS )〉V · · · ‖vh(zS )‖2
V

 ∈ CS×S , (B.1)

whose rank is T ≤ S . Also, let s ∈ {0, . . . ,N+1} be the cardinality of {z j}
S
j=1∩{ζi}

N
i=0. The corresponding

V-SRI exists and admits the following closed-form representation:

• The coefficients q = (q0, . . . , qN)> of the V-SRI denominator QV-SRI
[N] can be found as a

(normalized) minimal right singular vector of a matrix G ∈ CT (S−s)×(N+1), i.e.,

q = arg min
‖q′‖2

CN+1 =1
‖Gq′ ‖2CT (S−s) . (B.2)
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• The coefficient matrix P̊, see Eq (4.11), may not be unique whenever T < S . On the other hand,
one possible set of values for it can always be found as

P̊:i = Hiq for i = 0, . . . ,N. (B.3)

In the proof, we provide expressions in closed form for G and Hi, i = 0, . . . ,N.

Remark B.2. Lemma B.1 applies also to SRI, by replacing v with y. Note that, in that case, G(y)
h has

rank T = 1 and G has size (S − s) × (N + 1).

Proof of Lemma B.1. Without loss of generality, we assume that N > 0, and that sample and support
points are sorted in such a way that z j = ζ j−1 for j ≤ s, while {z j}

S
j=s+1 ∩ {ζi}

N
i=s = ∅. Also, let C and C̊

be the Cauchy matrices

C =


(zs+1 − ζ0)−1 · · · (zs+1 − ζN)−1

...
. . .

...

(zS − ζ0)−1 · · · (zS − ζN)−1

 ∈ C(S−s)×(N+1)

and

C̊ =


(zs+1 − ζs)−1 · · · (zs+1 − ζN)−1

...
. . .

...

(zS − ζs)−1 · · · (zS − ζN)−1

 ∈ C(S−s)×(N−s+1),

respectively. By our assumptions on N and S , C̊ has at least as many rows as columns, so that, in
particular, it has full column rank [41].

For i = 0, . . . , s − 1, we have pi = qivh(zi+1) by Eq. (4.10), so that, trivially,

P̊ ji = qiδ j(i+1) for i = 0, . . . , s − 1 and j = 1, . . . , S ,

and part of Eq (B.3) follows with

(Hi) ji′ = δ j(i+1)δi′i for i = 0, . . . , s − 1, j = 1, . . . , S , and i′ = 0, . . . ,N.

We now move to the cases i = s, . . . ,N.
Given G(v)

h in Eq (B.1), we first compute its rank-revealing Cholesky factorization G(v)
h = RHR, so

that

R =


R1:
...

RT :

 = [R:1 · · ·R:S ] ∈ CT×S . (B.4)

Note that, given the matrix R, we can find a V-orthonormal basis {ψ j′}
T
j′=1 ⊂ V satisfying Eq (4.13).

For instance, if T = S , we can set

ψ j′ =

S∑
j=1

vh(z j)
(
R−1

)
j j′

for j′ = 1, . . . , S .

(Note that such basis is never explicitly needed in the algorithm.)
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In particular, by Eqs (4.11) and (4.13), we have the expansion

pi =

S∑
j=1

T∑
j′=1

P̊ jiψ j′R j′ j =

T∑
j′=1

(R j′:P̊:i)ψ j′ for i = 0, . . . ,N. (B.5)

This, in turn, allows us to express Eq (4.9) in the Euclidean norm by the Pythagorean theorem

S∑
j=s+1

∥∥∥∥∥∥∥
N∑

i=0

qivh(z j) − pi

z j − ζi

∥∥∥∥∥∥∥
2

V

=

S∑
j=s+1

∥∥∥∥∥∥∥
T∑

j′=1

ψ j′

N∑
i=0

qiR j′ j − R j′:P̊:i

z j − ζi

∥∥∥∥∥∥∥
2

V

=

S∑
j=s+1

T∑
j′=1

∣∣∣∣∣∣∣
N∑

i=0

qiR j′ j − R j′:P̊:i

z j − ζi

∣∣∣∣∣∣∣
2

(B.6)

=

S∑
j=s+1

∥∥∥∥∥∥∥
N∑

i=0

qiR: j − RP̊:i

z j − ζi

∥∥∥∥∥∥∥
2

CT

.

It suffices to take the gradient with respect to P̊:i, for i = s, . . . ,N, to obtain the optimality conditions
characterizing the numerator:

0 = 2
S∑

j=s+1

RH

z j − ζi

N∑
i′=0

RP̊:i′ − qi′R: j

z j − ζi′
.

Using the previously introduced notation, these conditions can be equivalently expressed as

G(v)
h

N∑
i′=0

(
CHC

)
ii′

P̊:i′ =

S−s∑
j=1

(CH)i j(Cq) j(G
(v)
h ):(s+ j) ∀i = s, . . . ,N.

Denoting by es+ j ∈ C
S an element of the canonical basis ((es+ j) j′ = δ(s+ j) j′), we have that (G(v)

h ):(s+ j) =

G(v)
h es+ j, and, for all i = s, . . . ,N,

G(v)
h

N∑
i′=s

(
CHC

)
ii′

P̊:i′ =

S−s∑
j=1

(CH)i j(Cq) j(G
(v)
h ):(s+ j) −G(v)

h

s−1∑
i′=0

(
CHC

)
ii′

P̊:i′

=G(v)
h

S−s∑
j=1

(CH)i j(Cq) jes+ j −

s−1∑
i′=0

(
CHC

)
ii′

Hi′q

 . (B.7)

This means that, component-wise,

N∑
i′=s

(
CHC

)
ii′

P̊ j′i′ = zi j′ +

S−s∑
j=1

(CH)i j(Cq) jδ(s+ j) j′ −

s−1∑
i′=0

(
CHC

)
ii′

qiδ j′(i′+1)

for i = s, . . . ,N and j′ = 1, . . . , S , with zi = (zi1, . . . , ziS )> ∈ CS some arbitrary element of the kernel
of G(v)

h . We observe that the right-hand side above is affine in q, so that we can write

N∑
i′=s

(
CHC

)
ii′

P̊ j′i′ = zi j′ + a>i j′q for i = s, . . . ,N, j′ = 1, . . . , S ,
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with ai j′ ∈ C
N+1, defined entry-wise as

(ai j′)i′ =


−(CHC)i( j′−1) if j′ ≤ s and i = i′,

0 if j′ ≤ s and i , i′,

(CH)i( j′−s)(C)( j′−s)i′ if j′ > s.

Now we collect the equations for a given j′ and i = s, . . . ,N:

C̊HC̊


P̊ j′s
...

P̊ j′N

 =


zs j′

...

zN j′

 +


a>s j′
...

a>N j′

 q for j′ = 1, . . . , S .

By setting

(C̊HC̊)−1 = D, ẑ j′ =


zs j′

...

zN j′

 , and A j′ =


a>s j′
...

a>N j′

 for j′ = 1, . . . , S ,

we can write

P̊:i =


Di:̂z1
...

Di:̂zS

 +


Di:A1
...

Di:AS

 q =: z̃i + Hiq for i = s, . . . ,N.

This, with z̃i = 0, gives Eq (B.3) for i = s, . . . ,N.
Now, note that, since zi belongs to the kernel of G(v)

h = RHR, zi belongs to the kernel of R as well.
Thus, for all i = s, . . . ,N and j′ = 1, . . . ,T ,

R j′:P̊:i =R j′ :̃zi + R j′:Hiq =

S∑
j=1

N∑
i′=s

R j′ jDii′zi′ j + R j′:Hiq

=

N∑
i′=s

Dii′R j′:zi′ + R j′:Hiq =

N∑
i′=s

Dii′(Rzi′) j′ + R j′:Hiq = R j′:Hiq. (B.8)

In particular, this means that, for a fixed q, P̊:i may not be uniquely determined if G(v)
h is rank-deficient

(i.e., if T < S ), even though pi is always unique, see Eq (B.5).
Plugging Eq (B.8) into Eq (B.6), after proper re-indexing, yields

S∑
j=s+1

T∑
j′=1

∣∣∣∣∣∣∣
N∑

i=0

qiR j′ j − R j′:Hiq
z j − ζi

∣∣∣∣∣∣∣
2

=

S∑
j=s+1

T∑
j′=1

∣∣∣∣∣∣∣
N∑

i=0

qiR j′ j

z j − ζi
−

N∑
i,i′=0

S∑
j′′=1

R j′ j′′(Hi′) j′′iqi

z j − ζi′

∣∣∣∣∣∣∣
2

=

S∑
j=s+1

T∑
j′=1

∣∣∣∣∣∣∣
N∑

i=0

 R j′ j

z j − ζi
−

N∑
i′=0

S∑
j′′=1

R j′ j′′(Hi′) j′′i

z j − ζi′

 qi

∣∣∣∣∣∣∣
2

.
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By setting

gi j j′ =
R j′ j

z j − ζi
−

N∑
i′=0

S∑
j′′=1

R j′ j′′(Hi′) j′′i

z j − ζi′
,

we deduce Eq (B.2), with

G =



g0(s+1)1 · · · gN(s+1)1
...

...

g0(s+1)T · · · gN(s+1)T

g0(s+2)1 · · · gN(s+2)1
...

...

g0S T · · · gNS T


.

�
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