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Abstract

In this paper, we analyze the effect of a policy recommendation on the perfor-
mance of an artificial interbank market. Financial institutions stipulate lending
agreements following a public recommendation and their individual information.
The former is modeled by a reinforcement learning optimal policy that maximizes
the system’s fitness and gathers information on the economic environment. The
policy recommendation directs economic actors to create credit relationships
through the optimal choice between a low interest rate or a high liquidity supply.
The latter, based on the agents’ balance sheet, allows determining the liquidity
supply and interest rate that the banks optimally offer their clients within the
market. Thanks to the combination between the public and the private signal,
financial institutions create or cut their credit connections over time via a prefer-
ential attachment evolving procedure able to generate a dynamic network. Our
results show that the emergence of a core-periphery interbank network, combined
with a certain level of homogeneity in the size of lenders and borrowers, is essential
to ensure the system’s resilience. Moreover, the optimal policy recommendation
obtained through reinforcement learning is crucial in mitigating systemic risk.
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1 Introduction

At the height of the sovereign debt crisis, the former president of the European
Central Bank, Trichet, declared: “When the crisis came, the serious limitations
of existing economic and financial models immediately became apparent. . . As a
policy-maker during the crisis, I found the available models of limited help. In fact,
I would go further: in the face of the crisis, we felt abandoned by conventional
tools. . . The key lesson I would draw from our experience is the danger of relying
on a single tool, methodology, or paradigm. Policy-makers need input from
various theoretical perspectives and a range of empirical approaches. . . In this
context, I would very much welcome inspiration from other disciplines: physics,
engineering, psychology, and biology. Bringing experts from these fields together
with economists and central bankers is potentially very creative and valuable. . . ”
(see Trichet (2010)).
Inspired by the words of Trichet, welcoming new and multidisciplinary policy
tools, in this paper, we are explicitly interested in understanding the effect that an
unconventional and environmentally dependent policy recommendation has on the
stability of the interbank system. From the point of view of the functioning of the
interbank market, our work follows Berardi and Tedeschi (2017), where financial
institutions establish preferential lending arrangements to insure themselves
against the unexpected withdrawal of deposits. Financial connections might
change over time via a preferential attachment evolving procedure (see Barabási
and Albert (1999)) such that each agent can enter into a lending relationship
with others with a probability proportional to a fitness measure. Specifically, the
attractiveness of agents is based either on their high supply of liquidity or their
low interest rate. The authors show how implementing one or the other strategy
generates different architectures of the credit network, which dissimilarly impact
the spread of systemic risk.
The originality of this work with respect to the one mentioned above concerns
the mechanism that drives banks to choose between the two strategies. Where in
Berardi and Tedeschi (2017) the choice is exogenous and fixed, here we introduce
a time-dependent policy recommendation based on a reinforcement learning
approach that directs banks to optimize the entire banking system’s long-term
fitness. Specifically, the regulator directs the interbank system towards an optimal
strategy that chooses between favoring a high liquidity supply rather than a
low interest rate, by collecting information from the environment. Once the
policy recommendation is made public, each bank signals to her counterparty
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within the interbank market her optimal liquidity supply or interest rate level,
which are used to establish credit agreements via the above-mentioned preferential
attachment mechanism. In a nutshell, we might think that the central bank directs
the interbank system to choose between interest rate and liquidity supply by
announcing the interest rate corridor that it publishes periodically. The corridor
dynamics, therefore, influence the position of the Euro short-term rate (€STR)
within it. Thus, indirectly, the position of the €STR in the corridor indicates
the strategy the banks chose.
Compared to Berardi and Tedeschi (2017), therefore, the reinforcement learning
mechanism allows us both to endogenize and identify the optimal strategy and to
model a policy recommendation useful to tame systemic risk. Although this tool
is helpful for modeling the reward-seeking behavior of agents in complex systems5

(see(Osoba et al.; 2020)), to the best of our knowledge, it is barely employed in the
agent-based framework. Interesting exceptions are Liu et al. (2018), and Lozano
et al. (2007), which use reinforcement learning to model the credit allocation
strategy of financial institutions in the interbank market. Apart from the modeling
differences omitted here that distinguish us from those works, it is important
to point out the methodological distinction. Where these works use a tabular
reinforcement learning algorithm, as proposed by (Watkins and Dayan; 1992),
we use a state-of-the-art reinforcement learning algorithm with neural network
approximators (Schulman et al.; 2017), which describes the complex reward-
seeking behavior. While the advantages and disadvantages of these algorithms are
well documented and concern issues such as the computational efficiency, the curse
of dimensionality, and the convergence (Bellman; 1956), the better performance of
the neural network-powered algorithms emerges. These models are beneficial when
solving complex problems where the underlying environment changes rapidly and
is also defined by the different forces that relate and compete with each other.
These capabilities have already effectively solved complex financial and economic
problems (see (Du et al.; 2020; Jiang et al.; 2017; Lin and Beling; 2020; Zhang
et al.; 2020)).
Without delving into technical details, some clarifications on how the proposed
algorithm works should be done. The selected reinforcement learning algorithm
optimizes an objective function that, in our context, corresponds to the aggregate
fitness of the interbank system. The optimization is carried out by training a

5 We refer the reader to Charpentier et al. (2021), and Mosavi et al. (2020) for
comprehensive reviews of different use cases of reinforcement learning in financial
and economic contexts.
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neural network model. The neural network receives input variables concerning
the economic conditions of the interbank system and returns as output the
strategy, i.e., the policy recommendation directing the system towards competing
on liquidity supply rather than on the interest rate.

This family of algorithms is often criticized regarding the interpretability of
inputs’ impact on the results. The output, in fact, often appears as a black box
whose determinants remain hidden from the user. To avoid this problem, we act
in the following way. Firstly, we limit the choice of inputs to variables readily
available to the regulator. To this end, we use aggregate systemic variables such
as the interbank system’s minimum, maximum, and average interest rate and
liquidity supply. Choosing a limited set of input variables allows us to understand
their effects in determining the output and to model a system with incomplete
and asymmetric information (see Bernanke et al. (1999)). Secondly, we directly
study each input’s impact on the output’s determination through the SHapley
Additive exPlanation (SHAP) framework (Lundberg and Lee; 2017).

The introduction of the reinforcement learning framework into the interbank
market model proposed by Berardi and Tedeschi (2017) allows us to draw
some important conclusions about the systemic stability of the system and to
determine some policy interventions capable of curbing contagion. Firstly, the
proposed algorithm fully endogenizes the evolution of the interbank network,
whose architecture, therefore, changes over time. In this way, we can identify
that the topology that emerges when the policy recommendation suggests a
high supply of liquidity is more resilient in the face of exogenous shocks (see
Gai and Kapadia (2010) and Elliott et al. (2014), for similar results). Also, at
the individual level, this policy produces better microeconomic performance. In
this circumstance, the lenders and borrowers are more balanced in size, which
generates a uniform risk exposure among counterparties able to favor the system’s
resiliency. Although not unequivocally accepted (see, for instance, Haldane and
May (2011)), the negative impact of ”heterogeneity” on systemic stability is in line
with other theoretical and empirical studies (see Caccioli et al. (2012), Iori et al.
(2006) and Tedeschi et al. (2012)). On the other hand, the worse performance of
a system dominated by low interest rates reflects the empirical evidence. Indeed,
it is well documented that a credit market dominated by ”low-for-long” interest
rates adversely affects both the banks and the economy’s stability. For financial
institutions, low rates might reduce resilience by lowering profitability and, thus,
their ability to replenish capital after a negative shock. This strategy would
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encourage risk-taking for the system, undermining systemic stability (see Bindseil
(2018), for a general overview of the topic). Finally, our results suggest that
the policy recommendation implemented via reinforcement learning can more
mitigate systemic risk than alternative tools.

Related literature

The increasingly recurrent and impactful socio-economic crises have called for a
deep rethinking of economic theory. Firstly, the literature has tried to understand
and include the sources of contagion in the economic models. Regardless of the
modeling approach used, which ranges from New Keynesian models solved glob-
ally or using a reduced functional form (see, for instance, Boissay et al. (2016),
Gertler et al. (2020), Svensson (2017)) to agent-based models and the most recent
network-oriented approaches (see Battiston et al. (2012a,b), Georg (2013),Hal-
dane and May (2011), Upper (2011), Capponi et al. (2020), Calice et al. (2020)),
there is a general agreement that identifies interaction and heterogeneity as the
drivers of endogenous crises. Moreover, the post-Lehman studies have placed
particular emphasis on the propagation of contagion, determining the direction of
the attack from financial to real markets and its fuse in the portfolio structure of
financial institutions (see Brunnermeier et al. (2012)). Many interesting studies,
for example, have identified the source of contagion in the asset or liability side
of banks’ balance sheets. Among them, the effect of the fire-sale price and the
(re)payment system between creditors and debtors have proven to be particu-
larly important in generating financial instability (see Acharya and Yorulmazer
(2008a), Angelini et al. (1996), Dasgupta (2004) Rochet and Tirole (1996)). In
this vein, maturity transformation, sharing risk, herding behavior, and interbank
linkages are just some of the various components able to trigger instability or
collapse in financial markets (see Acharya and Yorulmazer (2008b),Allen and
Gale (2000) and Tedeschi et al. (2021), among the many).
Once the origin of the disease and the channels through which it spreads have
been identified, the literature has turned to treatment, that is, identifying the
best tools to mitigate financial contagion. The scientific community has focused
on developing new tools to overcome systemic instability. Several conventional
and non-conventional monetary policies and other alternative tools have been
proposed in this regard. However, their effects on financial stability are con-
troversial and depend on the overall economic condition (see Goldberg et al.
(2020), and Altavilla et al. (2021)). A strand of literature, for example, has
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emphasized the importance of a strict, rule-based, and predictable monetary
policy to tame systemic risk (see Jiménez et al. (2014) and Taylor (2011)). On
another side, instead, different studies have bet on alternative rules compatible
with the underlying economic conditions (see Boissay et al. (2021), De Grauwe
(2011) and Galí (2015)). Unfortunately, the weak empirical evidence, due to the
fairly recent development of these alternative techniques, which also include the
so-called macro-prudential policies, makes it difficult to prove the supremacy
of one approach over the other. While the empirical facts are still uncertain,
recent theoretical models have attempted to resolve this ”certamen”. The model of
Boissay et al. (2021) is an interesting contribution in this direction. The authors
use a globally solved New Keynesian model with heterogeneous agents to generate
endogenous crises. The paper compares two monetary policy instruments, one
that follows a strict inflation-targeting rule and the other that allows the central
bank to curb financial booms and busts. The authors show how the policies that
mitigate output fluctuations help prevent financial crises by acting on agents’
expectations. In support of cyclical policies determined by the economic back-
ground, there are also many agent-based models (see, Cincotti et al. (2012), Giri
et al. (2019) and Riccetti et al. (2018), among the many). Generating complex
dynamics in evolving systems is an ideal environment for testing the effect of
(un)conventional policies/measures on financial stability.

The rest of the work is organized as follows. In Section 2 we present the
functioning of the interbank market, placing particular emphasis on the evolution
of the credit network and the implementation of the reinforcement learning
algorithm. In Section 3, we show the results. Specifically, we follow three steps:
firstly, we verify the performance and robustness of the reinforcement learning
algorithm; secondly, we investigate its implication on the interbank network
morphology and the performances of the financial institutions; thirdly, we present
the effect on the interbank systemic stability of the policy recommendation.
Finally, Section 4 concludes with some remarks on the achieved results and the
provided contribution.

2 Model

This section describes the formation and evolution of credit relationships between
financial institutions. Due to unexpected future movements of deposits, banks
enter into preferential lending agreements to have a potential credit channel when
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needed. These lending agreements are fast lanes created before use, and their set
defines a potential interbank network. Banks report their credit conditions to their
customers through an attractiveness measure to build their preferential lending
agreements. We model bank fitness as combining a policy recommendation and
private information. The first ingredient is a signal obtained via a reinforcement
learning mechanism, through which the regulator directs banks to choose the
best strategy given the underlying environmental conditions. In particular, the
regulator recommends the weight to assign to high liquidity supply rather than
to low interest rates, thus directing the competition. The second ingredient is
a private signal, based on the bank’s capital structure, consisting of the actual
interest rate and credit provision offered. Potential credit relationships might
change over time via a preferential attachment evolving procedure that depends
on bank fitness. As the deposit shock materializes, financial institutions face
liquidity surpluses or shortages, which induce them to exploit their preferential
lending agreements and enter the interbank market as lenders or borrowers. At
this point, the previously potential network becomes an active credit network.
Only the potential links of the banks facing a liquidity shortage are activated
and correspond to a very sparse network.

2.1 The interbank market microstructure

We consider a sequential economy operating in discrete time, which is denoted by
t = {0, 1, 2, . . . , T}. At any time t, the system is populated by a large number N
of active banks i, j ∈ Ω = {1, . . . , N}. Financial institutions interact with each
other through credit relationships represented by the set Vt, whose elements are
ordered pairs of different banks. Banks (nodes or vertices) and their connections
(edges or links) form the interbank network Gt = (Ω, Vt). The daily balance sheet
structure of each bank is defined as

Lit + Cit +Rit = Di
t + Eit , (1)

where assets are on the left-hand side and liabilities are on the right-hand one.
In particular, L,C, and R represent long-term assets, liquidity, and reserves,
while D and E deposits and equity of bank i at time t. Reserves are a portion of
deposits, Rit = r̂Di

t, where r̂ is the required reserve rate6

6 This rate replicates a central bank regulation that sets the minimum amount that
a commercial bank must hold in liquid assets and is commonly referred to as the
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At every time t, deposits are exogenously shocked, and the balance sheet in
Eq. 1 modifies accordingly. Specifically, deposits evolve as

Di
t = Di

t−1(µ+ ωU(0, 1)), (2)

with U(0, 1) a uniformly distributed noise between 0 and 1 and µ and ω modeling
the expected number of negative shocks and thus different market conditions.
On the one hand, financial institutions with a negative change in deposits and
subject to a complete erosion of their liquidity become potential debtors in the
interbank market. On the other hand, banks that suffer a small negative shock or
an increase in deposits become potential creditors to the system7. Consequently,
the respective demand dit and supply sit of liquidity of potential borrowers and
lenders are given by

borrower if:∆Di
t + Cit ≤ 0,with demand of liquiditydit = |∆Di

t + Cit |
lender if : ∆Di

t + Cit > 0,with supply of liquiditysit = ∆Di
t + Cit .

Since we do not assume a Walrasian tâtonnement mechanism, the system may
endogenously generate a mismatch between credit supply and demand. Moreover,
since the interbank network is not fully connected, even at a micro level, the
borrower bank’s liquidity demand might not match the credit supply offered by
the lender banks connected to it. Specifically, we define the granted loan from a
generic lender i to a generic borrower j as li,jt = min(sit, d

j
t ). Borrowing banks

rationed in the interbank market can sell their long-term assets at a fire-sale price
as a method of last resort. The amount of loan the borrower has to sell to cover
its residual liquidity need equals ∆Ljt =

djt−sit
ρ , where ρ is the ’fire-sale’ price. For

the sake of simplicity and interoperability, modeling the stock market is out of
the scope of our analysis. Therefore, we assume all other banks with sufficient
liquidity to buy the same percentage of long-term assets from the distressed bank.
This leads to an increase in the buyers’ long-term assets and a decrease in their
liquidity.

At the beginning of the next day, the repayment round takes place. Financial
institutions encounter a new deposit movement that increases or decreases their

reserve ratio. The central bank determines this minimum amount based on a specified
proportion of bank deposit liabilities.

7 It is worth pointing out that a positive (negative) deposit shock implies an increase
(decrease) in reserves R. Consequently, banks plunder (replenish) their liquidity.
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liquidity. On the one hand, lending banks facing a positive (negative) change
in deposits remain potential creditors (became potential debtors). On the other
hand, borrowing banks face different scenarios depending on whether the deposit
shock is positive or negative. Specifically, in the case of a positive shock, it can
happen that: i) the change in deposits is sufficient to repay the principal and the
interest, or ii) the deposit variation is insufficient to cope with the loan. In the
first case, the debtor can quickly meet her obligations, but in the second case,
she must sell a number of long-term assets sufficient to repay the creditor at a
fire-sale price fully. On the other hand, in the case of a negative shock, banks
must sell their long-term assets to pay for previous interbank borrowings and
meet the new liquidity needs. All institutions that do not raise enough liquidity
to meet their obligations via the fire sale fail, thus creating a bad debt for the
lender. The creditor’s loss, Bi,jt , equals the granted loan after liquidating the
debtor assets. Hence the equity of the bank i obeys the following law of motion:

Eit = Eit−1 +
∑
j

li,jt−1r
i,j
t−1 −

∑
j⊆θit

Bi,jt − (1− ρ)L̂jt , (3)

where the second term on the right-hand side is the repayment, at the agent-
specific interest rate ri,j , of the granted loan li,j , and the third term is the bad
debt of the subset of the bank i clients, θit, unable to repay their debts because
they go bankrupt and the last term represents fire sales. If the bank has not
fulfilled the loan requirements (i.e., if she cannot repay the principal and interest
in full), the lender no longer provides credit, forcing her to exit the market. Thus,
the borrower exits the market when assets fall short of liabilities, that is Eit < 0.
The failed banks leave the market. The banks exiting in t are replaced in t+ 1

by new entrants, which are, on average smaller than incumbents. So, entrants’
size is drawn from a uniform distribution centered around the mode of the size
distribution of incumbent banks (see Bartelsman et al. (2005)).

2.2 Banks microfoundations: the dynamics of lending agreements
and trading strategies

At the beginning of each day, agents meet in the interbank market to meet their
liquidity needs and sign bilateral potential lending agreements representing the
directed links (i, j) ∈ Vt. These agreements can be interpreted as credit lines,
which are valid during t and can be used at the request of the borrower j in case
of the lender i available liquidity. The set of all potential lending agreements
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reproduces the potential interbank network topology8.
Let us now explain in detail the mechanism that governs the formation/evolution
of credit relationships between financial institutions. We assume banks are risk-
neutral agents operating in a perfect competition environment to optimize their
expected profit. The bank i expected profit for a loan provided to j is given by

E[Πi,j
t ] = pjt (r

i,j
t ci,jt ) + (1− pjt )(ξAjt − ci,jt ) + φAjt − χAit, (4)

where pjt is the probability that the borrower does not fail, ri,jt the interest rate
asked by the lender i to the borrower j, ci,jt the maximum amount i is willing to
lend to j. Moreover, ξ is the liquidation cost of assets, Ajt , pledged as collateral,
and φ and χ the screening costs of creating a credit link that decrease with
the debtor dimension and increase with the creditor size (see Dell’Ariccia and
Marquez (2004), and Maudos and De Guevara (2004), for empirical evidence).
Specifically, Eq. 4 captures the lender’s expected revenue if the borrower does or
does not meet her obligations (the first and the second term on the right side,
respectively), and the opportunity cost of the agreement (last two variables in
Eq. 4). Moreover, we apply a heuristic rule to model a proxy for the debtor’s
j survival probability. Recalling that the borrower fails if her equity becomes
negative, Ejt < 0, the probability of surviving is given by the closeness between
j’s equity and the highest net worth in the system, i.e.

pjt =
Ejt
Emax
t

. (5)

The bank’s probability of surviving is connected to the financial fragility and
the competition in an evolving financial system. On the one hand, a financial
institution leaves the system if her net worth is so low that an adverse shock
makes it negative or if she suffers a loss so huge as to deplete all the net worth
accumulated in the past (see Greenwald and Stiglitz (1993)). On the other hand,
in a dynamic and competitive financial system, banks that do not keep up with
their competitors have a higher probability of failing (see Altman and Hotchkiss
(1993); Denis and Denis (1995); Dichev (1998) and Lang and Stulz (1992), among
many). In this scenario, therefore, our bankruptcy probability predicts that if a
bank remains too small compared to the competitors, her probability of failure

8 The creation of these links predates the deposit shock, which is why they are
potential. These credit lanes, common in interbank markets, can be interpreted as
mutual ’promises’ of help between financial institutions in case of liquidity needs.
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increases (see Altman et al. (2008) Dietsch and Petey (2004) Altman and Sabato
(2007) and Gupta et al. (2014), for empirical evidence). The Eq. 5 can also be
interpreted as a rule of thumb for determining the risk premium that lenders
charge to a borrower9. Finally, the maximum amount that the lender i is willing
to lend to j, that is, the lending capacity, ci,jt , in Eq. 4 is defined as ci,jt = (1− hjt )Ajt > 0, if (i, j) ∈ Vt,

ci,jt = 0 otherwise,

with hjt ∈ (0, hmaxt ) to be the borrower haircut, defined as the j’s leverage, λjt ,
with respect to the maximum one. Hence hjt =

λjt
λmax
t

, with λjt =
Ljt
Ejt

. By setting

Eq. 4 equal to zero and rewriting it as a function of ri,jt , we get the interbank
rate that guarantees zero expected profit:

ri,jt =
χAit − φAjt − (1− pjt )(ξAjt − ci,jt )

pjtc
i,j
t

. (6)

In line with the assumption of asymmetric information and costly state verification
(see Bernanke et al. (1999)), the lender applies an interest rate that increases
with her size10. Following this interpretation, the explanation for the high interest
rate lies in the problem of asymmetric information. Specifically, lenders having
less information than borrowers about the latter’s ability and willingness to
repay a loan have to screen applicants and charge the cost of this operation to
borrowers. However, it is infrequent to find evidence about the costs associated
with screening and, more generally, about the effect of imperfect information on
the behavior of credit market participants. (that is, her assets) and the financial
vulnerability of the borrower (that is j’s leverage). This last implication derives
from the budget identity (see Eq. 1) from which we can derive that Ajt =

Ljt
λjt

+Dj
t ,

where λjt =
Ljt
Ejt

. In addition, the interest rate in Eq. 6 is not linearly related to
the bank’s survival probability and capacity.

We now have all the elements to describe how traders select their counterparts
in the interbank system, i.e., how lending arrangements are formed and evolve. We

9 We acknowledged that the simulation results are robust even when implementing a
survival probability where Emax

t does not change over time. Specifically, using the
denominator of Eq. 5 the average maximum equity over all the timestep.

10 The relationship between screening costs and the interest rate has been widely explored
in the economic literature and often associated with the imperfect information
paradigm (see Aleem (1990); Bester (1985); Hoff and Stiglitz (1990))

11



develop a measure of agent attractiveness to generate an endogenous preferential
attachment mechanism. Specifically, banks signal themselves to their pool of
clients based on their low interest rates or abundant supply of liquidity. The
dichotomy between these two strategies is microfounded and stems from the
expected profit of banks (see Eq. 4), where the screening costs of creating a
credit link increase with the creditor size. This implies, as shown in Eq. 6, that
lenders attractive in terms of higher liquidity supply offer higher interest rates.
Symmetrically, banks offering low interest rates are necessarily less liquid11. The
positive relationship between the liquidity of financial institutions and their
interest rates also has empirical evidence. Indeed, in the presence of distortions
in the functioning of the financial market due to increasing heterogeneity in the
agents’ size (see Freixas et al. (2011) and Bonner and Eijffinger (2012)) and
the segmentation of the market itself (see Veyrune et al. (2018)), the modeled
positive correlation between the two variables emerges.

Although all agents start from the same initial conditions, financial institutions
are characterized by heterogeneous levels of their agent-specific variables as time
goes by. In line with this, the fitness of each agent µit is a combination of her
liquidity relative to the highest liquidity provided in the market, Cmax

t , and her
interest rate compared to the cheapest one, rmint , i.e.

µit = ηt

(
Cit
Cmax
t

)
+ (1− ηt)

(
rmint

rit

)
. (7)

The parameter ηt reflects a policy recommendation at time t, addressing the
choice of the banking sector towards one of two possible strategies. On the
one hand, η approaching zero identifies an interbank system moving towards
the cheapest interest rates. On the other hand, η close to one highlights a
liquidity-based system. The signal disseminated by the regulator that directs
the system toward the optimal strategy can be interpreted as the central bank’s
announcement of the interest rate corridor. This corridor conditions the interbank
interest rate and, consequently, the choice of each financial institution on her

11 Assuming screening costs that increase with borrower’s dimension and decrease with
the lender’s dimension implies an inverse relationship between the lender’s size and the
interest rate the financial institution offers on the interbank market: the most liquid
lender provides the best conditions in terms of interest rate. In this circumstance,
the two banks’ strategies collapse into the same. Since the banks’ strategies go in the
same direction, their impact on the simulated dynamics is similar. Given the perfect
overlap of the two tactics, the reinforcement learning mechanism achieves precisely
the same effects as a random choice.
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credit condition (see Giannone et al. (2011)). We refer the reader to Subsection
3.1 for a detailed explanation of the policy recommendation evolution. One of the
main contributions of our work is to assume ηt endogenously evolving through
a reinforcement learning mechanism, modeling the regulator’s will to address
the banking system toward the best credit strategy for system stability. It is
worth emphasizing that, although in Eq.7 the public signal is homogeneous in the
baseline model, banks’ attractiveness remains highly heterogeneous as the private
signals on the liquidity, Cit , and interest rate, rit, are agent-specific. Let us assume,
for example, that the system is directed towards a low-interest rate, η = 0. Since
interest rates in the fitness measure are bank-specific, interest rates applied by
lenders to their clients are different. Furthermore, the liquidity supply of those
lenders chosen to grant credit is also agent-specific, which ensures heterogeneity
in granting credit. A similar dynamic applies to the case where the signal directs
toward a high liquidity supply, i.e., η = 1. In other words, the only element of
homogeneity is the public signal that directs the system toward the optimally
selected strategy12

Regarding our interbank network model, credit links are directional because
they are created and deleted by the agent j, who looks for a loan and points
to the agent i that provides credit. The information on credit conditions (and
then loan) flows the opposite. It is worth noting that credit terms are bilateral
(between creditor and debtor) and, therefore, not available from other market
members.
In general local interaction models, the agent interacts directly with a finite
number of counter-parties in the population. The set of nodes with which a single
node is linked is called its neighborhoods. In our model, the number of outgoing
links is constrained to be a small number d̂. Thus borrowers can only get loans
from d̂ lenders. With this assumption of network sparsity, the topology is always
locally tree-like, avoiding loops that would preclude us from fully understanding
the network architecture’s impact on economic dynamics, such as systemic risk,
failures, and liquidity diffusion.
At the time t = 0, each bank j starts having d̂ random outgoing links (i.e.,
potential borrowing positions) and possibly with some incoming links from other
agents (i.e., potential lending position). At the beginning of each period, links are
rewired in the following way. For any outgoing link i, each borrower j randomly
selects a new bank k. Comparing the fitness of the new financial institution with
12 This assumption is modified in Sec 3.3, where heterogeneity is also introduced in the

public signal.
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the one of its previous lender i, the borrower j cuts her old link with i and creates
a new one with k according to the probability

P jt =
1

1 + e−β(µ
k
t−µit)

, (8)

or keep its previous link with probability 1− P jt . The proposed mechanism for
reviewing credit agreements ensures that the most attractive lenders get the
highest number of borrowers (i.e., incoming links) and earn the highest profits.
Nevertheless, the degree of randomness in the algorithm guarantees that some
links with very high-performing agents may be cut in favor of less attractive
creditors. The amount of randomness is regulated by β and has a double purpose:
from a practical point of view, it prevents the system from being centralized
around a single financial hub; from a theoretical perspective, it allows us to model
incomplete information and bounded rationality.

The evolution of the banking system: determining the policy
recommendation

As anticipated in the previous section, we use the reinforcement learning paradigm
to move the parameter ηt and obtain an optimal policy recommendation in the
described banking system. Reinforcement learning aims to solve a decision-making
problem in which the timing of costs and benefits is relevant. In an interbank
market that follows the specified dynamics for the creation of lending agreements,
reinforcement learning can help determine the policy recommendation that better
identifies the optimal attachment strategy to follow in Eq. 7, even when partial
information about the system is provided. Hereafter, we refer to the reinforcement
learning algorithm as the learning algorithm. A Markov Decision Process (MDP)
is the mathematical formalism under which the reinforcement learning problem
is usually defined. A MDP comprises of a set of possible states St ∈ S, a set of
possible actions At ∈ A and a transition probability P [St+1 = s′ | St = s,At = a].
At each time t, a learning agent that is in state St, takes an action At and receives
a reward Rt+1 (St, At, St+1) ∈ R from the environment before moving to the next
state St+1. We define the agent strategy π : S × A 7→ [0, 1] as the conditional
probability π(a | s) of taking the action At = a being in the state St = s. The
reinforcement learning problem is the stochastic control problem of maximizing
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the expected discounted cumulative reward

Eπ

[ ∞∑
t=0

γtRt+1 (St, At, St+1)

]
, (9)

where γ ∈ [0, 1) is a discount factor, and the expectation is w.r.t. the sequence of
states and actions reached following the strategy π.

In our MDP, the sequential economy in which the banking system operates
plays the role of the environment. Banks interact with the environment by
changing their credit lines: each day, they can adapt their attachment strategy
between liquidity supply and interest rate discount, which is regulated through
Eq. 7, with the choice of ηt, playing the role of the action At. We assume
the agent is the system as a whole rather than the single bank and that the
optimal strategy is realized at the system level, i.e., that the regulator directs
financial institutions towards the correct combination of the two strategies. This
assumption has a twofold purpose. On the one hand, it helps us to model a
system with incomplete/asymmetric information, where the central bank has
richer information set than the single economic actor (see, for instance, Hoff and
Stiglitz (1990), and Thakor (2020)). On the other hand, it allows us to incorporate
economic policy, seen as the optimal indication that the regulator gives to the
system to reduce the interbank market vulnerability (see Trichet (2010), for
a global overview) 13. As shown above, the central bank’s recommendation is
made through the optimal interest rate corridor announcement, which conditions
interest rates and the liquidity supplied by financial institutions.

The state St includes information on the banking system’s liquidity Ct and
the interest rate rt distributions. Specifically, the state space is defined as

St = (Cmax
t , Cmin

t , rmax
t , Cavg

t , rmin
t , ravg

t ),

where xmax
t = maxi∈Ω xit, xmin

t = mini∈Ω xit, x
avg
t =

∑N
i=1 x

i
t/N , being x the

variable of interest. We believe that this state-space setting is realistic enough
to model the partial information of the regulator about the banking system: it
would be difficult and costly to retrieve detailed and specific data on all the

13 Considering η as a system variable allows us to reduce the problem’s mathematical
and computational complexity and study the banking system’s behavior as a whole.
Making η bank specific leads towards multi-agent reinforcement learning applications
(Buşoniu et al. (2010)), which consider agents that compete with each other and are
an out-of-the scope of the present paper.
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banks included in the system at each time step. It is easier to gather information
about the best and the worst liquidity provider in the interbank network as much
as average estimates of the entire market.

Finally, the reward function we consider is the system’s total fitness

Rt (St, At, St+1) =

N∑
i=1

µit (10)

Moreover, the problem in Eq. 9 becomes a maximization of the discounted
cumulative banks’ total fitness. From the definition of bank fitness, this means
guaranteeing a better flow of liquidity through the banking system and an efficient
allocation at a more convenient interest rate. We recall here that maximizing the
fitness of financial institutions corresponds to optimizing their expected profit.
The motivation behind this modeling assumption is twofold. Firstly, for the
recommendation to be followed by the banks, it must have a goal of interest to
the banks themselves, namely their profit. Second, the regulator, by maximizing
the fitness of the system, succeeds ex-post in safeguarding the resilience of the
financial system, given the inverse relationship between expected profits and
failures of financial institutions.

The learning algorithm operates in a model-free setting because it only
receives partial information on the relevant variables of the system. At the same
time, it does not know the internal dynamics (i.e., transition probability) with
which the banks’ balance sheets move and lending agreements are generated.
This information has to be inferred through the sequence of states, actions, and
rewards during the learning process.

2.3 The optimization algorithm: Proximal Policy Optimization

The optimization problem in Eq. 9 can be solved using a policy gradient algorithm
like the Proximal Policy Optimization (PPO) (Schulman et al.; 2017). A policy
gradient algorithm directly parametrizes the optimal strategy πθ = π(a | s; θ), for
example, using a multilayer neural network with parameters θ. The optimization
problem is approximately solved by computing the gradient of the cumulative
fitness of the system J(θ) =

∑∞
t=0 γ

tRt+1(St, At, St+1;πθ) and then carrying out
gradient ascent updates according to

θt+1 = θt + α∇θJ(θt), (11)
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where α is a scalar learning rate. The policy gradient theorem (Marbach and
Tsitsiklis (2001); Sutton et al. (2000)) provides an analytical expression for the
gradient of J(θ) as

∇θJ(θ) = Eπθ
[∇θπ (At | St; θ)
π (At | St; θ)

Qπθ (St, At)

]
(12)

= Eπθ [∇θ log π (At | St; θ)Qπθ (St, At)] ,

where the expectation, with respect to (St, At), is taken along a trajectory
(episode) that occurs adopting the strategy πθ and the action-value function

Qπ(s, a) ≡ E

[ ∞∑
k=0

ρkRt+1+k | St = s,At = a, π

]
, (13)

represents the long-term reward associated with the action a taken in the state
s if the strategy π is followed hereafter. It can be proven that it is possible to
modify the action value function Qπ(s, a) in (12) by subtracting a baseline that
reduces the variance of the empirical average along the episode while keeping the
mean unchanged. A popular baseline choice is the state-value function

Vπ(s) ≡ E

[ ∞∑
k=0

ρkRt+1+k | St = s, π

]
, (14)

which reflects the long-term reward starting from the state s if the strategy π is
adopted onwards. The gradient thus can be rewritten as

∇θJ(θ) = Eπθ [∇θ log π (At | St; θt)Aπθ(St, At)] (15)

where
Aπ(s, a) ≡ Qπ(s, a)− Vπ(s), (16)

is called advantage function and can be interpreted as the gain obtained by
choosing a specific value of a in a given state with respect to its average value
for the strategy π.

Different policy gradient algorithms derive from the way the advantage func-
tion is estimated. In PPO, the advantage estimator A (s, a;ψ) is parameterized
by another neural network with parameters ψ. This approach is known as actor-
critic: the actor is represented by the policy estimator π(a|s; θ) that outputs a
probability for each possible value of a ∈ A, which the learning algorithm uses
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to sample actions, while the critic is the advantage function estimator A (s, a;ψ)

whose output is a single scalar value. The two neural networks interact during
the learning process: the critic drives the updates of the actor, which successively
collects new sample sequences that will be used to update the critic and again
evaluated by it for new updates. The extended objective function can therefore
describe the PPO algorithm

JPPO(θ, ψ) = J(θ)− c1LAF(ψ) + c2H (π (a | s; θ)) (17)

where the second term is a loss between the advantage function estimator
A (s, a;ψ) and a target Atarg, represented by the cumulative sum of discounted
reward, needed to train the critic neural network. The last term represents an
entropy bonus to guarantee an adequate level of exploration. Details about the
specific choice of the target, together with additional information about the
general algorithm implementation, are given in the App B. In what follows, PPO
can be generally referred to as the learning algorithm.

3 Simulation Results

In this section, we perform numerical experiments to test the capability of the
learning algorithm to identify an optimal strategy for selecting η and trading
off the two competing ways of establishing credit relationships. In this respect,
we analyze the effects of the η dynamics on agents’ economic performances, the
interbank network topology, and its resilience in the face of exogenous shocks.
Finally, we study the effect of the policy recommendation obtained through
reinforcement learning in controlling credit crunch phenomena and mitigating
systemic risk.

The results provided in the following subsections are obtained from simulated
tests, which share some choices for the parameter involved in the dynamic
simulation of the system. The number of Monte Carlo simulations performed is
M = 200, and each simulation is T = 1000 periods long. We simulate a system
with N = 50 banks whose out-degree is d̂ = 1, so each bank can obtain at most
one outgoing link at each time step while can have many possible incoming
links. Each bank is subjected to an initial probability of being isolated, set at
0.25. The parameters of the screening cost χ, and φ that enter in Eq. 6 are set
respectively at 0.015 and 0.025, while the liquidation cost of collateral ξ is 0.3.
The parameters µ and ω shifting the uniformly distributed noise that shocks the
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bank deposits are set at 0.7 and 0.55. All the banks start with the same initial
interest rate equal to 2% and are endowed with the same initial balance sheet
C0 = 30, L0 = 120, D0 = 135, and E0 = 15. The reserve ratio r̂ = 0.2, the price
of fire sale ρ = 0.3 and the intensity for breaking the connection between banks
β = 5 in Eq. 8 are other parameters common to all the agents in the network.
In the App. A we check the robustness of our qualitative results by changing
some key parameters. Specifically, we vary the intensity of choice, β, from 0 to 40
with steps of 2; the fire-sale price, ρ, from 0.1 to 0.5 with steps of 0.1, the reserve
rate, r̂ from 1% to 10% with steps of 0.1 and, finally, the parameter ω regarding
the volatility shock on bank deposit. We have then studied the moments of the
distributions of the statistics of interest. Results confirm that our findings are
robust to some variations of the banking system simulation.

The PPO algorithm parametrizes a discrete strategy function so that the
learning algorithm can choose the value of η among a finite set of actions
A = {0, 0.5, 1}14

3.1 Training the PPO algorithm

As the first step in our numerical analysis, we evaluate the performance of
the strategy learned by the PPO algorithm. We train four PPO instances on
Ein = 1000 consecutive episodes, which are independent simulations of the
banking system. The PPO instances differ for the random seed used to initialize
the neural networks and to train them using a stochastic gradient descent
approach. Multiple concurrent training of different instances is needed to provide
an average performance together with a confidence interval that highlights the
robustness of the learning process. Each training episode consists of a simulation
of the banking system for T periods that allow the learning algorithm to collect
samples of data with which it can perform updates of the model parameters.
During the learning phase, we evaluate the learning progress of each instance
at several intermediate steps. We fix the weights of the neural networks that
14 Under the same setting, training PPO instances that are allowed to pick fine-grained

discrete values between 0 and 1 as a possible action is computationally expensive
because the algorithm needs to explore a broader set of possible state-action pairs.
Such an implementation would let the algorithm runtime grow and would not
necessarily improve the results because the algorithm would not be able to alias
between consecutive actions. A fine-grained action space A would make the η-strategy
less interpretable. Hence in our analysis, we decided to distinguish three specific
scenarios, which are the two extreme cases (η = 0.0 and η = 1.0) and the middle case
(η = 0.5).
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parametrize the η public signal and perform Eout = 5 out-of-sample test episodes
before carrying on the training process to assess the learned behavior up to that
point. We refer to the App. B for the technical difference between an in-sample
and an out-of-sample test episode.

After training the PPO algorithm, the reinforcement learning agents tend
to select only the extremes of the set A = {0, 0.5, 1}, which corresponds to an
interest rate strategy (η = 0.0) or a liquidity strategy (η = 1.0). For this reason,
we highlight such a dichotomy in the baseline model since it is the pattern that
emerges when all the banks in the system follow the policy recommendation.
Considering the emerging dichotomy in the selected action, we compare the PPO
performance with respect to a dynamic random baseline that picks the value
of η according to a Bernoulli distribution with a parameter equal to 0.5. This
random policy that chooses between 0 and 1 with equal probability represents a
meaningful benchmark, as we observe in the left-hand side of Fig. 1, where the
values of η in both scenarios are identically distributed over the 200 performed
Monte Carlo simulations. The Kolmogorov-Smirnoff test statistically confirms
up to the 1% confidence level that the distribution of the η values generated
by the selected15 PPO instance is not significantly different from the one of the
random baseline. The right-hand side of Fig. 1 summarizes the learning process
results where the system’s average cumulative fitness in Eq. 10 is represented
on the y-axis. Every PPO instance is tested Eout = 5 times using Monte Carlo
simulations of length T . We notice that the performance metric is always greater
for PPO than the random recommendation, signaling that the banks in the
system generated by the PPO signal tend to be more attractive for the borrowers
by exhibiting a higher aggregated fitness over time. Moving η randomly causes
banks to be less attractive to the borrowers in their interbank market. This result
implies that the PPO instances learn to choose the value of η by leveraging the
information available about the system without changing the distribution of the
values with respect to the random case. The learning procedure allows us to
discover when picking a side in this trade-off is convenient. A further comparison
with a decentralized mechanism for the η dynamics is provided in Sec.3.4.

15 It is common in reinforcement learning applications to train different instances of
the same algorithm and then select the best performing one over some out-of-sample
tests (Andrychowicz et al.; 2020)
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Fig. 1: The left panel shows the discrete distributions of the η values selected respectively
by PPO (in black) and by a Bernoulli distribution (in red) with a parameter equal to
0.5 over 200 Monte Carlo simulations of the system. The right panel shows the average
cumulative fitness of the system as a function of the number of training episodes for the
trained PPO instances (in solid black) and the Bernoulli distribution of η (in dashed
red) with the corresponding confidence intervals.

In order to shed light on the decisions taken by the best performing trained
PPO instance, we use the SHapley Additive exPlanation (SHAP)16 framework
(see Lundberg and Lee (2017), Shapley (2016)). This approach explains a complex
nonlinear model like a neural network by shedding light on the contribution of
each input feature to the output formation. For each input vector x ∈ RK and a
model f , the SHAP value φi(f, x), i = 1, . . . ,K quantifies the effect (in a sense,
the importance) on the output f(x) of the i-th feature. To compute this effect
one measures, for any subset S ⊆ {1, . . . ,K}, the effect of adding/removing the
i-th feature to the set, i.e. fS∪{i}(x)− fS(x). The SHAP value is defined as the
weighted average

φi(f, x) =
∑

S⊆{1,...,K}\{i}

|S|! (K − |S| − 1)!

K!

[
fS∪{i}(x)− fS(x)

]
, (18)

where the weights ensure that
∑
i φi = f(x).

Figure 2 shows the magnitude of the Shapley values for the policy recom-
mendation learned by the best performing PPO instance referred to the two
possible outcomes η = 0 and η = 1. The left-hand side shows that high values for
the maximum liquidity available in the system tend to favor the choice of an η
based on the interest rate. Also, a low average interest rate and a high maximum
interest rate point to the choice of η = 0. The right-hand side shows an opposite

16 For the implementation, we use the Python package linked to Lundberg and Lee
(2017)
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Fig. 2: SHAP values relative to the strategy outputs η = 0 (left panel) and η = 1 (right
panel). The cloud of colored dots for each input variable expresses the importance
and correlation concerning the model output. Features are ordered on the y-axis by
relevance, so the first on the top influences the model output the most.

input relevance with a dominant role for high values of the average interest rate
and low values of the maximum interest rate. The two figures show that the
trained learning algorithm chooses one of the two signals by looking at the main
characteristics of the opposite one. When it chooses η = 0, it is more interesting
to know if there are participants in the network who are large. In contrast, when
it chooses η = 1, it looks for homogeneity of interest rate, a common feature
obtained by always playing towards the interest rate. The learning algorithm
suggests a switch towards the other competing recommendation to avoid extreme
cases in which a disadvantage of one or the other choice exacerbates. For instance,
a huge financial institution that gathers all the borrowers’ demand when η = 1

could not be sustainable in the long term, so the algorithms suggest switching to
the other option. On the other hand, most medium-sized banks offer medium
rates when η = 0 cannot gather enough liquidity to deal with deposit shocks,
and it would be better to resort to the opposite signal.

3.2 Micro and macro consequences of the policy recommendation

In this subsection, we deal with the implications that the dynamics of the η
parameter have on the interbank network morphology and the resulting perfor-
mances of the financial institutions. Finally, we study the effects of the emerging
network topology on the market’s stability. All network-related results presented
in the following Sessions refer to the active credit network.
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Topology and evolution of the interbank network

Before starting the analysis, it is worth remembering the dynamics of η, that
appear in the banks’ fitness (see Eq. 7), which determines the probability of
creating credit links in the system as shown in Eq. 8. Therefore, it is appropriate
to begin the analysis by describing the topology of the interbank network.

Fig. 3: Network configuration at time t=0 (left side), and t=800 (right side).

In Fig. 3, we plot the configuration of the endogenous interbank network at
two different time steps of a single simulation of the system. As the reader can
appreciate, the market configuration goes through different phases ranging from
a random topology with isolated agents to a highly centralized architecture where
a few hubs compete in credit supply. A more detailed analysis of the evolution of
the interbank network architecture over time can be found on the left-hand side
of Fig. 4, where we show the time series of network degree centrality

CNet
t =

∑
i

(
kmax
t − kit

)
N(N − 1)− |Vt|

, (19)

where N is the number of banks, |Vt| is the total number of incoming links in
the system, kit is the number of incoming links for the i-th bank, and kmax

t is the
number of incoming links holds by the hub of the network.
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Fig. 4: Time series of interbank network centrality (left side). The decumulative distri-
bution function (DDF) of the in-degree (right side).

The dynamics of network centrality show how the morphology of the credit
market evolves, going from periods in which the network is decentralized and
made of many small components to periods in which more than 45% of banks are
connected to a single hub. In addition, the topology of the emerging network is
different from that of the random graph, where the in-degree distribution decays
exponentially. Similar to real credit networks, in our system, some banks are
found to have a disproportionately large number of incoming links. In contrast,
others have very few (see Iori and Mantegna (2018), for a survey of the relevant
literature). This result is shown in the right-hand side of Fig. 4 where we plot the
decumulative distribution function of the in-degree. As the reader can observe,
this distribution is in keeping with scale-free networks and displays a ’fat tail.’
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Fig. 5: Top Panel: Time series of η cumulative values over the simulation. Bottom
Panel: Estimated results with the respective T-test in brackets for Eq.20. b0 is the
estimated mean value of y when η = 1 and b1 the deviation from this mean value when
η = 0. Data are obtained through 200 Monte Carlo simulations of the system.

To conclude the analysis of the interbank market architecture, we deal with
the effect of the η parameter on the credit network topology. In the top panel of
Fig. 5, we plot a single realization of the cumulative value of η over time. The
figure shows how the reinforcement learning algorithm generates a time evolution
in the choice of policy recommendations. Precisely, increasing (decreasing) values
in the curve correspond to a signal that directs the system toward a high liquidity
supply (low interest rate), i.e., η = 1 (i.e., η = 0).
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The effect of the signal in shaping the topology of the interbank network
is, instead, shown in the lower panel of Fig. 5, where we estimate a categorical
regression model

yt = b0 + b1(1− ηt), (20)

where b0 is the estimated mean value assumed by the dependent variable y when
η = 1 and b0 + b1 is the mean when η = 0. As shown in the bottom panel of
Fig. 5, when the system selects low interest rates, the interbank network is less
centralized, more sparse, and with a larger diameter. Moreover, the graph is
fragmented into many scarcely-populated islands.

Having described the architecture of the interbank network, let us now examine
its evolution over time. It is worth remembering that banks signal in the market
their attractiveness µ according to the recommendation from the regulator, i.e.,
whether to compete on low interest rates, η = 0, or on high liquidity supply, η = 1.
While the regulator’s signal is market-specific, liquidity supplies and interest rates
(based on Eq.6 ) are bank-specific variables. This mechanism creates competition
among financial institutions for credit allocation. The war in granting credit,
modeled through the possibility of redefining lending agreements via Eq. 8 is
shown in Fig. 6.
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Fig. 6: Time series of the most connected lender (hub) evolution along the time T.
The solid black line identifies the normalized hub id, the red dashed line her number of
clients ( incoming links), and the green dotted line the hub’ fitness. Colors are available
on the website version.

The black solid, red dashed, and green dotted lines represent the normalized
id of the lender with the highest number of clients (i.e., the hub), her incoming
links (i.e., number of clients), and her fitness, respectively. As the reader can
appreciate, the simulation presents periods of hub stability and alternation and
competition between hubs. When the hub stands out from her competitors and

26



signals a significantly higher fitness (i.e., the green dotted line approaches the
unit), she can attract numerous clients, as shown by her high number of incoming
links. However, the attractiveness of the hub may work against her. A large
portfolio of customers increases the likelihood that some of them may fail. This
either decreases the attractiveness of the hub herself or even causes her failure.
The reduction of the hub’s fitness due to one of her clients’ failure works in the
following way. On the one hand, when the fitness uses a strategy based on a low
interest rate, the client’s approach to the bankruptcy threshold increases the
borrower’s financial fragility and probability of bankruptcy. Both these effects
increase the lending interest rate, making the hub less attractive (see Eq.6). On
the other hand, when µ moves towards a high liquidity supply, the borrower’s
bad debt is absorbed by the lender’s net worth. The fall in the latter causes a
parallel reduction in the hub liquidity, as shown by the balance sheet identity (see
Eq. 1). Interestingly, reducing the hub net worth could reduce liquidity higher
than proportionally, given the Basel rules on maximum capital and leverage ratio.
In any case, the decrease in the agent’s fitness gradually reduces her clients and
makes other lenders more attractive. These agents can replace the unsuccessful
hub and so become, in turn, the most appealing lenders.

Micro consequences of the reinforcement learning policy

In this subsection, we investigate how the dynamics of η affect the hub’s perfor-
mance and other financial institutions.
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Fig. 7: Density distributions over 200 Monte Carlo simulations of the maximum period
of hub stability in which the strategy does not change. The black solid and red dashed
lines show η = 0 and η = 1, respectively.

In Fig. 7, we show how choosing between a low interest rate and a high liquidity
supply strategy affects the hub’s longevity. The figure shows the distribution, over
200 simulations, of the maximum period of hub stability in which the strategy
does not change, respectively, for η = 0 (black) or η = 1 (red). The figure shows
that the hub is generally more stable if the regulator recommends a high liquidity
supply (red dashed line in Fig 7). Moreover, also at a micro level, we show that
η = 1 seems to produce better individual performances. This result is shown in
the top panel of Fig. 8, where we report the effect of the two possible values of η
on some key individual variables.
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Liquidity 2960.34∗∗∗ 331.42∗∗∗
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Equity 888.96∗∗∗ -110.72∗∗∗
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(435.43) (3.23)

Rationing 0.33∗∗∗ 0.28∗∗∗
(71.80) (38.31)

Bad debt 36.05∗∗∗ 2.19∗∗∗
(446.46) (19.49)

Failed banks 3.14∗∗∗ 0.35∗∗∗
(520.17) (41.00)

***p < 0.01, **p < 0.05, *p < 0.1
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Fig. 8: Top Panel: Estimated results with the respective T-test in brackets for Eq.20.
b0 is the estimated mean value of y when η = 1 and b1 the deviation from this mean
value when η = 0. Data are obtained through 200 Monte Carlo simulations of the
system. Bottom Panel: Density distributions of aggregated liquidity over times over 200
Monte Carlo simulations. The black solid and red dashed lines show η = 0 and η = 1,
respectively.
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Specifically, our results, estimated via the categorical regression model in Eq.
20, show that a signal that directs the system toward an abundant supply of
liquidity (i.e., η = 1) produces better results in controlling leverage, rationing,
bad debt, and bankruptcies. Moreover, according to the hypothesis that banks
fail as net-worth falls below a minimum threshold, the equity is higher in the
case of η = 1.
The result on the liquidity is, however, less intuitive. The system that competes
on the interest rate level is significantly more liquid than the one adopting
high liquidity, with an average liquidity value of 3291 in the case of η = 0

and 2960 in the opposite case. The reason for the apparent better performance
on liquidity in the case of η = 0 lies in the competition among banks using
interest rates. As clarified by Eq. 6, the financial institutions applying the lowest
interest rates are the smallest ones. This implies that the biggest banks are less
attractive to borrowers because they charge higher rates. Therefore, the system
excludes these economic agents from trading while encouraging small institutions
to provide liquidity. This mechanism of selection has a twofold effect. On the
one hand, it generates a substantial unbalance between lenders and borrowers
size. Creditors, much smaller than debtors, are overwhelmed in the event of their
clients’ bankruptcy. On the other hand, the exclusion from the exchanges of
the largest institutions leaves a consistent level of unallocated liquidity in the
system. The first effect, i.e., agents’ unbalance, determines the worst performances
under η = 0, while the second effect, i.e., exclusion, determines the highest level
of unallocated liquidity in the system. In contrast, a signal that directs the
system towards an abundant liquidity supply produces a more ”homogeneous”
distribution among banks’ liquidity, as shown in the bottom panel of Fig. 8.
This balance between economic agents generates a uniform risk exposure among
counterparties, favoring the system’s resiliency in front of shocks. This result,
although not unanimously shared (see Haldane and May (2011)), is in line with
other studies showing that the imbalance between lenders and borrowers size is a
leading force in generating propagation of systematic failure (see, for instance,
Caccioli et al. (2012), Berardi and Tedeschi (2017), Iori et al. (2006), Lenzu and
Tedeschi (2012) and Tedeschi et al. (2012)). In the language of network theory,
the scenario corresponding to η = 1 can be interpreted as an assortative mixing,
that is a preference for the network’s nodes (banks) to attach to others that are
similar in some way (i.e in size in our contest). Symmetrically, η = 0 generates a
disassortative mixing, where big-in-size borrowers tend to attach to low-in-size
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lenders. The presence of a strong disassortative mixing in interbank markets, and
specifically of an imbalance between borrowers and lenders is also empirically
found in the e-MID interbank market (see, for instance, De Masi et al. (2006)
De Masi et al. (2007)).

Systemic impact of the network

Indep. Variable Dep. Variable
Rationing Failed banks Leverage

Net centrality -0.25∗∗∗ -2.09∗∗∗ -0.016∗∗∗
(-6.04) (-41.82) (-55.69)

Density -1.32∗∗∗ -9.14∗∗∗ -0.051∗∗∗
(-52.64) (-254.08) (-235.33)

Diameter 0.011∗∗∗ 0.032∗∗∗ 0.0002∗∗∗
(8.95) (21.69) (27.02)

Components 0.029∗∗∗ 0.020∗∗∗ 0.0004∗∗∗
(5.28) (3.09) (10.57)

Avg nodes per comp -0.0011∗∗∗ -0.0022∗∗∗ -0.00002∗∗∗
(-4.18) (-6.97) (-13.19)

***p < 0.01, **p < 0.05, *p < 0.1

Table 1: Regression results between indicators of the interbank stability and network
measures. T-stats for each coefficient are provided in parentheses. Data are obtained
through 200 Monte Carlo simulations of the system.

To conclude the section, we combine the results on network topology and
individual performance as a function of η to capture the interbank architecture’s
overall effect on systemic stability. To this end, in Tab. 1, we report the results of a
linear regression estimated through ordinary least squares where the independent
variables are some measures of the interbank network topology and dependent
variables are some indicators of systemic market stability. In line with what
has been observed so far, when the network tends to be centralized, i.e., denser
towards the hub and with a smaller diameter, the risk of contagion decreases, i.e.,
bankruptcies, rationing, and leverage are reduced. This architecture corresponds
to a graph composed of a few highly populated components. It is worth noting
that this topology emerges when the interbank system is oriented towards an
abundant supply of liquidity, which generates a certain homogeneity among
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agents able to compensate for the imbalance between lenders and borrowers
present in the case of η = 0. In this respect, clarification is essential: η = 1 is
not the absolute best signal. This is the best strategy given the individual and
aggregate conditions of the system at the time of the choice. The algorithm is
designed to identify one recommendation as optimal based on the underlying
environmental conditions. The robustness of this observation is shown in Sec.3.3
and Sec. 3.4. In the former, we show that the system governed by a regulator
that directs the choice via the implemented reinforcement learning algorithm
outperforms a system based on a random selection between the two signals. In
the latter, we demonstrate the better performances of the reinforcement learning
rather than modeling an η evolving with decentralized dynamics.

3.3 The reinforcement learning based recommendation for taming
systemic risk

In this subsection, we study the effect on the interbank systemic stability of the
policy recommendation obtained through the reinforcement learning mechanism
solved by the PPO algorithm.

Specifically, we answer the following question: how would the interbank system
perform in terms of aggregate resiliency when the regulator directs financial
institutions to choose the optimal strategy between competing on the low interest
rate, η = 0, or on high liquidity, η = 1? Again we compare the effects of the
learned strategy on the market stability with those of a random strategy. Finally,
the last part of this Section is devoted to understanding the market performance
as the percentage of banks that follow the policy recommendation changes.

Before delving into the analysis of interbank market stability as a result of
the policy recommendation, it is appropriate to clarify how contagion develops
and propagates in the model.
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Fig. 9: Interest rate as a function of the lending capacity ci,jt and the probability of
surviving pjt .
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When a bank is hit by a negative shock and is unable to cope with it through
her own resources or those obtained in the interbank market, she fails and leaves
the economic system. However, her death has important systemic repercussions.
In fact, she may generate a bad debt to her lender in the financial market. As
can be seen from Eq.3, the bad debt of the borrower propagates to her lender
through a lowering of the creditor’s equity. On the one hand, a sufficiently large
bad debt could directly bankrupt the lender and thus generate a new failure. On
the other hand, our lender would be, in any case, weakened, with some important
financial consequences, namely an increase in her probability of bankruptcy and
in her leverage and a decrease in her capacity, i.e. the maximum amount of credit
she would obtain in case of need in the interbank market. These three ingredients
worsen our creditor’s credit conditions. Therefore, in the unfortunate event of a
negative shock hitting this agent with her concomitant need for liquidity in the
interbank market, her current credit conditions would provide the bank with a
considerably higher interest rate and a lower granted loan. In fact, as it can be
seen from the numerical study of the interest rate equation (Eq.6), this function is
positive in capacity and negative in the bank surviving probability (see Fig.9). Of
course, this could lead to the failure of our agent and the concomitant infection
of her lender.

In order to prove the real ability of the model to generate contagions, we
study if there are bankruptcy cascades in the artificial system. Since the purpose
of this exercise is to study the evolution of a self-contained system with a given
initial number of banks, we exclude the possibility that failing banks would be
replaced by new entrants.
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Fig. 10: Average number of surviving banks as a function of time. Results are obtained
without reintroducing the failed agents and running 10 Monte-Carlo simulations.

Fig. 10 displays the average number, over 10 Monte-Carlo simulations, of
surviving banks as a function of time. The slope of the number of surviving banks
curve provides evidence of contagious failures, that is periods in which many
banks collapse together (see Iori et al. (2006) and Tedeschi et al. (2012), for similar
results). We can conclude that the default of an agent may increase systemic risk
in our framework. In fact, our dynamics not only generate bankruptcies but also
a rapid decline in the time path of surviving banks over time.

Let us now return to the main assumption of this Section, namely the effect on
the system resiliency of the policy recommendation obtained via the reinforcement-
learning algorithm and its comparison with the random strategy.

A common finding in several theoretical and empirical works is that the
interbank market works better when credit flows efficiently through the system,
thus ensuring it against liquidity shocks (see, for instance, Allen and Gale (2000);
Carlin et al. (2007); Freixas et al. (2000)).
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Fig. 11: Liquidity of the system (left panel) and the number of credit channels (right
panel). Black solid and red dashed lines refer to the best-performing reinforcement
learning optimal and random strategies, respectively. The curves reproduce the mean
and the standard deviation over 200 simulations of the system and a rolling window of
100 timesteps.

Starting from this consideration and recalling the severity of liquidity crises,
we show in Fig. 11 (left side) the effectiveness of the implemented reinforcement
learning strategy in spreading liquidity through the system. In the figure, once the
best performing learned strategy is selected, as shown on the right-hand side of
Fig. 1, the aggregated average liquidity of 200 simulations over a rolling window
of 100 timesteps is shown through time. Although the learned strategy strongly
competes with the random one in some periods, its supremacy becomes evident
from step 700 onwards. In addition, the average liquidity, over all periods and
simulations, of the learned strategy is statistically higher than the one obtained
with the random strategy (i.e., 3129.98 (std. 1.5128) vs. 3091.51 (std. 4.4258),
respectively).

A possible explanation for this phenomenon can be seen in the right-hand
side of Fig. 11, where we plot the active credit links in the two frameworks17.
As the reader can appreciate, the number of activated credit channels is higher
when the system follows the learned strategy with respect to the case of random
strategy, and this guarantees a higher circulation of liquidity in the system. In
detail, the average number of credit channels in the first scenario, over time and
simulations, is 9.9823 (std. 0.4321), while in the second case is 8.5464 (std. 0.3596).
On the whole, this result reveals the ability of the reinforcement learning optimal
policy to design an interbank network architecture promoting an efficient credit

17 By the terms credit channels and credit links we refer to the linkages through which
the liquidity needed by borrowers due to the deposit shock flows. These are, therefore,
the credit lines used in the active credit network.
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allocation and, therefore, reducing liquidity shortage phenomena. Consequently,
the emerging topology of the credit network effectively controls rationing and
avoids failures due to credit crunch phenomena, as shown in Fig. 12, left and
right panels, respectively.
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Fig. 12: Rationing of the system (left panel) and the number of failed banks (right
panel). Black solid and red dashed lines refer to the best-performing reinforcement
learning optimal and random strategies, respectively. The curves reproduce the mean
and the standard deviation over 200 simulations of the system and a rolling window of
100 timesteps.

The average values of these variables over all timesteps and simulations
confirm the robustness of the two latter results. Specifically, the mean and
standard deviation of the rationing in the case of the learned strategy (resp.
random strategy) are 0.4024 and 0.0375 (resp. 0.5671 and 0.08465), while the
mean and standard deviation of the number of failed banks in the case of the
learned policy (resp. random policy) are 3.2101 and 0.0410 (resp. 3.2931 and
0.0423).

It is essential to note the ability of the reinforcement learning mechanism
to generate an interbank network whose architecture is resilient in the face of
financial attacks. This characteristic provides, on the one hand, an additional
monetary policy tool that can be implemented in times of economic adversity and,
on the other hand, enriches the vast literature that emphasizes the importance
of credit network architecture in dealing with systemic shocks (see Grilli et al.
(2017), for a survey of the relevant literature).

We conclude this section by analyzing the effect of the reinforcement learning
optimal policy on the market’s financial (in)stability. The approach followed here
in explaining the materialization of financial frictions is very close in spirit to
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the Minskyan financial instability hypothesis and therefore uses banks’ leverage
as the leading indicator (see Minsky (1964)). In our stylized market, leverage
and systemic instability are connected through a specific structure. Given our
naive banks’ balance sheet (see Eq.1), leverage is defined as assets on equity.
Moreover, credit costs (i.e., interest rates) are strongly positively affected by the
leverage (see Eq.6). When a lender grants a loan to a bank with a low probability
of surviving (i.e., an over-leveraged borrower), she charges a higher interest rate
via the financial accelerator. This, in turn, exacerbates the borrower’s financial
condition, pushing her toward a bankruptcy state. If one or more borrowers cannot
pay back their loans, even the lenders’ equity is affected by bad debts. Therefore,
lenders decrease their credit supply and increase the borrowers’ rationing. In this
way, the profit margin of borrowers decreases, and a new round of failures may
occur. The leverage dynamics when the system follows the reinforcement learning
recommended policy and in the random case are shown on the left-hand side of
Fig. 13. The figure highlights two important features. First, the recommended
learned policy keeps the leverage below the values obtained with the random
policy. Specifically, the average leverage in the first scenario, over time and
simulations, is 1.59 (std. 0.042), while in the second case is 1.69 (std. 0.031).
Second, the leverage fluctuates over time, thus recalling the different phases of
lending suggested by Minsky. There are periods when financial institutions grant
more loans without considering the overall financial fragility. However, banks
can underestimate their credit risk, making the system more vulnerable when
default materializes. This ambiguous effect of the leverage, first positive and then
negative, on interbank stability is clearly shown in the right-hand side of Fig.
13, where the correlation wave between bankruptcies and agents’ leverage first
decreases from lag τ = −21 up to τ = −11 , then increases from τ = −8 up to
τ = 9 , and finally, returns to decrease from τ = 15.
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Fig. 13: Left side: Leverage of the system. Black solid and red dashed lines refer to the
best-performing reinforcement learning optimal strategy and to the random strategy,
respectively. The curves reproduce the mean and the standard deviation over 200
simulations of the system and a rolling window of 100 time steps. Right side: Average
correlation between the number of bankruptcies and lagged leverage, at a 1% confidence
level.

Should they follow or should they not? An exercise on the signal
diffusion

Let us introduce an additional element of heterogeneity concerning the signal
itself. Whereas in the previous experiment, all the banks followed the signal on
the optimal strategy, here we modify this assumption. We simulate a system
where different percentages of banks follow the signal while the others randomly
go to different possible strategies. This experiment allows us, on the one hand, to
introduce an additional element of differentiation and, on the other, to understand
the minimum threshold of followers required by the system with the RL-generated
signal to be more resilient than the one with a random strategy. To this end,
we fix a percentage κ of banks that follow the reinforcement learning strategy,
while the remaining N(1 − κ) banks randomly sample the strategy in the set
{0, 0.5, 1}. We train the reinforcement learning algorithm following the same
procedure as the previous subsections, letting the mixture parameter vary on a
discrete range of values. Every time we change the value of κ, a new algorithm is
trained. Several system simulations are performed to evaluate the effect of such
heterogeneity in the strategy followed by the banks.
Before studying the impact on the interbank systemic stability of the different
percentages of financial institutions applying the policy recommendation obtained
through the reinforcement learning mechanism and comparing it with the random
strategy, an important consideration is necessary. Fig. 14 shows that as the rate
of followers varies, the PPO algorithm selects different categories of strategies.
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For example, when only 10% of the banks follow the optimal signal, the most
common strategy steers the banks towards a low interest rate (see solid black
line). However, in this scenario, even if with low probability, a mixed strategy
(i.e., η = 0.5) or a high liquidity supply strategy (i.e., η = 1.0) can emerge (see the
brown and yellow lines, respectively). This competition among different optimally
selected strategies varies as the percentage of followers varies. However, in the case
of total synchronization, i.e., when all banks follow the policy recommendation,
the system stabilizes, with equal probability, on the two extremes, i.e., η = 0 and
η = 1. When κ = 0.1 (i.e., followers are 10%), the probability of a low interest
rate signal is 93%, while the probability of a mixed strategy is 2.51%. Instead,
the probability of a signal pointing to a high supply of liquidity is 4.38%. The
selected strategies vary when moving towards a percentage of followers of 50% .
Specifically with κ = 0.5 the probability of η = 0.0 is 57%, that of η = 0.5 is 40%
and finally η = 1 is 3%. Tab.2 shows the portion of the chosen optimal strategy
for each percentage of followers.

Followers percentage
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

S
tr

at
eg

y η = 0.0 0.93 0.68 0.22 0.18 0.57 0.31 0.66 0.38 0.24 0.5
η = 0.5 0.03 0.21 0.66 0.66 0.40 0.69 0.32 0.62 0.76 0.0
η = 1.0 0.04 0.11 0.12 0.16 0.03 0.00 0.01 0.00 0.00 0.5

Table 2: Average percentage of the chosen optimal strategy (η = 0; η = 0.5 and η = 1)
by varying the followers percentage κ from 1% to 100%. Results are obtained over 200
Monte Carlo simulations of the system
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Fig. 14: Discrete distributions of the η values selected by PPO over 200 Monte Carlo
simulations of the system.

Interestingly, as it can be seen from Tab. 2, as κ varies, three scenarios
emerge. Looking at Tab. 2, three scenarios emerge as κ varies. For κ between
10% and 40%, the dynamics of η are linear, with η = 0.0 gradually losing the
predominance in favor of η = 0.5 and η = 1.0. For κ between 50% and 90%, an
oscillatory dynamic emerges, with η = 0.0 and η = 0.5 alternating continuously.
Finally, when the maximum number of followers is reached, we observe an equal
distribution between the two pure strategies. Let us try to understand why
these three scenarios emerge. To this end, in Fig.15, we show the decumulative
distribution function of the liquidity in each of the three scenarios, i.e., κ ≤ 40%,
50% ≤ κ ≤ 90% and κ = 100% for each emerging strategy. Specifically, the first
line of the Fig. 15 shows the distributions for each value of κ ≤ 40% of the three
emerging strategies, η = 0.0, η = 0.5 and η = 1.0 first, second and third column,
respectively. The second line displays the same distributions for each value of
50% ≤ κ ≤ 90% of the two emerging strategies, η = 0.0, η = 0.5, first and second
column, respectively. Finally, the third column of the second line shows the same
distribution for κ = 100% of η = 0.0 and η = 1.0.

In the first situation, when 10% ≤ κ ≤ 40%, as the percentage of followers
increases, what emerges within the three η can be summarised as follows. The
decrease in the low-interest-rate strategy depends on the increasing average and
heterogeneity of liquidity as κ increases. This is evident in the top left panel of
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Fig. 15: Decumulative distribution functions for the aggregated liquidity over 200
simulations of the system. The first line displays the distribution corresponding to the
emerging strategies (i.e., η = 0.0, η = 0.5 and η = 1.0, first, second and third columns,
respectively) with respect to a different percentage of followers (κ from 0.1 to 0.4).
The second line displays the same distribution for emerging strategy, i.e., η = 0.0 and
η = 0.5 first and second column, respectively, with κ from 0.1 to 0.9. The third column
of the second line reproduces the same distribution for emerging strategy, i.e., η = 0.0
and η = 1.0 when κ = 1.0.

Fig.15, whereas κ increases, there is a leftward shift in the liquidity distribution.
The increase in the mixed strategy depends on a more homogeneous distribution
of liquidity (and interest rates) and low average values of these two variables
(see the top center panel of Fig.15). Symmetrically with respect to the case of
η = 0, the increase in the strategy based on high liquidity is motivated by the
increasing heterogeneity in the liquidity distribution and a higher average value of
the liquidity as κ increases (see top right panel of Fig.15). In the second scenario,
the strong competition and alternation between η = 0 and η = 0.5 depend on
an alternation between higher or lower liquidity depending on the prevalence
of the mixed or the low interest rate strategy (see the first and second panels
at the bottom of Fig.15 ). Finally, in the last scenario, where the percentage of
followers reaches its maximum (i.e., κ = 1), the system stabilizes, and an equal
distribution between the two pure strategies emerges. In this case, the liquidity
distributions of both η are heterogeneous, as shown in the last panel to the right
of Fig.15.

In summary, the emergence of a strategy or the switching among can be
explained as follows. For one of the pure strategies to dominate, the distribution
corresponding to the variable representing it must be heterogeneous. Conversely,
the emergence of a mixed strategy corresponds to homogeneity in the distribution
of both variables, i.e., interest rates and liquidity.
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Let us now analyze how the interbank system performs in terms of aggregate
resiliency when the regulator convinces different percentages of banks to follow
the optimal signal. As in the first part of this subsection, the results obtained
with the optimized strategy are compared with those obtained from a random
choice of strategy. As in the baseline case, the dynamic random scenario picks
the value of η according to the probabilities shown in Tab 2.

We report the aggregated results at the macroeconomic level for some of
the critical systemic variables. In each panel of Figure 16 and 17, we show the
variation of the aggregated measure obtained averaging through 200 simulations
and through the timesteps of the simulations (1000). The aggregated measure is
displayed on the y-axis, while the followers’ percentage κ varies on the x-axis.
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Fig. 16: Average liquidity (left panel) and rationing of the system (right panel) as a
function of the followers’ percentage, κ. Black solid and red dashed lines refer to the
best-performing reinforcement learning optimal and random strategies, respectively.
The curves reproduce the mean and the standard deviation over 200 simulations of the
system.
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Fig. 17: Average number of failed banks (left panel) and their leverage (right panel)
as a function of the followers’ percentage, κ. Black solid and red dashed lines refer to
the best-performing reinforcement learning optimal and random strategies, respectively.
The curves reproduce the mean and the standard deviation over 200 simulations.

When the regulator cannot convince a sufficient percentage of banks to follow
the policy recommendation, the system generated with the optimal signal obtained
via the reinforcement learning algorithm (black solid) does not significantly differ
from that generated with the random signal (red dashed lines). This holds for all
the considered variables, such as the liquidity and rationing of the system (see
Fig. 16) and the number of failures and leverage of financial institutions (see Fig.
17). Instead, when the regulator can convince a share of banks equal to/greater
than 60%, higher systemic stability is observed in the model using the optimized
signal than in the random one. In fact, above this percentage, the optimized
system, on the one hand, generate higher liquidity and lower rationing, on the
other hand, fewer bankruptcies and less leverage for financial institutions.

3.4 A competition with a decentralized strategy

In the previous Sections, we compared the aggregate performances of the re-
inforcement learning strategy with a random strategy that picks the value of
η according to a Bernoulli distribution with a parameter equal to 0.5. In this
Section, we make a comparison with a strategy that selects the η parameter in
a dynamic and decentralized way so that each bank has her individual plan of
action.

Denoting ηit as the weight that bank i gives to the liquidity or the interest
rate in the fitness function, such quantity becomes a function of the recent
performance of the agent in terms of attractiveness. Namely, if µit − µit−1 ≥ 0,
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the agent i intensifies the strategy she is already pursuing, then

ηit+1 =

ηit + a if ηit ≥ 0.5

ηit − a if ηit < 0.5
(21)

On the other hand, if µit − µit−1 < 0, the bank i weakens the strategy she is
pursuing, intensifying the opposite one

ηit+1 =

ηit − a if ηit ≥ 0.5

ηit + a if ηit < 0.5
, (22)

where a is a scalar parameter set equal to 0.025, defining the step towards
liquidity or interest rate. We run 200 independent model simulations of length T
= 1000 periods to obtain the following results. All the other agents’ initialization
parameters, except for the variation studied here, overlap with those presented
in Sec 3 with a percentage of followers κ = 1. At t = 0, all agents start with
ηit=0 ∼ U[0,1].
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Fig. 18: Liquidity of the system (left panel) and the number of credit channels (right
panel). Black solid and orange dashed lines refer to the best-performing reinforcement
learning optimal strategy and the decentralized strategy, respectively. The curves
reproduce the mean and the standard deviation over 200 simulations of the system and
a rolling window of 100 timesteps.
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Fig. 19: Rationing of the system (left panel), number of failed banks (middle panel),
and Leverage of the system (right panel). Black solid and orange dashed lines refer
to the best-performing reinforcement learning optimal strategy and the decentralized
strategy, respectively. The curves reproduce the mean and the standard deviation over
200 simulations of the system and a rolling window of 100 timesteps.

As the reader can easily grasp from Fig. 18 and 19, where the systemic
dynamics presented in Sec. 3.3 are reproduced, once again, the RL-based strategy
(black solid line) generates more desirable systemic patterns than the new decen-
tralized strategy (orange dashed line). Specifically, when the regulator adopts
an η evolving through reinforcement learning, the system absorbs shocks better
than in the decentralized case, as shown by the higher number of credit channels,
the lower leverage and lower rationing, and the number of failures associated
with the centralized η. Only the system’s liquidity trend has apparently unclear
dynamics, as shown in the left panel of Fig.18.
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Fig. 20: Time series of the decentralized η over the simulation. Data are obtained
through 200 Monte Carlo simulations of the system.
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To understand the reasons underlying the better systemic results obtained
with a centralized versus decentralized η, we need to focus on the evolution of this
variable in the two scenarios. In this regard, the top panel of Fig. 5 and 20 show
the evolution of centralized and decentralized η, respectively. The centralized
strategy, i.e., the one obtained with the reinforcement learning algorithm selects
values of η that direct the system towards the best between the two pure
strategies. Given the underlying systemic conditions, such a strategy is the
most advantageous by the reinforcement learning algorithm. On the contrary,
the decentralized strategy shows an erratic trend in Fig. 20. It emerges that
when financial institutions choose the parameter considering their individual
fitness, the system never achieves coordination in the choices. The decentralized
η dynamics also show an oscillating behavior on average between the mixed
strategy (η = 0.5) and the low interest rate one, with an average value of about
0.35, with a standard deviation of 0.09. The minimum and the maximum are 0
and 0.6, respectively. The lack of coordination and the approaching of the low
interest rate strategy have important systemic consequences. On the one hand,
the erratic nature of the decentralized strategy is not beneficial for the stability
of the credit network, as confirmed in Fig.21 where the distributions, over 200
simulations, of the maximum period of hub stability for the reinforcement η
(black solid line) and the decentralized one (orange dashed line) are displayed.
As explained in the baseline model (see Sec. 3.2), lower hub longevity indicates
lower network centrality 18. that is associated with worse systemic performance.
On the other hand, the fact that the decentralized rule comes close to the low
interest rate strategy even further moves the system away from stability. In this
circumstance, in fact, lenders, much smaller than borrowers, are overwhelmed in
the event of their clients’ bankruptcy. Moreover, the exclusion from the exchanges
of the largest institutions leaves a consistent level of unallocated liquidity in
the system, which explains the apparently high liquidity in the decentralized
framework shown in the red dashed line of the left panel of Fig. 18.

18 The network centrality measure calculated over 200 Monte-Carlo simulations reaches
peaks of 0.81 in the centralized case and of 0.26 in the decentralized one.
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Fig. 21: Density distributions over 200 Monte Carlo simulations of the maximum period
of hub stability in which the strategy does not change. The black solid and orange
dashed lines show the reinforcement learning and decentralized strategies, respectively.
The black solid density is obtained by summing the two densities presented in Figure7

4 Concluding remarks

This work shows the effects of a policy recommendation obtained through a
reinforcement learning mechanism in an artificial interbank market. Specifically,
we assume that the financial institutions receive a signal from the regulator
regarding the best strategy to adopt for the creation of their lending agreements.
Depending on the underlying economic conditions, the signal directs the system
towards providing a high liquidity supply or a low interest rate. Using a reinforce-
ment learning approach to provide this public signal has proven effective since
the method exploits the available information and redirects the system towards
an efficient flow of liquidity compared to other different static and dynamic
behavioral tactics. Moreover, through the SHAP framework, which dissects the
contribution of each piece of information to the recommended policy, we have
been able to interpret the primary input that drives the policy choice. We have
acknowledged that the occurrence of one circumstance (liquidity vs. interest rate)
generates significant consequences affecting the agents’ performances and the
topology and resiliency of the interbank network. Specifically, when the signal
directs the system toward an abundant liquidity provision, the interbank network,
composed of a few populated communities, is more centralized and dense towards
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hub banks than in the low interest rate scenario. This network architecture ac-
companies better individual performances and higher system resilience in the face
of exogenous shocks. Our results have shown that the better general conditions
underlying this signal are due to the homogeneity between lenders and borrowers,
which generates a uniform risk exposure among counterparties that favor the
system’s resiliency.

Leaving aside the results of the comparison between the two signals, we have
analyzed the general effect of the policy recommendation implemented via the
reinforcement learning procedure in the second part of the paper. Our results have
shown how systemic risk is mitigated by such a tool and how this outperforms
other alternative behavioral strategies.

It is worth noting that the novelty of this work is introducing a reinforcement
learning framework on top of an agent-based model by directing banks’ actions
towards strategies that promote systemic stability. While improving the model’s
realism would have captured important aspects related to stability and prop-
agation of systemic risk, it would have compromised the explainability of the
algorithm’s results. Hence, given the additional layer of complexity brought by
reinforcement learning, we focus on the results obtained from a simplified model
whose outcomes are verifiable and controlled. Further research can expand the
model to include additional agents, such as households and more sophisticated
central bank.
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A A sensitivity analysis on model parameters

In this appendix, we investigate the performances of the learning algorithm
by varying some key parameters. The first investigated parameter, β, governs
the network topology (see Grilli et al. (2014), for a mathematical explanation).
As the intensity of choice increases, the interbank architecture ranges from a
random configuration to a star one. The effect of the network topology on the
interbank system is studied by changing β from 0 to 40 with steps of 2. The
second parameter we consider is fire sale price ρ. An increase in ρ impacts both
lenders and borrowers. On the one hand, it compensates the losses that lenders
incur due to the failure of their clients (see Eq. 4). On the other hand, a higher
fire-sale increases the likelihood that the borrower, rationed in the interbank
market, can face deposit repayments. Here we vary the fire-sale price, ρ, from
0.1 to 0.5 with steps of 0.1. Thirdly, we modify the skewness of the distribution
of the random shock affecting the bank deposit at the beginning of each period.
Recalling the equation for the deposit movements as Di

t = Di
t−1(µ+ ωU(0, 1)),

we remark that it allows us to reproduce bearish and bullish market periods. The
uniformly distributed noise component can be shifted towards more negative or
positive shocks at convenience to represent different market situations. Having
fixed µ = 0.7 in our simulations, we let ω vary from 0.52 to 0.6 with steps of 0.02,
corresponding to a highly negatively skewed and perfectly symmetrical shock
distribution.

The role of µ and ω is critical to regulating the magnitude of the aggregated
shock that affects the interbank system. Precisely, µ and ω determine the proba-
bility of the sign of the deposit’s shock. When µ = 0.7 and ω = 0.6, the likelihood
of a negative shock is equal to that of a positive one. This parameter configura-
tion corresponds to an interbank market meeting the conditions of accounting
consistencies, where on average, the other half of the market participants recover
what is eroded by the adverse market condition. In this circumstance, the total
number of assets for each bank matches the total number of liabilities, hence
the aggregated balance sheet of the system sum to 0 at the beginning of each
trading day. We refer to accounting consistency rather than stock-flow consistency,
because the latter is more appropriate to multi-sector macroeconomic models
such as those proposed by Caiani et al. (2014) and Caiani et al. (2016)). In our
baseline model, we used µ = 0.7 and ω = 0.55 to favor more adverse shocks and,
therefore, to have more interbank market activity to cover such needs.
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The last part of this appendix is dedicated to investigating the effects of a
change in the reserve ratio, r̂, previously set at 2%. This analysis has a twofold
value. On the one hand, it is a further experiment on the robustness of the model
by changing the parameters space. On the other, it corresponds to a conventional
monetary policy.

In all these experiments, we run our model 100 times for different values of
the initial seed generating the pseudo-random numbers over a time span of T =
1000 periods. Moreover, all the agents’ initialization parameters, except for the
variations studied here, coincide with those presented in Sec. 3.

Let us begin the analysis by focusing on the three-parameter variations’ im-
plications on the model’s results. Each parameter variation represents a different
configuration of the banking system, which is used to test the different strate-
gies over 100 simulations. The cumulative reward of these simulations is then
averaged to obtain the mean values and the respective confidence interval for
the reinforcement learning strategy and the random strategy. Fig. 22 shows the
average cumulative reward over the 100 simulations as a function of a single
parameter variation. We notice that the performance of the reinforcement learn-
ing algorithm solved with the PPO procedure is still superior with respect to
the random strategy for all three sensitivity cases presented. Therefore, we can
conclude that the effect analysis in the main paper still holds if one modifies
some characteristics of the underlying financial system.
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Fig. 22: Average cumulative fitness of the system as a function of changes in β, ρ,
and ω in the first, second, and third panels, respectively. The reinforcement learning
algorithm is in solid black, while the random strategy is in dashed red.

In Fig. 23 we show the sensitivity of the average values, over all the 100
simulations and a rolling window of 100 timesteps, of relevant quantities at the
systemic level with respect to the three parameters described above19. Before going
19 We refer the reader to Sec. 3.3 for a detailed explanation on the implementation of

Fig. 23
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into the details concerning the systemic impact of the single parameters, we can
observe that the reinforcement learning strategy (solid black in Fig.23) consistently
outperforms the random strategy (dashed red line in Fig.23) over all parameters
and variables considered20. The system generated with the reinforcement learning
algorithm produces, on the one hand, higher liquidity and more credit channels
and, on the other hand, lower rationing, bankruptcies, and leverage than the one
with the random algorithm.
Let us now analyze how variations in each parameter affect the system’s stability.
In the first column of Fig. 23, we show the effects that the intensity of choice,
β, has on the systemic variables. When β increases from 0 to 40, the liquidity
and the credit channels increase to β = 10 and stabilize. This pattern occurs in
both scenarios (i.e., with optimal and random strategies). The underlying reason
for this dynamic is as follows: a β value greater than or equal to 10 generates a
stable topology in the interbank network, which makes the investigated values
insensitive to further changes in the parameter. Similar to the trend of the
previous variables are the leverage dynamics, which increase with β but at a
decreasing rate, which is confirmed for both the adopted strategies. Indeed, the
more liquidity is available in the system, the more exchange of loans between
banks happens. Finally, an increasing β causes the amount of rationing of the
system to decrease in both the considered scenarios, while the failures of the
agent happen to be stable over the period under the optimal strategy or increase
under the random scenario.
In the second column of Fig. 23, we focus on the effects produced by a variation
in the fire-sale price. An increase of ρ protects both lenders and borrowers from
losses, and it is beneficial when looking at the liquidity up to ρ = 0.3. From that
level, borrowers do not enter the interbank market frequently because they can
cover their needs by selling their long-term assets at a satisfactory price. This
is also reflected in the amount of rationing and failures that decrease when ρ is
above 0.3. The leverage immediately decreases with ρ because the increase in
the system’s liquidity is more than compensated by the increase in equity since
lenders are usually repaid by borrowers and do not lose parts of their equity. The
dynamics produced by the fire-sale price variation are valid when observing the
20 To appreciate the statistical significance of the reinforcement learning strategy with

respect to the random strategy, we performed a series of T-tests for each variable in
the figures presented. The results show a statistically significant difference between
each pair of curves at least the 5% level. We omitted here the table, including the
p-values that are available under requests, as well as the results of the sensitivity
analysis that we performed on the parameters d̂, χ, φ and ξ.
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system with the optimal signal and the one with the random signal. Finally, in
the last column of the figure, the impact of the deposit’s motion is investigated.
The increase of the ω parameter causes an increase in liquidity since the shocks
become gradually less and less harmful. This also explains the decrease in the
leverage and the rationing because banks are less negatively impacted by the
deposit shock and, consequently, need to gather less money from the market. For
the same reason, the amount of credit channels decreases with a more symmetric
shock distribution. In contrast, the failures are substantially stable, except for
a higher variability when ω describes a highly asymmetric shock. Also, for this
last parameter, the system dynamics produced with the optimal signal follow the
same trend as those obtained with the random signal.
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Fig. 23: Sensitivity analysis on system variables in the face of changes in β, ρ, and ω, in
the first, second and third columns, respectively. The reinforcement learning algorithm
is in solid black, while the random strategy is in dashed red.
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In the last part of our analysis, we study how the system’s resilience varies as
the reserve requirement ratio varies from 1% to 10%. Fig24 shows the sensitivity
of the average values over all the 100 simulations and a rolling window of 100
timesteps of relevant quantities at the systemic level with respect to the variation
of r̂. Before describing the effects of the contractionary monetary policy on market
stability, it is worth noting that the system obtained through the optimized η
(solid black line) consistently outperforms that with the random signal (dashed
red line). The former always generate higher liquidity, lower leverage, and several
failures. If we now observe the systemic effects of the increase in reserve ratio in
the framework with the optimized signal, we can see an inverted U-shaped trend
in liquidity. For r̂-values between 1% and 5% , liquidity increases, showing that
a non-excessively high reserve ratio promotes interbank stability by decreasing
the number of failures. However, when the central bank imposes a reserve ratio
above 5%, the contractionary effect of the policy takes over. The system becomes
less liquid, and this causes a spike in failures as banks can no longer cope with
their adverse deposit shocks. Finally, the behavior of the leverage, always in
the context of the optimal signal, is timidly monotonically increasing with r̂

(see black line in the right-hand panel of Fig.24). For values of r̂ up to 5%, the
leverage increases due to the rise in the granting of a loan. Above this threshold,
the increase in leverage is mainly caused by the higher number of bankruptcies,
which negatively impacts the net worth of financial institutions.
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Fig. 24: Sensitivity analysis on the liquidity, number of bankruptcies, and leverage in
the face of changes in reserve ratio r̂ in the first, second, and third columns, respectively.
The reinforcement learning algorithm is in solid black, while the random strategy is in
dashed red.

B Algorithms and Hyperparameters

The PPO algorithm is easier to implement than a trust-region method (Schulman
et al.; 2015) and easier to tune with respect to of Deep-Q network (DQN)
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Mnih et al. (2015) or its continuous counterpart (Lillicrap et al.; 2015). Our
implementation of PPO follows Andrychowicz et al. (2020), which performs
an extensive empirical study of the effect of implementation and parameter
choices on PPO performances. Even if we use the algorithm in a different context
than their testbed, we follow the direction of their results in order to tune our
hyperparameters.

As described in the main, we implement PPO in an actor-critic setting
without shared architectures. When used to parametrize discrete strategies,
policy gradient methods like PPO output a normalized set of logits to get the
corresponding probabilities. Then, a greedy strategy selects the action which
obtains the maximum probability. The entropy bonus guarantees exploration
during training in the objective function.

The on-policy feature of PPO makes the training process episodic so that
experience is collected by interacting with the environment and then discarded
immediately once the strategy has been updated. In principle, on-policy learning
appears a more obvious learning setup, even if it comes with some caveats. It
makes the training less sample efficient and computationally expensive since a
new sequence of experiences must be collected after each update step. In this
process, the advantage function is computed before the optimization steps, when
the discounted sum of returns over the episode can be computed. In order to
increase the training efficiency, after one sweep through the collected samples, we
compute the advantage estimator again and perform another sweep through the
same experience. This trick reduces the computational expense of recollecting
experiences and increases the sample efficiency of the training process. Usually,
we do at most three sweeps (epochs) over a set of collected experiences before
moving on and collecting a new set.

The gradient descent optimizer is Adam (Kingma and Ba (2014)), which
performs a batch update of size 100 with a learning rate of 0.005. Since the data
are not all available in a reinforcement learning setting at the beginning of the
training, we can not normalize our input variables as usual in the preprocessing
step of a supervised learning context. Hence, we add a Batch Normalization layer
(Ioffe and Szegedy (2015)) before the first hidden layer to normalize the inputs
batch by batch and obtain the same effect.

Maximizing the objective function that returns the gradient in Eq. 15 is
unstable since updates are not bounded and can move the strategy too far from
the local optimum. Similarly to TRPO (Schulman et al. (2015)), PPO optimizes
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an alternative objective to mitigate the instability

JCLIP(θ, ψ) = Eπθ
[
min

(
r(θ)Â (s, a;ψ) , clip (r(θ), 1− ε, 1 + ε) Â (s, a;ψ)

)]
(23)

where r(θ) = π(At|St;θ)
π(At|St;θold) is a ratio indicating the relative probability of an action

under the current strategy with respect to the old one. Instead of introducing a
hard constraint as in TRPO, the ratio is bounded according to a tolerance level
ε to limit the magnitude of the updates. The combined objective function in Eq.
17 can be easily optimized by the PyTorch’s automatic differentiation engine,
which quickly computes the gradients with respect to the two sets of parameters
θ and ψ. The implemented advantage estimator depends on the parameterized
value function Vψ and is a truncated version of the one introduced by (Mnih
et al. (2016)) for a rollout trajectory (episode) of length T :

Ât = δt + (γτ)δt+1 + · · ·+ · · ·+ (γτ)T−t+1δT−1 (24)

where δt = rt + γVψ (st+1)− Vψ (st), γ is a discount rate with the same role of ρ
in DQN and τ is the exponential weight discount which controls the bias-variance
trade-off in the advantage estimation. The generalized advantage estimator (GAE)
uses a discounted sum of temporal difference residuals.
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