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Abstract: This study presents the environmental mapping of the Chilika Lake coastal lagoon, India,
using satellite images Landsat 8-9 OLI/TIRS processed using machine learning (ML) methods. The
largest brackish water coastal lagoon in Asia, Chilika Lake, is a wetland of international importance
included in the Ramsar site due to its rich biodiversity, productivity, and precious habitat for migrating
birds and rare species. The vulnerable ecosystems of the Chilika Lagoon are subject to climate effects
(monsoon effects) and anthropogenic activities (overexploitation through fishing and pollution by
microplastics). Such environmental pressure results in the eutrophication of the lake, coastal erosion,
fluctuations in size, and changes in land cover types in the surrounding landscapes. The habitat
monitoring of the coastal lagoons is complex and difficult to implement with conventional Geographic
Information System (GIS) methods. In particular, landscape variability, patch fragmentation, and
landscape dynamics play a crucial role in environmental dynamics along the eastern coasts of the Bay
of Bengal, which is strongly affected by the Indian monsoon system, which controls the precipitation
pattern and ecosystem structure. To improve methods of environmental monitoring of coastal areas,
this study employs the methods of ML and Artificial Neural Networks (ANNs), which present a
powerful tool for computer vision, image classification, and analysis of Earth Observation (EO) data.
Multispectral satellite data were processed by several ML image classification methods, including
Random Forest (RF), Support Vector Machine (SVM), and the ANN-based MultiLayer Perceptron
(MLP) Classifier. The results are compared and discussed. The ANN-based approach outperformed
the other methods in terms of accuracy and precision of mapping. Ten land cover classes around the
Chilika coastal lagoon were identified via spatio-temporal variations in land cover types from 2019
until 2024. This study provides ML-based maps implemented using Geographic Resources Analysis
Support System (GRASS) GIS image analysis software and aims to support ML-based mapping
approach of environmental processes over the Chilika Lake coastal lagoon, India.

Keywords: functional algorithm; risk assessment; ensemble learning; hazards; climate change;
GRASS GIS; scikit-learn; machine learning; Python; Landsat; image analysis; China; classification

1. Introduction
1.1. Background

Coastal lagoons play a key role in the hydrological and ecological processes in the
zones between land and sea. They distribute and diversify riverine sediments [1], reduce
turbulence of tidal flow [2], regulate seasonal current water circulation [3], and enrich shelf
waters with nutrients [4]. Worldwide, coastal lagoons are among the most productive and
biodiverse systems, providing essential habitat for a wide variety of aquatic species and
threatened marine fauna [5–7]. Coastal and brackish water lagoons that form continuities
in the terrestrial and shelf ecosystems present transitional aquatic ecosystems located in
the zones between land and sea. They are often associated with dynamic environmental
conditions and high biodiversity due to their connections to the marine and terrestrial
communities [8].
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Formed as a result of the marine transgression, coastal lagoons vary with depth
and geomorphic features, tidal circulation patterns, salinity, and wind forcing [9]. The
formation of the barriers between the land and ocean is driven by the controversial forces of
erosion and sediment deposition within the coastal lagoons [10]. The accumulation of river
sediments depends on the speed of the river that enters the coastal lagoon and transports
sediments in large quantities. Furthermore, complex hydrological processes such as winds,
oceanic current,s and coastal waves, as well as groundwater discharge [11], intensify the
mixing of sediments and nutrients within the coastal lagoons [12]. Moreover, different slope
and substrate types and density-driven currents with diverse morphodynamic tidal regimes
affect littoral zones and create stratified conditions of sediment resuspension [13,14].

Topographically isolated and hydrologically distinct from the surrounding landscapes,
coastal lagoons include unique species of wild flora and fauna (e.g., bird species). The
transitional location of the coastal lagoons determines their high levels of biodiversity
through the intense physical–chemical gradients. A particular feature of the coastal lagoons
that ensures their high productivity as aquatic systems is their shallow bathymetry [15].
The water mass of the lagoon is well mixed because the sunlight reaches all levels of the
shallow systems of the coastal lagoons until the lowest bottom layer of water due to the
active waves and currents. Such dynamics activate the recycling of nutrients and increase
biological productivity [16]. They have been declared as marine protected areas worldwide
due to their rich bioproductivity and valuable environment.

However, recent monitoring has indicated their decline, habitat loss, and environmen-
tal vulnerability [17–19]. These declines have been attributed to a variety of indirect and
direct causes, including climate change [20] and anthropogenic activities with their associ-
ated pollution [21]. High levels of stress result in environmental threats to these treasured
ecosystems [22]. Among recent environmental problems of coastal lagoons are affected
biodiversity patterns and loss of habitats and rare species [23,24], as well as disrupted land
cover patterns due to climate effects. Examples of pollution include organic, chemical, and
biological types such as microplastic [25,26] or heavy metals [27].

The transitional nature of coastal lagoons makes them vulnerable to the cumulative ef-
fects from climate fluctuations, specifically rising sea levels [28], flooding [29], hydrological
disturbances, nutrient availability [30], and human impacts [31]. The richness in natural
resources of coastal lagoons attracts the local population and urges them to actively use the
resources of the aquatic environment. Hence, coastal lagoons serve as a valuable source
of food and natural resources and support economic development and sustainability for
the local population. In turn, this leads to the overexploitation of these unique areas and
increases anthropogenic pressure [32].

1.2. Objective and Goal

The main goal of this research is to map and analyze changes in the land cover types
surrounding the coastal lagoon on the lake using machine learning (ML) algorithms using
Geographic Resources Analysis Support System (GRASS) GIS and Earth Observation (EO)
data. We used Landsat 8-9 OLI/TIRS satellite images from recent six years (2019, 2020,
2021, 2022, 2023 and 2024) and processed them using ANN and ML methods to analyze the
spatio-temporal distribution of land cover types in Chilika coastal lagoon, Bay of Bengal,
India (Figure 1). To set up the advanced practical background for the environmental
analysis of Chilika Lake, this study presents an ML approach for the automation of EO data
processing, classification, and visualization. To achieve this goal, the objective is to use the
ANN methods from Python’s library Scikit-Learn version 1.4.2 [33], which are embedded
in the GRASS GIS version 8.3 [34] through ML modules designed for data partition and
satellite image processing.

The ML approach was selected since it creates a plausible paradigm to map the
environmental variability of the coastal landscapes surrounding the lagoon of Chilika
Lake. Among the existing methods, this study employs the MultiLayer Perceptron (MLP)
algorithm of ANN, which presents an effective solution to image analysis.
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Figure 1. Topographic map of India with indicated study area showing the location of the Landsat
data within the country. Software: GMT. Map source: author.

1.3. Research Gap

There is little research analyzing and contrasting landscapes of the Odisha coasts
using the ML approach. Existing studies draw generalizations regarding the links be-
tween the ecosystems of the coastal lagoon of Chilika Lake and the adjacent habitat
communities [35–38]. However, they utilize the conventional tools of cartographic software,
which applies traditional mapping methods. To the best of our knowledge, no reported re-
search has been carried out using ANN techniques to study the environmental variability of
Chilika Lake with a spatial extent with the coordinates of 19°28′–19°54′ N; 85°06′–85°35′ E;
see Figure 2.

At the same time, ANN methods and scripting libraries are promising tools for carto-
graphic tasks and image processing for mapping areas of coastal lagoons, which are notable
for the high complexity of land cover patterns and the heterogeneity of landscapes [39–44].
In this regard, GRASS GIS presents a powerful cartographic toolset that includes diverse
modules that can be used for satellite image processing [45]. Hence, besides the traditional
general-purpose programming languages, GRASS GIS is also used for creation. Hence,
ML applications in cartography provide insight into its spatio-temporal variability of
landscapes and environmental processes through the classification of the EO data [46–49].
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Figure 2. Enlarged fragment of the topographic map of India with indicates study area showing
the location of the Landsat data over the coastal lagoon of Chilika Lake. Software: GMT. Map
source: author.

1.4. Theoretical Framework and Motivation

Monitoring coastal landscapes and variations in land cover types around coastal
lagoons is essential for land management and conservation activities of the Chilika Lake.
Such activities are carried out and reported in previous studies based on conventional
mapping. Nevertheless, monitoring land cover types in a lake using traditional methods is
often time-consuming and labor-intensive and includes considerable manual work, which
is prone to errors. Though mapping using Geographic Information System (GIS) presents a
reliable solution to Earth Observation (EO) data processing, estimation accuracy is still a
notable challenge in mapping coastal areas with high heterogeneity of land cover types.
Due to the logical straightforwardness of the classification algorithms, their application
for thematic GIS-based mapping and analysis of landscape dynamics presents a well-
known approach to cartographic workflow with existing case studies on Chilika Lake, the
Mahanadi Delta, and the Odisha coastal area [50–53].

However, the spectral complexity of the multispectral satellite images makes recogniz-
ing land cover types in coastal areas a challenging and less accurate task using k-means
clustering or “MaxLike” classification. For instance, specifically for lagoons, the optical
properties of coastal waters and shelf areas are significantly affected by the suspended
sediment from the colored dissolved organic matter (CDOM), which can create noise on
the EO data. On the other hand, the classification of the EO data using machine learn-
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ing (ML) methods has been fairly successful. For example, to solve these issues, ML
algorithms present automation of image classification [54,55], which is achieved through
computer vision algorithms of pattern recognition and analysis that enables the recognition
of geometrical complexity [48].

The application of ML methods based on the Artificial Neural Networks (ANNs)
applied to Remote Sensing (RS) data processing considerably increases the effectiveness
of mapping [56,57]. Advanced ML methods enable the landscape dynamics of spatial
and temporal trends to be automatically revealed through computer-based algorithms of
pattern recognition and data analysis, as reported in existing studies [58–62]. Several ML
and AI algorithms exist to analyze and quantify spatial data using analytical and empirical
approaches. Their main approach includes neural networks that teach computers to process
data in an analytical way that simulates the human brain in pattern recognition [63,64].
Among the advanced ML algorithms are the Random Forest (RF) [65], Support Vector
Machines (SVMs) [66], and Naive Bayes [67], to mention a few. In this study, we use such
algorithms for processing RS data. The goal of this approach is to perform satellite image
classification with a case study of Chilika Lake coastal lagoon, East India.

2. Study Area

The study area covers a spatial extent with the coordinates of 19°28′–19°54′ N;
85°06′–85°35′ E, [68] located in the state of Odisha, East India, Figure 3.

Figure 3. Administrative map of India showing the location of the Odisha state on the eastern coast
of the Indian subcontinent. Software: QGIS. Map source: author.

The largest brackish water lagoon in Asia [69,70], Chilika Lake covers a total area of
over 1100 km2 with existing fluctuations of the lake surface reported between 1165 km2 and
906 km2 [71]. The lake is located at the junction of two different water masses—riverine
freshwater and oceanic salt waters from the tidal influx of the Bay of Bengal. Different
water fronts interact with the bathymetry of the lagoon and generate local hydrographic
settings, which causes local variations in salinity, current turbulence, and circular flow
patterns of waves [72]. The coastal lagoon formed by the Chilika Lake lies at the estuary of
the Daya River, which enters the Bay of Bengal on the east coast of India; see Figure 3.

A recent geological study has shown that the shallow limnological system of Chilika
Lake was a part of the Bay of Bengal during the later stages of the Pleistocene period [73],
and underwent marked geomorphic evolution during the late Holocene [74,75]. This in-
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cluded significant denudation and weathering of the surrounding coasts. Such processes
are mostly caused by climate variability and accelerated by the effects of monsoon cycles,
which influence the distribution of mangroves [76] and other vegetation types around the
lake and estuarine environment [77]. Currently, the dynamics of the surface area in the
coastal lagoon of Chilika Lake present a response to the cumulative effects of tidal morpho-
dynamics, winds, and morphometry. The integrating forces of these processes resulted in
fluctuating surface and area, which affect the ecosystem of the surrounding wetlands.

The coastal lagoon of the Chilika Lake has important conservation features. These
include, for instance, rare aquatic and sub-aquatic plants, endemic species, mangrove
associations, and plants of horticultural importance. The significant biodiversity and
ecosystem value of the Chilika Lake can be illustrated by the impressive number of species,
which exceeds 300 fish species [78] and 726 species of flowering plants [79]. Moreover,
Chilika Lake is the largest habitat for migratory waterbirds across India and a home to
multiple threatened and rare species, including both plants and animals [80].

Such rich natural resources and the unique environment of Chilika Lake have attracted
humans to this area since the ancient period. Archaeological records prove that human
settlements existed in the Chilika Lake area since at least the Neolithic period when this area
served as a marine harbor and port [81]. The attractiveness of Chilika Lake is explained by
its favorable climate, beneficial topographic setting, and strategic location, which have given
access to the Indian Ocean and ensure safe maritime trade and international commercial
connections in India since the ancient period. The importance of the Chilika Lake both
ecologically and historically in the development of Indian civilization resulted in its official
designation a as UNESCO World Heritage site [82] and a Ramsar site [83].

3. Materials and Methods
3.1. Data

Spatial analysis was limited to RS data using multispectral satellite images Landsat. A
time series of satellite images collected at regular time intervals and covering the study area
is a key instrument for environmental analysis [84]. To this end, six satellite images were
collected during the spring period (February–March) and covering the time interval of 2019
to 2024. All but two datasets (early March 2020 and early March 2023) were acquired within
the period of February (that is, images on 2019, 2021, 2022, and 2024), when the aquatic and
coastal vegetation around the lagoon is typically well developed prior to the pre-monsoon
decline during the period from April to June and monsoon rains, which last in India from
June to September. Hence, the images were taken on the following dates: 13 February 2019,
3 March 2020, 2 February 2021, 13 February 2022, 4 March 2023 and 11 February 2024.

Water turbidity is relatively low during the late winter to early spring period due to
seasonally reduced rainfall in the “no monsoon” period. This allowed for the identification
of land cover types through the satellite image analysis. Finally, the spring period enables
the detection of algae blooms in the coastal lagoon, which usually occur in India from
February to May (subject to climate fluctuations). Algae bloom in the coastal lagoon of
Chilika Lake is caused by several factors such as the effects of monsoon cycles, riverine
discharge, and seasonal upwelling. Hence, the images were selected for spring period with
low cloudiness (below 10%) to increase the quality of image analysis.

The satellite data were obtained from the Landsat 8-9 OLI/TIRS mission and down-
loaded from the NASA EarthExplorer website (https://earthexplorer.usgs.gov/, accessed
3 March 2024). The original images are shown in Figure 4. Image frames acquired from
EarthExplorer were imported to the GRASS GIS individually using extent and resolu-
tion corresponding to the multispectral bands, then pre-processed for top-of-atmosphere
reflectance using the “i.landsat.toar” module. The major technical characteristics of the
satellite images common for all the scenes are as follows. The images were obtained during
the daytime in the nadir from sensor OLI/TIRS of Landsat Collection Category T1, Nr. 2.
The Worldwide Reference System (WRS) Path/Row is 140/46. The images were projected
into the Universal Transverse Mercator (UTM) projection Zone 45, Datum and Ellipsoid is

https://earthexplorer.usgs.gov/
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World Geodetic System 84 (WGS84), Ground Control Points Version 5; Station Identifier
LGN. The remaining technical characteristics of the EO data are summarized in Appendix A.
Other geospatial data include the cartographic datasets: the raster topographic grid of the
General Bathymetric Chart of the Oceans (GEBCO) and vector layers of the administrative
division of India. These data were used to visualize the location of the region within the
country at the state level, as well as the terrain of the study area.

(a) 2019 (b) 2020

(c) 2021 (d) 2022

(e) 2023 (f) 2024

Figure 4. Original data used for image processing: satellite images Landsat 8 OLI/TIRS covering the
region of Chilika Lake on 2019, 2020, 2021, 2022, 2023 and 2024. Data source: EarthExplorer repository
of the United States Geological Survey (USGS). Compilation source: author.

3.2. Methodological Workflow

These data were processed using the GRASS GIS software version 8.3.1, Generic
Mapping Tools (GMT) cartographic scripting toolset version 6.4.0 [85] and QGIS software
version 3.34. The methodology used for mapping is derived from previous works [86–88].
The workflow of this study included several processes and approaches to image analysis
and multi-source data, as summarized in the methodological scheme in Figure 5.

As such, combining RS data and machine learning (ML) techniques presents the
integration of the two technologies that complement each other in the programming
approach of GRASS GIS and help overcome the limitation of using just one. Moreover,
the current focus on employing the ML methods for monitoring the coastal lagoon of the
Chilika Lake underscores its important contribution to the modeling of the geospatial data.
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This approach to data processing supports the computer-based modeling of landscape
dynamics in the coastal regions of the Bay of Bengal and helps analyze how these regions
are affected by the environmental and climate variability in the monsoon climate of the
Indian Ocean.

Figure 5. Flowchart showing the methodological scheme used in this research. Software: RStudio
Desktop version 4.3.2. Diagram source: author.

3.3. Image Processing

The images were processed using the GRASS GIS (v. 8.3) image processing software
using methods explained in the following subsections. First, the images were imported and
preprocessed. Then, the images were classified using the unsupervised clustering of the
maximum-likelihood discriminant analysis classifier (MaxLik). During the clustering steps,
the signature file was generated and reported using the k-means algorithm. The aim of
this step is to perform cluster maps and to obtain a training dataset. The classification was
performed by the ’i.maxlik’ module of GRASS GIS. The code for these steps is presented in
Listing 1 using GRASS GIS syntax:

Listing 1. GRASS GIS code for clustering method using k-means algorithm.

1 g.region raster=L_2019_01 -p
2 i.group group=L_2019 subgroup=res_30m \
3 input=L_2019_01 ,L_2019_02 ,L_2019_03 ,L_2019_04 ,L_2019_05 ,L_2019_06 ,L_2019_07
4 i.cluster group=L_2019 subgroup=res_30m \
5 signaturefile=cluster_L_2019 \
6 classes =10 reportfile=rep_clust_L_2019.txt --overwrite
7 i.maxlik group=L_2019 subgroup=res_30m \
8 signaturefile=cluster_L_2019 \
9 output=L_2019_clusters reject=L_2019_cluster_reject --overwrite

The visualization of the maps was performed using cartographic tools of GRASS GIS
as follows in Listing 2:
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Listing 2. GRASS GIS code for mapping and cartographic display.

1 g.region raster=L_2019_01 -p
2 d.mon wx0
3 d.rast shaded_relief1
4 d.vect isolines color=’100:93:134 ’ width=0
5 d.rast L_2019_clusters
6 d.grid -g size =00:30:00 color=white width =0.1 fontsize =16 text_color=white
7 d.legend raster=L_2019_clusters title="Clusters 2019" title_fontsize =19 font="Helvetica"

fontsize =17 bgcolor=white border_color=white
8 d.legend raster=shaded_relief1 title="Relief , m" title_fontsize =19 font="Helvetica"

fontsize =17 bgcolor=white border_color=white -f
9 d.out.file output=Chilika_2019 format=jpg --overwrite

The next steps included machine learning (ML) algorithms for image processing and
analysis by GRASS GIS.

3.4. Machine Learning
3.4.1. Random Forest

The mathematical foundation of the Random Forest (RF) classification consists of the
following steps of the workflow initially developed by [65]. For b = 1 to B, a bootstrap
sample Z∗ of size N from the training data has been drawn. Afterward, the random-forest
tree Tb is increased to the bootstrapped data. This is carried out iteratively by recursively
repeating the logical steps for each terminal node of the tree that represents the individual
class in land cover classification until the minimum node size min is reached.

The m variables are randomly selected using the data obtained in the “r.random”
module of GRASS GIS obtained from the pixel variables “p”. The best variable and split
point are then selected among the m, and the model splits each node into two “daughter”
nodes. The output model of the ensemble of trees is received as {Tb}B

1 . Then, to make
a prediction of the assignment of each pixel within the matrix of the raster image to the
specific land cover class, the model evaluates each new point x (that is, a cell on the satellite
image) using the following logical expression. Let Ĉb(x) be the class prediction of the
b-th random-forest tree. Then, the RF classification is performed by running Equation (1)
derived from [89]:

ĈB
r f = majority vote Ĉb(x)B

1 (1)

The criteria for the RF model include the number of pixels forming the class (the
spectral reflectance variability of vegetation and land categories). The optimal parameter
was defined as 10 classes using existing similar studies. Second, the extent of the area in the
pixel’s surrounding was set up according to the resolution of the Landsat images as 30 m
per pixel around the target land cover class, forming the complete landscape pattern, plus
including the pixels themselves evaluated for spectral reflectance using the ANN and ML
methods. Hence, the RF classification obtains a class vote from each tree and then classifies
it using majority vote and analysis of each pixel within the raster image. In GRASS GIS, the
RF-based image classification is carried out using the code presented in Listing 1.

Here, the training pixels were first generated to train from an earlier land cover
classification. Then, they were used as training datasets to perform a classification on
recent Landsat images (in the example of code below, for the image of 2023). Afterwards,
the model was trained using the “RandomForestClassifier” embedded algorithm using
“r.learn.train” module. The prediction of the model’s performance was carried out using the
“r.learn.predict” module. The shaded relief was added as a background to the image, and
the isolines were derived using the “r.contour” module. The code is presented in Listing 3.

Listing 3. GRASS GIS code for RF method for supervised image classification.

1 r.random input=L_2019_clusters seed =100 npoints =1000 raster=training_pixels --overwrite
2 r.learn.train group=L_2023 training_map=training_pixels \
3 model_name=RandomForestClassifier n_estimators =500 save_model=rf_model.gz
4 r.learn.predict group=L_2023 load_model=rf_model.gz output=rf_classification
5 r.category rf_classification
6 r.import input=/path/Chilika/gebco2023.tif output=shaded\_relief1 extent=region
7 r.contour shaded\_relief1 out=isolines step =200 --overwrite
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3.4.2. MultiLayer Perceptron

The process of optimal categorization of the image scene into the land categories was
performed iteratively using the ML tools defining the key parameters of spectral reflectance.
The MultiLayer Perceptron (MLP) algorithms are a class of Artificial Neural Network
(ANN) methods. The general methodological scheme for the ANN is presented in Figure 6.

In GRASS GIS, the MLPClassifier is derived from the Scikit-Learn Library of Python
and is based on fundamentals of predictive learning [64]. Its performance differs from other
classifiers since it uses the principle of the feedforward ANN. For data analysis, ANN uses
three layers that are used as structures of network topology in the flow of information for
data partition. Pixels of the raster layer present the nodes of the input, hidden, and output
layers (see Figure 6), which train the model using supervised learning. The principal
approach of this process consists of the connection between each node in one layer to
those in the following layer through a certain weight (wij). The MLPClassifier iteratively
evaluates the training data using these connections in weights of pixels. The algorithm
changes weights repetitively using estimated error until the output image approaches the
expected result and the error is minimized. This sequential operation is formulated in
Equation (2):

ε(n) =
1
2 ∑

outputnodej
e2

j (n) (2)

where ej(n) is the degree of error in an output node j in the n-th pixel of the raster dataset
and ε(n) is the node weights, which are iteratively adjusted using the minimization of
the errors in the classified raster image for the n-th pixel of the raster matrix. Using
optimization, each weight wij is estimated and changed accordingly, as in Equation (3):

∆wji(n) = −η
ϑϵ(n)
ϑυj(n)

yi(n) (3)

where yi(n) is the result of the previous step of classification, and η is the tuning parameter
of optimization, which aims at the quick convergence of the weights of pixels during
the iterative process of image classification. Hence, the MLPC algorithm is sensitive to
feature scaling, which is related to the resolution of the original raster image. The essential
approach of this algorithm consists of the random selection of the hidden nodes and
analytical determination of the output weights of neural networks [63]. As a result, the
MLPClassifier algorithm ensures higher generalization output at a faster learning speed.

Figure 6. General methodological scheme for the Artificial Neural Network (ANN) used for image
classification. Software: R version 4.3.3, DiagrammeR library version 1.0.11. Diagram source: author.
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Using ML modules of GRASS GIS, the image classification using the MLPC algorithm
was implemented using the combination of the modules “r.learn.train” used for extract-
ing training data, supervised machine learning, and cross-validation using the Python
package Scikit-Learn, and the module “r.learn.predict” for estimating prediction of pixels’
classification. The technical implementation was performed using the code in Listing 4:

Listing 4. GRASS GIS code for RF method for supervised image classification.

1 r.learn.train group=L_2019 training_map=training_pixels \
2 model_name=MLPClassifier n_estimators =500 save_model=mlpc_model.gz --overwrite
3 r.learn.predict group=L_2019 load_model=mlpc_model.gz output=mlpc_classification --

overwrite
4 r.category mlpc_classification
5 r.colors mlpc_classification color=plasma -e
6 # data mapping:
7 d.mon wx1
8 d.rast shaded_relief1
9 d.vect isolines color=’100:93:134 ’ width=0

10 d.rast mlpc_classification
11 d.grid -g size =00:30:00 color=white width =0.1 fontsize =16 text_color=white
12 d.legend raster=mlpc_classification title="MLPC 2019" title_fontsize =19 font="Helvetica"

fontsize =17 bgcolor=white border_color=white
13 d.legend raster=shaded_relief1 title="Relief , m" title_fontsize =19 font="Helvetica"

fontsize =17 bgcolor=white border_color=white -f
14 d.out.file output=MLPC_2019 format=jpg --overwrite

3.4.3. Support Vector Machine

The Support Vector Machine (SVM) Classifier uses supervised learning methods [66]
and classifies the data into classes using decisions on the largest separation between the
classes. Hence, it discriminates the values of the pixels constituting the images and identifies
the largest distance to the nearest training sample. When SVC uses training vectors of
sample pixels that are located within the margin of classes using the following algorithm
approach—xi ∈ Rp, where i = 1 . . . n as two classes and a vector y ∈ {1,−1}n—it aims to
find the w ∈ Rp and b ∈ R so that the assignment of pixels to correct land cover class is
true for most samples using Equation (4):

min
ω,b,ζ

1
2

ωTω + C
n

∑
i=n

ζi (4)

which depends on the definitions of yi(ω
T φ(xi) + b) ≥ 1 − ζi, which should be greater

than one for the optimal prediction of the correctly classified pixels on a raster scene, and
ζi ≥ 0, i = 1, . . . , n. The SVC analyzes Digital Numbers (DNs) of pixels on the image
to maximize the margins of the classes using iterative analysis. The estimated decision
function in a classified matrix of the image consists of cells for a sample of x pixels, as
shown in Equation (5):

∑
i∈SV

yiαiK(xi, x) + b (5)

The result of the classification assigns the predicted classes and the support vectors,
which are summarized using attributes of the classification. The effectiveness of the SVM
method is that it is a memory-efficient approach that optimizes the use of the computational
capacities of the machine. The flexibility of this algorithm is ensured by different Kernel
functions defined, which include both common and custom kernels. The practical imple-
mentation of this approach in GRASS GIS is presented in Listing 5 below. First, the SVC
model is trained using the “r.learn.train” module. Then, the prediction of pixel assignments
is carried out using the “r.learn.predict” module. Afterward, the raster categories thatare
automatically applied to the classification output are checked using “r.category” module.
The visualization is performed using the modules “r.colors”, “d.rast”, and “d.legend”. An
example of the code used for classification of the image for 2019 is presented below.
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Listing 5. GRASS GIS code for SVC method for supervised image classification.

1 model_name=SVC n_estimators =500 save_model=svc_model.gz --overwrite
2 r.learn.predict group=L_2019 load_model=svc_model.gz output=svc_classification
3 r.category svc_classification
4 r.colors svc_classification color=bcyr -e
5 d.rast svc_classification
6 d.legend raster=svc_classification title="SVM 2019" title_fontsize =19 font="Helvetica"

fontsize =17 bgcolor=white border_color=white

The GitHub repository is created to summarize the methodology and the results of
all the models and classification outputs. The programming scripts used for plotting the
data, confusion matrices, and maps are also included in this repository for a comparative
analysis of the statistical outputs and quantitative estimations on land cover types.

The overall performance of the tested ML classifiers and ANN were evaluated for
accuracy, F1 score, Cohen’s kappa coefficient, and other parameters. Here, Cohen’s kappa
is a quantitative measure that evaluates the reliability of rating coefficients that assess the
accuracy of pixels’s classification and assignment to diverse land cover types [90]. The
applicability of Cohen’s Kappa techniques for data evaluation is proven by their use in
various studies [91–93]. The reliability was evaluated for three classifiers—(1) Random
Forest Classifier, (2) Support Vector Machine (SVM) Classifier, and (3) Multilayer Perceptron
Classifiers (MLPClassifier)—to evaluate the accuracy of these approaches to satellite image
processing. Cohen’s Kappa is an important factor in the interpretation of test findings
regarding raster image classification. In this study, Cohen’s kappa was defined in weighted
form using the formula in Equation (6):

K =
P0 − Pe

1 − Pe
(6)

where the P0 indicates the probability of agreement and Pe is the probability of random
agreement. The advantage of Cohen’s kappa is that it presents a robust measure of esti-
mating the statistical probability of evaluation compared to the simple percent agreement
calculation [94]. This is possible since Cohen’s kappa takes into account the possibility of
the random agreement of pixels’ assignment to diverse land cover classes. Hence, it is an
appropriate measure of the reliability of pixels assigned to diverse land cover classes. In
this way, Cohen’s kappa estimates the degree to which these classifiers produce similar
results under consistent environmental conditions of landscapes, that is, the same date,
sunlight, and azimuth angle of the satellite images.

In contrast to Cohen’s Kappa, the F-score evaluates the predictive performance and
classification performance. Generally, it is calculated from the precision of the classification
using the number of correctly classified pixels divided by the number of all samples that
are predicted to be correct. Precision indicates the positive predictive value in sensitive clas-
sification [95,96]. According to previous studies on image classification [97], the estimation
of the F score is performed using the following formula in Equation (7):

F1 =
2

recall−1 + precision−1 = 2x
precision · recall

precision + recall
=

2tp
2tp + f p + f n

(7)

Widely used in diverse cases of image processing, such as classification, partition,
or segmentation [98–100], the F1 score presents the harmonic mean of the precision and
recall of image classification model. These two metrics contribute equally to the estimation,
which enables the F1 score metric to correctly indicate the reliability of image classification.

4. Results and Discussion

The identified categories include the following land cover types, defined as classes cor-
responding to the following land cover patterns: (1) salt water bodies (ocean); (2) brackish
water (lake); (3) wetlands and coastal lagoon; (4) dense deciduous forest; (5) agricultural
land, croplands; (6) trees and vegetated areas; (7) built-up and urban areas; (8) grassland
and shrubland; (9) rural areas; and (10) freshwater (river). The spatio-temporal change
in land cover types around Chilika Lake between the years 2019 and 2024 is shown in
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maps presented in Figures 7–10 and compared with existing similar research [35,101]. The
hydrological effects can be explained by the increase in water turbidity during the spring
period, which affects the visibility of the lake surface through the decreased transparency
of the water column affected by the increased photosynthetic activity during this period.
The distribution of mangroves that are mostly situated along the tidal water ways are
distinguished due to their spectral separability on the EO data. Thus, salt marsh grasses
are generally located along the tidal flats due to the specific environmental setting of these
physiographic units.

The areas of wetlands and coastal lagoon as well as water bodies increased due to
new mouth opening of the Chilika Lake. The scrubland and grassland decreased, while the
forest areas increased. This numerical computations of changes are summarized in Table 1,
and the statistical report tables are provided in the GitHub repository. The dynamics in
land cover types in the coastal area of Chilika imply that that scrubland and grassland were
converted into forest due to higher dense vegetation cover. Notably, the agriculture fallow
land does not show much difference between the estimated years of 2019 and 2024.

Table 1. Estimated classes of land cover types for 2019–2024 in the Chilika Lake coastal lagoon.

Year Classes of Land Cover Types
1 2 3 4 5 6 7 8 9 10

2019 673 198 447 1153 754 704 851 1239 758 62
2020 674 183 434 1237 524 834 760 1321 809 62
2021 660 208 618 1256 528 849 597 1233 814 75
2022 638 234 346 1005 1006 505 1061 1363 748 47
2023 643 235 836 446 1004 635 1089 1143 846 72
2024 575 245 610 1340 510 913 682 1266 816 57

The comparative analysis of the maps shows that the surroundings of the Chilika
Lake underwent changes in land cover types. This was caused by the cumulative effects
from both the anthropogenic and natural events and results in variations of biological
productivity, water eutrophication, and the extent of mangrove forests which strongly
depend on the variations in the salinity as discussed above. In turn, the salinity level in the
lake is regulated by the monsoon processes and the changes in oceanic seawater and river
inflow and counterparts. The effects from the human activities in the watershed of Chilika
lagoon result in increased siltation and an increase in nutrients. The land cover types
were identified on the satellite images in the study area using information on classification
adopted from existing studies [71]; see Figure 7.

During the evaluated period of 2019–2024, notable changes were observed in the
Chilika Lake surroundings, including settlements and populated built-up areas, agriculture
lands, croplands and plantations, and barren or wasteland areas. At the same time, other
classes did not show many differences in the five-year time span. Between 2019 and
2024 (Table 1), the area of agricultural plantations as well as barren land decreased, while
urban population areas and built-up areas occupied by settlements increased. The increase
in the settlement and built-up areas is identified between 2019 and 2022 and between
2023 and 2024, which might refer to the natural increase in urban population caused by
socio-economic drivers; see Figure 8.

Besides the anthropogenic issues, the variations in the color and salinity of water
within the Chilika Lake visible on the images are related to the monsoon rains, which
strongly influence the hydrography of the coastal lagoon; see Figure 9. Thus, the inflow
of sediment and water from the catchments of rivers and tributaries upstream are at
a maximum during monsoon months. This is also increased by the oceanic sediment
transport. Consequently, these months are notable for intensive floods and turbulence of
waters in the coastal lagoon. Accordingly, the impact of both oceanic tides and freshwater
inflow from the rivers regulate the salinity of Chilika Lake and change it depending on the
dominating force.
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(a) 2019 (b) 2020

(c) 2021 (d) 2022

(e) 2023 (f) 2024

Figure 7. Image processing of the Landsat 8 OLI/TIRS scenes from 2019 to 2024 using unsupervised
classification (algorithm of maximum-likelihood discriminant analysis classifier). Background shaded
relief: GEBCO grid. Software: GRASS GIS. Mapping source: author.

Spatial variability of the salinity detected in the images classified using the ANN-based
MLPClassifier demonstrates the decrease during the monsoon period due to the influx
of freshwater, which especially concerns the northern and central segments of the lake,
while the southern sector is the least affected even during monsoon and maintains its
brackish-water conditions; see Figure 10. Such hydrological patterns are well reflected in
the satellite images, which show various colors of water in the lake. During spring periods,
when the images were taken, the water level of the lagoon gradually decreases and reaches
its lowest level during summer. Finally, the effects of winds also creates an input into the
balance of salinity of the Chilika Lake by water turbidity in upper layers. Such climate
effects facilitate the influx of saline water from the ocean and increase the salinity of the
lake accordingly. In turn, the variability in salinity and geochemical characteristics related
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to such complex processes affect aquatic vegetation and algae bloom during favorable
periods, which can be identified in the satellite images.

(a) 2019 (b) 2020

(c) 2021 (d) 2022

(e) 2023 (f) 2024

Figure 8. Random Forest ML-based classification of the Landsat 8 OLI/TIRS scenes from 2019 to 2024.
Background shaded relief: GEBCO grid. Software: GRASS GIS. Mapping source: author.

The siltation, increase in nutrient enrichment, and reduced salinity favored the growth
of weeds and eutrophication within the basin of lake. Such changes can be detected by
computer vision algorithms using the Random Forest method due to different levels of
spectral reflectance of the lacustrine surface; see Figure 8. Hence, spring algal bloom in the
inland waters of Chilika Lake is a major issue in the spring period, when the imagery was
taken, which in turn affects water quality, especially in the shallow estuarine segments of
the lake. Furthermore, the effects of eutrophication lead to the degradation of the aquatic
habitats. For instance, the level of eutrophication increased in the lake from 2019 to 2020
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and 2021, after which the situation stabilised. The results of image classification using SVM
method are presented in Figure 9. Image analysis showed that the algal growth is increased
in 2021 and 2024, which was best detected using the ANN approach of MLPClassifier,
Figure 10. The evaluation of accuracy was performed using chi-square test and visualized
in Figure 11.

(a) 2019 (b) 2020

(c) 2021 (d) 2022

(e) 2023 (f) 2024

Figure 9. Support Vector Machine (SVM) ML-based classification of the Landsat 8 OLI/TIRS scenes
from 2019 to 2024. Background shaded relief: GEBCO. Software: GRASS GIS. Maps source: author.

Accordingly, the stability of points assigned to land cover classes were evaluated
and reported as follows for each year: for 2019, 98.08% points stable; for 2020, 98.23%;
for 2021, 98.19%; for 2022, 98.25%; for 2023, 98.37%; and for 2024, 98.08% points stable,
respectively. Finally, class means and standard deviations computed for each band and
each year, respectively, are presented in the Table A2 in Appendix B for the years 2019 to
2024. The maps of accuracy analysis assessment of image classification has been performed
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using rejection-threshold probability techniques using chi square test, the results of which
are presented in Figure 11.

(a) 2019 (b) 2020

(c) 2021 (d) 2022

(e) 2023 (f) 2024

Figure 10. MLPClassifier ANN-based classification of the Landsat 8 OLI/TIRS scenes from 2019 to
2024. Background shaded relief: GEBCO grid. Software: GRASS GIS. Mapping source: author.

The final results of the computations included the convergence for iterations of pixels
assigned to the land cover classes. The convergence was computed for each image and
demonstrated the following results: for the year 2019, 98.1%; for the year 2020, 98.2%; for the
year 2021, 98.2%; for the year 2022, 98.2%; for the year 2023, 98.4%; and for the year 2024, 98.1%.
This shows high precision and accuracy of the calculations using GRASS GIS algorithms of
image processing. The class separability matrices computed for 10 land cover types identified
in the Chilika lagoon for the years 2019, 2020, 2021, 2022, 2023, and 2024 are reported in
the tables placed in Appendix C. The GitHub repository with GRASS GIS scripts and the
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results of the ANN and ML image processing is available online at https://github.com/
paulinelemenkova/India_Chilika_Lake_GRASS_GIS_ANN_ML_Image_Processing (accessed
on 4 April 2024) and contains the results of the image processing.

(a) 2019 (b) 2020

(c) 2021 (d) 2022

(e) 2023 (f) 2024

Figure 11. Accuracy analysis of image classification using algorithm of reject threshold probability by
chi square test. Background relief: GEBCO. Software: GRASS GIS. Mapping source: author.

Diverse types of lacustrine vegetation such as weeds and grasses distributed along the
sheltered lagoon margins include dense algae meadows on the flats and shallow water areas,
which are mostly occupied by brackish weeds and other marsh grasses. Such vegetation
largely depends on the specific lacustrine environment and is naturally distributed along
the inner margin of the Chilika coasts. Marine influences on the Chilika coastal lagoon
are directed through the barrier spits and estuaries of the adjacent rivers. Among the

https://github.com/paulinelemenkova/India_Chilika_Lake_GRASS_GIS_ANN_ML_Image_Processing
https://github.com/paulinelemenkova/India_Chilika_Lake_GRASS_GIS_ANN_ML_Image_Processing
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environmental problems that affected the variations in the land cover types are the strong
eutrophication, which was visible on the images due to the heavy nutrient upload.

Change-detection analysis in the land cover types from 2013 to 2023 demonstrated
shifts in land cover types within the basin of the Chilika Lake coastal lagoon. The computed
areas occupied by various land cover classes for each of the category are summarized in
Table 1. Such variability of landscape patches around the Chilika Lake proved the existence
of fluctuations in the processes of siltation and eutrophication in the coastal lagoon over
the studied period (years 2019–2024). Major causes of such environmental changes are
related to sedimentation processes such as low river flow speed, which cause stagnation of
water and eutrophication. Second, the increased sediment budgetary balance and flushing
of sediments into the Bay of Bengal also contribute to the changes in the lake level. Since
water fluctuations in various parts of the Chilika Lake are subject to monsoon effects in
dry and wet seasons, wetland types can be discriminated on the satellite images along the
margin areas of the lagoon. These variations are also caused by the different hydrological
effects (e.g., currents and water level) and geomorphic settings of the surrounding relief.

Table 2 compares the hyper parameters of the GRASS GIS used for classification
indices in for ANN and various models of ML. Cohen’s Kappa was computed to compare
the results of raster image classification, such as landscapes viewed by RS Landsat sensors
and identified using ANN and ML algorithms of GRASS GIS. In this way, Cohen’s Kappa
presents a straightforward statistical approach that computes the confusion matrix by
considering each pixel of the comparable raster images as a single rating made by two
raters. In this regard, the results were computed and summarized below.

Table 2 summarizes and compares such parameters as accuracy, F1 score, Cohen’s
kappa coefficient, and related parameters. Based on the computed values of Cohen’s Kappa
coefficient and the F1 method for the evaluation of classified data, the results suggest that
the 0.785 Cohen’s Kappa coefficient and F1 score of 0.89 are rated as the good strength of
agreement. Hence, the ANN technique can be interpreted as a reliable approach for satellite
image classification in terms of accuracy, followed by the SVM and RF. The interpretation
of the F score is as follows. The highest possible value of 1.0 indicates the perfect precision
and recall of variables, while the lowest theoretically possible value of 0 indicates the lowest
precision or recall which are zero in this case. Hence, higher values generally mean better
results of satellite image classification. Likewise, as other correlation statistics, the kappa
can range from −1 to +1. The interpretation of values is as follows. Values of the levels of
0.60 to 0.79 have a moderate level of agreement, those in the interval of 0.8–0.9 (that is, over
80% below 90%) are acceptable as having strong level of agreement, and those above 0.9
are almost perfect [102].

Table 2. Hyperparameters for machine learning (ML) models in GRASS GIS: (1) Random Forest Classifier,
(2) Support Vector Machine (SVM) Classifier, and (3) Multilayer Perceptron Classifiers (MLPClassifier).
Estimated classes of land cover types for 2019–2024 in the Chilika Lake coastal lagoon.

Year
Cohen’s Kappa

Quantification of Agreement F-1 Score of Predictive Performance

RF SVM MLPC RF SVM MLPC

2019 0.73 0.78 0.84 0.78 0.82 0.92
2020 0.73 0.73 0.82 0.77 0.84 0.91
2021 0.71 0.74 0.81 0.77 0.79 0.92
2022 0.80 0.81 0.83 0.81 0.81 0.95
2023 0.78 0.79 0.85 0.84 0.83 0.96
2024 0.76 0.77 0.86 0.83 0.82 0.94

The short-term evolution of the physiographic habitats and land cover types around
the Chilika coastal lagoon is strongly affected by the humid monsoon climate of the Bay
of Bengal and human activities. The analysis of satellite images performed using ML and
ANN algorithms enabled us to recognize fluctuations over the areas of Chilika lagoon,
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which depend on the water level, tidal level, monsoon effects, and inflow of rivers of
Daya and Bhargavi into the lagoon. In terms of technical capabilities, the ANN model
performed the best in terms of learning capabilities of the model in GRASS GIS and the
effectiveness in capturing anomalies and outliers in classified pixels assigned to various
land cover classes. Although the ANN model required high computational resources and
was demonstrated to be a highly time-consuming model, its performance was excellent
with regard to the other models. Furthermore, the lagoon depends on the inflow from
the sea waters through the small stream inlets. Such variations in hydrology strongly
affect the lacustrine environments, as demonstrated on the satellite images processed using
GRASS GIS.

Wetlands, swamps, and mangroves situated along the coasts of the Chilika lagoon
are modified by the increase in sediments, which is in turn caused by the effects from
monsoon storms and repetitive local floods in the estuaries. Thus, spatial variations in the
lake’s surface revealed the topographic differences between various regions of the lagoon.
For instance, its western part is more vulnerable to geomorphic erosion due to higher
topographic elevations. This is exaggerated by the more intense fishing in this part of the
lagoon, which is caused by the location of settlements and villages placed in this region.
Finally, high rainfall triggered runoff, which affected the watershed of the Chilika Lake.

High biodiversity in the physiographic setting of the Chilika lagoon affected the
structure and intensity of the habitat dynamics in its ecosystems. Thus, the complex mosaic
of the vegetation types detected on the multispectral satellite images point at different
geomorphic and landscape units of the lagoon system. Local variations in the vegetation
distribution along the fringes of the Chilika lagoon are caused by the periodic monsoon
effects on the hydrological system and interruptions in the sedimentation process, which
depend on the riverine inflow as discussed above. These processes are intensified by local
soil erosion, monsoon storms, and fishery activities, which have affected the distribution of
vegetation on tidal flats and the surrounding landscapes.

Social and ecological implications of the presented findings include mapping lacus-
trine landscapes of Chilika Lake in East India for spatio-temporal analysis of changes in
land cover types quality and extent. Specifically, the evaluated changes enable the detec-
tion of eutrophication and dynamics in the nearby landscapes, which is essential for the
environmental monitoring of the coastal lagoons.

5. Conclusions

Mapping coastal lagoons using RS data over time is important for distinguishing the
effects of climate and anthropogenic impacts causing major natural disturbances in the
surrounding landscapes. This study demonstrated the application of ML/ANN techniques
for satellite image processing, aiming to map and visualize changes over the coastal
landscape of Chilika Lake in the 2019–2024 time period. The mosaic of ten land cover types
was identified around the Chilika Lake and recognized at a resolution of 30 m using GRASS
GIS techniques of ML applied to satellite image processing, allowing an assessment of
individual landscape patches. Technically, we analyzed the difference between the effects
of diverse ML algorithms (Maximal Likelihood discriminant analysis, Random Forest,
Support Vector Machine, and MLPClassifier of ANN) on Landsat image analysis and the
effects of these approaches on image classification.

Owing to technological limitations of existing GIS tools (traditional methods of classi-
fication), some previous mapping efforts in the Chilika Lake relied on a relatively coarse
discrimination of land/water coverage and the detection variability of land cover types,
including mangroves. These were referred to as potential aquatic habitatsto analyze all
coastal areas where land cover changes would likely occur. In contrast, this study revealed
the effectiveness of the ML/ANN algorithms for RS data classification, which present
a powerful alternative to the traditional cartographic tasks through the automation of
image classification.
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The results of this research show the impact of climate variability on changes in land
cover types during short-term time gap and landscape dynamics around the lagoon of
Chilika Lake. Recent boundaries of coastal land categories (2023) closely followed the
contour of previous patches detected on earlier images (e.g., 2020, 2019), largely because
the extent of the lake limits the existing land cover types, as well as distribution of aquatic
vegetation and restrict mangroves to shallow depths with brackish water. The implications
of this study are useful for environmental decision-making and can support in policy-
making in the sustainable development of Ramsar marine sites of India. The paper also
demonstrated the value of EO data for environmental analysis. Landsat 8-9 OLI/TIRS
satellite images provide an added value to the conventional environmental analysis through
land cover classification using ML methods.

Machine learning (ML) and ANN techniques were evaluated for satellite image pro-
cessing and proved their effectiveness and usefulness for the environmental analysis
performed using GRASS GIS. The use of such data and methods can improve cartographic
results in coastal areas that observe some structural variability in landscape patches. A
landsat sensor with moderate spectral and high temporal resolution has proven useful
in estimating the spatio-temporal variations in land cover types in the coastal lagoon
of Chilika Lake in early spring period since 2019 to 2024. Specifically, Random Forest,
Support Vector Machine, and MultiLayer Perceptron classifier algorithms were successful
in capturing the trend of landscape dynamics in the lacustrine surroundings using ML
methods of the automatic analysis of spectral reflectance of pixels. Similarly, the scripting
algorithm of GRASS GIS enabled the cartographic workflow using different modules for
raster data processing.

Time series maps of land cover types derived from the classified Landsat images
explained the overall relationship between climate effects, environmental patterns, and
hydrological processes through sedimentation, algal bloom detected in the lake during the
spring period, and variations in land cover types of the surrounding landscapes in eastern
India, as evaluated during a short-term period of the past six years.
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GMT Generic Mapping Tools
GRASS Geographic Resources Analysis Support System
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RS Remote Sensing
SVM Support Vector Machines
USGS United States Geological Survey
UTM Universal Transverse Mercator
WGS84 World Geodetic System 84
WRS Worldwide Reference System

Appendix A. Metadata for the Landsat 8-9 OLI/TIRS images obtained from the USGS

Table A1. Metadata for the Landsat 8-9 OLI/TIRS images obtained from the USGS

Data Set Attribute Attribute Value Attribute Value Attribute Value

Landsat Scene Identifier LC81400462019044LGN00 LC81400462020063LGN00 LC81400462021033LGN00
Date Acquired 2019/02/13 2020/03/03 2021/02/02
Roll Angle 0 0 0
Start Time 2019-02-13 04:43:38.496305 2020-03-03 04:43:50.54638 2021-02-02 04:44:01.299722
Stop Time 2019-02-13 04:44:10.266304 2020-03-03 04:44:22.316379 2021-02-02 04:44:33.069722
Land Cloud Cover 0.01 0.01 0.01
Scene Cloud Cover L1 0.01 0.10 0.01
Ground Control Points Model 537 568 511
Geometric RMSE Model 6517 6132 6777
Geometric RMSE Model X 4631 4199 4899
Geometric RMSE Model Y 4586 4468 4683
Processing Software Version LPGS_15.3.1c LPGS_15.3.1c LPGS_15.4.0
Sun Elevation L0RA 46.81303022 52.31490489 44.35249578
Sun Azimuth L0RA 139.03612161 132.76708087 142.18104190
TIRS SSM Model FINAL FINAL FINAL
Data Type L2 OLI_TIRS_L2SP OLI_TIRS_L2SP OLI_TIRS_L2SP
Satellite 8 8 8
Scene Center Lat DMS 20°13′48.04′′ N 20°13′47.89′′ N 20°13′47.39′′ N
Scene Center Long DMS 85°06′11.16′′ E 85°05′14.89′′ E 85°05′49.38′′ E
Corner Upper Left Lat DMS 21°16′11.10′′ N 21°16′10.16′′ N 21°16′10.70′′ N
Corner Upper Left Long DMS 83°58′48.18′′ E 83°57′56.20′′ E 83°58′27.41′′ E
Corner Upper Right Lat DMS 21°17′41.71′′ N 21°17′41.46′′ N 21°17′41.60′′ N
Corner Upper Right Long DMS 86°11′48.91′′ E 86°10′56.86′′ E 86°11′28.10′′ E
Corner Lower Left Lat DMS 19°09′09.76′′ N 19°09′08.93′′ N 19°09′09.43′′ N
Corner Lower Left Long DMS 84°01′14.38′′ E 84°00′23.08′′ E 84°00′53.86′′ E
Corner Lower Right Lat DMS 19°10′30.65′′ N 19°10′30.43′′ N 19°10′30.54′′ N
Corner Lower Right Long DMS 86°12′27.86′′ E 86°11′36.49′′ E 86°12′07.31′′ E
Landsat Scene Identifier LC91400462022044LGN01 LC91400462023063LGN00 LC81400462024042LGN00
Date Acquired 2022/02/13 2023/03/04 2024/02/11
Roll Angle 0 0 −1
Start Time 2022-02-13 04:44:06 2023-03-04 04:44:07 2024-02-11 04:43:59
Stop Time 2022-02-13 04:44:38 2023-03-04 04:44:39 2024-02-11 04:44:31
Land Cloud Cover 0.01 0.01 1.35
Scene Cloud Cover L1 0.01 0.01 1.24
Ground Control Points Model 556 473 454
Geometric RMSE Model 6320 6977 6930
Geometric RMSE Model X 4628 4820 4746
Geometric RMSE Model Y 4304 5044 5049
Processing Software Version LPGS_16.2.0 LPGS_16.2.0 LPGS_16.3.1
Sun Elevation L0RA 46.93750742 52.43682914 46.26502602
Sun Azimuth L0RA 139.05519463 132.73529917 139.75153012
TIRS SSM Model N/A N/A FINAL
Data Type L2 OLI_TIRS_L2SP OLI_TIRS_L2SP OLI_TIRS_L2SP
Satellite 9 9 8
Scene Center Lat DMS 20°13′47.24′′ N 20°13′48.14′′ N 20°13′46.99′′ N
Scene Center Long DMS 85°04′03.04′′ E 85°03′42.62′′ E 85°02′54.24′′ E
Corner Upper Left Lat DMS 21°16′08.83′′ N 21°16′08.47′′ N 21°16′07.54′′ N
Corner Upper Left Long DMS 83°56′43.44′′ E 83°56′22.63′′ E 83°55′30.65′′ E
Corner Upper Right Lat DMS 21°17′41.10′′ N 21°17′40.99′′ N 21°17′40.74′′ N
Corner Upper Right Long DMS 86°09′43.99′′ E 86°09′23.15′′ E 86°08′31.09′′ E
Corner Lower Left Lat DMS 19°09′07.78′′ N 19°09′07.42′′ N 19°09′06.59′′ N
Corner Lower Left Long DMS 83°59′11.29′′ E 83°58′50.77′′ E 83°57′59.51′′ E
Corner Lower Right Lat DMS 19°10′30.11′′ N 19°10′30′′ N 19°10′29.78′′ N
Corner Lower Right Long DMS 86°10′24.60′′ E 86°10′04.04′′ E 86°09′12.71′′ E
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Appendix B. Class-Separability Matrices for Land Cover Classes

Appendix B.1. Class-Separability Matrices: 2019 and 2020

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 2 3 4 5 6 7 8 9 10
1 0
2 1.6 0
3 3.1 1.4 0
4 5.8 2.4 0.7 0
5 6.5 2.8 1.2 0.8 0
6 7.6 3.2 1.8 1.8 1.2 0
7 6.0 2.6 1.3 1.4 1.2 0.6 0
8 8.2 3.6 2.4 2.7 2.3 1.1 1.1 0
9 8.2 4.0 3.0 3.4 3.0 2.0 2.0 2.0 0
10 8.5 5.0 4.5 5.1 4.8 4.0 3.9 3.2 2.3 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 2 3 4 5 6 7 8 9 10
1 0
2 1.4 0
3 3.5 1.6 0
4 5.9 2.4 0.7 0
5 5.1 2.4 1.0 0.6 0
6 6.7 2.8 1.5 1.3 0.9 0
7 5.6 2.4 1.5 1.4 1.3 0.6 0
8 7.3 3.1 2.4 2.5 2.0 1.2 0.9 0
9 7.1 3.4 2.9 3.1 2.7 2.1 1.7 1.0 0
10 6.5 4.2 4.0 4.1 3.8 3.5 3.3 2.9 2.1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(A1)

Appendix B.2. Class-Separability Matrices: 2021 and 2022

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 2 3 4 5 6 7 8 9 10
1 0
2 1.5 0
3 3.1 1.6 0
4 5.3 2.5 0.7 0
5 5.6 2.8 1.4 1.0 0
6 6.7 2.9 1.5 1.3 0.8 0
7 5.3 2.4 1.5 1.6 1.3 0.7 0
8 7.5 3.4 2.5 2.6 1.6 1.2 0.9 0
9 7.8 3.9 3.2 3.4 2.4 2.2 1.8 1.1 0
10 6.8 4.3 3.8 3.9 3.2 3.2 2.9 2.5 1.7 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 2 3 4 5 6 7 8 9 10
1 0
2 1.5 0
3 2.6 1.4 0
4 5.4 2.6 0.7 0
5 6.5 3.0 1.1 0.8 0
6 5.9 3.1 1.5 1.4 0.7 0
7 5.6 2.8 1.3 1.6 1.2 0.9 0
8 7.3 3.7 2.1 2.7 2.2 1.4 1.0 0
9 7.6 4.1 2.7 3.4 3.0 2.2 1.8 1.0 0
10 7.8 5.1 4.4 5.3 5.0 4.3 4.1 3.6 2.7 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(A2)

Appendix B.3. Class-Separability Matrices: 2023 and 2024

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 2 3 4 5 6 7 8 9 10
1 0
2 1.7 0
3 4.1 1.6 0
4 4.6 1.9 0.5 0
5 7.2 2.5 0.9 0.9 0
6 5.9 2.2 1.2 1.6 0.9 0
7 8.3 3.0 1.8 1.9 1.2 0.7 0
8 8.7 3.4 2.5 2.7 2.1 1.2 1.0 0
9 8.8 3.8 3.1 3.2 2.8 2.0 1.8 1.0 0
10 6.3 3.7 3.4 3.4 3.2 2.7 2.6 2.1 1.5 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 2 3 4 5 6 7 8 9 10
1 0
2 1.5 0
3 3.3 1.8 0
4 5.7 2.8 0.6 0
5 5.2 2.8 1.2 1.0 0
6 6.7 3.2 1.2 1.2 0.6 0
7 5.7 2.8 1.3 1.6 1.1 0.7 0
8 7.5 3.8 2.1 2.5 1.4 1.3 0.8 0
9 7.1 4.0 2.7 3.1 2.1 2.2 1.6 1.0 0
10 7.2 5.0 4.2 4.7 3.8 4.0 3.5 3.2 2.3 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(A3)

Appendix C. Computed Class Means for Land Cover Classes

Table A2. Class means of Digital Numbers (DNs) of pixels computed for pixels assigned to 10 land
cover classes in the landscapes around Chilika Lake within each Landsat 8-9 OLI/TIRS band (1 to 7)
for the years 2019 to 2024.

Class Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7

2019

1 7384.59 7627.99 7895.94 7432.46 7311.54 7522.6 7534.26
2 8643.32 9065.21 10,097.8 9576.69 8982.72 8163.85 7900.08
3 7909.62 8189.18 9032.65 8872.02 13,230.6 11,239.2 9522.02
4 7855.42 8099.7 9003.44 8780.11 15,341.4 12,452.6 9902.94
5 7993.15 8247.89 9267.59 9042.79 16,989.7 13,587.9 10,478.3
6 8356.75 8702.28 9805.76 9943.78 16,308 15,025.3 11,968.9
7 8386.91 8760.24 9764.89 10,023.5 14,226.4 14,156.7 11,883.2
8 8770.28 9187.13 10,314.4 10,890.7 15,345.3 16,391.3 13,700.7
9 9215.28 9707.92 10,991.3 11,942.4 16,298 18,419.5 15,557.1
10 10,984.1 11,566.3 13,775 15,936.7 18,901.8 22,878.1 21,892.5



J. Mar. Sci. Eng. 2024, 12, 709 24 of 29

Table A2. Cont.

Class Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7

2020

1 7362.63 7605.24 8058.61 7428.78 7302.72 7611.18 7600.81
2 8799.63 9212.01 10,298.1 9846.45 9447.31 8374.1 8010.46
3 7943.86 8190.79 9124.49 8775.28 13,978.1 11,732.6 9604.04
4 7951.76 8182.82 9148.86 8762.19 15,483.8 12,974.3 10,132.6
5 8046.6 8290.53 9367.25 8877.5 17,339.2 13,624.9 10,362.4
6 8289.78 8579.24 9693.26 9484.22 16,220.4 14,673.9 11,489.4
7 8460.6 8784.33 9843.28 9877.32 14,561 14,590 12,004.6
8 8682.86 9047.62 10,243.8 10,406.1 15,846.7 16,209.3 13,175.8
9 9103.29 9524.9 10,833.7 11,361.1 16,366.5 18,052.3 15,014.9
10 11,001.5 11,588.6 13,781.4 15,754.9 19,292 23,392.5 21,832.9

2021

1 7313.11 7667.41 8116.02 7492.57 7333.71 7574.41 7569.82
2 8559.44 9073.05 10,170.7 9669.56 8743.74 8092.44 7874.43
3 7890.09 8128.26 8880.14 8688.48 13,228.5 11,313.2 9513.12
4 7937.49 8150.84 8974.22 8708.31 15,426.7 12,674.9 10,038.2
5 8177.43 8412.77 9402.44 9144.78 17,531.1 14,258 10,941.5
6 8323.64 8323.64 9565.02 9675.27 15,282.8 14,491.2 11,722
7 8517.84 8925.77 9920.3 10,269.8 13,560.5 14,131.2 12,233
8 8759.76 9162.3 10,257 10,789.3 15,470.1 16,325.2 13,607.4
9 9185.24 9675.96 10,914.1 11,894.1 16,279 18,494.3 15,564
10 10,665.1 11,305.1 13,359.4 15,356.5 18,762.9 22,569.6 21,150.5

2022

1 7287.88 7542.4 7718.15 7333.43 7328.27 7592.25 7602.72
2 8393.71 8875.65 10,056.4 9608.75 8587.92 7874.1 7714.56
3 7980.49 8174.29 8866.31 8668.13 12,794.7 10,899 9330.4
4 7894.2 8035.98 8749.86 8407.39 15,201.5 12,022.1 9583.49
5 8043.54 8188.44 8998.54 8642.16 16,500.8 13,086.8 10,175.2
6 8239.34 8394.65 9357.1 8940.95 18,166.3 14,180.8 10,795.1
7 8373.31 8653.25 9575.82 9666.31 14,750 14,098.9 11,638.9
8 8681.73 9012.21 10,079 10,388.4 15,793.3 15,933.3 13,111
9 9087.7 9499.76 10,744.1 11,422.2 16,621.3 17,967 14,981.3
10 11,402 12,007.2 14,459.4 16,913.6 20,170.8 24,147.3 23,184.8

2023

1 7304.03 7602.46 7970.98 7495.23 7370.22 7582.83 7594.02
2 8642.8 9116.27 10,225.1 9774.06 9373.03 8426.53 8095.8
3 8014.89 8370.33 9293.49 9184.49 13,666.4 12,570.5 10,418.6
4 7968.43 8317.51 9403.97 9059.22 16,418 13,040.4 10,214.3
5 8206.12 8585.66 9631.98 9656.67 15,258.8 14,373 11,402.8
6 8608.63 9043.92 9991.65 10,366.6 13,513.2 14,643.5 12,720
7 8548.43 8996.5 10,126.3 10,475.4 15,733.1 15,917.6 12,836.8
8 8930.24 9432.99 10,581.5 11,287.2 15,432.7 17,203 14,389.8
9 9276.42 9835.91 11,120.3 12,167.4 16,591.8 19,125.6 15,989.6
10 10,626.8 11,262.9 13,202.7 15,146.2 18,487.7 22,653.8 21,910.9

2024

1 7381.12 7610.35 8182.73 7489.11 7376.46 7674.92 7641.93
2 8848.7 9278.52 10,342.7 9654.98 9050.44 8198.38 7879.74
3 7962.57 8225.6 9233.13 8808.4 13,449.8 11,533.5 9636.85
4 7885.21 8122.14 9193.83 8670.85 15,442.6 12,508.1 9847.4
5 8119.25 8419.77 9677.19 9141.91 17,614 14,001.8 10,667.5
6 8197.23 8499.11 9635.42 9360.85 15,391.6 14,031.7 11,128.3
7 8467.78 8852.79 10,008.4 10,005.2 13,939.7 14,177.3 11,928.9
8 8602.61 9007.3 10,280.5 10,373.2 15,568 15,923.8 12,996.3
9 9060 9554.25 10,903.5 11,426.4 16,024.9 17,919.3 14,963.6
10 11,029.6 11,776.7 14,159 16,012.6 19,470.8 23,328.6 21,960.9
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