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Abstract

Purpose of this paper is the presentation of a novel Machine Learning (ML) technique for nanoscopic

study of thin nanoplates. The second-order strain gradient theory is used to derive the governing equa-

tions and account for size effects. The ML framework is based on Physics-Informed Neural Networks

(PINNs), a new concept of Artificial Neural Networks (ANNs) enriched with the mathematical model of

the problem. Training of PINNs is performed using a highly efficient learning algorithm, known as Ex-

treme Learning Machine (ELM). Two applications of this ANNs-based method are illustrated: solution

of the Partial Differential Equations (PDEs) modeling the flexural response of thin nanoplates (direct

problem), and identification of the length scale parameter of the nanoplate mathematical model with

the aid of measurement data (inverse problem). Comparison with analytical and Finite Element (FE)

solutions demonstrate the accuracy and efficiency of this ML framework as meshfree solver of high-order

PDEs. The stability and reliability of the present method are verified through parameter studies on

hyperparameters, network architectures, data noise and training initializations. The results presented

give evidence of the effectiveness and robustness of this new ML approach for solving both direct and

inverse nanoplate problems.

Keywords: Physics-Informed Neural Networks, Extreme Learning Machine, Nanoplates, Bending Anal-

ysis, Strain Gradient Theory, Parameter Identification.
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1 Introduction

Over the past years, a growing interest has been devoted to the research field of nanotechnology. Nanomate-

rials and nanostructures are employed to fabricate microelectromechanical (MEMS) and nanoelectromechan-

ical (NEMS) systems which find a large range of applications in sectors like mechanical, aerospace, electronic

and biomedical engineering. Some examples of micro- and nano-sized systems include biosensors, electro-

chemical actuators, supercapacitors, nanotubes and nanoprobes [1–4], which largely make use of nanorods,

nanobeams, nanoplates and nanoshells as fundamental structural units [5].

In order to effectively analyze and design MEMS and NEMS, a large number of experimental and theoretical

studies have been conducted to characterize the mechanical behavior of nanostructures. Recent experimental

works have demonstrated the importance of material microstructures and long-range interaction forces on

the mechanical response of micro- and nano-structural members [6–8]. These small-scale effects cannot be

captured properly by Classical Continuum Theories (CCTs) which are widely used for modeling structures

at macroscopic level.

Therefore, the recent scientific literature has seen a drastic surge in studies focused on the development of

new theories for modeling nanostructures. Among the different modeling possibilities, a viable approach is

represented by a direct modification of CCTs to give the so-called Nonlocal Continuum Theories (NCTs).

Several NCTs have been proposed by researchers throughout the years. Some classical examples are given

by the stress gradient, strain gradient, couple stress and integral types theories [9–12], where the small scale

effects are taken into account through the introduction of one or more internal length scale parameters.

Recently, other size-dependent elasticity theories have emerged to improve the existing ones, such as the

modified couple stress theory due to Yang et al. [13], which involves only one length scale parameter for

representing the microstructural effects. The nonlocal strain gradient theory developed by Aifantis [14] puts

together the stress gradient and strain gradient theories. Two size-dependent lengths are adopted in this case

to include strain and stress gradients on the constitutive response of materials. The modified strain gradient

theory proposed by Lam [7] uses three internal length parameters to reflect the dilatation gradients, devi-

atoric stretch gradients, and rotation gradients. The recently developed nonlocal modified gradient theory

presented by Faghidian [15] adopts instead four intrinsic length scales to capture the effects of nonlocality,

dilatation gradient, deviatoric stretch gradient, and symmetric rotation gradient. Higher-order nonlocal

gradient theories have also been proposed lately. Some examples are given by the two-phase local/nonlocal

gradient model [16], which adopts five intrinsic parameters (two nonlocal, one mixture, two gradient length

scale parameters), and the higher-order unified gradient elasticity theory in [17], where two strain gradient

characteristic lengths and two stress length scale parameters are introduced to model nano-scale effects.

Among these theories, the second-order strain gradient theory has gained popularity over the years due to

its formulation simplicity. Indeed, only one additional material parameter is introduced into the constitutive

law to account for size effects [18].
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Differently from CCTs, the governing equations derived using NCTs are characterized by a higher differential

order. This is due to the presence of higher-order deformation and force terms introduced by the length

scale parameters. In the context of thin nanoplates modeled with the second-order strain gradient theory,

the partial differential equations describing the flexural equilibrium pass from a differential order of four to

an order of six. This brings a significant challenge to traditional solution methods.

Ad-hoc analytical approaches based on Navier and Levy methods were proposed in the literature. Papargyri-

Beskou and Beskou [19] derived closed-form solutions for isotropic thin nanoplates under simply supported

boundary conditions. The Navier method was adopted in the context of the second-order negative strain gra-

dient theory to find analytical solutions for displacements, buckling loads and natural frequencies. Babu and

Patel [18] used a procedure based on Levy’s approach to analyze isotropic nanoplates under static bending

loading. They considered both classical and non-classical boundary conditions and compared their solutions

with finite elements simulations. Cornacchia et al. [20] derived exact solutions for laminated composite

nanoplates with different layouts. In this work, new analytical solutions were derived for both isotropic and

antisymmetric orthotropic laminated nanoplates under static loading conditions. Akgöz and Civalek [21] pre-

sented analytical solutions based on Fouries series for bending, buckling and vibration analysis of micro-scale

plates. The modified strain gradient elasticity theory was used in the study to capture the size-dependant

effects. A semi-analytical approach was employed by Dastjerdi and Akgöz [22] to solve nanoscale problems.

Their method was applied in the context of nanoplates modelled with the nonlocal theory of Eringen.

To overcome the inherent restrictions of analytical methods on geometry, material and boundary/loading

conditions, numerical approaches such as Finite Element (FE) methods have also been proposed. To the

best of the authors’ knowledge, Babu and Patel [23] were the first to present a FE formulation incorporating

second-order strain gradient effects. They compared two different formulations based on conforming and

nonconforming elements for the static, stability and vibration analysis of isotropic nanoplates. An extension

of this work to laminated nanoplates was presented by Bacciochi et al. [24]. In their work, the authors

provided a comprehensive study on the numerical stability and reliability of the proposed FE formulation

in predicting displacements and stress quantities under the effect of the length scale parameter. Other FE-

based numerical approaches to solve the strain gradient equations of thin nanoplates can be found in the

works of Niiranen et al. [25], who presented a method based on Isogeometric Analysis (IGA), and of Zhang

et al. [26], who developed a framework combining the Differential Quadrature (DQ) and FE methods.

Solution methods based on meshless approaches [27] were also proposed in the recent literature as a poten-

tial alternative to FE-based approaches. Fabbrocino et al. [28] used the Radial Point Interpolation Method

(RPIM) for solving the static bending analysis of Kirchhoff nanoplates. They conducted different parametric

studies to test the influence of shape parameters on the accuracy of their numerical results. In a series of

works, Wang et al. [29, 30] applied the Meshfree Galerkin method to analyze strain gradient thin plates.

Both plates with rectangular and irregular shapes were considered in the simulations. Roque and Żur [31]
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proposed the Radial Basis Function Finite Difference (RBF-FD) method to study the bending, free vibration,

and transient responses of micro-plates with different boundary conditions and materials. Another possible

mesh-free method for solving nanoscale problems is the Meshless Local Petrov–Galerkin (MLPG) method,

which is used by Khorasani and Bayat [32] in the context of the modified couple stress theory.

Aside of this, an emerging trend regards the application of Physics-Informed Neural Networks (PINNs) as

an effective mean for solving differential problems [33]. PINNs are an inherently meshless strategy relying

upon the powerful framework offered by modern Artificial Neural Networks (ANNs). This new concept of

ANNs have already been applied in different fields of science, such as fluid dynamics, quantum mechanics and

solid mechanics [33–35], to cite a few. Recently the authors have proposed their applications for studying

composite plate and shell structures at macroscale level [36]. Other recent contributions regarding the use

of PINNs to plate problems can be found in [37–39].

In this work, the PINN framework presented in [36] is extended and applied, for the first time, to the static

analysis of nanoplates. Specifically, the differential equations derived from the second-order negative strain

gradient NCT are solved by means of PINNs. Differently from other existing PINN algorithms which are

mainly based on Gradient-Based Learning (GBL) methods [37–39], here training of the networks is conducted

under the paradigm of the Extreme Learning Machine (ELM) [40]. This new training approach provides

much faster learning speed compared with classical learning strategies [41]. The superior efficiency of the

PINN-ELM framework will be exploited to perform parametric studies. These will be useful to gain insights

into the features of the method, including 1) the effect of different hyperparameters and network architectures

on the direct solution of the governing equations, and 2) the possibility of carrying out model parameters

identification in the context of inverse problems. The study illustrates the potential of this new meshless

approach to handle a large variety of nanoplate problems, including analysis and model identification.

The paper is organized as follows: Section 2 gives an overview of the theoretical framework. The governing

equations of strain gradient thin plates are derived. Direct and inverse solution of these equations are then

discussed in the context of PINNs and ELM; Numerical results are shown in Section 3. Finally, Section 4

gives a summary of this work with suggestion for future developments.

2 Formulation

The definition of the governing equations represents the first step to define a PINN. In the following, the

Partial Differential Equations (PDEs) used for modeling thin rectangular nanoplates are presented. The

formulation is based on the second-order negative strain gradient nonlocal theory [10] under the Kirchhoff

flexural plate hypothesis and linear elasticity assumptions [42]. This mathematical model is then exploited

in the training process of PINNs for the solution and parameters identification of the relevant PDEs.
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2.1 Governing equations: second-order negative strain gradient nonlocal theory

The convention adopted in the present work is schematized in Figure 1. The nanoplate is described using

a Cartesian reference system with origin O taken on the middle surface. The three axes x, y and z are

directed along the plate width a, length b and thickness h directions, respectively, while the corresponding

displacement components are denoted as ux, uy and uz.

The static equilibrium equations are described by the following PDE [42]:

∂2Mxx

∂x2
+ 2

∂2Mxy

∂x∂y
+

∂2Myy

∂y2
+ q = 0 (1)

where the forcing term is represented by the constant pressure load q, while Mij are the moment resultants

defined as:

Mij =

∫ h/2

−h/2

σijzdz for i, j = x, y (2)

with σij being the components of the stress tensor.

In the context of Kirchhoff’s thin plate theory, the displacement field is given by:
ux(x, y, z) = −z ∂w(x,y)

∂x

uy(x, y, z) = −z ∂w(x,y)
∂y

uz(x, y, z) = w(x, y)

(3)

where w is the out-of-plane deflection of a point on the midsurface z = 0. Consequently, the linear strain-

displacement relations read: 
ϵxx

ϵyy

γxy

 = z


−∂2w

∂x2

−∂2w
∂y2

−2 ∂2w
∂x∂y

 (4)

with ϵxx, ϵyy and γxy defined as the in-plane components of the strain tensor.

According to the second-order strain gradient theory the constitutive relations under plane stress condition

can be expressed as [19]: 
σxx = E

1−ν2 (ϵxx + νϵyy)− l2 E
1−ν2∇2(ϵxx + νϵyy)

σyy = E
1−ν2 (ϵyy + νϵxx)− l2 E

1−ν2∇2(ϵyy + νϵxx)

τxy = E
2(1+ν2)γxy − l2 E

2(1+ν2)∇
2γxy

(5)

where E is the Young’s modulus, ν the Poisson’s ratio, l the nonlocal parameter, while ∇2 = ∂2(.)
∂x2 + ∂2(.)

∂y2

denotes the Laplace operator.

The governing equation in terms of out-of-plane deflection w can be derived substituting Eq. (2) and Eqs. (4)-

(5) into Eq. (1):

R := D∇4w − l2D∇6w − q = 0 in Ω (6)
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where R is the residual function telling how much the equilibrium condition is violated inside the compu-

tational domain Ω = (0, a)× (0, b), D = Eh3/12(1− ν2) is the bending rigidity of the nanoplate, while the

differential operators ∇4(.) and ∇6(.) are defined as:

∇4 (.) =
∂4 (.)

∂x4
+ 2

∂4 (.)

∂x2∂y2
+

∂4 (.)

∂y4

∇6 (.) =
∂6 (.)

∂x6
+ 3

∂6 (.)

∂x4∂y2
+ 3

∂6 (.)

∂x2∂y4
+

∂6 (.)

∂y6
(7)

Note, the differential order of the PDE rises to six due to the use of a nonlocal theory, as seen in Eq. (6).

When the nonlocal parameter l is set to zero, the classical Kirchhoff plate theory is recovered.

To completely define the differential problem in Eq. (6), proper boundary conditions need to be specified.

Referring to Figure 1, essential and natural boundary conditions are defined for the four edges i1, i2, j1 and

j2 as:

B(jk) :=


w − ŵ = 0 or Vx − V̂x = 0

∂w
∂x − ∂ŵ

∂x = 0 or Mxx − M̂xx = 0

∂2w
∂x2 − ∂2ŵ

∂x2 = 0 or Hx − Ĥx = 0

in ∂Ω(jk) (8)

and

B(ik) :=


w − ŵ = 0 or Vy − V̂y = 0

∂w
∂y − ∂ŵ

∂y = 0 or Myy − M̂yy = 0

∂2w
∂y2 − ∂2ŵ

∂y2 = 0 or Hy − Ĥy = 0

in ∂Ω(ik) (9)

where B(ik) and B(jk) (k = 1, 2) are boundary residual functions dependent on the types of conditions

enforced on ∂Ω(ik) and ∂Ω(jk), respectively, while the caret defines any prescribed quantity, either in terms

of generalized displacements or forces. The quantities Vx, Mxx, Hx are the transverse shear force, bending

moment, higher-order bending moment resultants on the edges normal to the axis x, and are defined as

follows:

Vx = D

[
∂3w

∂x3
+ (2− ν)

∂3w

∂x∂y2

]
− l2D

[
∂5w

∂x5
+ 3

∂5w

∂x3∂y2
+ (3− ν)

∂5w

∂x∂y4

]

Mxx = −D

[
∂2w

∂x2
+ ν

∂2w

∂y2

]
+ l2D

[
∂4w

∂x4
+ ν

∂4w

∂y4
+ (3− ν)

∂4w

∂x2∂y2

]

Hx = l2D

(
∂3w

∂x3
+ ν

∂3w

∂x∂y2

)
(10)
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The corresponding generalized forces on the edges normal to the axis y are:

Vy = D

[
∂3w

∂y3
+ (2− ν)

∂3w

∂x2∂y

]
− l2D

[
∂5w

∂y5
+ 3

∂5w

∂x2∂y3
+ (3− ν)

∂5w

∂x4∂y

]

Myy = −D

[
ν
∂2w

∂x2
+

∂2w

∂y2

]
+ l2D

[
ν
∂4w

∂x4
+

∂4w

∂y4
+ (3− ν)

∂4w

∂x2∂y2

]

Hy = l2D

(
∂3w

∂y3
+ ν

∂3w

∂x2∂y

)
(11)

Typical boundary conditions in nanoplate applications can be of Free (F), Simply-supported (S) and Clamped

(C) type. These conditions have to take into account both classical and nonlocal boundary conditions, as

shown in Table 1. In general there are two possible nonlocal boundary conditions for strain gradient theories

[43–45], i.e. imposed curvature or imposed higher-order bending moment resultant. In the present work, the

free, simple-support and clamped conditions are selected according to the convention used in [18].

The full problem can be written in a compact form as:R(Λ,u,x) = 0 x ∈ Ω

B(Λ,u,x) = 0 x ∈ ∂Ω
(12)

where B =
{
B(i1),B(j2),B(i2),B(j1)

}T

is the boundary residual function collecting all the boundary condi-

tions in ∂Ω = ∂Ω(i1) ∪ ∂Ω(j2) ∪ ∂Ω(i2) ∪ ∂Ω(j1). The vector Λ collects all the parameters of the model, such

as the elastic properties, the geometric ones and the nonlocal parameter. Dependently on the problem at

hand, all or part of the entries of Λ can be known or values to be identified. For direct problems, all the

entries are known; in the inverse case, one or more parameters need to be identified. The vectors u and x of

Eq. (12) are those collecting the dependent – generalized displacements and/or forces – and independent –

spatial positions – variables, respectively.

2.2 Solution via Physics-Informed Neural Networks

The solution of the PDE based on nonlocal strain gradient theory has already been discussed in the context

of analytical methods, such as Navier’s [19, 20] and Levy’s [18] solutions. Numerical approaches have also

been proposed in order to consider generic boundary conditions, geometries and materials, see, e.g., Finite

Elements [23, 24] and meshless methods [28, 29, 46, 47].

A completely novel strategy for solving the differential problem described by Eq. (12) relies on ANN-based

methods, such as Physics-Informed Neural Networks (PINNs) [33]. PINNs have been applied in different

fields of science, such as solid mechanics [35]. Recently the authors have proposed their applications for

studying composite plate and shell structures at macro scale level [36]. An extension of the work in [36] is

presented in this section. Addressed is the use of PINNs for the analysis of plate structures at nanoscale
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scale level, where size effects are not negligible.

The convention used for defining Artificial Neural Networks (ANNs) is illustrated in Figure 2. For simplicity

the neural networks employed in this work are fixed to have a single-hidden-layer architecture, where Nn

is the number of hidden neurons, while x and u are the input and output, respectively. The input vector

collects the Ni = 2 independent variables of the problem x = {x, y}T, while the output vector collects the

No physical quantity to be learnt. These quantities are approximated by the network as follows:

u (Θ,x) = CH (W,b,x) , with H = σ (Wx+ b) (13)

where H is the hidden layer matrix with its generic column vector hp ∈ RNn×1 representing the output of

all hidden neurons due to the p-th input point, σ is the activation function adopted in the hidden layer,

while Θ = {W,b,C} collects all the internal parameters of the networks, i.e. hidden weights W ∈ RNn×Ni ,

hidden biases b ∈ RNn×1, and output weights C ∈ RNo×Nn .

The internal parameters of the neural network Θ are learned through the minimization of a proper loss

function L. For PINNs this function is defined as a sum of a data-driven and a physics-guided contributions

as:

L = Lu + Lc (14)

The data-driven part can be defined in the form of a mean squared error as:

Lu =

Nu∑
k=1

|uk − u∗
k|2

2Nu
(15)

where |.| is the Euclidean norm, Nu is the total number of available labeled point, u∗
k ∈ RNo×1 is the target

value for the k-th input data xk = {xk, yk}T, while uk = u (Θ,xk) ∈ RNo×1 is the corresponding neural

network prediction.

Similarly, the contribution associated with the mathematical model reads:

Lc =

Nf∑
m=1

|Rr − 0r|2

2Nf
+

Nb∑
s=1

|Bs − 0s|2

2Nb
(16)

where Nf and Nb are the number of points inside the domain Ω and on its boundaries ∂Ω, respectively, while

Rr = R (Λ,ur,xr) and Bs = B (Λ,us,xs) are the residual functions evaluated at the collocation points

Nc = Nf +Nb.

Different learning algorithm can be employed for minimizing the loss function in Eq. (14) such as Gradient-

based learning (GBL) approaches [41] and the Extreme Learning Machine (ELM) [40]. In the present

work, the ELM is adopted for its superior computational performance and relatively much easier set up of

hyperparameters compared to GBL approaches.

In the context of ELM, the minimization of Eq. (14) is performed in terms of output weights C, while the
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other internal parameters W and b are chosen randomly and set as constants. The whole training process

is condensed into the solution of a linear least-square problem in the form of:

Lc = t (17)

where c ∈ RNnNo×1 is the global vector of unknowns collecting all the output weights of the network, while

L ∈ R(Nu+Nf+Nb)No×NnNo and t ∈ R(Nu+Nf+Nb)No×1 are the matrix of coefficients and the vector of targets,

respectively. If a single output No = 1 is considered, these last two quantities are assembled as:

L (Λ,x) =


hT
k

R
(
Λ,hT

r ,xr

)
B
(
Λ,hT

s ,xs

)
 , t =


u∗
k

0r

0s

 for

k = 1, ..., Nu

r = 1, ..., Nf

s = 1, ..., Nb

(18)

After a proper parametrization of Eq. (12), the solution of Eq. (17) is sought in a least-square sense through

computation of the pseudoinverse of the coefficient matrix L, i.e.:

c = L†t (19)

where L† ∈ RNnNo×(Nu+Nf+Nb)No is the Moore-Penrose generalized inverse of the rectangular matrix L, and

is computed here via Singular Value Decomposition.

Depending on the data types available in Eq. (18), different types of neural networks are obtained. Following

the convention introduced in [36], they are defined as follows: black-box ANN (Nu > 0, Nf = 0, Nb = 0),

white-box ANN (Nu = 0, Nf > 0, Nb > 0) and grey-box ANN (Nu > 0, Nf > 0, Nb > 0). In this work, the

direct solution of PDEs will be performed with PINNs trained using a white-box approach. On the other

hand, a grey-box learning approach will be adopted for solving inverse problems.

2.3 Identification via Physics-Informed Neural Networks

A further feature offered by PINNs is the possibility to solve inverse problems, i.e. problems where there

is a subset of model parameters λ ⊂ Λ which are uncertain, or even unknown, and needs to be identified.

The use of PINNs for such applications has been discussed in previous efforts in the literature. For instance,

PINNs have been applied for learning unknown model parameters of PDEs in the field of fluid dynamics [33],

epidemiology [48] and classical continuum mechanics [49]. However, to the best of the authors’ knowledge

there are no examples of such applications in the field of micro- and nano-structures.

In the context of PINNs, parameter identification of PDEs is performed starting from a set of observation

data
{
xk,u

∗
k

}T
. The inverse problem is set up by treating the uncertain model parameters λ ∈ RNλ×1 as

unknowns to be tuned together with the output weights c ∈ R(NnNo)×1. As result, the problem in Eq. (17)

turns into a nonlinear least-square problem to be solved:

L (β)β = t (20)
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where β = {λ, c}T ∈ R(NnNo+Nλ) is the vector of global unknowns augmented with the Nλ uncertain

parameters, while L (β) is the new coefficient matrix which is now nonlinear due to its dependency on all

the model parameters, see Eq. (18).

The solution of Eq. (20) is sought in an iterative way by recursively updating the vector of unknowns as:

β(t+1) = β(t) +∆β (21)

where (t) represents the current iteration step, while the updating term ∆β is computed from the solution

of the following linear least-square problem:

J(t)∆β = r(t) (22)

This linear least-square problem is solved at each iteration; the vector of residuals is defined as r(t) =

L(β(t))β(t) − t and the corresponding Jacobian matrix J(t) =
∂r(t)
∂β(t)

. In the present work, the Jacobian is

computed exactly using automatic differentiation [50].

The identification process starts from an initial guess β(0) =
{
λ(0), c(0)

}T

. From this initial solution, a first

evaluation of the residual r(0) is performed along with its Jacobian J(0). Then, Eq. (22) is solved to find the

updating vector ∆β = J†
(0)r(0) which is used to generate the new solution β(1) = β(0) +∆β. The iterative

process is continued until either the tolerance criterion L(t) < tol or the convergence criterion |L(t)−L(t−1)| <
tol are met.

3 Results

The PINN-based framework presented in the previous section is now applied for the bending analysis of Kirch-

hoff isotropic nanoplates. The code implementing PINNs have been developed in a MATLAB environment,

while all the numerical simulations have been performed in a computer with the following characteristics:

1.4 GHz Intel Core i7 processor, 16 GB 1867 MHz LPDDR3 memory, Intel HD Graphics 615 1536 MB.

Goal of this section is demonstrating the potential of PINNs as a numerical technique for solving nonclassical

solid mechanics problems with focus on nanoplates. In a first part, an assessment is conducted to validate

the code and provide evidence of the correct implementation of PINNs; the second part discusses the role

of neural network hyperparameters on the accuracy and stability of the solution; the third part presents

a performance assessment of the method through comparison with existing numerical methods; in the last

part, the application of PINNs to the solution of an inverse problem is discussed, where goal of the analysis

is the identification of the nonlocal parameter.

3.1 Validation

The implementation is validated here against analytical solutions available in the literature. Different com-

binations of boundary conditions, geometries and values of nonlocal parameter l are considered to verify the
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method in wide range of situations.

In the analyses presented next, the nanoplates are characterized by length a = 10 nm, variable width b and

thickness h = 0.34 nm; the material properties are given by E = 1100 GPa and ν = 0.3. All these quantities

are kept fixed for all the nanoplates considered in the paper, unless otherwise specified. Furthermore, five

different sets of boundary conditions are considered. Referring to Figure 1, the conditions are specified

following the order i1 − j2 − i2 − j1, and they are given as follows: SSSS, SCSC, SFSF, SCSF and CCCC.

The PINN architecture adopted for the validation has Nn = 1200 hidden neurons with one output repre-

senting the out-of-plane deflection w. The activation function used in the single hidden layer is chosen as

the hyperbolic tangent σ(s) = tanh(s). The hidden weights W and biases b are randomly initialized in the

range [−2, 2] from a uniform Gaussian distribution. The set of training points xp =
{
xp, yp

}T
are normalized

in the range [−1, 1] according to the following transformation ξ = 2x/a − 1 and η = 2y/b − 1. These data

points are constituted by a grid of Nc = 30 × 30 collocation points distributed in the domain according to

the Chebyshev-Gauss-Lobatto distribution:

Xc = − cos

(
p− 1

Nc − 1
π

)
p = 1, 2, ..., Nc (23)

A summary of the hyperparameters setting is illustrated in Table 2.

Results are presented in Table 3 in terms of the nondimensional deflection α = 1000Dwmax/(qa
4) for different

aspect ratios b/a and values of the nonlocal parameter l. It can be observed that the predictions provided

by the PINN are consistent with the analytical results reported in the literature [18]. The hardening effect

expected from the negative strain gradient theory is reproduced correctly by the neural network for all

combinations of boundary conditions and geometries.

As seen, the error percentage E% = (α− αref) /αref × 100 remains bounded well below 0.3%. The maximum

error is found to be for the rectangular configuration b/a = 2 under the mixed boundary condition CSCS,

while in all other cases the errors are of the order of 10−3 − 10−4.

The excellent agreement of these results gives evidence of the correct implementation of the PINN code for

different geometries and boundary conditions.

3.2 Parametric studies

Parametric studies on hyperparameters are required to understand the behavior of PINNs when facing a

specific problem. Previous works have already addressed these aspects in the context of differential problems

in classical mechanics [35, 36]. In this section, similar parametric studies are presented for problems in the

context of nonlocal theories where the PDEs are of higher differentiation order, i.e. up to six.

A total of three parametric studies are performed to understand the behavior of PINNs under different

training setups. More specifically, the effect of the following hyperparameters will be investigated in this

section: collocation points distribution, activation functions and neural network architectures.
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All the analyses are conducted starting from the baseline network architecture presented in Section 3.1, see

Table 2, and considering the rectangular nanoplate of aspect ratio b/a = 2 used in the validation phase.

3.2.1 Collocation points distributions

The first study deals with the effect of different distributions of collocation points. Specifically, Chebyshev-

Gauss-Lobatto (Che-Gau-Lob), Uniform (Unif) and Random (Rand) distributions are considered, see Fig-

ure 3a. The results are compared in terms of maximum ratio between the flexural displacement from nonlocal

wNL (l > 0) and local theories wL (l = 0). These values are reported against the normalized nonlocal param-

eter (l/a)2 in Figure 3 for different sets of boundary condition. Analytical solutions are used as reference to

check the errors. From the figures, one can see that the stiffening behavior shown by the reference solutions

[18] is correctly predicted for all distributions of collocation points. However, some local discrepancies can be

observed when the nondimensional parameter (l/a)2 assumes values close to zero, i.e. in the limiting region

between local and nonlocal theories. In particular, an irregular trend is observed in this range for the Unif

and Rand distributions, while the solution is more regular for the Che-Gau-Lob one. This anomalous behav-

ior is very marked in presence of clamped or free edge conditions, see Figures 3c to 3f. We conjecture that

the problem stems from the nonclassical boundary conditions on high-order bending moments, i.e. Hx = 0

and Hy = 0. Indeed, high-order bending moments have a quadratic dependency on the local parameter l,

see Eqs. (10) and (11). When l approaches to zero, the rows of L associated with the natural boundary

conditions Hx = 0 and/or Hy = 0 see a decrease of their Euclidean norm. This causes a reduction of the rank

of L and a consequent poor conditioning of the least-square problem of Eq. (17). This effect is highlighted

in Figure 4, where the conditioning number of the coefficient matrix, k [L], is presented for the three sets

of boundary conditions, i.e. SSSS, SCSC and CCCC. As seen, an overall increase of the conditioning of the

problem is achieved whenever high-order moments are involved. This effect is particularly marked for values

of l close to zero.

By inspection of Figure 4, one can note that the Che-Gau-Lob grid generally guarantees a better condition-

ality of L. This result is consistent with the findings presented in [36], where a similar study was conducted

for macroscopic plates. The considerations above explain the more stable and regular solution observed for

the Che-Gau-Lob distribution.

3.2.2 Activation functions

Another parametric study is presented in this section to study the effect of changing the activation function

σ in the hidden units. In particular, the plots of Figure 3 are reproduced in Figure 5 using three different

expressions for σ, i.e. σ(s) = tanh(s) ∈ [−1, 1], σ(s) = sigmoid(s) ∈ [0, 1], σ(s) = atan(s) ∈
[
−π/2, π/2

]
,

while the points distribution is kept fixed as the Che-Gau-Lob, see Table 2.

From Figure 5 one can see that the hardening trend of the nanoplate is captured correctly also when different
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activation functions are used. In particular, the PINN generates very similar results when the hyperbolic

tangent and arctangent are adopted. This is due to their similarity in shape which is characterized by a

s-form bounded between a symmetric interval around zero, see Figure 5a. On the other hand, results with

the sigmoid tend to be slightly different and relatively more irregular in some range values of (l/a)2. This

behavior is explained by referring to Figure 6a, which shows the k(L) versus (l/a)2 curves given by the

different activation functions for the specific case of SSSS condition – similar considerations hold for other

boundary conditions. As seen, the adoption of the sigmoid leads to relatively larger conditioning numbers

compared to the hyperbolic tangent and arctangent cases. This is due to the more restricted output range of

the sigmoid, which falls in [0, 1]. By comparison of Figure 5a and Figure 6a one can observe that the output

interval of the activation function has a drastic effect on the conditionality of the resulting least-square

problem. A wider output interval, as for the arctangent, guarantees better conditioning for the coefficient

matrix L.

Despite the relatively higher conditioning numbers, the sigmoid is still able to capture the global solution

accurately. This is seen in Figure 6b, where the displacement field and the relative error distribution

Erel = |wNL − wNL
ref |/wL

ref are plotted for different values of l. For all the cases presented, the relative errors

are always below 10−2 in all the computational domain. These results give evidence of the reliability of

PINNs for the solution of high-order PDEs, even when the training process involves poorly conditioned

matrices.

3.2.3 Network architectures

In this section, the use of different network architectures is explored and their effectiveness in the solution

process is discussed. Three different architectures, here referred as NET1, NET2 and NET3, are proposed

and compared to each other. These network setups differ in the number of hidden neurons Nn and outputs

No, while they share all the other hyperparameters, see Table 2.

The architecture NET1 is recovered from the PINN used in Section 1.1. It has Nn = 1200 hidden neurons

and No = 1 outputs given by u = {w}T. The configuration of NET2 has a number of neuron equal to

Nn = 2400, which is the double with respect to those of NET1. The third network, NET3, is characterized

by the output vector u =
{
w,Mxx,Mxy,Myy

}T
, while its hidden layer has the same height of NET1. For

clarity, a graphical representation of the different architectures is presented in Figure 7a.

Owing to the different choice of network outputs, the residual functions and the boundary conditions have

to be appropriately specified, as per Table 4. A purely displacement-based formulation is employed for

NET1 and NET2, where the output is given by the deflection w. A displacement-stress-based formulation

is obtained in the case of NET3, where the output vector u includes both the deflection and some stress-

related quantities. For this last architecture, the problem formulation has been modified to have also the

three bending moments as field variables. More specifically, the constitutive relations have been added
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in the set of governing equations and the equilibrium condition has been rewritten in terms of moment

resultants. Alternative approaches to formulate strain gradient problems in terms of kinetic variables exist

in the literature. Some examples can be found in [51], where the Airy stress function is used as primary

unknown variable, and in [52], where both kinematic and kinetic fields variables are used to formulate the

elastic problem.

The ratio between the maximum deflections obtained with local and nonlocal theories, wNL/wL, is plotted

in Figures 7b to 7f against the nondimensional parameter (l/a)2. The curves refer to the three different

PINN architectures presented earlier. The results for NET1 and NET2 are exactly the same, meaning that

a number of neurons Nn = 1200 guarantees convergence. The additional neurons of NET2 do not provide

any beneficial effects on the solution.

Looking at Figures 7d and 7e, one can observe that the predictions provided by NET3 are less accurate with

respect to the other networks. This behaviour stems from the additional conditions – the three constitutive

relations – imposed in the plate domain. In particular, the constitutive relations represent extra information

which NET3 has to learn. This makes the training process harder to be carried out compared with the cases

of NET1 and NET2, especially if the same number of neurons is adopted.

In absence of free edge conditions, NET3 provides similar results compared to the other two architectures,

see Figures 7b to 7c and Figure 7f. This can be explained looking at the differential order of the governing

equations. Indeed, a displacement-based formulation leads to a differential problem of order six, irrespectively

on the boundary conditions. On the contrary, the order using a displacement-stress-based formulation is

equal to five in the presence of at least one free edge, and four in all other cases. As it turns out, NET3

is trained with differential equations of two orders lower with respect to NET1 and NET2 when the three

boundary conditions SSSS, SCSC and CCCC, are considered. This enable to counterbalance the higher

number of equations to be handled by NET3.

The comparison in terms of displacements does not reveal any advantage in using NET3. However, the benefit

of a displacement-stress-based formulation can be fully appreciated by inspection of force-related quantities,

see Figure 8, where the moment resultants Mxx and Myy are plotted versus (l/a)2 for SCSC boundary

conditions. Here NET3 provides more regular trends and closer agreement to the reference solutions with

respect to NET1 and NET2. Indeed, the bending moments are directly available as an output of the network

and do not require any derivative to be computed in the post-processing phase.

The results of this parametric study illustrate that the definition of an optimal network architecture is

problem-dependent, and has to be found on the basis of the boundary conditions and the results of interest,

e.g. displacements or stresses. In the context of the proposed framework, switching from one architecture

to another is a relatively simple task, so the method offers a great degree of flexibility in handling different

kind of plate problems.
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3.3 Performance evaluation

A comparison in terms of accuracy and efficiency with state-of-the-art numerical methods is presented in

this section. The performance of our PINN method is assessed against two different FE-based approaches to

solve strain gradient nanoplates available in the literature. The first FE method has a formulation based on

conforming elements (FEM1), while the second one on non-conforming elements (FEM2). In the following

study, the solutions presented for FEM1 and FEM2 are referred to a numerical model with a mesh size of

32× 32 [23].

The nanoplate considered for this study has the same characteristics of the ones presented in Section 3.1. The

aspect ratio is fixed to b/a = 1, while the boundary conditions are of type SSSS. The network architecture and

hyperparameters are chosen based on the parameter studies conducted in Section 3.1, and are summarized

in Table 2.

Results are presented in Table 5 in terms of computational times and percentage errors for different values

of the length scale parameter. It can be observed that among the methods the PINN approach achieves the

highest accuracy at the lowest computational cost. More specifically, the computational time of PINNs is

almost haft of the one of FEM1 and one fourth of FEM2.

The superior effectiveness of PINNs relies on two main aspects. One is their meshfree nature which eliminates

any sort of domain discretization for the approximation of the unknown fields. Differently from FE-based

approaches, the enforcement of inter-element continuity of displacements and their derivatives is not required

here. This gives a greater flexibility when one wants to refine the solution. In the present framework, solution

refinement is performed by simply increasing the number of neurons and collocation points.

The other aspect regards the adoption of the ELM which permits to have a much faster learning process

compared with standard GBL approaches. This allows ML practitioners to finally break the computational

barrier set by the training process which hinders many existing PINN-based methods [37–39]. In this regard,

a drastic saving in computational times can be achieved thanks to ELM, as training is accomplished in a

single step through solution of the least-square problem in Eq. (17).

This study provides clear evidence of the potentiality offered by PINNs and the ELM for the direct solution

of PDEs. For example, the improved efficiency of the PINN-ELM framework can be exploited to perform

parametric analysis to study the effect of geometric and mechanical parameters on the nanoplate response.

This can be performed without the need of ML concepts such as Transfer Learning (TL), typically employed

in PINN-GBL approaches to accelerate training [53]. Moreover, our framework is so flexible that can be

generalized to any mathematical model, ranging from CCTs to NCTs, as well as from nanobeam models to

nanoplate/nanoshell models.
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3.4 Parameters identification

This section discusses the application of PINNs for solving inverse problems. The structure under investiga-

tion is a nanoplate loaded with a uniform pressure q and constrained at the four edges with simply-supported

conditions (SSSS). The known parameters of the mathematical model are the dimensions of the plate, a = 10

nm, b = 20 nm, h = 0.34 nm, and the elastic properties of the material, E = 1100 MPa, ν = 0.3. The

identification of the nonlocal parameter l is discussed starting from the knowledge of its governing equa-

tions, Eq. (12), along with available data measurements
{
xp,u

∗
p

}T

. In this study, these measurements are

artificially generated in a number of points by solving the same problem with a white-box approach and

fixing l = 1 nm. This value of the length scale parameter has been arbitrary chosen for the inverse problem,

however in practice its value is determined from experimental studies.

The identification is performed by means of a PINN with a single-hidden-layer architecture with Nn = 1000

and one single output u = {w}T. The set of training points is built with a uniform grid of Nc = 30 × 30

collocation points and Nu = 3000 artificial measurements randomly distributed in the domain, see Table 2.

A random noise
{
xk, w

∗
k + nk

}T
(k = 1, ..., Nu) is superposed to the measures in order to simulate more

realistic working conditions. In order to test the robustness of PINN, the inverse problem is solved by

considering: different initial guesses for the unknown parameter l(0); different levels of noise, quantified as:

n% = max
(
|w∗

k − nk|
)
/max

(
w∗

k

)
× 100.

In Figure 9 the evolution of the training process is illustrated in terms of loss function ratio L(t)/L(0) and

error fraction l(t)/ltrue. In absence of noise, n% = 0, the PINN correctly identifies the unknown parameter l

with an error percentage of the order of 1% − 2%. A summary of the results is available in Table 6, where

the training outcome is reported in terms of loss function, fraction error and iterations. As seen, the training

process requires few iterations to reach convergence when the initial guess is close the actual value. For

instance, just 2 iterations are required when l(0)/ltrue = 0.9. The number of iterations tends to increase as

the ratio l(0)/ltrue gets larger. Examples are given by l(0)/ltrue = 1.5 and l(0)/ltrue = 3.0, where convergence

is reached after 3 and 5 iterations, respectively. In other cases, the training process gets stacked in local

minima, see the results for l(t)/ltrue = 0.3, while no convergence is achieved when l(t)/ltrue = 0.1. It is there-

fore necessary to repeat the identification process with different initializations of the unknown parameter

in order to be confident with the solution found. This aspect represents clearly a limitation of the present

machine learning approach when solving inverse problems. Despite this, the correct solution can generally

be found unless the initial guess is too far away from the actual value.

A general worsening of the identified parameter is observed when the measures are affected by noise, see

Figures 9b to 9c and Figures 9e to 9f. Starting from an initialization l(0)/ltrue = 1.5, the loss function

ratio at convergence increases of one order of magnitude for n% = 1%, and of two orders for n% = 3%.

The introduction of noise also affects the number of iterations to reach convergence, as clear from Table 6.

These results demonstrate the importance of the quality of measures in the identification process. Poor
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measures may lead to poor parameter identification. However, a certain degree of robustness is exhibited by

PINNs, which lead to relatively accurate identifications, i.e. errors below 2%, for noise amplitudes equal to

n% = 1%.

The identification approach presented above can be generalized to any nanoplate models with an arbi-

trary number of independent length scale parameters. The optimal value of these parameters, for different

materials/geometries/boundary conditions, can be identified by a PINN trained with the equations of the

mathematical model and the solution data Nu. Despite in this study solution data were artificially generated

from the same mathematical model, in real situations they can represent experimental measurements and/or

results coming from molecular mechanics simulations.

4 Conclusions

The present paper has shown an application of PINNs for the bending analysis of thin nanoplates. PINNs

are a new family of ANNs which can incorporate the PDEs of a mathematical model in their training process

and some data coming from the physical process under investigation. The result is a hybrid approach which

puts together features of conventional numerical methods and ML techniques.

Applications of this new framework are illustrated for two different problems. The first one deals with the

direct solution of the nanoplate bending problem. In this regard, the governing equations are derived within

the context of the second-order negative strain gradient theory. In the second application, PINNs are used

to solve an inverse problem where the nonlocal parameter l is uncertain. The identification is carried out

relying upon some data bearing information on the flexural response of the nanoplate.

In both example of applications, PINNs demonstrates to be an effective and robust approach. In particular,

for the direct problem the stability and reliability of the method was tested considering different combi-

nations of hyperparameters and networks architectures. It was found that a certain degree of tuning is

required to have a properly trained network. This makes this approach less user-friendly if compared with

other methods, such as finite elements. However, we have also demonstrated that once a suitable network

setup is found our approach can outperform well-established numerical methods in terms of accuracy and

efficiency.

Regarding the inverse problem, the sensibility of PINNs to data noise and solution initialization was as-

sessed. It was shown that the quality of training data and the choice of initial guess for the unknown model

parameters have a certain influence on the training outcomes. In spite of this, the present method is still

capable of performing successfully the identification task, even if data are noisy and the starting guess of

unknown parameter is very different from the actual one. This is possible thanks to the exploitation of the

physics information of the problem which plays a regularization effect whenever the available knowledge is

limited or even partially incorrect.
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We are confident that the powerful combination of PINNs and ELM can be exploited in future for appli-

cations such as structural analysis, design, as well as model identification of more complex nano-structural

members, such as laminated nanoplates and nanoshells. Future works will address these aspects.
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[43] Akgöz B and Ömer C. Analysis of micro-sized beams for various boundary conditions based

on the strain gradient elasticity theory. Archive of Applied Mechanics 2012, 82(3):423–443,

https://doi.org/10.1007/s00419-011-0565-5.

21
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Table 1: Boundary conditions.

Edges i Edges j

Classical Non-classical Classical Non-classical

F Vy = 0 Vx = 0

My = 0 Mx = 0

Hy = 0 Hx = 0

S w = 0 w = 0

My = 0 Mx = 0

∂2w
∂y2 = 0 ∂2w

∂x2 = 0

C w = 0 w = 0

∂w
∂y

= 0 ∂w
∂x

= 0

Hy = 0 Hx = 0
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Table 2: Hyperparameters settings for the different problems: validation (P1), parametric studies on col-

location points distributions (P2.1), activation functions (P2.2), network architectures (P2.3), performance

evaluation (P3), and identification (P4).

Problem Network architecture Activation Data number Data distribution

[Ni/Nn/No] Output σ(s) [Nu/Nc] Solution Collocation

P1 [2/1200/1] {w}T tanh [0/900] - Che-Gau-Lob

P2.1 [2/1200/1] {w}T tanh [0/900] - Che-Gau-Lob

[2/1200/1] {w}T tanh [0/900] - Unif

[2/1200/1] {w}T tanh [0/900] - Rand

P2.2 [2/1200/1] {w}T tanh [0/900] - Che-Gau-Lob

[2/1200/1] {w}T atan [0/900] - Che-Gau-Lob

[2/1200/1] {w}T sigmoid [0/900] - Che-Gau-Lob

P2.3 [2/1200/1] {w}T tanh [0/900] - Che-Gau-Lob

[2/2400/1] {w}T tanh [0/900] - Che-Gau-Lob

[2/1200/1] {w,Mxx,Myy ,Mxy}T tanh [0/900] - Che-Gau-Lob

P3 [2/1200/1] {w}T tanh [0/900] - Che-Gau-Lob

P4 [2/1000/1] {w}T tanh [3000/900] Rand Unif
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Table 3: Nondimensional deflection, α = 1000Dwmax/(qa
4), under uniform distributed pressure q for a

rectangular Kirchhoff nanoplate with different boundary conditions and aspect ratios b/a.

b/a = 1 b/a = 2 b/a = 3

l(nm) PINN Analytical E% PINN Analytical E% PINN Analytical E%

SSSS 0.0 4.0624 4.0624 -0.0012 10.1287 10.1287 -0.0004 12.2328 12.2328 0.0002

0.2 4.0331 4.0330 0.0014 10.0829 10.0833 -0.0036 12.1797 12.1839 -0.0343

0.5 3.8844 3.8844 0.0006 9.8502 9.8502 0.0004 11.9323 11.9324 -0.0008

1.0 3.4231 3.4231 0.0003 9.0886 9.0886 -0.0001 11.1046 11.1046 0.0004

SCSC 0.0 1.9171 1.9171 0.0021 8.4450 8.4450 0.0002 11.6813 11.6813 0.0001

0.2 1.8796 1.8783 0.0700 8.4128 8.3887 0.2871 11.6364 11.6286 0.0673

0.5 1.7093 1.7093 0.0009 8.1145 8.1145 -0.0005 11.3614 11.3623 -0.0083

1.0 1.3040 1.3040 -0.0035 7.2820 7.2820 0.0003 10.5039 10.5039 0.0000

SFSF 0.0 15.0113 15.0113 -0.0003 15.2022 15.2022 -0.0001 15.2180 15.2181 -0.0003

0.2 14.9477 14.9470 0.0048 15.1420 15.1373 0.0314 15.1580 15.1532 0.0314

0.5 14.6165 14.6165 -0.0002 14.8041 14.8040 0.0006 14.8197 14.8196 0.0009

1.0 13.5415 13.5415 -0.0003 13.7212 13.7211 0.0005 13.7361 13.7361 0.0001

SCSF 0.0 11.2359 11.2359 0.0004 14.9491 14.9491 0.0000 15.2034 15.2035 -0.0004

0.2 11.1716 11.1703 0.0121 14.8903 14.8838 0.0439 15.1433 15.1385 0.0320

0.5 10.8453 10.8454 -0.0006 14.5494 14.5493 0.0004 14.8046 14.8049 -0.0022

1.0 9.8416 9.8416 -0.0002 13.4658 13.4658 -0.0001 13.7212 13.7212 -0.0001

CCCC 0.0 1.2653 1.2653 0.0015 2.5330 2.5330 -0.0016 2.6172 2.6172 0.0013

0.2 1.2351 1.2333 0.1480 2.4862 2.4861 0.0023 2.5713 2.5706 0.0286

0.5 1.0979 1.0979 0.0020 2.2799 2.2799 0.0012 2.3634 2.3639 -0.0208

1.0 0.7946 0.7946 0.0057 1.7741 1.7741 -0.0017 1.8518 1.8518 -0.0017
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Table 4: Mathematical model definition for different formulations.

Displacement formulation: u = {w}T Displacement-stress formulation: u =
{
w,MxxMxy ,Myy

}T

R : Equilibrium condition: Equilibrium condition:

D∇4w − l2D∇6w − q = 0 ∂2Mxx
∂x2 + 2

∂2Mxy

∂x∂y
+

∂2Myy

∂y2 + q = 0

Constitutive relations:

Mxx +D
[
∂2w
∂x2 + ν ∂2w

∂y2

]
+

−l2D
[
∂4w
∂x4 + ν ∂4w

∂y4 + (3− ν) ∂4w
∂x2∂y2

]
= 0

Myy +D
[
ν ∂2w

∂y2 + ∂2w
∂x2

]
+

−l2D
[
ν ∂4w

∂y4 + ∂4w
∂x4 + (3− ν) ∂4w

∂x2∂y2

]
= 0

Mxy + (1− ν)D ∂2w
∂x∂y

+

−l2 (1− ν)D
(

∂4w
∂x3∂y

+ ∂4w
∂x∂y3

)
= 0

B : Condition on transverse shear (Vx, Vy): Condition on transverse shear (Vx, Vy):

D
[
∂3w
∂x3 + (2− ν) ∂3w

∂x∂y2

]
+ D

[
∂3w
∂x3 + (2− ν) ∂3w

∂x∂y2

]
+

−l2D
[
∂5w
∂x5 + 3 ∂5w

∂x3∂y2 + (3− ν) ∂5w
∂x∂y4

]
= 0 −l2D

[
∂5w
∂x5 + 3 ∂5w

∂x3∂y2 + (3− ν) ∂5w
∂x∂y4

]
= 0

D
[
∂3w
∂y3 + (2− ν) ∂3w

∂x2∂y

]
+ D

[
∂3w
∂y3 + (2− ν) ∂3w

∂x2∂y

]
+

−l2D
[
∂5w
∂y5 + 3 ∂5w

∂x2∂y3 + (3− ν) ∂5w
∂x4∂y

]
= 0 −l2D

[
∂5w
∂y5 + 3 ∂5w

∂x2∂y3 + (3− ν) ∂5w
∂x4∂y

]
= 0

Condition on bending moments (Mxx,Myy): Condition on bending moments (Mxx,Myy):

−D
[
∂2w
∂x2 + ν ∂2w

∂y2

]
+ Mxx = 0

+l2D
[
∂4w
∂x4 + ν ∂4w

∂y4 + (3− ν) ∂4w
∂x2∂y2

]
= 0

−D
[
ν ∂2w

∂x2 + ∂2w
∂y2

]
+ Mxx = 0

+l2D
[
ν ∂4w

∂x4 + ∂4w
∂y4 + (3− ν) ∂4w

∂x2∂y2

]
= 0

Condition on high-order bending moments (Hx, Hy): Condition on high-order bending moments (Hx, Hy):

l2D
(

∂3w
∂x3 + ν ∂3w

∂x∂y2

)
= 0 l2D

(
∂3w
∂x3 + ν ∂3w

∂x∂y2

)
= 0

l2D
(

∂3w
∂y3 + ν ∂3w

∂x2∂y

)
= 0 l2D

(
∂3w
∂y3 + ν ∂3w

∂x2∂y

)
= 0
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Table 5: Comparison between PINN, FEM with nonconforming and nonconforming elements for a rectan-

gular Kirchhoff nanoplate with SSSS boundary conditions and aspect ratios b/a = 1.

l (nm) Analytical PINN FEM1 FEM2

α (E%) 0.0 4.0624 (-) 4.0624 (-0.0012) 4.0624 (0.0000) 4.0624 (0.0000)

0.2 4.0330 (-) 4.0331 ( 0.0014) 4.0332 (0.0050) 4.0331 (0.0025)

0.5 3.8844 (-) 3.8844 ( 0.0006) 3.8856 (0.0309) 3.8845 (0.0026)

1.0 3.4231 (-) 3.4231 ( 0.0003) 3.4271 (0.1169) 3.4233 (0.0058)

CPU (s) 12.6606 23.2037 49.2881
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Table 6: Identification of nonlocal parameter l.

n% = 0% n% = 1% n% = 3%

l(0)/ltrue L(t) l(t)/ltrue t L(t) l(t)/ltrue t L(t) l(t)/ltrue t

0.1 - - - - - - - - -

0.3 8.71e-05 0.7693 6 12.83e-05 0.7215 6 25.64e-05 0.6868 7

0.9 1.33e-05 1.0157 2 6.37e-05 0.9787 3 18.79e-05 0.8618 4

1.5 0.88e-05 1.0176 3 6.19e-05 0.9805 4 18.67e-05 0.8680 5

3.0 0.66e-05 1.0180 5 6.08e-05 0.9830 5 17.63e-05 0.8642 6

28



Figure 1: Nanoplate geometry and reference system.
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Figure 2: Neural Network: architecture, layers and neurons.

30



(a) Collocation points distribution. (b) Boundary conditions: SSSS. (c) Boundary conditions: SCSC.

(d) Boundary conditions: SFSF. (e) Boundary conditions: SCSF. (f) Boundary conditions: CCCC.

Figure 3: Parametric study on distribution of collocation points.
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(a) Boundary conditions: SSSS. (b) Boundary conditions: SCSC. (c) Boundary conditions: CCCC.

Figure 4: Dependency of the condition number of coefficient matrix on local paramater.
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(a) Activation functions. (b) Boundary conditions: SSSS. (c) Boundary conditions: SCSC.

(d) Boundary conditions: SFSF. (e) Boundary conditions: SCSF. (f) Boundary conditions: CCCC.

Figure 5: Parametric study on activation functions.
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(a) (b)

Figure 6: (a) Dependency of the condition number of coefficient matrix on local paramater for boundary

conditions SSSS, and (b) solution outcome for different values of nonlocal parameter using the sigmoid

activation function.
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(a) Network architectures. (b) Boundary conditions: SSSS. (c) Boundary conditions: SCSC.

(d) Boundary conditions: SFSF. (e) Boundary conditions: SCSF. (f) Boundary conditions: CCCC.

Figure 7: Parametric study on network architectures.
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(a) (b)

Figure 8: Bending moments predictions for different values of nonlocal parameter: (a) Mxx and (b) Myy.
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(a) Noise level: n% = 0%. (b) Noise level: n% = 1%. (c) Noise level: n% = 3%.

(d) Noise level: n% = 0%. (e) Noise level: n% = 1%. (f) Noise level: n% = 3%.

Figure 9: Evolution of the training process in terms of loss function ratio (a)-(c) and error fraction (d)-(f)

for different levels of noise .
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