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Abstract: Recent studies have investigated muscle synergies as biomarkers for stroke, but it remains
controversial if muscle synergies and clinical observation convey the same information on motor
impairment. We aim to identify whether muscle synergies and clinical scales convey the same
information or not. Post-stroke patients were administered an upper limb treatment. Before (T0) and
after (T1) treatment, we assessed motor performance with clinical scales and motor output with EMG-
derived muscle synergies. We implemented an exploratory factor analysis (EFA) and a confirmatory
factor analysis (CFA) to identify the underlying relationships among all variables, at T0 and T1, and a
general linear regression model to infer any relationships between the similarity between the affected
and unaffected synergies (Median-sp) and clinical outcomes at T0. Clinical variables improved
with rehabilitation whereas muscle-synergy parameters did not show any significant change. EFA
and CFA showed that clinical variables and muscle-synergy parameters (except Median-sp) were
grouped into different factors. Regression model showed that Median-sp could be well predicted by
clinical scales. The information underlying clinical scales and muscle synergies are therefore different.
However, clinical scales well predicted the similarity between the affected and unaffected synergies.
Our results may have implications on personalizing rehabilitation protocols.

Keywords: muscle synergies; sEMG; stroke; factor analysis

1. Introduction

The execution of voluntary movement is based on the functional integration of dif-
ferent areas of the central nervous system (CNS) that send descending neural signals to
the spinal interneurons and motoneurons to generate specific motor behaviors. Currently,
the mechanisms that allow the CNS to control a large-dimensional system and coordinate
many muscles consisting of thousands of motor units are still a matter of debate [1]. In
describing voluntary movement, it is common to refer to the term “synergies”. However,
this term may have several and different meanings, according to the context: indeed, the
term synergy can refer to a coherent activation of a group of muscles, but it is also used
with a negative connotation to describe abnormal motor patterns due to brain lesions [2].
There is also a third way of using the term synergies, commonly used to refer to a motor
control model. Indeed, among the many existing models [3,4], it has been proposed that the
CNS manages this complexity through a linear combination of fixed spinal modules, each
one activating groups of muscles as a single functional unit, called muscle synergies [5–7].
Muscle synergies are obtained by decomposing surface electromyography (sEMG) into two
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components: vectors of fixed weights, representing the muscle synergies, and time-varying
signals, representing the neural command for the synergies [8].

The activation and organization of muscle synergies are altered after stroke, causing a
dysfunctional execution of voluntary movement. Early studies demonstrated that, after
stroke, muscle synergies remain robust between affected and healthy arms and across
subjects [9]. However, a different motor performance is observed, since abnormal motor
behaviors are generated through faulty activations of the spinal modules [10,11]. The faulty
activations can be generally described in terms of merging [12,13] or fragmentation [14]
of the healthy muscle synergies. The degree of merging and fragmentation have been
demonstrated to be proportional to the severity of motor impairment and the temporal
distance from stroke onset, respectively [15].

Recent studies investigated muscle synergies as a physiological marker to assess the
motor performance and recovery after stroke [14,16]. This is required because neural
deficits may be masked at the functional and kinematic level by compensatory strategies,
and the same motor task can be achieved by many different coordination patterns. How-
ever, it remains controversial if the use of muscle synergies can overcome these limitations,
or if muscle synergies and clinical observation convey the same information on motor im-
pairment [17]. Early studies provided evidence that muscle synergies were more adequate
to capture the complexity of motor behavior than clinical scales [18]. However, some recent
studies showed controversial results. In a study where muscle synergies were adopted
to stratify stroke patients, synergies distributed coherently according to the Fugl-Meyer
scale and Reaching Performance Scale, indicating that synergies convey similar underlying
information [19]. Some other studies showed that muscle synergies and clinical scales
were weakly correlated, and that stroke does not affect the inner structure of synergies, but
rather their temporal recruitment [20,21]. There has also been evidence that synergies can
improve in terms of their timing and organization by specific targeted therapies, including
robot therapy or virtual reality treatment [15,22,23].

In rehabilitation medicine, the implication of muscle synergies should be considered
as a marker of motor recovery, after a specific training for upper limb rehabilitation. Recent
studies reveal there is increasing evidence demonstrating the efficacy of VR-based treatment
for recovery of upper limb motor functions that facilitate the motor recovery thanks to
the reinforced feedback mechanism [24]. Furthermore, it was demonstrated that after a
VR treatment, patterns of cortical activation became physiologically more similar to the
healthy ones, because the patterns of activations in the lesioned hemisphere were less
sparse and more focused on the proper motor areas [25]. These results call into question if
an underlying latent information is shared between muscle synergies and clinical scales.

The aim of this study was to identify and describe, in stroke survivors referred to
upper limb treatment, whether motor output, as described by muscle synergies, and
motor performance, quantified by clinical scales, convey the same information or provide a
complementary one. For this purpose, a new set of variables was obtained as a combination
of all the original ones by using a factor analysis. Then, we investigated whether synergies
and clinical parameters belong to different components or if they convey to shared ones.
In the former case, it may indicate that the two groups of variables provide different
information, whereas in the latter case, there may be some muscle synergies and clinical-
scale parameters that convey the same information.

2. Materials and Methods
2.1. Participants

A cohort of post-stroke patients from San Camillo IRCCS s.r.l. Hospital was recruited
from a sample enrolled to participate in a multicenter clinical trial (Clinical Trial identifier:
NCT03530358). We considered all patients hospitalized with diagnosis of ischemic or
hemorrhagic first stroke in the territory of the middle cerebral artery (MCA).

Specifically, the following criteria were defined to recruit the patients able to perform
a virtual reality treatment for upper limb motor recovery. The study included patients
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with a motor arm sub-score of the Italian version of the National Institute of Health Stroke
Scale [26] between 1 and 3, that indicated the maintenance of residual voluntary motor
activity. The following conditions were considered as exclusion criteria: (1) moderate cog-
nitive decline defined by a Mini Mental State Examination (MMSE) [27] score lower than
20/30 points; (2) severe verbal comprehension deficits, defined by a number of errors >13
on the Token Test [28]; (3) evidence of apraxia and visuospatial neglect that could interfere
with movements of the upper limb in all directions within the visual field, evaluated by neu-
rological examination; (4) history of behavioral disorders (e.g., depression, aggressiveness,
apathy) and neurological or vascular comorbidity (e.g., diabetes, myocardial infarction,
Parkinson’s disease) that could affect the compliance with the rehabilitation programs.

The study was reviewed and approved by the local Ethical Committee of the IRCCS
San Camillo Hospital s.r.l. All participants were adequately informed about aims and
modalities of the study and provided an informed written consent.

2.2. Study Design

We designed a single-group longitudinal study. At the enrolment time point, a
detailed review of the medical history of each patient was collected. Then, we administered
a treatment consisting of 20 sessions of upper limb exercises in a virtual reality environment.
To define the effect of therapy, residual motor functions were clinically and instrumentally
evaluated before and after the treatment: clinical assessment consisted of standardized
scales to quantify residual motor capabilities, whereas instrumental assessment consisted
of the surface electromyography (sEMG) recording during the execution of motor tasks to
compute muscle synergies.

2.2.1. Clinical Assessment

The motor capabilities were clinically assessed with the following three outcome
measures: the Modified Ashworth Scale (MAS) [29] to assess the muscle spasticity; the
Fugl-Meyer Assessment scale for the upper limb (UE-FMA) [30], to determine the severity
of motor impairment in hemiparetic limb, and the Reaching Performance Scale (RPS) [31]
to identify and quantify movements patterns during reach-to-grasp tasks.

2.2.2. sEMG Recording and Muscle Synergies

To extract the upper limb muscle synergies, we recorded the sEMG from 16 muscles
from both the unaffected and the stroke-affected sides during the execution of a standard
section of seven visuo-motor tasks in a virtual environment. Indeed, subjects executed
seven standardized motor tasks, each repeated 10 times, by interacting with a Virtual
Reality Rehabilitation System (VRRS®, Khymeia Group Ltd., Noventa Padovana, Italy). In
VRRS®, the patients interacted with a VR environment by means of a 3D motion-tracking
system (Polhemus 3Space FasTrack, Polhemus, Colchester, VT, USA, sampling frequency
of 120 Hz) fixed on the back of the hand. At the beginning of each VRRS® exercise, a
trigger signal was sent to an sEMG amplifier (EMG-USB2+, OT Bioelettronica, Torino,
Italy, sampling frequency of 2000 Hz) instrumented with 72001-K/12 electrodes (AMBU
Neuroline, Ballerup, Denmark) to synchronize the kinematics with the sEMG [24,32,33].
The same seven tasks were proposed for both arms, except that the trajectories were
mirrored according to the limb side. To facilitate the comprehension of the tasks and to
reduce possible subject’s frustration, the unaffected arm was recorded first, followed by
the affected arm.

Electrodes were placed according to the Surface Electromyography for the Non-
Invasive Assessment of Muscles (SENIAM) recommendations for skin preparation, place-
ment, fixation, and testing of the sensor and its connection [34]. sEMG was recorded from
the following 16 muscles: triceps brachii (medial head; lateral head); biceps brachii (short
head; long head); deltoideus anterior; deltoideus medius; deltoideus posterior; trapezius
superior; rhomboid major; brachioradialis; supinator; brachialis; pronator teres; pectoralis
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major (clavicular head); infraspinatus; teres major. In the case that SENIAM recommenda-
tions were not available for a muscle, standard clinical procedures were followed [35].

The sEMG preprocessing and muscle synergies extraction followed the procedure
fully described elsewhere [9,14]. Muscle synergies were extracted for the affected and
unaffected arms separately. Initially, sEMG of each task were combined into an m × t
matrix, where m indicates the number of muscles and t indicates the time samples. sEMG
of each row in the matrix were preprocessed as follows: band-pass filtered (10–500 Hz),
normalized to the unit variance, rectified, low-pass filtered to 12 Hz. Muscle synergies
were extracted from 1 to 16 iteratively by decomposing the processed sEMG with the
nonnegative matrix factorization (NMF) algorithm [36]. The number of synergies was
chosen with a cross-validated EMG reconstruction factor R2 for > 90%.

From the muscle synergies of each subject, we computed the following parameters:
(i) the number of synergies of the affected limb (N-aff); (ii) the number of synergies of
the unaffected limb (N-ctrl); (iii) the number of synergies of the affected limb and of the
unaffected limb analytically similar, with values of scalar product above 0.8 recognized as
similar [37] (“Synergies shared”, N-sh); (iv) the ratio between N-sh and N-aff (Nsh-naff);
(v) the ratio between N-sh and N-ctrl (Nsh-nctrl); (vi) the median scalar product between
the affected and unaffected synergies (Median-sp); (vii) the mean number of unaffected
synergies merging in every affected synergy (P1) (See [14]; Supporting Information).

2.2.3. Rehabilitation Treatment

The rehabilitation treatment consisted of 20 sessions of one hour each, five sessions
per week, 4 weeks total. To avoid discontinuity and comparable treatment intensity, at
least three sessions per week were administered. Patients who performed less than 80% of
the planned sessions (<16/20 sessions) were excluded from the subsequent analysis.

During each session, patients were asked to perform a defined set of exercises, includ-
ing shoulder flexion–extension, abduction–adduction, internal–external rotation, circum-
duction, elbow flexion–extension, forearm pronation–supination, and hand–digit motion.
The physical therapist was constantly present during the session, providing instructions
according to specific patients’ residual abilities and needs.

2.3. Statistical Analysis
2.3.1. Sample Characteristics

Initially, to define the sample size of the trial, we consulted previous proof-of-concept
studies: they demonstrated that a sample of 20 patients are appropriate to obtain significant
results [9,14]. Thus, with the aim to improve the statistical power of our analysis, we
proposed to enroll 50 patients at least.

Firstly, descriptive statistics (i.e., median, interquartile range, mean, standard devia-
tion, and percentage) were used to describe the demographic, clinical, and muscle synergies
characteristics of the sample.

To verify whether there was a change in motor performance, we compared the values
of the pretreatment (T0) with post-treatment (T1) clinical and instrumental variables by
a paired t-test or Wilcoxon test, according to data normality distribution tested by the
Shapiro–Wilk test.

Furthermore, we investigated potential associations among clinical outcomes (i.e.,
MAS, UE-FMA, RPS scores) and synergy parameters (i.e., N-aff, N-ctrl, N-sh, Nsh-nctrl,
Nsh-naff, Median-sp, P1) by means of correlation test at T0 and T1 (i.e., Pearson correlation
test or Spearman’s rank correlation test) with a significant level of correlation defined at
R2 > 0.3.

Finally, the factorability of the data was examined by studying data sphericity with
the Bartlett’s test (p < 0.05) [38] and data multicollinearity with the Kaiser–Meyer–Olkin
measure of sampling adequacy (MSA, threshold of acceptability MSA > 0.50) [39].
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2.3.2. Exploratory Factor Analysis

We implemented an exploratory factor analysis (EFA) to identify the underlying rela-
tionships among all variables (EFA-All). Moreover, to investigate if the time of assessment
(i.e., T0 and T1) was a parameter influencing the results, two independent models were
implemented for variables acquired at T0 (EFA0) and T1 (EFA1).

To obtain each EFA model, we chose the number of latent factors [40] with the follow-
ing two methods [41]: principal component analysis (PCA) [42] and principal axis factoring
(PAF) [43]. We selected the most informative factors by means of the Gorsuch approach,
which includes Horn’s parallel analysis, Cattell’s scree plots, and Kaiser criterion [44].
Once we found the number of factors, a common factor model was extracted with the
principal axis (PA) method [45,46]. The model was rotated with oblique rotation methods
(e.g., promax) [47] according to the presence of correlation between the factors [48]. Finally,
we selected the most significative variables that comprised each factor according to the
following criteria [43,49]: 1) factor loadings (FL) (FL > 0.3); 2) communalities, namely,
common variance (h2 > 0.20); and 3) factors correlations (correlations r < 0.85).

2.3.3. Confirmatory Factor Analysis

For each EFA model, a confirmatory factor analysis (CFA) was conducted to verify the
factor structure of the observed variables (i.e., CFA-All, CFA0, CFA1). For this purpose,
structural equation modeling (SEM) with a maximum likelihood estimation model and
standardized coefficients (significative factor loadings FL > 0.3 or FL < −0.3) were used.
Observations with missing values were excluded [50]. We assessed SEM model fitting by
using the following indices [51,52]: the χ2 test, the comparative fit index (CFI), Tucker-
Lewis index (TLI) [53,54], and root mean-squared error of approximation (RMSEA) [55,56].
The CFA model fitted the original data if the indices met the following criteria: a significant
χ2 value indicating a bad model fit; a RMSEA value ≤ 0.05 was considered indicative of
“good fit”; the CFI and TLI were considered acceptable for values >0.95 [57–59].

2.3.4. General Linear Regression Model

As a final analysis, we implemented a general linear regression model to infer any
potential causal relationships between the synergy parameters (dependent variable) and
clinical outcomes (MAS, UE-FMA, RPS as independent variables) falling in the same factor.
The statistical power of the CFA analysis was calculated with a post hoc power analysis
based on the RMSEA.

The statistical significance level was set to 0.05 for all tests. All statistical analyses
were performed using the free software R Studio [60].

3. Results
3.1. Sample characteristics

After the enrolment, 50 subjects completed the entire treatment. Table 1 summarizes
demographic characteristics of the entire sample.

Table 1. Demographic and clinical characteristics of the patients.

Patients (N = 50)

Sex, males/females, n (%) 33 (66%)/17 (34%)
Age, years, mean ± SD 63.62 ± 12.29

Diagnosis, ischemic/hemorrhagic, n (%) 45 (90%)/5 (10%)
Hemisphere, left/right, n (%) 25 (50%)/25 (50%)

Time-stroke, months, mean ± SD 6.99 ± 13.07
0–3 months, n, mean ± SD 15, 2.32 ± 0.42
3–6 months, n, mean ± SD 17, 4.25 ± 0.87
>6 months, n, mean ± SD 18, 20.61 ± 19.83

Values are expressed as mean ± standard deviation (SD) for quantitative measures, and frequency percentages
(%) for all discrete variables.
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After inferential analysis, two out three clinical outcomes improved significantly: the
UE-FMA score improved by 6% (T0, UE-FMA mean = 117.2; T1, UE-FMA mean = 124.26),
and the RPS score improved by 4% (T0, RPS mean = 25.4; T1, RPS mean = 26.46). Conversely,
synergies parameters revealed no significant change after the treatment. Table 2 reports the
clinical outcomes and parameters related to the muscle synergies.

Table 2. Clinical outcomes and parameters related to synergies.

Clinical
Parameters

T0 T1 p Value
Median [IQR] Mean ± SD Median [IQR] Mean ± SD

MAS 1 [2.75] 1.92 ± 2.69 0.5 [2] 1.60 ± 2.44 0.098
UE-FMA 125.5 [34.75] 117.20 ± 24.57 131.5 [33.25] 124.26 ± 25.41 <0.001 *

RPS 30 [6] 24.4 ± 11.19 17 [6] 26.46 ± 12.25 <0.001 *

Synergies
Parameters

T0 T1 p Value
Median [IQR] Mean ± SD Median [IQR] Mean ± SD

N-aff 8 [1] 8.42 ± 1.40 8 [2] 8.20 ± 1.47 0.289
N-ctrl 8 [2] 7.86 ± 1.31 8 [1.75] 7.84 ± 1.22 0.855
N-sh 6 [2] 6.24 ± 1.39 6 [2] 6.12 ± 1.36 0.456

Nsh-naff 0.75 [0.13] 0.74 ± 0.12 0.78 [0.22] 0.75 ± 0.13 0.616
Nsh-nctrl 0.79 [0.16] 0.79 ± 0.12 0.78 [0.14] 0.78 ± 0.12 0.432

Median-sp 0.93 [0.04] 0.92 ± 0.04 0.94 [0.05] 0.93 ± 0.03 0.056
P1 1.19 [0.58] 1.25 ± 0.39 1.24 [0.44] 1.24 ± 0.34 0.913

Values are expressed as median [IQR] and mean ± SD; IQR = interquartile range; SD = standard deviation; * p values < 0.05; Wilcoxon test.

Moreover, correlation analysis showed that some of the clinical scales were signifi-
cantly correlated with some muscle synergy parameters. Specifically, there was a positive
correlation between MAS and N-aff (R2 = 0.37 at T0; R2 = 0.34 at T1). Moreover, the clinical
scale UE-FMA and RPS correlated positively both with Nsh-naff after treatment (UE-FMA,
R2 = 0.37 and RPS, R2 = 0.53 at T1) and with Median-sp (UE-FMA, R2 = 0.47 and RPS,
R2 = 0.49 at T0) (UE-FMA, R2 = 0.51 and RPS, R2 = 0.54 at T1). Figure 1 summarizes the
correlation coefficients between clinical outcomes and synergies parameters, at T0 and
T1, separately.
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Figure 1. Correlation between clinical outcomes and parameters related to synergies at T0 (a) and at T1
(b). Significant correlation indices are indicated with * p < 0.05, ** p < 0.01, and *** p < 0.001, respectively.

Both the Bartlett’s test of sphericity (χ2 = 1396.80, df = 190, p < 0.001) and the Kaiser–
Meyer–Olkin test (MSA = 0.62) indicated that the correlation matrix was factorable. Then,
we proceeded with the factor analysis at T0, T1, and with all the variables.
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3.2. Exploratory Factor Analysis
3.2.1. Exploratory Factor Analysis with All Variables

At first, we implemented the exploratory factorial analysis on the whole sample (EFA-
All) and we obtained structures with three to five factors (Supplementary Material, Figure
S1a). All these factor solutions were sequentially examined, with a total explained variance
equal to 66%. Specifically, one factor was linked to the clinical variables (both pre- and
post-treatment) and two factors, linked to the parameters of the synergies derived from
pre- and post-treatment EMGs, respectively.

Table 3 reports the loadings and the corresponding communalities of the EFA-All.
It can be observed that Factor 1 was linked to the clinical variables (both pre- and post-
treatment) and Median-sp-T0. Factor 2 and Factor 3 were linked to parameters of the
synergies only.

Table 3. EFA-All, with promax rotation for all variables.

Outcome Factor 1 Factor 2 Factor 3 h2

MAS-T0 −0.579 0.528
UE-FMA-T0 0.914 0.839

RPS-T0 0.948 0.885
MAS-T1 −0.554 0.467

UE-FMA-T1 0.988 0.920
RPS-T1 0.918 0.882

Median-sp-T0 0.616 0.441
N-aff-T0 0.913 0.848
N-ctrl-T0 0.922 0.669
N-sh-T0 0.972 0.849

Nsh-ctrl-T0 0.301 0.218
N-ctrl-T1 0.537 0.415
N-sh-T1 0.780 0.847

Nsh-aff-T1 0.881 0.769
Nsh-ctrl-T1 0.921 0.687

Median-sp-T1 0.589 0.503

% variance of the factor 33.7% 16.5% 15.9%

Table shows the factor loadings for the 3 factors and the communalities for each variable (h2).

Factor correlations were r = −0.30 between Factor 1 and Factor 2, r = 0.145 between
Factor 1 and Factor 3, and r = 0.37 between Factor 2 and Factor 3.

3.2.2. Exploratory Factor Analysis with T0 Variables

Secondly, we implemented an EFA model with two factors for the variables at T0
time point (EFA0). The factor structure of the sample indicated the presence of more
than one unique factor, suggesting that two factors should be retained (Supplementary
Material, Figure S1b). The correlation between the two factors was very low (r = −0.0013);
therefore, a promax oblique rotation method was used. Table 4 reports the loadings of the
factor matrix.

These factors collectively accounted for 70.2% of the variance in the responses. Factor
correlation was r = −0.14.

3.2.3. Exploratory Factor Analysis with T1 Variables

Finally, we implemented an EFA model with two factors for the variables at T1 time
point (EFA1). The factors were rotated with promax oblique rotation methods as the
correlation between the two factors was r = 0.023 (Supplementary Material, Figure S1c).
Table 5 reports the loadings of the factor matrix.
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Table 4. EFA0, with promax rotation for variables at T0.

Outcome Factor 1 Factor 2 h2

MAS −0.618 0.420
UE-FMA 0.847 0.705

RPS 0.886 0.775
N-aff 0.631 0.759

Nsh-aff 0.811 0.751
N-ctrl 0.674 0.538

Nsh-ctrl 0.811 0.751
N-sh 1.067 1.157

% variance of the factor 39.3% 30.9%

Table shows the factor loadings for Factor 1 and Factor 2, the communalities for each variable (h2), and the
percentage of variance explained by each factor (%).

Table 5. EFA1, with promax rotation for variables at T1.

Outcome Factor 1 Factor 2 h2

MAS −0.562 0.627
UE-FMA 0.889 0.786

RPS 0.948 0.948
N-ctrl 0.550 0.310

Nsh-ctrl 0.505 0.255
N-sh 1.390 1.933

% variance of the factor 42.8% 33.4%

Table shows the factor loadings for Factor 1 and Factor 2, the communalities for each variable (h2), and the
percentage of variance explained by each factor (%).

These factors collectively accounted for 76.2% of the variance in the responses and
they had a factor correlation of r = −0.068.

3.3. Confirmatory Factor Analysis

After EFA analysis, we proceeded to confirmatory factor analysis, for all sample
variables and then for variables at T0 and T1.

3.3.1. Confirmatory Factor Analysis with All Variables

In the CFA analysis carried out on all variables (CFA-All), a latent three-factor model
was specified, as suggested by the results obtained in the EFA-All analysis.

Based on the content of their variables, we named the three factors clinical scale, T0
synergies, and T1 synergies (Figure 2a).

The CFA-All model indicated the presence of a correlation between two factors, the
T0 synergies and T1 synergies factors (r = 0.37), while no correlations related to the clinical
scale factor were detected. Furthermore, all factor loadings were significant. Goodness-
of-fit statistics demonstrated that all indices were outside the set cut-offs: RMSEA index
between 0.30 and 0.36 and a value of χ2 = 442.84, with df = 74 and p = 0.000. The values of
CFI and TLI were 0.55 and 0.45, respectively.

3.3.2. Confirmatory Factor Analysis T0 Variables

The EFA0 suggested a two-factor solution, and we estimated a latent two-factor model
(CFA0). According to the content of their items, we named the two factors as clinical scale
and synergies parameters (Figure 2b). After estimating the model, goodness-of-fit statistics
were obtained. All FL were significant, but the model demonstrated that all indices were
outside the set cut-offs, with RMSEA index between 0.45 and 0.57 and χ2 = 255, with df = 19
and p = 0.000. Moreover, the values of CFI and TLI were 0.57 and 0.37, respectively.
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3.3.3. Confirmatory Factor Analysis T1 Variables

The EFA1 suggested a two-factor solution, and we estimated a latent two-factor model
(CFA1). According to the content of their items, we named the two factors as clinical scale
and synergy parameters (Figure 2c). After estimating the model, it did not show a very
good fit, with an RMSEA index between 0.11 and 0.29 and χ2 = 23.58, with df = 8 and
p = 0.003. Moreover, the values of CFI and TLI were 0.95 and 0.91, respectively.
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3.4. General Linear Regression Models

To investigate the reason why the Median-sp at T0 was associated with the clinical
factor in both EFA-All and CFA-All, we estimated a general linear regression model with
the Median-sp as dependent variable and the clinical variables (i.e., MAS, RPS, UE-FMA)
at T0 as independent variables.

In the general linear regression model, the T0 variable Median-sp was significantly
associated with RPS at T0 (β̂ = 0.002, p < 0.001). The model determination coefficient was
R2 = 0.97.

4. Discussion

In the present study, we investigated the statistical relationships among the clinical
variables and muscle synergy parameters in a cohort of post-stroke patients enrolled in
a specific treatment for upper limb motor recovery provided in a virtual environment.
Specifically, the main objective of this study was to identify whether motor output, as
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described by muscle synergies parameters recorded using sEMG, and motor performance,
quantified by clinical scales, convey the same information or provide a complementary one.

In our study, the pre- and post-treatment analysis evidenced a significant improvement
in almost all clinical outcomes, whereas no significant differences in muscle synergies
parameters were observed. This suggests that they have a different sensitivity to the
recovery level after stroke, and that the number of muscles synergies and merging alone
are not sensitive enough to describe the effectiveness of treatment. This seems to be in
contrast with some previous studies, where changes in the number of synergies and their
structure indicated improvement of motor control and movement quality. However, it was
limited to patients with low level of residual motor functions [15,61].

There may be several mechanisms that could better describe how muscle synergies
change after motor therapy. For instance, rather than counting the number of muscle
synergies, it has been shown that modifications of clusters and shifting from one cluster
to another can provide insights for assessing the efficacy of the therapy [62]. After stroke,
functional and structural recovery processes take place within the brain. Since these
processes are mainly related to the reorganization of cortical maps [63], we may hypothesize
that changes in the modulation of synergies may be associated with these mechanisms
of neural plasticity. This could trigger changes in muscle coactivation within synergies,
resulting in synergy merging, for instance [64]. Indeed, it was suggested that the merging
phenomena of muscle synergies may depend on neural changes at the cortical level or at
the level of the brainstem in the spinal cord [14].

Despite that clinical and instrumental assessments provided different information
in terms of motor recovery, some strong relationships emerged between some muscle-
synergy parameters and clinical scales. Indeed, the correlation analysis indicated that the
number of muscle synergies of the affected limb was positively correlated with clinical
outcomes: the higher the N-aff, the higher the level of spasticity to upper limb muscles
(i.e., MAS). Conversely, the higher the N-aff, the lower the level of motor ability (i.e.,
UE-FMA and RPS). In line with our findings, Pan et al. [13] found that muscle synergies
were significantly positively correlated with the Brunnstrom stage (R2 = 0.52, p < 0.01). This
is in good agreement with our study, because the Brunnstrom scale describes the stages of
stroke recovery by a progressive decrease in spasticity. Furthermore, there was a strong
positive correlation between the Median-sp values and the motor ability of the patients
(i.e., UE-FMA and RPS). Since Median-sp describes the similarity between the affected and
unaffected synergies, it seems to provide some useful and objective information about the
degree of “true recovery” of the paretic arm (i.e., the extent to which the original muscle
coordinative structures are restored) after intervention. Moreover, the correlation index
increased after the treatment (i.e., T1 assessment), meaning that, after motor treatment,
Median-sp is more informative about the motor performance.

The second objective of the study was to group all the variables into one or more
clusters and to describe the nature of the underlying relationships among variables as
described by the latent factors. More precisely, we used EFA and CFA to explore the
information shared between muscle synergies and clinical scales of stroke survivors referred
to upper limb treatment.

The EFA model we implemented with all variables (i.e., EFA-All) identified three
factors: one linked to the clinical variables (both pre- and post-therapy), and two linked to
the pre- and post-treatment parameters of the synergies, respectively. Median-sp was the
only muscle-synergy parameter which was associated with the cluster of clinical scales,
and thus with the level of a patient’s motor performance. This achievement confirms the
correlation results, and it represents a potential continuous index of similarity that can
provide information also from a clinical point of view. Our finding that clinical variables
and muscle-synergy parameters were mostly linked to separable factors argues that muscle
synergies and clinical variables provided complementary information, both related to the
motor ability of the patient.
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The subsequent models, EFA0 and EFA1, highlighted the same structure of EFA-
All, with the variables clustered according to their nature: clinical scales and synergy
parameters. It should be noted that a synergy parameter (N-ctrl T1), despite referring to
post treatment outcome, is attributed to the pretherapy cluster. This is an expected result:
since N-ctrl was obtained from the healthy limb, it did not vary due to the motor therapy.
On the other hand, in the CFA-All model, the variables were not distributed clearly among
the factors according to their nature, as we would expect. Similar to the EFA-All model
results, in the clinical factor, there was a parameter of the Median-sp-T0 synergies, while
in the two factors related to the synergies (T0 synergies and T1 synergies) there were
parameters that did not follow the temporal subdivision of their nature. Moreover, in CFA0
and CFA1, the variables were not all represented by latent factors. Indeed, both in the CFA0
and in the CFA1 models, the clinical factor collects all the clinical variables considered (i.e.,
MAS, UE-FMA, and RPS).

By considering the differences between CFA0 and CFA1 models, it was highlighted
how, after the therapy, the parameters linked to the stroke-affected limb (i.e., N-aff and
N-sh-aff) disappeared, probably because after the therapy the differences between healthy
limb and affected limb were less marked, and therefore the affected limb no longer provided
information.

Since in both EFA-All and CFA-All models, Median-sp-T0 was the only synergy pa-
rameter with an underlying structure in common with the clinical scales, a regression
model was estimated to determine whether there is a causal relationship between the
similarity parameter (Median-sp) (dependent variable) and all clinical variables (indepen-
dent variables) at the same time point, that is, the pretreatment evaluation (i.e., T0). Our
model evidenced a relationship between the similarity of affected and healthy synergies
at the beginning of the treatment and the upper limb movement quality during a reach-
to-grasp target, assessed by RPS [65]. Indeed, the presence of the RPS scale in the model
is consistent with the indication that the reaching movement may be the best predictor
of motor recovery. Recently, Pan et al. defined that severe patients had the lowest range
of motion and speed during reaching movement. Specifically, they found three muscle
synergies that may explain reaching movement. Moreover, severe patients changed one
of these muscle synergies; meanwhile, the mild-to-moderate patients were more similar
to the control template [66]. Thus, individualized training may be developed to make the
patients’ features more similar to the ones in control subjects so as to improve similarity
values (i.e., Median-sp) [67].

The present study has several limitations that should be addressed in future research.
In terms of generalizability, the relatively small sample size used to conduct the factor
analysis (i.e., both EFA and CFA methods) should not be considered to obtain valuable
results as good-of-fitness index [68]. For this reason, the goodness-of-fit statistics for all
CFA models showed that none of them had good overall fit, with RMSEA never dropping
below 0.11 and CFI and TLI remaining relatively low, despite a high post hoc statistical
power (1 − beta > 0.99). Moreover, to obtain an effect on the synergies, we need to test a
longer treatment period or to tailor the upper limb treatment based on the stratification
of patients. Indeed, the sample of patients was not homogeneous in terms of timing
from lesion and initial level of motor impairment. Actually, more investigation is needed
concerning which neurophysiological parameters may help classify patients based on
different recovery potential [69,70]. In our study, our results demonstrate that muscle-
synergy parameters showed a potential to contributing to discriminate between patients
with different recovery potential: the relationship between neurophysiological parameters
(i.e., Median-sp) and clinical variables at the beginning of therapy gave some indication
about the potential patient-tailored treatment. More trials will be needed to define the real
contribution of muscle-synergy parameters to distinguish between fitters and no-fitters of
reactive neurobiological recovery [66,71]. Moreover, we may consider using the similarity
parameter (i.e., Median-sp) to build patient-specific prediction models to improve clinical
decisions, and, ultimately, recovery and outcome after stroke [72].
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Finally, the types of movements and the kinematics were not considered in our study,
making other biomechanical interpretation of our results possible.

5. Conclusions

In our study, we investigated whether there is a relationship between clinical scales
and muscle-synergy parameters in individuals with stroke who underwent a specific
upper limb motor training. Specifically, after statistical analysis, we found that there
exists a relationship between the similarity of muscle synergy parameters of the affected
and unaffected limb and clinical variables, in particular at the beginning of the therapy.
The correlation found between Median-sp and clinical variables indicates that there is a
related, but complementary, information provided by both different type of parameters.
Finally, future analyses may be conducted to investigate the use of similarity parameter as a
biomarker of different levels of motor impairment to tailor the upper limb motor treatment
to stroke survivors.
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CNS Central nervous system
sEMG Surface electromyography
MCA Middle cerebral artery
MMSE Mini Mental State Examination
MAS Modified Ashworth Scale
UE-FMA Upper Extremity Fugl-Meyer Assessment Scale
RPS Reaching Performance Scale
VRRS Virtual Reality Rehabilitation System
SENIAM Surface Electromyography for the Non-Invasive Assessment of Muscles
NMF Nonnegative matrix factorization
N-aff Number of affected synergies
N-ctrl Number of unaffected synergies
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N-sh Number of shared synergies
Nsh-naff Percentage of synergies shared in the affected arm
Nsh-nctrl Percentage of synergies shared in the unaffected arm
Median-sp Median of the calar product between the affected and unaffected arm
P1 Merging parameter
T0 Pretherapy variable
T1 Posttherapy variable
R2 Correlation coefficient
P P-value
MSA Measure of sampling adequacy
EFA Exploratory factor analysis
EFA0 Exploratory factor analysis at T0
EFA1 Exploratory factor analysis at T1
EFA-All Exploratory factor analysis with all variables at T0 and T1
PCA Principal component analysis
PAF Principal axis factoring
PA Principal axis
FL Factor loadings
h2 Communalities
r Factors correlation coefficient
CFA Confirmatory factor analysis
CFA0 Confirmatory factor analysis at T0
CFA1 Confirmatory factor analysis at T1
CFA-All Confirmatory factor analysis with all variables at T0 and T1
CFI Comparative fit index
χ2 Chi-squared
TLI Tucker–Lewis index
RMSEA Root mean-squared error of approximation
Df Degrees of freedom
SD Standard deviation
IQR Interquartile range
FA Factor analysis
PC Principal component
β̂ Estimate regression coefficient.
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